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Abstract

In this paper we investigate risk-sensitive semi-Markov decision processes with a Borel
state space, unbounded cost rates, and general utility functions. The performance criteria
are several expected utilities of the total cost in a finite horizon. Our analysis is based
on a type of finite-horizon occupation measure. We express the distribution of the finite-
horizon cost in terms of the occupation measure for each policy, wherein the discount is
not needed. For unconstrained and constrained problems, we establish the existence and
computation of optimal policies. In particular, we develop a linear program and its dual
program for the constrained problem and, moreover, establish the strong duality between
the two programs. Finally, we provide two special cases of our results, one of which
concerns the discrete-time model, and the other the chance-constrained problem.
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expected utility; linear program
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1. Introduction

As is well known, risk-sensitive control is a subject of significant interest in the field of
Markov decision processes (MDPs) and has received much attention; see, for example, [2], [5],
[8], and [14] for average cost discrete-time MDPs (DTMDPs), [2], [7], and [13] for infinite-
horizon discounted cost DTMDPs, [2] and [7] for finite-horizon discounted or undiscounted
cost DTMDPs, [10] and [22] for average cost continuous-time MDPs (CTMDPs), and [10]
for finite-horizon cost and infinite-horizon discounted cost CTMDPs. Regarding risk-sensitive
semi-Markov decision processes (SMDPs), to the best of the authors’ knowledge this issue was
only addressed in [6], in which the authors concentrated on a long-run average cost. In this paper
we also study risk-sensitive SMDPs, but we focus on a finite-horizon total cost. We assume that
the state space is a Borel space, the cost rate function is unbounded from above and from below,
and the utility functions are general convex or concave functions. The performance criteria
are several expected utilities of a finite-horizon total cost. We consider both unconstrained and
constrained problems.
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We adopt the convex analytic approach to solve our problems. Our work is related to that of
Haskell and Jain [13]. In fact, the authors investigated risk-aware DTMDPs with general risk
functions. They considered the problem of minimizing the risk of infinite-horizon discounted
cost, but they focused on minimizing the risk of finite-horizon discounted cost with a sufficiently
large time horizon instead. Whereas other authors employed a dynamic programming method
commonly used for risk-sensitive MDPs and SMDPs (see [2], [5]–[8], [10], [14], and [22]),
Haskell and Jain [13] developed a convex analytic approach to solve their problem from a fresh
viewpoint: they augmented the state space, expressed the distribution of the finite-horizon
total cost in terms of the infinite-horizon discounted occupation measure for each policy, and
formulated the problem as an infinite-dimensional linear program in occupation measures.
Compared with their work, however, our work has the following features.

• Our model is a continuous-time SMDP, which is more general than the model of DTMDPs
in [13]. As is known, SMDPs allow the sojourn times to be arbitrarily distributed
and, hence, SMDPs are well suited to model a variety of systems such as production
scheduling, reliability, and maintenance.

• The cost rate function can be unbounded from above and below, whereas the one-stage
cost function of [13] is assumed to be nonnegative and bounded from above. Thus, some
new conditions and a framework different from those of [13] are forthcoming in our setup.
We remark that the cases of unbounded costs arise in many real-world situations such as
inventory systems (see [15, p. 69]), and have been widely studied in a risk-neutral context.

• We consider a finite-horizon total undiscounted cost, whereas an infinite-horizon total
discounted cost was treated in [13]. Note that, for continuous-time models, finite-
horizon problems are usually more complex and receive less attention than infinite-
horizon problems due to the fact that the optimal policies for finite-horizon problems
are nonstationary (depending on the time horizon). On the other hand, finite-horizon
optimality is of particular interest in various applications since the lifetime of most
systems in reality is usually finite and, moreover, it is often used to approximate the
infinite-horizon optimality, as carried out in [13].

In keeping with the convex analytic approach proposed in [13] for risk-aware DTMDPs, we
express the distribution of the finite-horizon total cost in terms of the occupation measure under
each policy. In [13, Theorem 3.5], the distribution of the finite-horizon total cost was expressed
in terms of the infinite-horizon discounted occupation measure, wherein the discount factor
was indispensable. To adjust the approach to suit our undiscounted case, we introduce a type of
finite-horizon undiscounted occupation measure instead and then for each policy, express the
distribution of the finite-horizon total cost in terms of this type of occupation measure, wherein
the discount factor is not needed. It is worth mentioning that our approach is also suitable for
the discounted case.

Based on the treatment above, we write the expected utilities of the finite-horizon total
cost in terms of the occupation measure for each policy under some finiteness conditions
and further represent the expected utilities as the expected random-horizon total cost with
new cost functions. For the unconstrained problem, we establish the Bellman equation and
the existence of optimal policies under some compactness-continuity conditions. We also
propose a method for the computation of optimal policies. For the constrained problem, we
prove the compactness of the set of occupation measures and the continuity of the expec-
ted utilities in occupation measures with respect to w-weak topology under another set of
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compactness-continuity conditions, which leads to the existence of constrained-optimal poli-
cies. Moreover, we develop a linear programming formulation together with its dual program
for the constrained problem. We further establish the strong duality between the prime and the
dual programs. Finally, two interesting special cases of our results are provided. One is on the
discrete-time case, which shows that our analysis is distinct from the previous one. Another
concerns the chance-constrained problem, in which the probabilities that the total cost exceeds
some particular levels are constrained.

The rest of the paper is organized as follows. In Section 2 we formulate the risk-sensitive
control model and propose our problems. In Section 3 we provide some preliminary analysis.
Section 4 contains the solution to the unconstrained problem, whereas Section 5 contains the
solution to the constrained problem. In Section 6 we present two special cases of our results.
We conclude with Section 7.

2. The control model

Notation. If X is a Borel space, we denote by B(X) the Borel σ -algebra, by P (X) the set
of all probability measures on B(X), and by 1D(x) the indicator function on the set D ⊆ X.
Moreover, let R = (−∞, +∞) and R+ = [0, +∞).

A risk-sensitive SMDP is a model with a collection

{E, A, (A(x), x ∈ E), Q(·, · | x, a), c(s, x, a), u0(·)},
where E is the state space and A is the action set, which are assumed to be Borel spaces,
respectively; A(x) ∈ B(A) denotes the set of admissible actions at state x ∈ E; Q(·, · | x, a)

is the semi-Markov kernel on R+ × E given K , where K = {(x, a) | x ∈ E, a ∈ A(x)}
denotes the set of admissible state-action pairs, assuming that K ∈ B(E × A) and there exists
a measurable mapping φ : R+ × E → A such that (x, φ(t, x)) ∈ K; the function c(s, x, a) on
R+ × K represents the cost/loss rate at time s, depending on the state and action. We allow
the cost/loss function c to be unbounded from below and from above. The function u0(·) on R

denotes the central utility function.
If, furthermore, a collection {ui(·), di, i = 1, . . . , q} is taken into account, where u1, . . . , uq

represent the constrained utility functions on R and di are constraint constants, the model is
referred to as a constrained risk-sensitive SMDP. As usual, the utility functions are assumed to
be continuous, strictly increasing, and convex or concave; see [1, Section 3.4] and [2] and the
references therein.

Remark 2.1. The utility-constrained problems arise when we wish to minimize/maximize the
total cost/reward under more than one utility function. For example, for a corporation, the central
utility is usually the economic benefits, while the constrained utilities that the corporation have
to consider are environment benefits, society benefits, employee welfare, and so on. The utility
functions are chosen individually and should to some extent also reflect his/her risk attitude
and the degree of risk preference; see Remark 2.3 for further details.

