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Abstract

Let R be a ring with identity of characteristic two and G a nontrivial torsion group. We show that if the
units in the group ring RG are all trivial, then G must be cyclic of order two or three. We also consider the
case where R is a commutative ring with identity of odd prime characteristic and G is a nontrivial locally
finite group. We show that in this case, if the units in RG are all trivial, then G must be cyclic of order
two. These results improve on a result of Herman et al. [‘Trivial units for group rings with G-adapted
coefficient rings’, Canad. Math. Bull. 48(1) (2005), 80–89].
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1. Introduction

Let R be an associative ring with identity and let G be a group. A unit u in the group
ring RG is said to be trivial if it is of the form rg for some unit r ∈ R and some g ∈ G.
Any unit of RG not of this form is said to be a nontrivial unit.

A well-known conjecture on units of group rings, first formulated by Higman in
his doctoral thesis [5] and made popular by Kaplansky [6], states that if K is a field
and G is a torsion-free group, then the group algebra KG has only trivial units. In an
online talk on 22 February 2021, the mathematician Giles Gardam announced that this
long-standing conjecture of more than 80 years is false. Gardam’s counterexample,
where the field has order two and the group is virtually abelian, is available in a
preprint [2].

Conversely, questions have been asked on the conditions that the ring R and the
group G would satisfy if the group ring RG has only trivial units. Among the results
obtained on this question is the following result of Herman et al. [4].

PROPOSITION 1.1. ([4], Proposition 8) Let R be a commutative ring with identity of
finite characteristic l > 1 and let G be a finite group such that RG has only trivial
units. Then G is cyclic of order two or three.

A question that comes to mind then is whether Proposition 1.1 holds true even when
R is not commutative. It turns out that the answer to this is in the affirmative when R
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has characteristic two and we present an elementary proof of this result here. We also
consider commutative rings of odd prime characteristic and improve on Proposition
1.1 by showing that if G is a nontrivial locally finite group such that the units in RG
are all trivial, then G is cyclic of order two.

It is worthwhile to mention here that in a continuation of the work in [4], Herman
and Li [3] obtained necessary and sufficient conditions for the group ring RG to have
only trivial units when R is the ring of integers of an algebraic number field and G is a
nontrivial torsion group.

Throughout this paper, Cn is used to denote the cyclic group of order n and all rings
considered are associative with identity.

2. Rings of characteristic two

We first give a constructive proof of the existence of nontrivial units.

PROPOSITION 2.1. Let R be a ring of characteristic two and let G be a group. If G has
an element of order n where n ≥ 4, then RG has a nontrivial unit.

PROOF. Suppose that x ∈ G has finite order n where n ≥ 4. Consider the case n = 2m
where m ≥ 2. Then it is easy to see that 1 + x + x2 + · · · + x2m−2 is a unit in RG because
(1 + x + x2 + · · · + x2m−2)−1 = 1 + x2 + x3 + · · · + x2m−1.

Suppose now that n = 2m + 1 where m ≥ 2. Then 1 + x + x2 + · · · + x2m−2 is a unit
in RG with

(1 + x + x2 + · · · + x2m−2)−1

=

{
x + x2 + x4 + · · · + x2i + · · · + x2m if m ≥ 2 is even,
1 + x3 + x5 + · · · + x2i−1 + · · · + x2m−1 if m ≥ 3 is odd.

We have thus shown the existence of nontrivial units in RG. �

We now prove the main result in this section, which extends the characteristic-two
case in Proposition 1.1 to rings that are not necessarily commutative.

THEOREM 2.2. Let R be a ring of characteristic two and let G be a nontrivial torsion
group. If the units in RG are all trivial, then G is cyclic of order two or three.

PROOF. By Proposition 2.1, every nonidentity element of G has order two or three.
Suppose that G is not cyclic. We consider the following cases.

Case 1: Every nonidentity element of G has order two. Then G is a 2-group with a
subgroup H isomorphic to the direct product C2 × C2. Let x, y be generators of C2 ×
C2. Then u = 1 + x + y ∈ RG and u2 = 1. That is, RG has a nontrivial unit, which is a
contradiction.

Case 2: Every nonidentity element of G has order three. Then G is a 3-group with
a subgroup H isomorphic to C3 × C3. Let x, y be generators of C3 × C3. Then v =

https://doi.org/10.1017/S0004972721000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000563


[3] Group rings with trivial units 245

1 + x + x2 + y + xy ∈ RG is a unit with v−1 = 1 + x + x2 + y2 + x2y2. This tells us that
RG has a nontrivial unit, which is a contradiction.

