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Background:The brain endocannabinoid system is believed to play significant roles in anti-nociception, fear response, anxiety, and
stress. This study investigated the effects of rat inguinal surgery on the levels of endocannabinoids in the cerebral cortex.

Aim:The aimof this studywas to investigate the effects of acute post-surgical pain on the levels of endocannabinoids in the cerebral
cortex.

Methods: Quantitation of endocannabinoids in the rat cerebral cortex was performed by liquid chromatography–tandem mass
spectrometry.

Results: Therewas no significant difference in the cerebral cortical levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG)
between the sham and surgery experimental groups. However, there were lateralized differences in the levels of these endocan-
nabinoids between the right and left cerebral cortices irrespective of the two groups. The concentrations of AEA and 2-AG were
significantly higher in the right cerebral cortex compared to the contralateral cerebral cortex.

Conclusion:Acute post-surgical pain did not induce significant alterations in the cerebral cortical levels of endocannabinoids in this
study, but the phenomenon of lateralization of the cerebral cortical AEA and 2-AG levels was observed; this latter finding may be
related to the role played by endocannabinoids in fear conditioning.
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Background

Endocannabinoid system and acute post-surgical
pain

The endocannabinoid system is an endogenous
lipid signalling system with cannabimimetic actions
(Zogopoulos et al. 2013). It is comprised of the cannabi-
noid receptors: type-1 (CB1) and type-2 (CB2) (Matsuda
et al. 1990), their endogenous lipid-based ligands: the
endocannabinoids, of which anandamide (AEA) and
2-arachidonoylglycerol (2-AG) are the most studied
(Devane et al. 1992), and the proteins that are respon-
sible for their biosynthesis, transport, and degradation
[fatty acid amide hydrolase (FAAH) and monoacygly-
cerol lipase (MAGL)] (Bari et al. 2006). The endocanna-
binoid system is widely expressed in the central
nervous system (Finn & Chapman 2004; Marsicano &
Kuner 2008). The CB1 receptor expression has been
demonstrated in chief brain regions involved in
nociception (Finn & Chapman 2004) and fear

(Herkenham et al. 1991; Glass et al. 1997; Mailleux
et al. 1992; Tsou et al. 1998). Receptor autoradiography
and immunohistochemistry studies have demonstrated
the presence of this subtype of cannabinoid receptor in
brain regions essential for fear processing, anxiety, and
stress, such as the hippocampus, amygdala, bed
nucleus of stria terminalis, pre-frontal cortex (PFC),
and hypothalamus (Herkenham et al. 1991; Glass et al.
1997; Mailleux et al. 1992; Tsou et al. 1998; Puente
et al. 2010). The CB1 receptors are also expressed in
other parts of the cerebral cortex, thalamus, periaque-
ductal gray (PAG), parabrachial nucleus, cerebellum,
and brainstem regions including the rostral ventrome-
dial medulla (RVM) (Herkenham et al. 1991; Glass et al.
1997; Mailleux et al. 1992; Tsou et al. 1998). This subtype
of cannabinoid receptors is found in the dorsal horn and
lamina X of the spinal cord (Pertwee 1997). They are
expressed on presynaptic neurons of the central and
peripheral nervous system (Rea et al. 2007); further-
more, a subset of sensory neurons in the dorsal root
ganglia containing substance P and α-calcitonin gene-
related peptide also express CB1 receptors (Rea et al.
2007). The CB2 receptors are chiefly expressed in tissues
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of the immune defence system (Howlett et al. 2002).
There is, however, growing evidence that this class of
cannabinoid receptor maywell be expressed in the cen-
tral nervous system (Van Sickle et al. 2005; Onaivi
et al. 2006; Zhang et al. 2003; Beltramo et al. 2006).
Both the CB1 (Matsuda et al. 1990) and CB2 (Munro
et al. 1993) cannabinoid receptors are members
of the Gi/o protein-coupled receptor family. They are
negatively coupled to the enzyme adenylyl cyclase
(Howlett et al. 1998) and positively coupled to
mitogen-activated protein kinase (MAPK) (Bouaboula
et al. 1995).