The evolution of an SMDP is as follows. Initially, the system occupies some state x0 ∈ E

at some time t0 ∈ R+, and the controller chooses an action a0 ∈ A(x0) according to some rule.
As a consequence, the system jumps to state x1 ∈ E after a sojourn time θ1 ∈ R+ in x0, in
which the transition law is subject to the semi-Markov kernel Q. At time (t0+θ1), the controller
chooses an action a1 ∈ A(x1) according to some rule and the same sequence of events occurs.
The SMDP evolves in this way, and we obtain a history hn = (t0, x0, a0, θ1, x1, a1, . . . , θn, xn)
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of the SMDP up to the nth jump time. Equivalently, a history hn can be written as hn =
(t0, x0, a0, t1, x1, a1, . . . , tn, xn), where tk = tk−1 + θk, k = 1, 2, . . . , n, representing the
jump times of the SMDP. For each n ≥ 0, let Hn = (R+ ×E ×A)n × (R+ ×E) denote the set
of all histories of the SMDP up to the nth jump, which is endowed with the Borel σ -algebra.

To regulate the action-selection, we will introduce policies. A policy π = {πn, n ≥ 0} is
a sequence of stochastic kernels πn on A given Hn satisfying πn(A(xn) | hn) = 1 for every
hn ∈ Hn, n = 0, 1, . . . . The set of all policies is denoted by �. Below we state some
special policies.

Definition 2.1. A randomized Markov policy π = {φn} is a sequence of stochastic kernels φn

on A given R+ × E such that φn(A(xn) | tn, xn) = 1 for every (tn, xn) ∈ R+ × E and n ≥ 0.
If φn are all independent of n, it is said to be randomized jump-stationary. In this case, we
write π = {φ, φ, . . .} as φ for simplicity. If, furthermore, φ(· | t, x) is a Dirac measure for
each (t, x), it is said to be deterministic jump-stationary, and we write φ(· | t, x) as φ(t, x).

We denote by �RS and �DS the families of all randomized jump-stationary and deterministic
jump-stationary policies, respectively.

Let � = (R+ ×E ×A)∞ be a sample space and F = B(�) be the Borel σ -algebra. On the
measurable space (�, F ), we define a sequence of random variables (RVs) {Tn, �n+1, Xn, An,

n ≥ 0} by

T0(ω) = t0, Tn+1(ω) = t0 + θ1 + · · · + θn+1, �n+1(ω) = θn+1,

Xn(ω) = xn, An(ω) = an

for each n ≥ 0 and any trajectory ω = (t0, x0, a0, θ1, x1, a1, . . . , θn, xn, an, . . .) ∈ �. Here,
Tn denotes the RV of the nth jump time of the SMDP; �n+1, the RV of the sojourn time
between the nth and the (n + 1)th jumps; Xn, the RV of the post-jump state at Tn; and An,
the RV of the action chosen at Tn. Now, given the semi-Markov kernel Q, an initial time-state
distribution μ ∈ P (R+ × E), and a policy π ∈ �, by the Ionescu Tulcea theorem (see [1,
Proposition B.2.5], there exists a unique probability measure Pπ

μ on (�, F ) such that

Pπ
μ(T0 ∈ dt, X0 ∈ dx) = μ(dt, dx),

Pπ
μ(An ∈ 
 | T0, X0, A0, . . . , Tn, Xn) = πn(
 | T0, X0, A0, . . . , Tn, Xn),

Pπ
μ(�n+1 ≤ s, Xn+1 ∈ B | T0, X0, A0, . . . , Tn, Xn, An) = Q(s, B | Xn, An) (2.1)

for each s ∈ R+, B ∈ B(E), 
 ∈ B(A), and n ≥ 0. The expectation operator with respect to
Pπ

μ is denoted by Eπ
μ. When μ is a Dirac measure δ{(t,x)}(·), i.e. μ({(t, x)}) = 1, we use the

notation Pπ
(t,x) and Eπ

(t,x) instead of Pπ
μ and Eπ

μ, respectively.
Let N(t) := ∑

n≥1 1{Tn≤t} represent the number of jumps of the SMDP until time t , and let
T∞ := limn→∞ Tn be the explosive time of the SMDP. Note that T∞ may be finite. We do
not intend to consider the controlled process after the moment T∞. For each t < T∞, let
ξt (ω) = ∑

n≥0 1{Tn≤t<Tn+1}(ω)Xn(ω) and ϑt (ω) = ∑
n≥0 1{Tn≤t<Tn+1}(ω)An(ω) denote the

underlying continuous-time state and action processes, respectively. Hereafter, we consider a
T -horizon SMDP (with T > 0) and, naturally, assume a finite number of jumps until time T .
Thus, we propose Assumption 2.1.

Assumption 2.1. There exist constants δ > 0 and ε > 0 such that

sup
(x,a)∈K

Q(δ, E | x, a) ≤ 1 − ε.
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Remark 2.2. (i) Assumption 2.1 is widely employed in SMDPs as a regular condition; see,
for example, [19] for the expected infinite-horizon discounted reward criteria, [3] and [19] for
the expected long-run average reward criteria, [16] for a probability criterion, and [17] for an
expected finite-horizon reward criterion, and the references therein.

(ii) An equivalent condition to Assumption 2.1 is that sup(x,a)∈K Q(0, E | x, a) < 1, which,
however, is easy to verify in various applications. For example, in a DTMDP, Q(0, E | x, a) ≡
0 and, thus, Assumption 2.1 is fulfilled.

Assumption 2.1 means that the sojourn time at any state and action exceeds δ with a
probability at least ε and, thus, there cannot be an infinite number of jumps over any finite
time-horizon with probability 1. Formally, following the proof of [21, Proposition 3.2.2],
Assumption 2.1 implies that

Eπ
μ[N(T )] ≤ T/δ + 1

ε
< ∞ for all π ∈ �. (2.2)

Therefore, we have Pπ
μ({N(T ) < ∞}) = 1 for all π ∈ � and, hence, the T -horizon total cost∫ T

T0
c(s, ξs, ϑs) ds is well defined. In this context, for each initial distribution μ ∈ P ([0, T ]×E)

and policy π ∈ �, we can now define the expected utilities of T -horizon cost by

Jπ
i (μ) := Eπ

μ

[
ui

(∫ T

T0

c(s, ξs, ϑs) ds

)]
, i = 0, . . . , q,

whenever the expectations are well defined. In particular, if μ({(t, x)}) = 1 for some (t, x) ∈
[0, T ] × E, we write Jπ

i (μ) as Jπ
i (t, x).

Remark 2.3. (i) Note that the expected utility incorporates the mean and variance of the total
cost and, thus, characterizes the risk preference. To see this, let Y represent some type of cost
and u be a utility function. Using the Taylor rule, we can write the expected utility of Y as

E[u(Y )] ≈ u(E[Y ]) + 1
2u′′(E[Y ]) var[Y ].

The cases of convex or concave u describe the risk-averse or risk-seeking preference. For details,
see [1, pp. 70–72] or [2, pp. 3, 4].

(ii) The exponential utility u(y) = (1/γ )eγy(γ �= 0) is one of the most popular utility functions,
and has received much attention in the literature of risk-sensitive MDPs; see [2], [5], [7], [8],
and [14]. Other popular utility functions include the logarithmic utility u(y) = log(γy)(γ > 0),
the power utility u(y) = (1/γ )yγ (γ �= 0), and the quadratic utility u(y) = y + γy2(γ �= 0).
Note that the sign of the coefficient γ reflects the risk preference of an individual, while the
absolute value of γ determines the level of risk tolerance; see [1, pp. 70–72] for details.

We are now ready to state our unconstrained and constrained risk-sensitive problems. The
unconstrained risk-sensitive problem is of the form

min
π∈�

Jπ
0 (μ), (2.3)

whereas the constrained risk-sensitive problem is as follows:

min
π∈�

Jπ
0 (μ)

subject to Jπ
i (μ) ≤ di, i = 1, . . . , q. (2.4)
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In what follows, we first carry out some preliminary analysis in Section 2, and then provide
solutions to the unconstrained problem and the constrained problem in Sections 4 and 5,
respectively.

3. Preliminary analysis

In this section, our aim is threefold:

• introduce additional variables that summarize the accumulated past costs at jump times;

• introduce a type of finite-horizon occupation measure;

• express the distribution of the finite-horizon total cost in terms of occupation measure
under each policy.

