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We investigate the dynamics of a dilute suspension of small, heavy particles superposed on
a reservoir of still, pure fluid. The study is performed by means of numerical simulations
of the Saffman model for a dilute particle suspension (Saffman, J. Fluid Mech., vol. 13,
issue 1, 1962, pp. 120–128). In the presence of gravity forces, the interface between the two
phases is unstable and evolves in a turbulent mixing layer which broadens in time. In the
case of negligible particle inertia, the particle-laden phase behaves as a denser fluid, and
the dynamics of the system recovers to that of the incompressible Rayleigh–Taylor set-up.
Conversely, particles with large inertia affect the evolution of turbulent flow, delaying the
development of turbulent mixing and breaking the up–down symmetry within the mixing
layer. The inertial dynamics also leads to particle clustering, characterised by regions with
higher particle density than the initial uniform density, and by the increase of the local
Atwood number.
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1. Introduction

Dust, particulates and droplets are often found in natural flows and industrial processes
(Balmforth & Provenzale 2001; Balachandar & Eaton 2010; Guazzelli & Morris 2011).
Natural phenomena involving impurities in fluids span from cloud formation (Falkovich,
Fouxon & Stepanov 2002; Shaw 2003), gravity currents (Necker et al. 2005), sediment
transport in rivers (Burns & Meiburg 2015), volcanic eruptions (Bercovici & Michaut
2010), to the formation of planetesimals and proto-planets (Fu et al. 2014; Homann et al.
2016). In many instances, particles in fluids can be considered as passive tracers. However,
they can also significantly alter the flow both at large and small scales. In particular, they
have been shown to induce drag and turbulence reduction in pipe flows (Zhao, Andersson
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& Gillissen 2010; Ardekani et al. 2017; Kasbaoui 2019; Mathai, Lohse & Sun 2020;
Muramulla et al. 2020), to affect the transition to turbulence (Matas, Morris & Guazzelli
2003; Lashgari et al. 2014; Agrawal, Choueiri & Hof 2019) and to alter the development
of hydrodynamic structures and their entrainment in cases of settling particles in stratified
configurations (Pan, Joseph & Glowinski 2001; Yu, Hsu & Balachandar 2014; Burns &
Meiburg 2015; Chou & Shao 2016).

In general, particles transported by a flow exert forces (drag forces) on the carrier
fluid in addition to experiencing interparticulate force interactions. These forces introduce
two different levels of complexity in the theoretical and numerical modelling. However,
in dilute suspensions, characterised by a low fraction of particles per unit volume,
interactions between particles can be neglected. This motivates the study of the coupled
system of the carrier fluid and the suspension, which is commonly referred to as the
particle-laden flow (Balachandar & Eaton 2010).

Even in a simplified set-up of dilute suspensions, the numerical computation of particle
forces in a fluid is a formidable task which requires sophisticated methods (see e.g.
Gualtieri et al. 2015). Simplifications arise in the case of very small particles, which can be
represented as point forces transported by the flow. In the limit of large density differences,
a further simplification is possible by adopting a Eulerian approach in which particles are
represented by a continuous density field. This approach was originally introduced for
study of the linear stability of a dusty gas (Saffman 1962), and has since then been used
to study the formation of planetesimals in thin protoplanetary disks in the presence of a
centrifugal force, as in Youdin & Goodman (2005). More recently, the Saffman model has
been used to investigate the effect of particles on turbulent drag in bulk flows (Sozza et al.
2020).

Here, we will apply the Saffman model to the study of the deposition of a suspension
in a fluid, where the only external force is the gravitational field. We consider a
Rayleigh–Taylor (RT) set-up of two layers of different density with relative acceleration
and a plane interface perpendicular to gravity (Boffetta & Mazzino 2017). The upper layer
contains heavy particles and is suspended above a layer of pure fluid with an unstable
configuration, similar to experiments (e.g. Völtz, Pesch & Rehberg 2001). The main
difference with respect to the incompressible RT configuration is that in this case the
particles are inertial, and therefore can detach from the fluid streamlines producing novel
effects, including asymmetry in the development of the upper and lower layers and the
accumulation of particles in corresponding buoyancy plumes. We also find that in the
presence of inertial particles the development of the mixing layer is delayed as a result of
the reduction of the growth rate in the linear instability phase.