Case 3: G has at least one element of order two and at least one element of order
three. Let P be a Sylow 2-subgroup and Q a Sylow 3-subgroup of G. Since every
nonidentity element in P has order two, so P must be abelian. If |P| � 2, then P has
a subgroup isomorphic to C2 × C2 and, hence, by the same argument as in Case 1,
there is a nontrivial unit in RG, which is a contradiction. It follows that |P| = 2, that is,
P � C2. Now if Q is not cyclic, then since every nonidentity element in Q has order
three, so Q has a subgroup isomorphic to C3 × C3 and, by the same argument as in Case
2, RG would have a nontrivial unit, which again is a contradiction. Hence, we have
Q � C3. It follows that G has six elements and, since G is assumed to be not cyclic, P
and Q cannot commute with one another. Therefore, G must be the symmetric group
S3, also known as the dihedral group of order six, given by the presentation 〈a, b | a3 =

b2 = 1, ba = a2b〉. But then we have u = 1 + a + a2 + b + ab ∈ RG with u2 = 1, that is,
u is a nontrivial unit in RG, which gives us a contradiction.

In all the above cases, we have a contradiction. Therefore, G must be cyclic and has
order two or three. �

EXAMPLE 2.3. Let D be a division ring of characteristic two (such division rings do
exist; see, for example, [8]). Then DG has a nontrivial unit for any nontrivial torsion
group G except when G = C2 or C3.

3. Rings of odd prime characteristic

By Proposition 1.1, we see that if F is a field of prime characteristic and G is a finite
group such that FG has only trivial units, then G has order at most three. In fact, in the
case where the field has odd prime characteristic, a sharper upper bound on the order
of G is two (see [7]). For our purpose here, we prove the following version for fields
of odd prime characteristic, which is somewhat analogous to Proposition 2.1.

THEOREM 3.1. Let F be a field of characteristic p where p is an odd prime and let G
be a group with an element of finite order n ≥ 3. Then FG has a nontrivial unit.

PROOF. Suppose that x ∈ G has finite order n ≥ 3. Assume first that p does not divide
n and let e = (n · 1F)−1∑n−1

i=0 xi. Then e is an idempotent of FG and u = 1 + (p − 2)e is
a unit of FG with u2 = 1. Note that

u = 1 + (p − 2)(n · 1F)−1 + (p − 2)(n · 1F)−1
n−1∑
i=1

xi � kg

for any k ∈ F \ {0} and g ∈ G. Thus, u is a nontrivial unit of FG.
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Now assume that p divides n. Then n = pm for some integer m and it follows that
xm has order p. Let Zp be the prime subfield of F. Note that

(1 + xm + x2m + · · · + x(p−1)m)(1 − xm) = 1

in Zp〈xm〉. It follows that Zp〈xm〉 (and hence FG) contains a nontrivial unit. �

Now let R be a commutative ring. We first observe that if u ∈ R is a unit and x ∈ R
is nilpotent, then u + x is a unit because

(1 + u−1x)(1 − (u−1x) + (u−1x)2 − · · · + (−1)n−1(u−1x)n−1) = 1,

where n is the smallest positive integer such that xn = 0. In the following, we obtain
some conditions on R and the group G so that RG has a nontrivial unit.

PROPOSITION 3.2. Let R be a commutative ring such that p is nilpotent in R for some
odd prime p and let G be a nontrivial locally finite p-group. Then RG has a nontrivial
unit.

PROOF. By [1, Proposition 16(ii)], the augmentation ideal Δ of RG is nil. Suppose that
g1, g2 ∈ G \ {1} are distinct elements in G. Then 1 − g2 ∈ Δ is nilpotent and, hence,
g1 + (1 − g2) is a nontrivial unit in RG. This completes the proof. �

Finally, we prove the following, which improves on Proposition 1.1 in the case where
the ring R has odd prime characteristic.

THEOREM 3.3. Let R be a commutative ring of odd prime characteristic p and let G
be a nontrivial locally finite group. If the units in RG are all trivial, then G is cyclic of
order two.

PROOF. If the units in RG are all trivial, then it follows by Proposition 3.2 that G is not
a p-group. Therefore, there exists x ∈ G such that x has order q for some prime q with
q � p. If q is odd, then q ≥ 3 and, hence, it follows by Theorem 3.1 that (Z/pZ)〈x〉
(and, therefore, RG) has a nontrivial unit, which is a contradiction. Thus, q = 2. We
also note that none of the nonidentity elements in G has as its order a power of either
p or 2k, where k ≥ 2; otherwise, by Theorem 3.1 again, RG would contain a nontrivial
unit, which is a contradiction. Thus, all the nonidentity elements in G have order two.
If |G| � 2, then G has a subgroup H isomorphic to C2 × C2. Let x, y be generators of H.
Then u = 1 + x + y − xy is a unit in (Z/pZ)H with u−1 = λ(1 + x + y − xy), where 4λ ≡
1 (mod p). Thus, RG has a nontrivial unit, which again is a contradiction. Therefore,
|G| = 2 and G is cyclic, as asserted. �
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