The endocannabinoids are believed to be biosynthe-
sized when needed and are thought to function in a
retrograde fashion, whereby they are released from
the post-synaptic neuron and bind to receptors
expressed pre-synaptically (Elphick & Egertova 2001;
Kreitzer & Regehr 2002). The degradation of endocan-
nabinoids occurs within the cell; there is, however,
some uncertainty regarding themechanism of reuptake
into the cells (Rea et al. 2007). Carrier-mediated
transport as a means of transporting endocannabinoids
into the cell is probable. In regard to AEA transport,
there is evidence for a putative AEA transport protein
(Beltramo et al. 1997; Beltramo & Piomelli 2000).
Endocannabinoids are degraded by FAAH and
MAGL in the cell (Rea et al. 2007; Desarnaud et al.
1995; Deutsch & Chin 1993). The FAAH (Cravatt et al.
1996) and MAGL (Dinh et al. 2002) demonstrate
selectivity for AEA and 2-AG, respectively.

There is increasing evidence for the involvement of
brain cannabinoid receptors in pain modulation (Rea
et al. 2007). The inhibitory effects of the cannabinoid
receptor agonist WIN 55,212-2 (an aminoalkylindole
derivative) on spinal neuronal pain-evoked responses
were ablated upon transection of the spinal cord,
suggesting that the descending inhibitory pathways
do have a significant role to play in mediating anti-
nociception induced by cannabinoids (Hohmann et al.
1999). The WIN 55,212-2 was also shown to have
anti-nociceptive effect in the tail flick test upon the injec-
tion of this cannabinoid receptor agonist into the amyg-
dala, thalamus, PAG matter, and rostral ventral
medulla (Martin et al. 1999). Among other supra-spinal
structures and brain nuclei, the rostral ventral medulla,
and the PAG matter, both constituent parts of the
descending pain pathway have been shown to be
significantly implicated in cannabinoid-induced anti-
nociception (Martin et al. 1998; Meng et al. 1998;
Walker et al. 2002; Lichtman et al. 1996). There is also
compelling evidence for the involvement of the endo-
cannabinoid system in regulation of fear, anxiety, and
stress (Ruehle et al. 2012; Mechoulam & Parker 2013;
Lafenêtre et al. 2007; Akirav 2011; Hill et al. 2009).

This research project employed a rat inguinal sur-
gerymodel to investigate the effect of post-surgical pain
on the levels of brain endocannabinoids.

The rat inguinal surgery model as a model of acute
post-surgical pain

The rat inguinal surgery model is an animal model of
post-surgical pain developed by Dr David Finn and
colleagues at the National University of Ireland,
Galway. This model of post-surgical pain is largely
an adaptation of the Lichtenstein technique of inguinal
hernia repair in humans. The Lichtenstein hernia repair
technique happens to be the first tension-free technique
of inguinal hernia repair (Martin et al. 2004). It was
pioneered by Dr Irving Lichtenstein (LeBlanc 2003).
The Lichtenstein technique was introduced in 1986
(LeBlanc 2003); it relies on the use of a synthetic mesh
trimmed to match the inguinal canal floor size (Amid
et al. 1996), thus reinforcing the fascia transversalis
(Amid et al. 1996).

The possible effects of acute post-surgical pain on
the levels of endocannabinoids in the cerebral cortex
were assessed. The investigation encompassed rat
inguinal surgery, brain dissection, and quantitation of
endocannabinoids in the cerebral cortex using capillary
liquid chromatography coupled to tandem mass
spectrometry (LC–MS/MS).

Hypothesis

Post-surgical pain arising from rat inguinal surgery is
associated with alterations in the levels of endocanna-
binoids (AEA and 2-AG) in the cerebral cortex, with
the character of these alterations being consistent with
the anti-nociceptive role thought to be played by these
compounds in pain modulation.

Objectives of the research project

The principal aim of this research project was to
investigate the effect of inguinal surgery on the levels
of AEA and 2-AG in the rat cerebral cortex.

Materials

Animal husbandry materials included adult male
Lister-Hooded rats (225–300 g; Charles River, UK),
rat cages (North Kent Plastics, UK), water bottles
(North Kent Plastics, UK), absorbent padding Vlesi
bed sheet (Fleming Medical, Ireland), rat chow
(Harlan Teklad, UK), temperature/humidity monitor
(Radionics Ltd, Ireland), and weighing scales (Mason
Technology, Ireland).
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Dissection materials included dissection kit (Fannin
Medical Co., Ireland), scalpel blades (Swann-Morton,
UK), and syringes (BD Microlance, UK).

Computer software included Microsoft Office
(Microsoft Ireland, Ireland), SPSS/PASW (versions
15–18; SPSS Inc., USA), and Graph Pad Prism
(version 5; Graph Pad Software Inc., USA).