The remainder of the paper is organised as follows. In § 2, we introduce the Eulerian
model for the suspension of particles. In § 3, we detail the numerical implementation of
the model and the parameters used. In § 4, we present the main results of our study. Finally,
in § 5 we summarise the results and discuss the perspectives of our study.

2. Eulerian model for dusty fluids

We use the Eulerian two-phase model first introduced in Saffman (1962). It describes
the dynamics of a suspension of small spherical particles of density ρp transported in a
Newtonian fluid, of density ρf , with ρp � ρf . The particle size is assumed to be smaller
than any scale of the flow and in particular smaller than the Kolmogorov viscous length in
turbulent flows, such that the particle Reynolds number is smaller than unity. Moreover,
the volume fraction of the particles Φv = Npvp/V , defined in terms of the volume of each
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particle vp and the number of particles Np enclosed in the whole volume V , is small. Even
if Φv is small, the mass loading Φm = Φvρp/ρf can be of the order of unity because of
the large density ratio ρp/ρf . Indeed, in real applications the density ratio can easily reach
order 103 for water droplets in air, while it takes values of order 10 for metallic particles in
water.

Particles are inertial and can detach from the fluid streamlines. Hence, while the fluid
phase is transported by a velocity field u(x, t), the dispersed phase is described by
a normalised number density field θ(x, t) = n(x, t)/(Np/V) (where n(x, t) is the local
number of particles per unit volume), which is transported by its own velocity field
v(x, t). Because of the vanishingly small particle volume fraction, the fluid density field
can be assumed to be constant, and therefore the fluid velocity remains incompressible:
∇ · u = 0. For small particles, the interaction between particles and fluid is mainly owing
to the viscous drag force, which is proportional to the velocity difference between particles
and fluid. In this limit, Saffman derived the following coupled differential equations for
the two phases (Saffman 1962):

∂tθ + ∇ · (vθ) = 0, (2.1)

∂tv + v · ∇v = −v − u
τ

+ g, (2.2)

∂tu + u · ∇u = −∇p
ρf

+ Φmθ
(v − u)

τ
+ ν∇2u, (2.3)

where p is the pressure field, g = (0, 0, −g) the gravitational field and ν the kinematic
viscosity. In the case of spherical particles, the particle relaxation time is given by the
Stokes time τ = (2/9)a2ρp/ρf ν, with a the particle radius.

Defining the total kinetic energy as E = ρf 〈|u|2/2〉 + Φm〈θ |v|2/2〉 and the potential
energy as P = ρf 〈Φθgz〉 (here chevrons 〈·〉 denote the average over the volume V) the
energy balance of the model reads

dE
dt

= ρf

[
−ν〈(∇u)2〉 − Φm

τ
〈θ |v − u|2〉

]
+ ∂P

∂t
. (2.4)

Hence, the total energy E + P of the system is dissipated by both the viscous drag between
the particles and the fluid and by the fluid viscous stress. The dimensionless parameters
that control the system dynamics are the mass loading Φm, the Reynolds number Re =
UL/ν (where U is the characteristic velocity at the integral scale L) and the Stokes number
St = τ/τη, defined here as the ratio of the particle relaxation time and the Kolmogorov
viscous time τη = (ν/ε)1/2 (where ε = ν〈(∇u)2〉 is the energy dissipation rate owing to
the fluid viscous stress).

The Eulerian description for particles is valid only for sufficiently small inertia, that
is, for weakly inertial particles. Indeed, in a Lagrangian approach, nearby particles with
large St may exhibit very different velocities (Bec et al. 2010), a phenomenon known
as either the caustic formation (Wilkinson & Mehlig 2005) or sling effect (Falkovich
et al. 2002). This would correspond to a multi-valued velocity field in the Eulerian
model and therefore the breakdown of the continuum description. The probability of
caustic formation increases exponentially with St and therefore it becomes negligible for
weakly inertial particles. The equivalence of the Lagrangian and Eulerian descriptions
at Φm = 0 was shown to be valid in a turbulent flow as long as St < 1 (Boffetta et al.
2007). In the case of spherical particles, the Stokes number can be explicitly expressed
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as St = (2/9)(ρp/ρf )(a/η)2 (with η = (ν3/ε)1/4 the Kolmogorov viscous length). Thus,
the condition St < 1 can only be fulfilled when particles are very small a � η, with
ρp/ρf � 1.