3.1. State augmentation

As is well known, problems of minimizing the expected utility of a total cost can be handled
by state augmentation through introducing an auxiliary state variable that keeps track of the
cumulative past cost; see [2] and [13]. The reason is that an optimal policy for problems of this
type usually depends on the accumulated past cost. In our setup of finite-horizon SMDPs, we
will also introduce such variables. Let �0 denote the initial cost, which is an RV (although it
is determinate in most cases). For every n ≥ 1, we define the cumulative costs �n until the nth
jump before the terminal time T by

�n := �0 +
n−1∑
k=0

∫ T ∧Tk+�k+1∧(T −T ∧Tk)

T ∧Tk

c(s, Xk, Ak) ds.

Since the present costs will not accumulate when time T is reached, we have

�N(T )+1 = �0 +
∫ T

T0

c(s, ξs, ϑs) ds.

Now we augment the state space with two new state variables, namely Tn and �n, to keep track
of the jump times and accumulated past costs, respectively. The transition law of the augmented
state process {Tn, �n, Xn, n = 0, 1, . . . , N(T )} is governed by

Q(B × C × D | t, λ, x, a) :=
∫ T −t

0
1B(t + s)δ{λ+∫ t+s

t c(z,x,a) dz}(C)Q(ds, D | x, a)

for every B × C × D ∈ B([0, T ] × R × E) and (t, λ, x, a) ∈ K := [0, T ] × R × K . Note
that the transition kernel Q is substochastic since Q([0, T ] × R × E | t, λ, x, a) = Q(T −
t, E | x, a) ≤ 1. If we introduce an isolated state � along with an isolated action a� such that
Q(� | t, λ, x, a) = 1−Q([0, T ]×R×E | t, λ, x, a) for (t, λ, x, a) ∈ K, and Q(� | �, a�) =
1, Q becomes a stochastic kernel for the extended state space [0, T ] × R × E ∪ {�} and the
action space A ∪ {a�}. The policies are also extended to include the information on �n since
the �n summarize the useful history information for the controllers. For simplicity, we will
still use the same policy notation to denote the generalized policies.

In a more general framework, given an initial time-cost state distribution ν ∈ P ([0, T ] ×
R × E) and a policy π ∈ �, by the Ionescu Tulcea theorem [1, Proposition B.2.5] again, there
exist a discrete-time process {T ′

n, �
′
n, X

′
n, A

′
n, n = 0, 1, . . .} and a corresponding probability
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space (�′, F ′, Pπ
ν ) associated with the extended kernel Q. Clearly, the first entrance time

of the process {T ′
n, �

′
n, X

′
n} into � is N(T ) + 1 and, thus, (T ′

n, �
′
n, X

′
n, A

′
n) coincides with

(Tn, �n, Xn, An) for every n ≤ N(T ), while (T ′
n, �

′
n, X

′
n) = � and A′

n = a� for all n ≥
N(T ) + 1. The expected utilities of the finite-horizon total cost are now defined by

Jπ
i (ν) := Eπ

ν [ui(�N(T )+1)], π ∈ �, i = 0, . . . , q,

provided that the expectations are well defined. Accordingly, the unconstrained problem (2.3)
is extended to a more general form as

min
π∈�

Jπ
0 (ν), (3.1)

while the constrained problem (2.4) is extended to

min
π∈�

Jπ
0 (ν)

subject to Jπ
i (ν) ≤ di, i = 1, . . . , q, (3.2)

3.2. Occupation measures

Next we introduce a type of finite-horizon occupation measure and establish a one-to-one
correspondence between randomized jump-stationary policies and occupation measures.

Definition 3.1. The occupation measure ηπ
ν (·) of a policy π is a nonnegative measure on

B([0, T ] × R × E × A) concentrated on K, which is defined by

ηπ
ν (B, C, D, 
) := Eπ

ν

[N(T )∑
n=0

1{Tn∈B, �n∈C, Xn∈D, An∈
}
]
, (3.3)

where B, C, D, and 
 are measurable subsets of [0, T ], R, E, and A, respectively.

We denote by D := {ηπ
ν : π ∈ �} the space of all occupation measures. Note that, by (2.2),

the occupation measures ηπ
ν are bounded in π under Assumption 2.1.

Remark 3.1. (i) The occupation measures are in fact state-action frequencies. They are widely
used in MDPs so as to transform a stochastic dynamic control problem to a static optimization
problem; see [9], [11], [13], [15], [18], and [19].

(ii) The occupation measures defined above are in fact finite-horizon undiscounted occupation
measures, which are different from the infinite-horizon discounted occupation measures used
to analyze the risk-aware DTMDPs in [13]; see Section 6 for further details.

In the next theorem we state some characterizations of the elements of D .

Theorem 3.1. Under Assumption 2.1, the following assertions hold.

(i) For a fixed policy π ∈ �, ηπ
ν is a finite measure satisfying

η̂(ds, dγ, dy) = ν(ds, dγ, dy)

+
∫

[0,T ]×R×E×A

Q(ds, dγ, dy | t, λ, x, a)η(dt, dλ, dx, da),

(3.4)

where η̂(ds, dγ, dy) := η(ds, dγ, dy, A) is the marginal of η on [0, T ] × R × E.
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(ii) Conversely, if a finite measure η on B([0, T ] × R × E × A) concentrated on K satisfies
(3.4), there is a randomized jump-stationary policy φ ∈ �RS such that η

φ
ν = η and φ

can be taken from the disintegration of η with respect to its marginal η̂, i.e.

η(dt, dλ, dx, da) = φ(da | t, λ, x)η̂(dt, dλ, dx). (3.5)

Moreover, if ϕ ∈ �RS is such that η
ϕ
ν = η then ϕ is a version of φ above with respect

to η̂, and
ηϕ

ν (dt, dλ, dx, da) = ϕ(da | t, λ, x)η̂ϕ
ν (dt, dλ, dx). (3.6)

Proof. Under Assumption 2.1, (2.2) indicates that {T ′
n, �

′
n, X

′
n, A

′
n, n = 0, 1, . . .} is a

DTMDP absorbing to �. Thus, the theory for absorbing MDPs can be applied in our setup.
For instance, (i) and the first assertion of (ii) follow from [15, Lemmas 4.2 and 4.3].

To prove the second assertion of (ii), suppose that we have D ∈ B([0, T ]×R×E) such that
η̂(D) > 0 and ϕ(
 | t, λ, x) �= φ(
 | t, λ, x) for every (t, λ, x) ∈ D and some 
 ∈ B(A).
Since η(·) = η

ϕ
ν (·), we have η̂(·) = η̂

ϕ
ν (·). However, we find that

ηϕ
ν (D, 
) =

∫
D

ϕ(
 | t, λ, x)η̂ϕ
ν (dt, dλ, dx) �=

∫
D

φ(
 | t, λ, x)η̂(dt, dλ, dx) = η(D, 
),

which contradicts withη(·) = η
ϕ
ν (·). Thus, we must have, for every
 ∈ B(A), ϕ(
 | t, λ, x) =

φ(
 | t, λ, x), η̂-almost every (t, λ, x) ∈ [0, T ] × R × E, i.e. ϕ is a version of φ. This fact
together with (3.5) leads to (3.6). �

3.3. Distribution of the finite-horizon cost

We now express the distribution of the finite-horizon total cost �N(T )+1 in terms of the
occupation measure ηπ

ν under each policy π .

Theorem 3.2. For every π ∈ � and D ∈ B(R),

Pπ
ν (�N(T )+1 ∈ D)

=
∫

[0,T ]×R×E×A

[(1 − Q(T − s, E | y, a)) 1{γ+∫ T
s c(z,y,a) dz∈D}]ηπ

ν (ds, dγ, dy, da).