Methods

Animals

Experiments were carried out in adult male Lister-
Hooded rats (225–300 g on arrival; Charles River,
UK) maintained at a constant temperature (21 ± 2 °C)
under standard lighting conditions (12:12 hours
light:dark, lights on from 08:00 to 20:00 hours).
Experiments were undertaken during the light phase
between 08:00 and 17:00 hours. Food and water were
available ad libitum. The experimental protocol was car-
ried out following approval from the Animal Care and
Research Ethics Committee, National University of
Ireland, Galway, under license from the Department
of Health and Children of the Republic of Ireland and
in compliance with the EU Directive 86/609.

Experimental procedure

The experiment consisted of two phases: an in vivo
phase and an ex vivo phase. Male Lister-Hooded rats
were randomly assigned to one of two groups: a sham
group (n= 10) and a surgery group (n= 9). The sham
and the surgery groups, respectively, constituted the
control and test groups in this experiment.

In vivo phase

The in vivo phase of the experiment consisted
of the following procedures or interventions: sham
procedure, rat inguinal surgery, animal sacrifice
(decapitation), brain and spinal cord removal, and
storage. The sham procedure entailed anaesthetizing
the experimental animals belonging to the sham group
with isoflurane in conjunction with pure oxygen:
isoflurane 3% was used for induction, and isoflurane
1.4–2% was used for maintenance in 0.5 l/min of
oxygen. The shamprocedure lasted for 1 hour duration.
Inguinal hernia surgery by way of the Lichtenstein
technique constituted the surgical procedure. This
phase of the experiment was undertaken under license
from Dara Bree and Orla Moriarty.

Animal sacrifice

Experimental animals were removed from their home
cages and sacrificed by decapitation 2 hours after the
sham and surgical procedures. Brains and spinal cords

of the animals were removed rapidly, snap-frozen on
dry ice, and stored at −80 °C prior to dissection.

Ex vivo phase

Rat brain dissection and grinding of rat brain tissue
regions

The frozen rat brains were allowed to thaw for 12−15
minutes. The brain regions of interest were then rapidly
dissected out with reference to a rat brain atlas (Paxinos
& Watson 1997) on an ice-cold plate with the aid of a
scalpel blade and a razor blade, alternating between
rats from the sham and surgery groups. The duration
of each dissection was approximately 13 minutes. The
harvested brain regions included in order of dissection:
PFC, hypothalamus, left amygdala, right amygdala, left
cortex, right cortex, left striatum, right striatum, left
hippocampus, right hippocampus, thalamus, cerebel-
lum, PAG matter, and RVM. The brain regions were
weighed into 1.5 ml microfuge tubes on an accurate
balance after their removal. Following dissection, all
of these brain regions were stored at −80 °C prior to
tissue extraction and quantitation of the levels of
endocannabinoids.

Brain tissue grinding was done on dry ice using a
mortar and pestle; relevant brain regions were crushed
to powder. The resulting powdered tissue was
aliquoted out into microfuge tubes and stored at
−80 °C. Prior to their storage, the tissues were weighed;
tubes were pre- and post-weighed frozen.