We note that particle velocity field v is in general not incompressible owing to the
presence of inertia. In the limit of negligible Stokes time (τ → 0), the Saffman model
(2.1)–(2.3) reduces to the Boussinesq approximation for an incompressible flow. Indeed
in this limit one can write, from (2.2), (v − u) � τ(g − ∂tu − u · ∇u). Substituting into
(2.1) and into (2.3) one obtains (neglecting terms of order O(τ ))

∂tθ + u · ∇θ = 0 (2.5)

ρf (1 + Φmθ)(∂tu + u · ∇u) = −∇p + ρf Φmθg + ρf ν∇2u. (2.6)

Under the usual assumption for the Boussinesq approximation, i.e. that density fluctuations
are negligible but in the buoyancy term (which here is equivalent to the request that Φm �
1), we replace the density field in the first term of (2.6) with the mean density ρf (1 +
Φm〈θ〉) to obtain

∂tu + u · ∇u = −∇p
ρf

+ Φm

1 + Φm〈θ〉θg + ν

1 + Φm〈θ〉∇
2u, (2.7)

which is the Boussinesq model with reduced viscosity ν/(1 + Φm〈θ〉) and a rescaled
pressure field p/(1 + Φm〈θ〉) (Saffman 1962).

Here, we consider a configuration in which a fluid laden with particles is initially
confined in the upper half of the volume while the lower part is occupied by the pure
fluid without particles. The initial distribution of particles is assumed to be uniform
in the occupied volume such that θ(x, 0) = H(z) (the Heaviside step function). The
dimensionless density jump between the two layers, given by the Atwood number A =
(ρ2 − ρ1)/(ρ2 + ρ1), can be expressed in terms of the mass loading Φm. Because the
lower layer has density ρ1 = ρf and the upper layer ρ2 = Φvρp + (1 − Φv)ρf , in the limit
of small volume fraction, Φv � 1, we obtain A = Φm/(Φm + 2).

The system described by (2.1)–(2.3) starting from an initial configuration with a particle
density jump, denoted here as the Saffman–Rayleigh–Taylor system (SRT), presents
several similarities with the RT set-up, in which a layer of fluid with higher density is
placed on top of a lighter one. In both cases, the initial interface is linearly unstable, and the
linear phase eventually lead to the development of a turbulent mixing layer that broadens
in time.

In the case of the incompressible RT system, described by (2.5)–(2.7), linear stability
analysis of the inviscid flow gives a growth rate of amplitude γ (k) = √

Agk for a single
mode perturbation of wavenumber k, while viscosity stabilises large wavenumbers (Kull
1991). In the turbulent regime, the width of the mixing layer h follows a quadratic law
h(t) ∝ Agt2 (Boffetta, De Lillo & Musacchio 2010) and the development of the turbulent
mixing layer is accompanied by an increase of turbulent energy dissipation rate ε ∝ (Ag)2t.
As a consequence, the Kolmogorov viscous time scale decreases as τη ∝ ν1/2(Ag)−1t−1/2.
Accordingly, the Stokes number of an inertial particle suspended in a turbulent mixing
layer of a RT system grows in time as St = τ/τη ∝ t1/2 and inertial effects are expected
to become important at later times. In the SRT case, the growth of the mixing layer is
thus expected to be accompanied by an increase of the particle Stokes number. For these
reasons, even if the particle inertia is initially very small, inertial effects and deviations
from incompressible RT mixing are expected to become important as the mixing layer
develops.
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τ ν Nz Ns

0.01 2 × 10−3 1024 7
0.1 2 × 10−3 1024 7
0.25 2 × 10−3 1024 7
0.1 1 × 10−3 2048 2

Table 1. Stokes time τ , kinematic viscosity ν, number of mesh points along vertical Nz and number of
realisations Ns for each set of the three-dimensional simulations. The horizontal number of mesh points are
Nx = Ny = Nz/4. Regularisation terms are νp = K = ν.

