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Abstract
Vipps is a peer-to-peer mobile payment solution launched by Norway’s largest financial services group
DNB. The Vipps transaction data may be viewed as a graph with users corresponding to the nodes, and
the financial transactions between the users defining the edges. We have followed the evolution of this
graph from May 2015 to September 2016. This is a unique data set, as information about transactions of
individuals is usually not available for research. In this paper, we use an advanced statistical model where
preferential attachment is combined with fitness. We show that the intrinsic quality of the nodes in the
Vipps network plays an important part in the evolution of the network. This insight may, e.g., be used to
identify influential nodes for viral marketing.

Keywords: mobile payment solution, network evolution, preferential attachment, fitness

1. Introduction
Vipps is a peer-to-peer mobile payment solution launched by Norway’s largest financial services
group DNB. It was released on May 30th, 2015 and is now the most downloaded app in Norway.
The app is available to everyone with a Norwegian bank card, and by reaching 1 million users in
November 2015, Vipps became Norway’s largest payment application. Now, in 2018, Vipps has
more than 3 million users. The application is designed for smartphones and gives the user the
possibility to make payments to a receivers telephone number instead of a bank account number.
Among other things, it makes it easier to split a restaurant bill, to do the settlement after a girl trip,
or simply transfer money between friends.

The Vipps transaction data may be viewed as a graph with users corresponding to the nodes,
and the financial transactions between the users defining the edges. In this paper, we have used
the subgraph consisting of all nodes (users), but only having an edge between nodes A and B if
user B was recruited by user A. This graph is unique in the sense that we may follow the evolu-
tion from the very first user. Hence, we may study how and why its topology changes over time.
This is useful in many situations. The design of algorithms on complex networks, such as routing,
scheduling, ranking, or recommendation, requires, e.g., a detailed understanding of the growth
characteristics of the networks of interest. There is a growing literature analyzing the characteris-
tics and dynamics of large complex networks, such as the web graph (Barabasi et al., 2000), social
networks (Kunegis et al., 2013), scientific citation networks (Redner, 1998), and recommendation
networks (Leskovec et al., 2006).

Information about financial transactions between individuals is however usually considered
confidential. The only related work we are aware of is the empirical analysis of the Bitcoin net-
work (Kondor et al., 2014), where a nonlinear preferential attachment (PA) model (Krapivsky
et al., 2000) is used to model the network evolution. Recently, several papers have shown that
interactions in real-world networks may be more complex than implied by a PA model. In this
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Figure 1. The aggregated total number of Vipps users (upper panel) and the number of new users (lower panel) every day
in the observation period.

paper, we use a model proposed by Pham et al. (2016), in which the degree of a node is scaled
by its intrinsic quality to determine its attractiveness. We study different aspects connected to the
dynamic and static properties of the Vipps graph and indicate how this insight may be used to
identify the influential users in the network.

Note that the behavior of people adopting an innovation like Vipps may also be interpreted as
a spreading phenomenon throughout an underlying social network like in Iñiguez et al. (2017),
where the underlying network is the largest connected component of the free Skype service net-
work, and the product is a “buy credit” paid service. However, in our case, the underlying social
network is unknown. It is actually the social network for which the nodes are the 5.3 million
inhabitants of Norway. In the future, when Vipps is even more widespread than today, the final
stage of the network may be used as a proxy for the underlying network. Currently, however, it is
more relevant to view the Vipps adoption as the structural evolution of the network itself.

The rest of this paper is organized as follows. In Section 2, we describe the Vipps data set.
Section 3 reviews the most common network evolution models, while the model studied in this
paper is described in Section 4. In Section 5, we give the results obtained in our study, and finally,
Section 6 contains some concluding remarks.