Proof. For every π ∈ �, we have

Pπ
ν (�N(T )+1 ∈ D)

=
∞∑

n=0

Pπ
ν (�n+1 ∈ D, N(T ) = n)

=
∞∑

n=0

Pπ
ν

(
�n +

∫ T

Tn

c(s, Xn, An) ds ∈ D, Tn ≤ T < Tn+1

)

=
∞∑

n=0

Eπ
ν

[
Pπ

ν

(
�n +

∫ T

Tn

c(s, Xn, An) ds ∈ D, Tn ≤ T < Tn+1 | Tn, �n, Xn, An

)]

=
∞∑

n=0

Eπ
ν [1{Tn≤T } 1{�n+∫ T

Tn
c(s,Xn,An) ds∈D} Pπ

ν (�n+1 > T − Tn | Tn, �n, Xn, An)]
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=
∞∑

n=0

Eπ
ν [1{Tn≤T } 1{�n+∫ T

Tn
c(s,Xn,An) ds∈D}(1 − Q(T − Tn | Xn, An))]

=
∫

[0,T ]×R×E×A

[(1 − Q(T − s, E | y, a)) 1{γ+∫ T
s c(z,y,a) dz∈D}]ηπ

ν (ds, dγ, dy, da),

where the first equality follows from Assumption 2.1, the fourth equality is due to the properties
of conditional expectations, the fifth equality is from (2.1), and the last is due to the definition
of occupation measures. The proof is complete. �

Remark 3.2. In fact, expressing the distribution of the total cost in terms of occupation measure
under each policy plays a key role in analyzing our risk-sensitive problems. This idea is inspired
by that of Haskell and Jain [13] for risk-aware DTMDPs. To make the approach of [13] for the
discounted case fit our undiscounted case, our expression here is based on the finite-horizon
undiscounted occupation measures.

According to Theorem 3.2, for every i = 0, . . . , q and π ∈ �, we can write Jπ
i (ν) in terms

of the occupation measure ηπ
ν as

Jπ
i (ν) =

∫
R

u(λ)

∫
[0,T ]×R×E×A

[(1 − Q(T − s, E | y, a)) 1{γ+∫ T
s c(z,y,a) dz∈ dλ}]

× ηπ
ν (ds, dγ, dy, da)

=
∫

[0,T ]×R×E×A

c̃i(s, γ, y, a)ηπ
ν (ds, dγ, dy, da), (3.7)

where c̃i are defined by

c̃i (s, γ, y, a) := (1 − Q(T − s, E | y, a))ui

(
γ +

∫ T

s

c(z, y, a) dz

)
, (s, γ, y, a) ∈ K.

From (3.7), we see that Jπ
i (ν) is linear in the occupation measure ηπ

ν for each i = 0, . . . , q,
which implies that the optimization problems (3.1) and (3.2) may be transformed to linear
program problems, as carried out in Section 5. Moreover, when we derive (3.7), we have
exchanged the order of the double integration. To ensure that the exchange of the integration
order is valid, by the Fubini theorem, the double integral should be finite, which, however, is
not guaranteed at this moment. To achieve this, we propose the following conditions.

Assumption 3.1. There exist a weight (or bounding) function w ≥ 1 on [0, T ] × R × E and
two constants M1, M2 > 0 such that:

(i) |c̃i (t, λ, x, a)| ≤ M1w(t, λ, x) for all (t, λ, x, a) ∈ K;

(ii)
∫
[0,T ]×R×E

w(t, λ, x)ν(dt, dλ, dx) < +∞;

(iii) Eπ
(t,λ,x)[

∑N(T )
n=0 w(Tn, �n, Xn)] ≤ M2w(t, λ, x) for all π ∈ �.

Remark 3.3. (i) If the cost rate c(x, a) and the initial cost �0 are both bounded, the cost
functions c̃i will be bounded. In this case, the weight function w can be taken as w(·) ≡ 1 in
Assumption 3.1.
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(ii) A sufficient condition for Assumption 3.1(iii) is that there exists a positive constant ρ < 1
such that

∫ T −t

0

∫
E

w

(
t + s, λ +

∫ t+s

t

c(z, x, a) dz, y

)
Q(ds, dy | x, a) ≤ ρw(t, λ, x)

for all (t, λ, x, a) ∈ K, under which we have

Eπ
(t,λ,x)

[N(T )∑
n=0

w(Tn, �n, Xn)

]
≤ w(t, λ, x)

1 − ρ
.

In particular, the constant ρ is allowed to be greater than 1 when the SMDP models reduce to
the DTMDP models.

(iii) Assumptions 3.1(ii) and 3.1(iii) imply that

Eπ
ν [N(T )] ≤ M2

∫
[0,T ]×R×E

w(t, λ, x)ν(dt, dλ, dx) < +∞

and, thus, Assumption 2.1 is unnecessary whenever Assumption 3.1 is imposed.

Under Assumption 3.1, we see that for every π ∈ �,
∫

K

|c̃i (s, γ, y, a)|η(ds, dγ, dy, da) ≤ M1M2

∫
[0,T ]×R×E

w(t, λ, x)ν(dt, dλ, dx) < +∞.

Thus, by the Fubini theorem, the equality of (3.7) is validated.
For convenience, we introduce

V π(c̃i , ν) := Eπ
ν

[N(T )∑
n=0

c̃i (Tn, �n, Xn, An)

]
, π ∈ �, i = 0, 1, . . . , q.

It is obvious that V π(c̃i , ν) = ∫
K
c̃i (s, γ, y, a)η(ds, dγ, dy, da). Thus, by (3.7), Jπ

i (ν) have
the equivalent expressions Jπ

i (ν) = V π(c̃i , ν) for all π ∈ � and i = 0, . . . , q. This shows
that we have transformed the expected utilities as the expected random-horizon costs that are
standard risk-neutral criteria. In this way, we can write the unconstrained problem (3.1) as

min
π∈�

V π(c̃0, ν), (3.8)

and the constrained problem (3.2) as

min
π∈�

V π(c̃0, ν)

subject to V π(c̃i , ν) ≤ di, i = 1, . . . , q. (3.9)

In what follows, we aim to solve the two problems. For the unconstrained problem, our goal
is to find an optimal policy π∗ ∈ � such that V π∗

(c̃0, ν) = V ∗(c̃0, ν), where V ∗(c̃0, ν) :=
infπ∈� V π(c̃0, ν) is the optimal value. For the constrained problem, our aim is to search
for a constrained-optimal policy π∗ ∈ U such that V π(c̃0, ν) = infπ∈U V π(c̃0, ν), where
U := {π ∈ � | V π(c̃i , ν) ≤ di, i = 1, . . . , q} is the feasible-policy set. It is natural to assume
that U �= ∅. A necessary and sufficient condition for U to be nonempty will be discussed in
Remark 5.3 below.
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4. Solution to the unconstrained problem

In this section we use the dynamic programming approach to solve the unconstrained
problem. Although the unconstrained problem can be also solved via the convex analytic
approach as in Section 5 for the constrained problem below, we use the dynamic programming
approach here to derive relevant results since they will play a key role in establishing the strong
duality in Subsection 5.2, and they help to reveal the relationship between the solution to the
primal program and the one to the dual program; see Remark 5.5.

For each π ∈ �, each initial state (t, λ, x) ∈ [0, T ] × R × E, and n = 1, 2, . . . , let

V π
n (c̃0, t, λ, x) := Eπ

(t,λ,x)

[n−1∑
k=0

1{Tk≤T } c̃0(Tk, �k, Xk, Ak)

]
,

V π (c̃i , t, λ, x) := Eπ
(t,λ,x)

[N(T )∑
n=0

c̃0(Tn, �n, Xn, An)

]
,

V ∗
n (c̃0, t, λ, x) := infπ∈� V π

n (c̃0, t, λ, x) and V ∗(c̃0, t, λ, x) := infπ∈� V π(c̃0, t, λ, x) be the
value functions. Moreover, for the weight function w from Assumption 3.1, let Bw(K) and
Bw([0, T ] × R × E) denote the spaces of measurable functions v, respectively, with a finite
w-norm, i.e. v satisfies

sup
(t,λ,x,a)∈K

|v(t, λ, x, a)|
w(t, λ, x)

< +∞ or sup
(t,λ,x)∈[0,T ]×R×E

|v(t, λ, x)|
w(t, λ, x)

< +∞,

respectively. Obviously, under Assumptions 3.1(i) and 3.1(iii), V π
n (c̃0, ·) and V π(c̃0, ·) are all

in Bw([0, T ] × R × E), and limn→∞ V π
n (c̃0, ·) = V π(c̃0, ·).