3. Details of the numerical simulations

We performed extensive numerical simulations of the Saffman model for different values
of particle inertia. Equations (2.1)–(2.3) are solved in a three-dimensional box of size
Lx = Ly = Lz/4 = 2π at resolution Nx = Ny = Nz/4. Two different resolutions were used:
Nz = 1024 and Nz = 2048, as listed in table 1. The domain was periodic in both vertical
and horizontal directions. The simulations were performed by means of a fully idealised
pseudo-spectral code, parallelised in one direction using MPI libraries. The time evolution
was obtained by a second-order Runge–Kutta scheme with an explicit linear part.

The initial particle density profile, θ(x, 0) = H(z) was perturbed by adding 5 % of white
noise to the density field in a thin layer, of width Lz/512, around the interface between the
fluid and particle-laden regions at z = 0. Both layers were initially at rest: u(x, 0) = 0 and
v(x, 0) = 0. During the evolution of the system, we assumed that the gravity force acting
on the fluid phase was balanced by the hydrostatic pressure. As a consequence, the mean
fluid velocity was set to be zero: 〈u〉(t) = 0. No constraints were imposed on the mean
particle velocity 〈v〉(t).

We ran three sets of numerical simulations with different Stokes times τ =
[0.01, 0.1, 0.25] (see table 1). Each set was composed of Ns = 7 simulations with identical
parameters and independent realisations of the initial random perturbation. The kinematic
viscosity was ν = 2 × 10−3. In addition, for the intermediate Stokes time we also
performed Ns = 2 simulations at reduced viscosity ν = 1 × 10−3 doubling the resolution
and keeping all the other parameters unchanged. In all the simulations, gravity was g = 1
and the mass loading was Φm = 0.2, corresponding to an Atwood number A � 0.09.

Because the system tends to form strong gradients, diffusive regularisation terms
K∇2θ(x, t) and νp∇2v(x, t) were added to (2.1) and (2.2), respectively, K being the
particle diffusivity and νp the particle kinematic viscosity. In all of the simulations
presented we used νp = K = ν.

The results presented in § 4 were obtained from the ensemble average of the Ns
realisations for each of the sets (see table 1), and have been made dimensionless by using
Lx as unit length and the inverse RT instability rate T = 1/γ (k∗) as unit time, where
k∗ = (Ag/8ν2)1/3 is the wavenumber corresponding to the maximum growth rate of a
viscous RT configuration γ (k) =

√
Agk + (νk2)2 − νk2 (Celani et al. 2009).

The simulations were stopped at time tf such that the width of the mixing layer was
still smaller than the vertical size of the box h(tf ) � Lz and the validity constraints
of the model were checked for each set of simulations. During the evolution of the
system the Stokes number grows in time, reaching the maximum value St � 0.15 at the
end of the simulations for the set with the longest Stokes time, which still fulfils the
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requirement St < 1 discussed in § 2. Following the RT convention (see e.g. Boffetta et al.
2007), we define the Reynolds number using the width h(t) of the mixing layer as the
length scale and the root-mean-square (r.m.s.) velocity within the mixing layer as the
velocity scale, Re = Urmsh(t)/ν. We also define a particle Reynolds number associated
with the particle phase, ReP = Vrmsh(t)/νP, where Vrms is the r.m.s. particle velocity and
νP is the particle kinematic viscosity introduced above.

We also studied numerically the linear stability of the SRT system. Because the leading
instability is two-dimensional (Saffman 1962), we performed additional simulations of
the Saffman model in a two-dimensional box of size 2π × 4π at resolution 512 × 4096
with the same parameters as the three-dimensional simulations. Following the method
described in Celani et al. (2009), the initial particle density jump, of width δ, is modulated
along the transverse direction x by a monochromatic sinusoidal wave of small amplitude
ε0 and wavenumber k. The initial density field reads θ(x, z, t = 0) = (1 + tanh((z −
ε(x))/δ))/2, with ε(x) = ε0 sin(kx). The amplitude ε0 of the initial perturbation is chosen
to be sufficiently small to fall into the linear phase of the instability (ε0k � 1), but larger
than the width of the interface δ. The growth rate γ (k) of the perturbation is measured
from the time evolution of the spatial average of the squared vertical velocity.