2. Data set
We have used transaction data from May 30th, 2015, to September 30th, 2016. This data set con-
sists of 28,876,279 transactions (time and amount) for 1,769,142 different users. Figure 1 shows
the aggregated and new number of Vipps users every day. During the period June 15th–17th,
2016, Vipps did not work properly due to technical problems, and therefore, we see a dip in the
plots for these days. In the analysis described in Section 5, we have divided the data set into two
periods: the first period, which is used for estimating the network evolution model, lasts from
May 30th, 2015, to February 17th, 2016, and the latter, used for validating the model, lasts from
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Figure 2. The recruitment graph: Degree distributions over time. All plots are on log–log scale. Days 292 and 518 correspond
to February 17th, 2016, and September 30th, 2016, respectively.

February 18th, 2016, to September 30th, 2016. In Figure 1, the two periods are separated by a
vertical dotted line. The numbers of users joining Vipps during the two periods were 1,038,997
and 730,145, respectively.

In the original Vipps graph, there might be several edges between each pair of nodes cor-
responding to multiple transactions. In the analysis described in this paper, our main aim is to
identify the users who are most efficient in recruiting new users. Hence, we will mainly use a sub-
graph consisting of all nodes (users), but only having an edge between nodes A and B if user B was
recruited by user A. We denote this graph “the recruitment graph.” Here, we say that user B has
been recruited by user A if (i) A started to use Vipps before B and (ii) the first transaction from/to
B was to/from A. When presenting the results in Section 5.3 we will also use the term “friend.”. By
nodes A and C being “friends,” we then mean that there has been at least one transaction between
A and C during the whole time period fromMay 30th, 2015, to September 30th, 2016.

Figure 2 shows the development of the degree distribution for the recruitment graph over time,
while various summary statistics for the same snapshots are given in Table 1. As can be seen from
the figure, the data points form an approximate straight line on log–log scale, suggesting that the
degree distribution of the recruitment graph is well approximated with a power-law distribution.
The estimated exponent γ is 3.8. The recruitment graph is a connected graph that has no cycles,
i.e., a tree. Every time a new user is added to the network it is connected to only one of the existing
users.

For the sake of comparison, we have also included the same properties for the subgraph con-
sisting of all nodes (users), but having edges between two nodes A and C if they are friends; see
Figure 3 and Table 2.
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Table 1. The recruitment graph: Summary statistics for different snapshots

Connected component distributionNumber of Number of Max
Day nodes edges degree Min 25% Mean 75% Max

50 90,006 90,006 44 1 2 3.5 3 1,722
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 301,234 301,234 105 1 2 4.5 4 3,865
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

292 1,038,997 1,038,997 208 1 2 8.9 8 10,380
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

518 1,769,142 1,769,142 208 1 3 12.7 12 16,770

Table 2. The friends graph: Summary statistics for different snapshots

Connected component distributionNumber of Number of Max
Day nodes edges degree Min 25% Mean 75% Max

50 90,006 90,094 102 1 2 4.1 3 31,320
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 301,234 424,491 241 1 2 8.7 3 204,400
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

292 1,038,997 4,002,626 711 1 2 102.3 2 1,016,000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

518 1,769,142 12,955,189 836 1 2 477.9 2 1,761,000
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Figure 3. The friends graph: Degree distributions over time. All plots are on log–log scale. Days 292 and 518 correspond to
February 17th, 2016, and September 30th, 2016, respectively.

3. Network evolution models
In recent years, there has been a convergence of ideas coming from computer science, social sci-
ences, and economic sciences to model and analyze the characteristics and dynamics of large
complex networks, such as the web graph, social networks, and recommendation networks.
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Various mechanisms have been suggested, but models for network growth resulting in a scale-
free distribution have received special attention. Scale-free networks have power-law degree
distributions; i.e., the number of nodes with degree d is proportional to d−γ , for a particular γ .

The perhaps most well-known scale-free network model is the PA model (Yule, 1925). PA
means that the more connected a node is, the more likely it is to receive new links. Nodes with
higher degree have stronger ability to grab new links added to the network (“rich-get-richer
effect”). Intuitively, the PA can be understood if we think in terms of social networks connect-
ing people, where a link between A and B means that person A “knows” person B. Heavily linked
nodes represent well-known people with lots of relations. When a newcomer enters the commu-
nity, she or he is more likely to become acquainted with one of those more visible people rather
than with a relative unknown. Similarly, on the web, new pages link preferentially to hubs, e.g.,
well-known sites like Google or Wikipedia, rather than to pages that hardly anyone knows.