To solve the unconstrained problem, we need some compact-continuity conditions that are
extensions of those for risk-neutral DTMDPs; see [15].

Assumption 4.1. (Compact-continuity condition.) For each (t, λ, x) ∈ [0, T ] × R × E:

(i) A(x) is compact;

(ii) Q(t, E | x, a) is upper semicontinuous in a ∈ A(x);

(iii) c(t, x, a) is lower semicontinuous in a ∈ A(x);

(iv)
∫ T −t

0

∫
E
v(t + s, λ + ∫ t+s

t
c(z, x, a) dz, y)Q(ds, dy | x, a) is lower semicontinuous in

a ∈ A(x) for any bounded measurable function v on [0, T ] × R × E;

(v)
∫ T −t

0

∫
E
w(t + s, λ + ∫ t+s

t
c(z, x, a) dz, y)Q(ds, dy | x, a) is continuous in a ∈ A(x).

Remark 4.1. (i) Assumptions 4.1(ii) and 4.1(iii) along with the properties of ui imply that all
c̃i (t, λ, x, a) are lower semicontinuous in a ∈ A(x) for each (t, λ, x) ∈ [0, T ] × R × E.

(ii) As proved in [15, Lemma 8.3.7], we can similarly conclude that, under Assumptions 4.1(iv)
and 4.1(v),

∫
[0,T ]×R×E

v(s, γ, y)Q(ds, dγ, dy | t, λ, x, a) is continuous in a ∈ A(x) for each
(t, λ, x) ∈ [0, T ] × R × E and v ∈ Bw([0, T ] × R × E).

We are now ready to state the main optimality results for the unconstrained problem.
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Theorem 4.1. Suppose that Assumptions 3.1(i), 3.1(iii), and 4.1 hold.

(i) For all n ≥ 1, V ∗
n (c̃0, ·) belong to the space Bw([0, T ] × R × E) and, moreover,

V ∗
n (c̃0, t, λ, x)

= inf
a∈A(x)

[
c̃0(t, λ, x, a)

+
∫

[0,T ]×R×E

V ∗
n−1(c̃0, s, γ, y)Q(ds, dγ, dy | t, λ, x, a)

]
, n ≥ 1,

with V ∗
0 (c̃0, ·) := 0 and (t, λ, x) ∈ [0, T ] × R × E.

(ii) limn→∞ V ∗
n (c̃0, t, λ, x) = V ∗(c̃0, t, λ, x) for all (t, λ, x) ∈ [0, T ] × R × E.

(iii) V ∗(c̃0, ·) is the unique solution to the Bellman equation in the space Bw([0, T ]×R×E),
i.e.

v(t, λ, x) = inf
a∈A(x)

[
c̃0(t, λ, x, a) +

∫
[0,T ]×R×E

v(s, γ, y)Q(ds, dγ, dy | t, λ, x, a)

]

for (t, λ, x) ∈ [0, T ] × R × E.

(iv) There exists a policy φ∗ ∈ �DS such that

c̃0(t, λ, x, φ∗(t, λ, x)) +
∫

[0,T ]×R×E

V ∗(c̃0, s, γ, y)Q(ds, dγ, dy | t, λ, x, φ∗(t, λ, x))

= inf
a∈A(x)

[
c̃0(t, λ, x, a) +

∫
[0,T ]×R×E

V ∗(c̃0, s, γ, y)Q(ds, dγ, dy | t, λ, x, a)

]

for each (t, λ, x) ∈ [0, T ] × R × E, and such a policy φ∗ is optimal for problem (3.8).

Proof. Assumption 3.1(iii) implies that the discrete-time control model with the state space
[0, T ]× R ×E, the transition kernel Q, and the one-stage cost c̃0 is transient. Thus, the theory
for transient MDPs (see, for example, [15, Section 9.6]) can be applied in our context. Note
that Assumptions 3.1(i), 3.1(iii), and 4.1 verify [15, Assumption 9.6.8]. Hence, our main results
here follow from [15, Lemma 9.6.9 and Theorem 9.6.10]. In fact, the policy φ∗ ∈ �DS in (iv)
satisfies V φ∗

(c̃0, t, λ, x) = V ∗(c̃0, t, λ, x) for all (t, λ, x) ∈ [0, T ]×R×E, which, of course,
implies that V φ∗

(c̃0, ν) = V ∗(c̃0, ν) and, thus, φ∗ is optimal for problem (3.8). �

Algorithm 4.1. In Theorem 4.1 we proposed an algorithm for computing optimal policies:

(i) approximate V ∗(c̃0, ·) by iterating V ∗
n (c̃0, ·) over n until n is large enough;

(ii) compute the minimum point of the right-hand side of the Bellman equation over A(x)

for all (t, λ, x), denoted by φ∗(t, λ, x), which is an optimal policy.

Remark 4.2. In the above algorithm, the augmented state variables and the action variable
are generally continuous. To implement the algorithm in practice, one should first discretize
the continuous variables, i.e. one should partition the continuous spaces into finite parts with
suitable scales; see, for example, [1, Section 7.5.3]. Nonetheless, the computation will be still
very complex.
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5. Solution to the constrained problem

5.1. Existence of constrained-optimal policies

From our preliminary analysis in Section 3 we see that, underAssumption 3.1, the constrained
problem (3.9) can be written as the following convex program in D := {ηπ

ν : π ∈ �}:

min
η∈D

∫
K

c̃0(s, γ, y, a)η(ds, dγ, dy, da)

subject to
∫

K

c̃i (s, γ, y, a)η(ds, dγ, dy, da) ≤ di, i = 1, . . . , q. (5.1)

This convex program has at least one feasible solution due to the assumption that U �= ∅.
To ensure that this convex program is solvable, however, we need to establish the compactness
of the measure space D0 := {η ∈ D : ∫

K
c̃i dη ≤ di, i = 1, . . . , q} and the continuity of∫

K
c̃0 dη in η ∈ D0 in some sense. Because the cost functions c̃i have finite w-norms, we

first introduce some measure spaces with the so-called finite w-norm and associated weak
topologies.

Definition 5.1. (i) A signed measure η on K or on [0, T ] × R × E is said to have a finite w-
norm if

∫
K
w(t, λ, x)|η|(dt, dλ, dx, da) < ∞ or

∫
[0,T ]×R×E

w(t, λ, x)|η|(dt, dλ, dx) < ∞,
respectively, where |η| denotes the total variation of η. The spaces of signed measures on K

and on [0, T ] × R × E with finite w-norms are denoted by Mw(K) and Mw([0, T ] × R × E),
respectively. Similarly, the spaces of nonnegative measures on K and on [0, T ] × R × E with
finite w-norms are denoted by M+

w(K) and M+
w([0, T ] × R × E), respectively.

(ii) The w-weak topology on Mw(K) is the weakest topology on Mw(K) such that
∫

K
v dη

is continuous in η ∈ Mw(K) for each continuous v ∈ Bw(K). This topology is denoted
by σ(Mw(K)), and the corresponding weak convergence is represented by ‘

w−→’. Similarly,
σ(M+

w(K)) is the weakest topology on M+
w(K) such that

∫
K
v dη is continuous in η ∈ M+

w(K)

for each continuous v ∈ Bw(K).