Quantitation of endocannabinoids in rat cerebral
cortex by LC–MS/MS

Quantitation of endocannabinoids by LC–MS/MS was
undertaken as described previously (Butler et al. 2011;
Ford et al. 2011; Olango et al. 2012). This study focused
on quantitation of the levels of endocannabinoids in the
cerebral cortex. Tissue extraction was undertaken by
way of a lipid extraction method as follows: each brain
tissue samplewas first homogenized for approximately
4 seconds in 400 μl 100% acetonitrile containing known
fixed amounts of deuterated internal standards (0.014
nmol AEA-d8, 0.48 nmol 2-AG-d8, 0.016 nmol PEA-
d4, 0.015 nmol OEAd2) using an ultrasonic homogen-
izer/sonicator (Mason, Ireland). Homogenates were
then centrifuged at 14 000 rpm for a duration of 15
minutes at a temperature of 4 °C, and the supernatant
was collected and evaporated to dryness in a centrifu-
gal evaporator; the heat time was 120 minutes, and the
duration of supernatant evaporation was 120 minutes
at a temperature of 45 °C. Following evaporation to
dryness, lyophilized samples were resuspended in 40
μl 65% acetonitrile, and 2 μl was injected onto a
Zorbax C-18 column (150 × 0.5 mm internal diameter)
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from a cooled autosampler maintained at 4 °C (Agilent
Technologies Ltd, Ireland). Mobile phases consisted of
A [high-performance liquid chromatography (HPLC)
grade water with 0.1% formic acid] and B (acetonitrile),
with a flow rate of 12 μl/min. Reversed-phase gradient
elution began initially at 65% B, and over 10 minutes
was ramped linearly up to 100% B. At 10 minutes,
the gradient was held at 100% B up to 20 minutes. At
20.1 minutes, the gradient returned to initial conditions
for a further 10 minutes to re-equilibrate the column.
The total runtime was 30 minutes. Under these condi-
tions, AEA, 2-AG, PEA, and Oleoylethanolamine were
eluted at the following retention times: 12.2, 13.2, 16.0,
and 16.6 minutes, respectively. Analyte detection was
undertaken in electrospray-positive ionization mode
on an Agilent 1100 HPLC system coupled to a triple
quadrupole 6460 mass spectrometer (Agilent
Technologies Ltd, Ireland). Instrument conditions and
source parameters such as fragmentor voltage and col-
lision energywere optimized for each analyte of interest
before assaying samples; standards were infused sepa-
rately. Quantitation of target endocannabinoids was
accomplished by positive ion electrospray ionization
and multiple reaction monitoring (MRM) mode,
allowing for simultaneous detection of the protonated
precursor and product molecular ions [M+.H+] of the
analytes of interest and the deuterated forms of the
internal standards. Precursor and product ion
mass-to-charge (m/z) ratios for all analytes and their
corresponding deuterated forms are shown in
Table 1, see the supplementary data Fig. 1. The quanti-
tation of each analyte was performed by determining
the peak area response of each target analyte against
its corresponding deuterated internal standard.
This ratiometric analysis was performed by the
Masshunter Quantitative Analysis Software (Agilent
Technologies Ltd, Ireland). The amount of analyte in
unknown samples was calculated from the analyte/
internal standard peak area response ratio with an

11-point calibration curve constructed from a range
of concentrations of the nondeuterated form of each
analyte and a fixed amount of deuterated internal
standard. The values obtained from the Masshunter
Quantitative Analysis Software were originally
expressed in ng per mg of tissue by dividing the weight
of the crushed tissue. To express values as nmol or
pmols per mg, the corresponding values were then
divided by the molar mass of each analyte expressed
as ng/nmol or pg/pmol. Linearity (regression analysis
determinedR2 values of 0.99 or greater for each analyte)
was determined over a range of 19.67 ng–75 fg for all the
analytes except for 2-AG, which was 196.68 ng–750 fg,
see supplementary data Fig. 2. The limit of quantifica-
tionwas 1.32, 12.1, 1.5, and 1.41 pmol/g for AEA, 2-AG,
PEA, and OEA, respectively

Statistical analyses

The SPSS statistical software package (SPSS version
15.0 for Microsoft Windows; IBM, USA) was used to
analyse all data. Parametric neurochemical data
were analysed using independent samples t-test and
two-way analysis of variance (ANOVA). Non-
parametric data were analysed using Kruskal–Wallis
non-parametric test. Post-hoc test for parametric and
non-parametric data was undertaken using Fisher’s
LSD andMann–WhitneyU post-hoc tests, respectively.
Datawere considered significant when p< 0.05. Results
are expressed as group mean ± standard error of the
mean (S.E.M).

Results

Effect of surgery on the levels of AEA, 2-AG, PEA,
and OEA in the cerebral cortex

The concentrations of AEA, 2-AG, PEA, and OEAwere
measured in the animal cerebral cortical tissues follow-
ing surgery and the sham procedure (animals were
sacrificed 2 hours after both interventions) to character-
ize the potential changes in the levels of these endocan-
nabinoids resulting from acute post-operative pain.
There was no significant difference in the levels of AEA
(t (17)= 0.016, p > 0.05) and 2-AG (t (17)= 0.224,
p > 0.05) between the sham and surgery groups.
Figure 1 shows the effect of surgery on the cortical levels
of AEA and 2-AG when the levels for the right and left
cerebral cortical tissues were pooled.

Similarly, there was no significant difference in the
levels of PEA (t (17)= 1.366, p > 0.05) and OEA
(t (17)= 0.053, p > 0.05) between the sham and surgery
groups. Figure 1 shows the effect of surgery on the cort-
ical levels of PEA and OEA when levels for ipsilateral
and contralateral tissues were pooled.