4. Results and discussion

In the initial configuration, the particles are uniformly distributed in the upper half of
the domain. The gravitational force pushes downward on the particles, producing a mean
vertical drift of the particle-laden phase. As a consequence, the interface between the
particle-laden phase and the pure-fluid phase moves downward. At short times, during the
development of the linear instability at the interface, the mean velocity of the particles can
be predicted from the balance between the Stokes drag force and the gravitational drag:
〈v〉 ≈ τg. After an initial transient period, the ascending and descending plumes produce
a turbulent mixing zone between the two layers. Consequently, the fluid and particle
Reynolds numbers grow in time, reaching the maximum values of Re ∼ ReP ∼ 3 × 103,
with Re � ReP, at the end of the simulation time in all of the three cases. The development
of the turbulent flow produces collective effects on the drag of the particle phase, and
therefore the vertical drift cannot be predicted a priori. Nevertheless, the observed relative
variations of 〈v〉 with respect to τg remain small, of the order of 0.1 %.

4.1. Linear stability analysis
We start by investigating the effect of particle inertia on the linear instability. To this aim,
we have computed the growth rate γ (k) of the perturbation at the interface at wavenumbers
k for different values of the parameters Φm and τ , as shown in figure 1. The growth rate
of each k was obtained by a temporal fit of the mean square fluid velocity (Celani et al.
2009). Figure 1 shows that the effects of concentration and relaxation time are opposite:
while an increase of Φm makes the interface more unstable (figure 1b), a larger τ mainly
acts to reduce the growth rate of the most unstable mode (figure 1a) and to move it
towards smaller wavenumbers. We have numerically found that this effect is even more
pronounced in simulations, including the regularisation terms (not present in figure 1) that
introduce additional diffusion in the system. In the limit of small τ and small Φm the
numerical results tend to the the viscous Boussinesq limit γ (k) =

√
Agk + (νk2)2 − νk2

with Atwood number A = Φm/(Φm + 2).
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Figure 1. Growth rate of the linear instability γ (k) for (a) three values of Stokes time at mass loading Φm =
0.2 and fluid kinematic viscosity ν = 5 × 10−4 and (b) for three values of mass loading at relaxation time
τ = 0.08T and fluid kinematic viscosity ν = 2 × 10−3. The black dashed line in (a) represents the Boussinesq
viscous upper bound for the growth rate γ (k) =

√
Agk + (νk2)2 − νk2.

4.2. Turbulent mixing
After the linear instability phase, the flow evolves into a nonlinear stage and eventually into
a turbulent mixing layer which increases with time. In figure 2 we compare the evolution
of the mixing layer, represented by the density field, for the cases of the smallest and
intermediate Stokes time considered herein. For plotting purposes, we have removed the
downward drift of the interface by shifting vertically the figures such that the mixing layer
remains centred in the box. In the case of a short Stokes time, the evolution of the mixing
layer is characterised by the development of plumes similar to those of incompressible
RT turbulence with a local particle density which does not exceed the initial uniform
distribution θ = 1 (light blue), as in Chou & Shao (2016). The evolution of the system is
remarkably different for a larger Stokes time: particles concentrate in preferential regions
(yellow and red zones), where the local density becomes greater than the initial density
θ = 1. Moreover, inertia breaks the up–down symmetry and the evolution of the mixing
layer in the upper and lower layer is different.