Note that, when w ≡ 1, Bw(K) is the space of bounded measurable functions, Mw(K) is the
space of finite signed measures, and σ(Mw(K)) is the usual weak topology. In this case, we
omit w from the notation for simplicity. To establish the relationship between the w-weak con-
vergence in (M+

w(K), σ (M+
w(K))) and the usual weak convergence in (M+(K), σ (M+(K))),

we define two operators, Hw on M+
w(K) and H−1

w on M+(K), as follows: for η ∈ M+
w(K),

μ ∈ M+(K), and 
 ∈ B(K),

Hwη(
) :=
∫




w(t, λ, x)η(dt, dλ, dx, da) and H−1
w μ(
) :=

∫



μ( dt, dλ, dx, da)

w(t, λ, x)

Lemma 5.1. Let w ≥ 1 be a continuous function on [0, T ] × R × E. Then the following
hold:

(i) Hwη ∈ M+(K) for all η ∈ M+
w(K), H−1

w μ ∈ M+
w(K) for all μ ∈ M+(K);

(ii) H−1
w (Hwη) = η for all η ∈ M+

w(K), Hw(H−1
w μ) = μ for all μ ∈ M+(K);

(iii) ηk
w−→η if and only if Hwηk

1−→Hwη, μk
1−→μ if and only if H−1

w μk
w−→H−1

w μ.

Proof. The results follow from [11, Lemma 8] or [18, Lemma 3.4]. �
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To establish the compactness of the space D in (M+
w(K), σ (M+

w(K))) and the continuity of∫
K
c̃i dη in η ∈ D , we propose another set of compactness-continuity conditions.

Assumption 5.1. (i) The function w from Assumption 3.1 is continuous on [0, T ] × R × E.

(ii) There exist a continuous function w̄ on [0, T ] × R × E and an increasing sequence of
compact sets Km ↑ K as m ↑ ∞ such that

lim
m→∞ inf

(t,λ,x,a)∈K\Km

w̄(t, λ, x)

w(t, λ, x)
= ∞ and sup

η∈D

∫
K

w̄(t, λ, x)η(dt, dλ, dx, da) < ∞.

(iii)
∫ T −t

0

∫
E

v(t+s, λ+∫ t+s

t
c(z, x, a) dz, y)Q(ds, dy | x, a) is continuous in (t, λ, x, a) ∈ K

for each bounded continuous function v on [0, T ] × R × E.

(iv) Q(T − t, E | x, a) is upper semicontinuous in (t, x, a) ∈ [0, T ] × K .

(v) c(t, x, a) is lower semicontinuous in (t, x, a) ∈ [0, T ] × K .

Remark 5.1. Assumptions 5.1(iv) and 5.1(v) along with the properties of ui imply that
c̃i (t, λ, x, a) is lower semicontinuous in (t, λ, x, a) ∈ K for each i = 0, 1, . . . , q.

We can now state the existence of optimal policies for the constrained problem (3.9).

Theorem 5.1. Suppose that Assumptions 3.1(ii), 3.1(iii), and 5.1(i)–5.1(iii) hold. Then the
following assertions hold:

(i) the space of occupation measure D is compact in (M+
w(K), σ (M+

w(K)));

(ii) if, furthermore, Assumption 3.1(i), and Assumptions 5.1(iv) and 5.1(v) are satisfied, then
there exists an optimal solution to problem (5.1) and, thus, there is a randomized jump-
stationary optimal policy for the constrained problem (3.9).

Proof. (i) It is clear that D is a subset of M+
w(K) under Assumptions 3.1(ii) and 3.1(iii).

We now prove that D is relatively compact in (M+
w(K), σ (M+

w(K))). Since w is assumed to
be continuous, by Lemma 5.1, we need only show that D̃ := {μ := Hwη : η ∈ D} is relatively
compact in (M+(K), σ (M+(K))). Indeed, on the one hand, for the moment function w̄/w

from Assumption 5.1(ii), it holds that

sup
μ∈D̃

∫
K

w̄(t, λ, x)

w(t, λ, x)
μ(dt, dλ, dx, da) = sup

η∈D

∫
K

w̄(t, λ, x)η(dt, dλ, dx, da) < ∞,

which, by [15, Theorem 12.2.15], implies that D̃ is tight. On the other hand, it follows from
Assumptions 3.1(ii) and 3.1(iii) that supμ∈D̃ μ(K) = supη∈D

∫
K
w dη < ∞. Thus, by [11,

Lemma 7], D̃ is relatively compact in (M+(K), σ (M+(K))).
To complete the proof, we still need to show that D is closed in (M+

w(K), σ (M+
w(K))).

To do so, let {ηn, n ≥ 0} ⊂ D be a sequence such that ηn
w−→η. By [11, Lemma 6],

M+
w(K) is closed in (Mw(K), σ (Mw(K))) and, therefore, η ∈ M+

w(K). To further show
that η ∈ D , by Theorem 3.1, we need only prove that η satisfies (3.4). However, this
follows from Assumption 5.1(iii) and the fact that {ηn, n ≥ 0} ⊂ D . Thus, D is closed
in (M+

w(K), σ (M+
w(K))), which, together with the relative compactness of D , guarantees the

compactness of D .
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(ii) As shown above, problem (5.1) can be written as minη∈D0

∫
K
c̃0 dη. When Assump-

tions 3.1(i), 5.1(iv), and 5.1(v) are further imposed, we can show that for each i = 1, . . . , q,∫
K
c̃i dη is lower semicontinuous in η ∈ D with the w-weak topology. Thus, the space D0

is closed in D and, therefore, by part (i), D0 is compact. This fact, together with the lower
semicontinuity of

∫
K
c̃0 dη in η ∈ D0, guarantees the existence of an optimal solution η∗ to

problem (5.1). By Theorem 3.1, the policy φ∗ ∈ �RS determined by η∗(dt, dλ, dx, da) =
φ∗(da | t, λ, x)η̂∗(dt, dλ, dx) is optimal for the constrained problem (3.9). �
5.2. Linear programming formulation and strong duality

In this subsection we present a linear programming formulation of the constrained problem
(3.9), develop the dual program, and also establish the absence of the duality gap.

First, by Theorem 3.1, problem (5.1) is equivalent to the following linear program (LP):

min
η

∫
K

c̃0(s, γ, y, a)η(ds, dγ, dy, da)

subject to η̂(ds, dγ, dy) = ν(ds, dγ, dy)

+
∫

K

Q(ds, dγ, dy | t, λ, x, a)η(dt, dλ, dx, da),

∫
K

c̃i (s, γ, y, a)η(ds, dγ, dy, da) ≤ di, i = 1, . . . , q,

η ∈ M+
w(K). (5.2)

Under Assumptions 3.1 and 5.1, we know from Theorem 5.1 that the LP (5.2) is solvable.
If η∗ is an optimal solution to problem (5.2), by Theorem 5.1, the policy φ∗ ∈ �RS deter-
mined by η∗(dt, dλ, dx, da) = φ∗(da | t, λ, x)η̂∗(dt, dλ, dx) is optimal for the constrained
problem (3.9).

Remark 5.2. In general, the LP (5.2) is an infinite-dimensional linear program with infinitely
many (uncountable) variables. In practical computation, such a linear program cannot be
directly implemented in a computer. The alternative way is to approximate the infinite-
dimensional linear program by finite-dimensional linear programs with finitely many variables.
There are two approaches for making finite approximations in the literature. One is the
aggregation-relaxation-inner approximation method; see [13, Section 4.1] or [15, Section 12.5]
for details. Another is to discretize the augmented state variables; see [13, Section 4.2] for
details.

We next derive the dual program of the primal program (5.2). Unlike the primal program in
occupation measures, the dual program is a linear program in value functions. To proceed, we
introduce some notation. First, (Mw(K), Bw(K)) become a dual pair if we define the bilinear
form on the pair by

〈η, h〉 :=
∫

K

h(t, λ, x, a)η(dt, dλ, dx, da) for all η ∈ Mw(K), h ∈ Bw(K).