Table 1. Precursor and product ion mass-to-charge (m/z) ratios for
all the analytes and their corresponding deuterated forms

Precursor
Product ion mass-to-charge

(m/z ) ratios
Retention times

(minutes)

AEA 348.3–62.1 12.2
AEAd8 356.3–63.1 12.1
2-AG 379.3–287.4 13.2
2-AG-d8 387.3–294.2 13.3
PEA 300.3–62.1 16.0
PEA-d4 304.3–62.1 15.9
OEA 326.3–62.1 16.6
OEA-d2 328.3–62.1 16.5

Characterization of cerebral cortical endocannabinoid levels 57

https://doi.org/10.1017/ipm.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/ipm.2019.29


Lateralization of cerebral cortical AEA and 2-AG
levels

In both the sham and surgery groups, there was later-
alization of AEA and 2-AG in the cerebral cortex such
that the levels of these two analytes were significantly
higher in the right side compared to the contralateral
(left) side, see Fig. 2. A two-way ANOVA revealed no
significant effect of procedure on the levels of AEA
(F (1, 35)= 0.009, p= 0.926; p> 0.05) but did reveal a sig-
nificant effect of side (F (1, 35) =15.965, p= 0.000;
p < 0.001). Fisher’s LSD post-hoc test confirmed that
levels of AEAwere significantly higher in the right cor-
tex of sham and surgery compared with levels in the
contralateral (left) cortex (p < 0.05). There was no sig-
nificant side × procedure interaction (F (1, 35)= 0.338,
p= 0.565; p > 0.05). Kruskal–Wallis non-parametric test
revealed a significant difference in the levels of 2-AG
(K= 29.125, p < 0.001) between groups (i.e. left cortex
sham, left cortex surgery, right cortex sham, and right
cortex surgery); Mann–Whitney U post-hoc tests
revealed significantly higher levels of 2-AG in the right
cortex of sham compared to the levels in the left side
(U= 0.000, p < 0.001) and in the right cortex of surgery
compared with levels in the contralateral side
(U= 0.000, p < 0.001).

Lateralization of cerebral cortical PEA

The concentration of PEA was significantly higher in
the left cerebral cortex in both the sham and surgery
groups, see Fig. 3. Kruskal–Wallis non-parametric test
revealed a significant difference in the levels of cortical
PEA (K= 29.185, p < 0.001) between groups (i.e. contra-
lateral (left) cortex sham, contralateral (left) cortex sur-
gery, ipsilateral (right) cortex sham, and ipsilateral
(right) cortex surgery groups); Mann–Whitney U
post-hoc test showed significant differences in levels
of PEA between the contralateral (left) cortex sham
and ipsilateral (right) cortex sham groups (U= 0.000,
p < 0.001), with PEA being significantly higher in the
left cortex of sham, and between the contralateral (left)
cortex surgery and ipsilateral (right) cortex surgery
groups (U= 0.000, p < 0.001), with PEA being signifi-
cantly higher in the left cortex of surgery.

Lateralization of cerebral cortical OEA in the
surgery group

Therewas also right lateralization of cortical OEA in the
surgery group, see Fig. 4. A two-way ANOVA revealed
no significant difference in the levels of OEA (F (1,
35)= 0.01, p= 0.920; p > 0.05) between the procedure
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Fig. 1. Effect of surgery on the levels of (a) AEA, (b) 2-AG, (c) PEA, and (d) OEA in the cerebral cortex. Data are presented asmean ±
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groups (i.e. sham and surgery groups), there was
a significant difference in the levels of OEA
(F (1, 35)= 12.734, p= 0.001; p< 0.05) between the sides,
that is contralateral (left) and ipsilateral (right) sides;
Fisher’s LSD post-hoc test showed no significant differ-
ence in the levels of OEAbetween the contralateral (left)
cortex sham and ipsilateral (right) cortex sham groups
(p > 0.05) but revealed a significant difference in the
cortical levels of OEA between the contralateral (left)
cortex surgery and ipsilateral (right) cortex surgery
groups (p < 0.05), with OEA being significantly higher
in the right cortex of surgery.