A quantitative insights on the evolution of the mixing layer is provided by the vertical
profiles of the particles density field, defined as θ̄ (z, t) = 1/(LxLy)

∫
dx dy θ(x, t). Here

the overbar represents averages over the horizontal coordinates x, y at fixed z and time
t. The profiles measured at different times are shown in figure 3 in a reference frame that
moves with the interface, i.e. removing the vertical drift (as in figure 2). In the case with the
shortest Stokes times (τ = 0.008T) the initial density jump evolves into a linear profile that
broadens symmetrically, as in the incompressible Boussinesq–RT dynamics. Conversely,
the evolution of the upper and lower part of the mixing layer becomes increasingly
asymmetric in the cases with a larger Stokes time (τ = 0.08T and τ = 0.2T). In particular
we find that the upper part is broader than the lower (see in particular figure 3c). Moreover,
in the case of particle with large inertia we find that at the upper edge of the mixing layer
the density profile displays an ‘overshoot’ with values larger than the bulk (see figure 3d).

We also observe that the spreading of the mixing layer for the longest Stokes time,
τ = 0.2T , starts after longer times compared to the two other cases. The early-time profile
(t = 25T) of figure 3(c) slowly spreads for a large part of the simulation. Thereafter,
the growth of the mixing layer suddenly accelerated and the upper part of it quickly
approaches the upper limit of the box. Simulations were stopped when the extension of
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0

1.0

1.9

0

1.0

1.9

(b)

(a)

Figure 2. Vertical section of the number density field θ at t = [25, 35, 40, 48]T (from left to right). (a) τ =
0.008T . (b) τ = 0.08T . The colour scale represents the intensity of the particle density field, θ : initial uniform
density (θ = 1) in light blue, absence of particles (θ = 0) in black and large density values (θ > 1) in yellow
and red.
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Figure 3. Vertical profile of the number density field θ̄ (z, t) for (a) τ = 0.008T , (b) τ = 0.08T and
(c) τ = 0.2T at different times, together with (d) a zoom of the case τ = 0.2T for large θ̄ (z, t).

the mixing layer became � 0.75Lz. In figure 3(c) we show the density profile at the end of
the simulation time and at approximately half-time from the beginning of the asymmetric
growth. The growth of the mixing layer was further explored by looking at the time
evolution of the mixing layer width.

The width of the mixing layer h(t) was computed from the density profiles as the
difference between the two heights z±(t) at which θ̄ (z±(t), t) = (1 ± 0.95)/2, i.e. h(t) =
z+(t) − z−(t). The time evolution of the mixing layer width is shown in figure 4. In all the
three cases we observe an initial diffusive growth with h(t) ∝ t1/2. The onset of turbulence
is signalled by a sudden acceleration of the growth of h(t), which grows faster than linear.
In the range of times 0 � t � tf accessible to our simulations (such that h(tf ) � Lz), the
quadratic regime h(t) ∝ Agt2, which in RT is observed only at longer times (Boffetta &
Mazzino 2017), can be identified only for the shortest Stokes time (τ = 0.008T). In the
other cases, the broadening of the mixing layer width is faster than quadratic. Moreover,
changes in the kinematic viscosity (and in the regularising coefficients) do not affect the
evolution of h, beyond the initial diffusive phase, as shown for τ = 0.08T .

Interestingly, we find that the transition to the turbulent regime is delayed by the particle
inertia: the initial diffusive growth lasts longer by increasing the Stokes time. The origin of
this phenomenon can be ascribed to the effects of the particle inertia on the linear stability
of the SRT system discussed in § 4.1.

In order to quantify the up–down asymmetry of the evolution of the mixing layer
observed for the largest Stokes times, we have split its width h into an upper h+ (positive z
in figure 3) and lower h− (negative z in figure 3) part, i.e. h± = |z± − zc|. The centre of the
mixing layer is located at the height zc at which the density profile attains half of the initial
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Figure 4. (a) Evolution of the width of the mixing layer for different Stokes times τ = 0.008T (red triangles)
τ = 0.08T (blue dots, with kinematic viscosity ν = 2 × 10−3; and black diamonds, with ν = 1 × 10−3)
and τ = 0.2T (green squares). Points correspond to ensemble average and error bars are ensemble standard
deviation. (b) Width of the upper, positive h+(t) (solid lines) and lower, negative h−(t) (dashed lines) regions
of the mixing layer (line styles as in left panel).

density jump θ̄ (zc, t) = 1/2. As shown in figure 4(b), the lower part of the mixing layer
grows systematically more slowly than the upper part h−(t) � h+(t). The spread between
h+ and h− increases with time and with particle inertia, leading to a positive mixing layer
which is approximately two times the negative one at the final time for the simulation with
τ = 0.2T . In this latter case, we also observe a delay in the transition from the diffusive to
turbulent growth of h− with respect to h+.