Similarly, we define the bilinear form on the pair (Mw([0, T ]×R×E), Bw([0, T ]×R×E)).
Moreover, we define the bilinear forms on (Rq, Rq) and (Mw(K) × Rq, Bw(K) × Rq) by

〈α, β〉 :=
q∑

i=1

αiβi, and 〈(η, α), (h, β)〉 :=
∫

K

h(t, λ, x, a)η(dt, dλ, dx, da) +
q∑

i=1

αiβi,
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respectively, with α = (α1, . . . , αq) ∈ Rq , β = (β1, . . . , βq) ∈ Rq , η ∈ Mw(K), and
h ∈ Bw(K). Now, let L0 be the linear map on Mw(K) defined by

(L0η)(B, C, D) = η̂(B, C, D) −
∫

K

Q(B, C, D | t, λ, x, a)η(dt, dλ, dx, da).

Under Assumption 3.1(iii), it is clear that L0 maps Mw(K) to Mw([0, T ] × R × E). Further,
we introduce another linear map L : Mw(K) × Rq → Mw([0, T ] × R × E) × Rq as

L(η, α) := (L0η, 〈η, c̃1〉 + α1, . . . , 〈η, c̃q〉 + αq) for all (η, α) ∈ Mw(K) × Rq .

Using the notation above, we can restate the LP (5.2) as

min
η,α

〈(η, α), (c̃0, 0)〉
subject to L(η, α) = (ν, d),

(η, α) ∈ M+
w(K) × R

q
+. (5.3)

Here, we denote d = (d1, . . . , dq).

Theorem 5.2. The adjoint L∗ : Bw([0, T ] × R × E) × Rq → Bw(K) × Rq of L is

L∗(v, β) =
(

L∗
0v +

q∑
i=1

βi c̃i , β

)
for all (v, β) ∈ Bw([0, T ] × R × E) × Rq,

where L∗
0 : Bw([0, T ] × R × E) → Bw(K) is the adjoint of L0 defined by

L∗
0v(t, λ, x, a) := v(t, λ, x)

−
∫

[0,T ]×R×E

v(s, γ, y)Q(ds, dγ, dy | t, λ, x, a), (t, λ, x, a) ∈ K. (5.4)

Proof. We first derive the adjoint L∗
0 of L0. From the definition, we deduce that

〈L0η, v〉 =
∫

[0,T ]×R×E

v(s, γ, y)

[
η̂(ds, dγ, dy)

−
∫

K

Q(ds, dγ, dy | t, λ, x, a)η(dt, dλ, dx, da)

]

=
∫

K

[
v(t, λ, x)

−
∫

[0,T ]×R×E

v(s, γ, y)Q(ds, dγ, dy | t, λ, x, a)

]
η(dt, dλ, dx, da)

= 〈η, L∗
0v〉,

which implies that L∗
0 has the form of (5.4). Now, the adjoint L∗ of L is derived from a direct

calculation as

〈L(η, α), (v, β)〉 = 〈L0η, v〉 +
q∑

i=1

βi(〈η, c̃i〉 + αi)

= 〈η, L∗
0v〉 +

〈
η,

q∑
i=1

βi c̃i

〉
+

q∑
i=1

αiβi
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=
〈
η, L∗

0v +
q∑

i=1

βi c̃i

〉
+

q∑
i=1

αiβi

=
〈
(η, α),

(
L∗

0v +
q∑

i=1

βi c̃i , β

)〉

= 〈(η, α), L∗(v, β)〉. �

According to [15, Chapter 6], the dual program of the primal LP (5.3) is of the form

max
v,β

〈(ν, d), (v, β)〉
subject to (c̃0, 0) − L∗(v, β) ∈ B+

w(K) × R
q
+,

(v, β) ∈ Bw([0, T ] × R × E) × Rq . (5.5)

The more explicit form is

max
v,β

∫
[0,T ]×R×E

v(t, λ, x)ν(dt, dλ, dx) −
q∑

i=1

βidi,

subject to c̃0(t, λ, x, a) − v(t, λ, x)

+
∫

[0,T ]×R×E

v(s, γ, y)Q(ds, dγ, dy | t, λ, x, a)

+
q∑

i=1

βi c̃i(t, λ, x, a)

≥ 0 for all (t, λ, x, a) ∈ K,

v ∈ Bw([0, T ] × R × E), βi ≥ 0, i = 1, . . . , q, (5.6)

where we have replaced βi with −βi .

Remark 5.3. According to the generalized Farkas theorem (see [15, Theorem 12.2.11]), the
LP (5.2) has a feasible solution (and, thus, U �= ∅) if and only if, for any (v, β) ∈ Bw([0, T ]×
R × E) × Rq such that L∗(v, β) ∈ B+

w(K) × R
q
+, we have 〈(ν, d), (v, β)〉 ≥ 0.

Below, we denote the values of the primal LP (5.2) and the dual LP (5.6) by inf(LP) and
sup(DP), respectively. To establish the strong duality, we also need the Slater-like condition.

Assumption 5.2. There exists a policy π ∈ � such that V π(c̃i , ν) < di, i = 1, 2, . . . , q.

Remark 5.4. The Slater condition is widely used in constrained optimization problems as a
sufficient condition to ensure no duality gap; see [4] and [20]. Assumption 5.2 is a Slater-like
condition in our setup. To check it in practice, one possible option may be to compute V π(c̃i , ν)

under some special policy π and then check to see if V π(c̃i , ν) < di . For example, for a given
policy φ ∈ �DS, under the condition of Theorem 4.1, V φ(c̃i , t, λ, x) can be computed as the
unique solution in the space Bw([0, T ] × R × E) to the following equation:

v(t, λ, x) = c̃0(t, λ, x, φ(t, λ, x)) +
∫

[0,T ]×R×E

v(s, γ, y)Q(ds, dγ, dy | t, λ, x, φ(t, λ, x))
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for (t, λ, x) ∈ [0, T ]× R ×E. Since the variables t , λ, and x are all continuous in our setup, it
is difficult to solve this equation. An alternative way to solve the equation may be the numerical
iterative algorithm; see Remark 4.2 for more details.

We now state the strong duality theorem.

Theorem 5.3. Under Assumptions 3.1–5.2, the strong duality between the primal LP (5.2) and
its dual LP (5.6) holds, i.e. both problems admit optimal solutions and inf(LP) = sup(DP).

Proof. In Theorem 5.1, we proved that D is w-weakly closed in M+
w(K), and for i =

1, . . . , q,
∫

K
c̃i dη is w-weakly lower semicontinuous in η ∈ D . Since the form of the LP (5.2)

is the same as the formulation of [20, Example 1], under Assumptions 3.1–5.2, it follows from
[20, Theorem 17 and Example 1, pp. 7, 18, 23] that there exist constants β∗

i ≥ 0 (i = 1, . . . , q)

such that

inf(LP) = sup
βi≥0, i=1,...,q

inf
η∈D

[∫
K

(
c̃0(s, γ, y, a) +

q∑
i=1

βi c̃i(s, γ, y, a)

)
η(ds, dγ, dy, da)

−
q∑

i=1

βidi

]

= inf
η∈D

[∫
K

(
c̃0(s, γ, y, a) +

q∑
i=1

β∗
i c̃i (s, γ, y, a)

)
η(ds, dγ, dy, da) −

q∑
i=1

β∗
i di

]
.