Discussion

The role of the endocannabinoid system in the modula-
tion of acute post-surgical pain is yet to be fully eluci-
dated. In the current study, we used a rat inguinal
surgery model to assess the dynamics of cortical endo-
cannabinoids in the immediate post-operative period.
There were no significant differences in the cerebral cort-
ical levels of AEA and 2-AG between the sham and sur-
gery experimental groups. The perception of pain occurs
in the cerebral cortex (Guyton & Hall 2010; Barrett et al.
2012). The cingulate cortex, primary somatosensory cor-
tex, and insular cortex are all parts of the cerebral cortex
andplay significant roles in pain perception (Barrett et al.
2012). These different anatomical and functional parts of
the cerebral cortex could not be easily delineated and
were, therefore, considered together in this study. This
mayhave had someeffect on the final outcome of the cer-
ebral cortical endocannabinoid levels. Using a paw inci-
sion model of post-operative pain, Alkaitis et al.
previously demonstrated that the levels of AEA in the
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ipsilateral and contralateral portions of the lumbar spinal
cord were significantly lower in the surgery group at 24
hours and 72 hours after surgery compared to basal con-
centrations in naïve controls (Alkaitis et al. 2010). In the
same study, these authors further demonstrated that the
levels of 2-AG were significantly higher in the contralat-
eral spinal cord at 24 hours and in the ipsilateral spinal
cord at 72 hours after surgery compared to the concen-
trations in the controls. We speculate that the time frame
of 2 hours after surgery adopted in the present study to
evaluate the dynamics of the cortical endocannabinoids
may not have been sufficient to allow for observation of
any significant differences between the sham and sur-
gery groups.

Interestingly, differences in the levels of endocanna-
binoids were observed between the right and left
cerebral cortices irrespective of sham or surgical treat-
ment. Quantitation of the cerebral cortical AEA and
2-AG levels revealed the presence of higher levels of
these analytes in the right cerebral cortex compared
to the contralateral cerebral cortex. This lateralization
of endocannabinoids may be related to fear condition-
ing. Previous studies have reported thatMAPK/extrac-
ellular-signal-regulated kinase (ERK) activation in the
amygdala is essential for acquiring and strengthening
conditioned fear (Di Benedetto et al. 2008). Indeed,
conditioned fear has been shown to significantly
increase the expression of phospho-Erk1 (pErk1) in
the right basolateral amygdala (BLA) of rats treated
with both saline and formalin (Di Benedetto et al.
2008). An increase in pErk expression (which is canna-
binoid receptor type 1, CB1 dependent) in the amygdala
(BLA) has been previously associated with fear condi-
tioning (Cannich et al. 2004). It is likely that an increase
in the levels of the CB1 receptor agonist AEA during
conditioned fear results in CB1 receptor activation,
which in turn leads to an increase in the expression of
pErk1 in the right BLA (Olango 2012). The frontal, ven-
tromedial, and cingulate cortices are also implicated in
fear conditioning (Curzon et al. 2009). It is possible that
a similar mechanism accounting for the lateralized
upsurge in the levels of endocannabinoids in the
amygdala may be in operation in the cerebral cortex.
Right lateralization of cortical OEA is demonstrated
in the surgery group. In the sham group, while the level
of OEA in the cerebral cortex was higher in the right
side compared to the left, this was not statistically
significant. The OEA and PEA are known to have an
‘entourage effect’ (Bradshaw & Walker 2005). Indeed,
fear-mediated increase in pErk1 has been shown to
be related to increased OEA levels occurring in associ-
ation with a potentiation of AEA in the right BLA
(Olango 2012). It is possible that a similar mechanism
may account for the right cortical lateralization of
OEA in the surgery group.

Further studies will be needed to determine
whether alterations occur in the concentrations of
these lipid-based compounds at the synaptic level,
and a time-course study for the levels of the endocan-
nabinoids will also be necessary. Pharmacological
studies involving drugs targeting the endocannabi-
noid system and their effects on surgery-induced
behavioural deficits are another necessary future
study. It will be interesting to measure the levels of
endocannabinoids in additional brain regions
involved in pain perception and in the descending
modulation of pain, including the relevant thalamic
nuclei, the relevant sub-nuclei of the cerebral
cortex, the PAG matter, and the rostral ventral
medulla. Finally, establishing whether these lateral-
ized differences in the concentration of endocannabi-
noids in the cerebral cortex are present in naïve
animals or are the result of common procedures
performed on both the sham and surgery group
animals would require further investigation.

Conclusion

In conclusion, acute post-surgical pain (rat inguinal
surgery model)-induced alterations in the cerebral cort-
ical levels of endocannabinoids (AEA and 2-AG) were
not observed in this study. Lateralized differences in the
concentration of these lipid-based compounds between
the right and left cerebral cortices were observed
irrespective of the sham and surgery groups; this latter
finding may be related to the role played by endocan-
nabinoids in fear conditioning, anxiety, and stress
coping.

Limitations

Given that the primary aim of this research project was
to determine the effects of inguinal hernia repair
surgery on the brain levels of endocannabinoids, an
experimental naïve group was not included in the
experimental design.
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