In the cases in which the mixing layer is asymmetric, the positive and negative parts
of the mixing layer are associated with different turbulent velocities. Figure 5 shows the
vertical profile of the r.m.s. fluid velocity along the x and z directions for long simulation
times. As the Stokes time is increased, the highest horizontal velocity fluctuations are
confined in the upper part of the mixing layer. Also the vertical velocity fluctuations
become asymmetric, with a fast growth over negative z and a broad tail towards positive z.
Hence, the positive part of the mixing layer h+ shows higher turbulent kinetic energy
compared to the negative one h−, resulting in the faster growth of h+. The particle
velocities (vxrms and vzrms) would show the same characteristics as the fluid, but with
the addition of a vertical drift.

The dynamics of inertial particles suspended in turbulent flows is known to lead to the
formation of strong inhomogeneities in their spatial distribution, both at the inertial and
dissipative scales (Bec et al. 2007). In the case of heavy particles, the classical mechanism
to explain this phenomenon is the ejection from vortical regions owing to the inertia
(centrifugal effect) (Maxey 1987) leading to the formation of strong inhomogeneities in
their spatial distribution. In addition to this effect, in the SRT system we have identified
other two mechanisms for the clustering. Both these phenomena are clearly visible in
figure 2. First, the rising fluid plumes push against the particle phase forming a ridge
in the particle density field localised in front of the plumes. Second, the particles are
encapsulated within the tip of the downwelling plumes where they accumulate in disk-like
structures. Particle clustering has the important effect of producing a local density
concentration which is larger than the initial density of the heavy phase, as shown in
figure 3(d).

The presence of particle clustering is confirmed by the probability density function
(p.d.f.) of the normalised particles density p(θ, t). In figure 6 we show the p.d.f.s of the
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Figure 5. (a) Horizontal r.m.s. velocity of the fluid phase, uxrms for τ = 0.008T (solid red line, t = 48T),
τ = 0.08T (dotted blue line, t = 48T) and τ = 0.2T (dashed green line, t = 52T). Times correspond to the
longest time represented in figure 3 as blue lines. The black vertical line is the central height of the mixing
layer width. (b) Vertical r.m.s. velocity of the fluid phase, uzrms (line styles and times as in the left panel).

density field at the end of the simulations for the three Stokes times. Note that, in order
to exclude the trivial contributions of the top and bottom reservoirs, we restricted the
computation of the p.d.f.s to the portion of the density field θ(x, y, z, t) comprised within
the mixing layer (i.e. with z− � z � z+). Therefore, the peaks at θ = 0 and θ = 1 in the
p.d.f.s are a result of the contributions of locally unmixed regions within the mixing layer,
which are clearly visible in figure 2. In the case with the smaller inertia the local values
of the particle density remain bounded by those of the top and bottom reservoirs, i.e.
0 � θ � 1. The p.d.f. is almost flat in the range 0 < θ < 1, indicating efficient mixing.
Conversely, in the cases with larger particle inertia (τ = 0.08T and τ = 0.2T), the p.d.f.
displays a broad tail at values larger than 1, which indicates the presence of local clustering
of the particles. Moreover, we have observed that this right tail of the p.d.f. broadens in
time, indicating that clustering becomes more important during the evolution of the system
and eventually affects the upper edge of the mean density profile, as shown in figure 3(d).
This is proved by computing the integral of the p.d.f. over values of the density field
larger than 1, I(t) = ∫

θ>1 p(θ, t) dθ , as shown in the inset of figure 6. The integral grows
in time only for the two cases with large particle inertia (τ = 0.08T and τ = 0.2T) and
it is higher at the end of the simulation for the longest Stokes time. Here, we remark
that the particle concentration growth is sustained by the (ideally infinite) top reservoir.
Conversely, if particles are confined in a thin layer of the carrier fluid, particle clustering
eventually dissipates over longer times, as shown in Nasab & Garaud (2020).