(5.7)

Now, for arbitrarily fixed β1, . . . , βq , we can prove, by Theorem 4.1 (with (c̃0 + ∑q
i=1βi c̃i) in

lieu of c̃0) and by contradiction, that

inf
η∈D

[∫
K

(
c̃0(s, γ, y, a) +

q∑
i=1

βi c̃i(s, γ, y, a)

)
η(ds, dγ, dy, da)

]

= sup
v∈Bw([0,T ]×R×E)

[∫
[0,T ]×R×E

v(s, γ, y)ν(ds, dγ, dy) : c̃0(t, λ, x, a)

+
q∑

i=1

βi c̃i(t, λ, x, a)

+
∫

[0,T ]×R×E

v(s, γ, y)Q(ds, dγ, dy | t, λ, x, a)

≥ v(t, λ, x) for all (t, λ, x, a) ∈ K

]
. (5.8)

By (5.8), we see that sup(DP) coincides with the term on the right-hand side of (5.7). Therefore,
it follows from (5.7) that inf(LP) = sup(DP). The solvability of the primal LP (5.2) is
guaranteed by Theorem 5.1, whereas an optimal solution for the dual LP (5.6) is given by
(V ∗(c̃0 + ∑q

i=1β
∗
i c̃i , ·), β∗

1 , . . . , β∗
q ). �

Remark 5.5. (i) To see the relationship between the primal LP (5.3) and the dual LP (5.5) more
explicitly, we let the Lagrange multiplier for constraint L0η = ν be v ∈ Bw([0, T ] × R × E),
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and the Lagrange multiplier for constraint (〈η, c̃1〉 + α1, . . . , 〈η, c̃q〉 + αq) = (d1, . . . , dq) be
β ∈ Rq . Then, the Lagrangian for the primal LP (5.3) is

�(η, α, v, β) = 〈η, c̃0〉 + 〈L0η − ν, v〉 + 〈(〈η, c̃1〉 + α1 − d1, . . . , 〈η, c̃q〉 + αq − dq), β〉.
The LP (5.3) is equivalent to infη≥0, α≥0 supv,β �(η, α, v, β), the dual problem of which is
defined to be supv,β infη≥0, α≥0 �(η, α, v, β). Rearranging the Lagrangian yields

�(η, α, v, β) = −〈ν, v〉 − 〈d, β〉 +
〈
η, c̃0 + L∗

0v +
q∑

i=1

βi c̃i

〉
+ 〈α, β〉,

which leads to the dual LP (5.5). Hence, the variables v and β in the dual LP (5.5) are just the
Lagrange multipliers for constraints in the primal LP (5.3).

(ii) The dual LP aids in calculating the value function. In general, we cannot derive a con-
strained-optimal policy from the dual LP, unlike the case of the primal LP in occupation
measures. Formally, under the assumptions in Theorem 5.3, the dual LP (5.5) has an optimal
solution (V ∗(c̃0 + ∑q

i=1β
∗
i c̃i , ·), β∗

1 , . . . , β∗
q ), from which we can deduce a policy φ∗ ∈ �DS

such that

V φ∗
(

c̃0 +
q∑

i=1

β∗
i c̃i , t, λ, x

)

= V ∗
(

c̃0 +
q∑

i=1

β∗
i c̃i , t, λ, x

)
for all (t, λ, x) ∈ [0, T ] × R × E,

but we do not know if it is constrained-optimal. However, in the special case of U = �, the
dual LP (5.6) is reduced to the linear programming formulation for the unconstrained problem
(3.9), i.e.

max
v,β

∫
[0,T ]×R×E

v(t, λ, x)ν(dt, dλ, dx)

subject to c̃0(t, λ, x, a) − v(t, λ, x)

+
∫

[0,T ]×R×E

v(s, γ, y)Q(ds, dγ, dy | t, λ, x, a)

≥ 0 for all (t, λ, x, a) ∈ K, v ∈ Bw([0, T ] × R × E),

which produces the optimal solution V ∗(c̃0, ·), based on which an optimal policy can be derived
in the same way as in Theorem 4.1(iv).

6. Some special cases

In this section we provide two special cases of our results. One is on the discrete-time case,
another is about the chance-constrained problem.

6.1. Special case 1: discrete-time case

As is known, when the sojourn times between jumps are all equal to 1, an SMDP will be
reduced to a DTMDP. Here, we consider this situation and, for simplicity, assume that the initial
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time T0 ≡ 0 and the costs occur with invariable rates c(n, x, a) over [n, n + 1). In this way,
�T +1 = �T and the expected utilities are reduced to the form

Jπ
i (ν) = Eπ

ν [ui(�T )] = Eπ
ν

[
ui

(
�0 +

T −1∑
n=0

c(n, Xn, An)

)]
for all π ∈ �, i = 0, . . . , q,

where the ending time T is now assumed to be an integer. The occupation measure of a policy π

in (3.3) is then reduced to the form

ηπ
ν (n, C, D, 
) = Pπ

ν (�n ∈ C, Xn ∈ D, An ∈ 
), n = 0, 1, . . . , T .

From this, we see that our occupation measures differ from those of [13]. Moreover, the
distribution of �T is of the form Pπ

ν (�T ∈ D) = ηπ
ν (T , D, E, A) for D ∈ B(R) and,

therefore, the expected utilities can be expressed as

Jπ
i (ν) =

∫
R

ui(γ )ηπ
ν (T , dγ, E, A) for all π ∈ �, i = 0, . . . , q.

Hence, the constrained problem (3.2) can be written as

min
η∈D

∫
R

u0(γ )η(T , dγ, E, A)

subject to
∫

R

ui(γ )η(T , dγ, E, A) ≤ di, i = 1, . . . , q,

which, by Theorem 3.1, is equivalent to the LP

min
η

∫
R

u0(γ )η(T , dγ, E, A)

subject to η̂(0, C, D) = ν({0}, C, D),

η̂(m, C, D) =
∫

R×E×A

Q(m, C, D | m − 1, λ, x, a)η(m − 1, dλ, dx, da),

∫
R

ui(γ )η(T , dγ, E, A) ≤ di, m = 1, . . . , T , i = 1, 2, . . . , q,

η(n, C, D, 
) ≥ 0, n ∈ {0, 1, . . . , T }, C ∈ B(R), D ∈ B(E), 
 ∈ B(A).

6.2. Special case 2: chance-constrained problem

Chance-constrained problems are an interesting class of problems that impose constraints
on the probabilities of some events. For example, someone may concern himself/herself with
the probabilities that the total cost exceeds some particular levels, and would like to keep these
probabilities lower than some tolerable bounds. The particular levels and tolerable bounds are
selected individually. In our context, if we take �0 ≡ 0, u0(λ) = λ, and ui(λ) = 1[bi ,+∞)(λ)

for some constants bi and i = 1, . . . , q, our problem (3.2) is reduced to a chance-constrained
problem, i.e.

min
π∈�

Eπ
ν

[∫ T

T0

c(s, ξs, ϑs) ds

]

subject to Pπ
ν

(∫ T

T0

c(s, ξs, ϑs) ds ≥ bi

)
≤ di, i = 1, . . . , q.
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The equivalent linear programming formulation is as follows:

min
η

∫
K

c̃0(s, γ, y, a)η(ds, dγ, dy, da)

subject to η̂(ds, dγ, dy) = ν(ds, dγ, dy)

+
∫

K

Q(ds, dγ, dy | t, λ, x, a)η(dt, dλ, dx, da),

∫
K

c̃i (s, γ, y, a)η(ds, dγ, dy, da) ≤ di, i = 1, . . . , q, η ∈ M+
w(K),

where c̃i are now defined by

c̃0(s, γ, y, a) := (1 − Q(T − s, E | y, a))

(
γ +

∫ T

s

c(z, y, a) dz

)
,

c̃i (s, γ, y, a) := (1 − Q(T − s, E | y, a)) 1{γ+∫ T
s c(z,y,a) dz≥bi }, i = 1, 2, . . . , q.

Here, our results have generalized those of [13, Section 6.2] from a Markov model to a semi-
Markov model.

7. Conclusion

Risk-sensitive control is an important issue in various economical and financial activities. In a
general framework of finite-horizon SMDPs, we have studied the unconstrained and constrained
risk-sensitive problems. The value iteration and linear programming procedures have been
proposed to calculate unconstrained and constrained optimal policies, respectively. Since the
augmented states are generally continuous, finite approximation techniques are needed in the
practical computation. On the basis of the distribution of the finite-horizon cost in terms of
occupation measures (Theorem 3.2), our analytic method can also be applied to deal with other
risk-aware problems such as stochastic dominance-constrained optimization [12] in the context
of finite-horizon SMDPs.
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