The effects of particle inertia is also manifest in the mass flux given by the correlations
between the fluctuations of the density field (with respect to the mean density profile)
θ ′(x, y, z, t) = θ(x, y, z, t) − 〈θ〉(t) and the fluctuations of the particle vertical velocity
v′

z(x, y, z, t) = vz(x, y, z, t) − 〈vz〉(t). In figure 6(b) we show the mean product of the
fluctuations 〈θ ′v′

z〉, where the volume average is restricted to the mixing layer. First of
all, we note that the mass flux is negative, which indicates an anticorrelation between the
density and velocity fluctuations. This is simply owing to the fact that regions with high
local particle density fall faster. We find that the (negative) correlation between the two
fields increases in time. Even if the growth is delayed at increasing τ (in agreement with
the delayed growth of the mixing layer), at longer times we observe that the simulations
with larger inertia display a larger correlation 〈θ ′v′

z〉. This enhanced correlation is likely to
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Figure 6. (a) The p.d.f. of the normalised particle density field, θ , computed over the mixing layer for
τ = 0.008T (solid red line), τ = 0.08T (dotted blue line) and τ = 0.2T (dashed green line) at the end of the
simulation tf , corresponding to t = 48T for τ = 0.008T and τ = 0.08T (right panels of figure 2) and t = 54T
for τ = 0.2T . Inset: Integral of p(θ) over θ > 1. (b) Mean product of the fluctuations of the density θ ′ and
vertical velocity v′

z, averaged within the mixing layer for τ = 0.008T (red line with triangles), τ = 0.08T (blue
line with circles) and τ = 0.2T (green line with squares).

be at the origin of the speed-up of the evolution of the mixing layer which is observed at
long times for large inertia (see figure 4a).

5. Final remarks

We have investigated the effects of particle inertia on the evolution of a dusty RT flow, in
which a dilute suspension of small, heavy particles is initially superposed on a reservoir
of pure fluid. For this purpose we have performed numerical simulations of a two-way
coupled Eulerian model for a dilute suspension of inertial particles, first introduced by
Saffman (1962). Particle inertia is quantified in terms of the Stokes time, which in our
study is always smaller than the Kolmogorov time scale.

Our results show that, while in the limit of vanishing inertia the dynamics of the system
recovers that of the classical RT case, the presence of inertial particles changes the mixing
properties of the flow. On increasing the particle Stokes time, we observe a delay in the
development of the turbulent mixing layer, which is already manifest in the early stage
of the evolution in terms of a reduction of the growth rates of the linear instability.
The reduction of the mixing efficiency caused by the particles is accompanied by an
increased asymmetry of the mixing layer, which is evident in the particle density profiles.
In particular, we find that the plumes of pure fluid penetrate more easily within the upper
part of the mixing layer.

The suppression of small-scale mixing is maintained over longer times. In the turbulent
stage of the evolution, we observe the formation of clusters of particles, with a local density
which exceeds that of the unmixed upper reservoir. Preferential concentration of particles
is found to occur in the annulus around high vorticity whorls, as a result of centrifugal
ejection, and above the ascending plumes of pure fluid, which push against the particle
suspension causing the formation of ridges. High concentrations of particles are also
observed within the tip of the downwelling dusty plumes.

In the case of particles with the largest inertia, the clustering of particles is strong
enough to cause an overshoot of the mean density profile. The upper front of the mixing
layer which penetrates into the reservoir of unmixed dusty fluid has a local mean density
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which is higher than that of the reservoir itself. Even though this effect is less than 1 %
in our simulations, it results in an increase of the effective Atwood number of the system.
We argue that this phenomenon could induce an acceleration of the growth of the mixing
layer in the case of particles with larger inertia than those considered here. The strong
concentration of particles is also responsible of an increase of the mean drift velocity of
particles in the direction of gravity, but this effect remains of the order of 0.1 % in our
simulations.
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