The classical PA model for networks is the Barabasi–Albert model (Barabasi & Albert, 1999). It
assumes a linear relationship between the number of neighbors of a node in the network and the
probability of attachment. That is,

P(Node i receives a new edge)∝ di,
where di is the degree of node i. This model, which implicitly assumes a network for which the
number of edges grows linearly with the number of nodes, has later been generalized to

P(Node i receives a new edge)∝ dα
i (1)

where we have a sublinear model if 0< α < 1 and a superlinear model if α > 1. For the sublinear
model, the network’s degree distribution is stretched exponential (Dereich & Mörters, 2009) and
the hubs are much smaller than in a scale-free network. If the model is superlinear, almost all
nodes are connected to a few hubs instead (Krapivsky et al., 2000).

Recently, several papers have shown that interactions in real-world networks may be more
complex than previously thought; see, e.g., Borgs et al. (2007), Kong et al. (2008), Kunegis et al.
(2013), Pham et al. (2015, 2016). The central assumption of the PA model, stating that the popu-
larity of the nodes depends only on their degree, means that the oldest nodes in the network are
likely to have most links. In many situations, the growth rate of a node does not depend on its age
alone. Instead web pages, companies or persons have intrinsic qualities (“fitness”) that influence
the rate at which they acquire links. Hence, several papers have proposed to combine PA with
fitness models. The first scale-free network model introducing this heterogeneity of the nodes
was the Bianconi-Barabási model (Bianconi & Barabási, 2001) that has been used to model the
Internet and the World Wide Web. In this model, nodes acquire new links with a generalized PA
rule that assigns higher probability of attracting new edges to high degree and high fitness nodes
than to those with lower degree or lower fitness. In Bianconi & Barabási (2001), the definition
of PA is restricted to that of the original Barabasi–Albert model, while in a recent work, (Pham
et al., 2016) a model combining PA and node fitness is estimated without imposing any functional
constraints. We have used the latter model, which is called the Generative Temporal (GT) model,
to investigate the interplay between PA and node fitness in the Vipps network. The GT model
includes several existing network models as special cases, e.g., Barabasi & Albert (1999), Callaway
et al. (2001), Bianconi & Barabási (2001), Krapivsky et al. (2001) and Caldarelli et al. (2002) and
hence allows for very flexible modeling of the network evolution. In Section 4, we provide a more
thorough description of this model.

4. The GTmodel
The GT model (Pham et al., 2016) is nonparametric in the sense that it does not assume any
particular form for either the PA function or the fitness distribution. According to this model, one
starts from a seed network G0 and then at each time step (in our case, day) t, nt new nodes andmt
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new edges are added independently to Gt−1 to form Gt . The new edges may emanate either from
the new or from the existing nodes. When a new edge is added to the network at time t, it will
connect to node i with probability

pi,t = f (di,t−1)× ηi∑Nt−1
j=1 f (dj,t−1)× ηj

(2)

where di,t−1 and ηi are the current (in-, out- or total-) degree and fitness of node i, respectively,
and Nt−1 is the total number of nodes at time t − 1. Hence, if two nodes i and j both have degree
d at time t and ηi is 2 ηj, the probability of a new node connecting to node i is twice as large as
the probability of it connecting to node j. While f (di,t) represents an ability of node i to attract
links that usually is increasing in time, the node fitness ηi represents something attractive about
the node that is constant in time. The degree of a node grows faster if its fitness value is large,
allowing nodes with high fitness to become even more “popular” than nodes that have stayed in
the network for a much longer period. Note that both f (di,t) and ηi by definition are concerned
with the ability of a node to acquire new edges.

Let D and N be the maximum degree of the network and the final number of nodes after T
time steps, respectively (where T is the length of the estimation period), and let zi,t be the number
of new edges that connect to node i at time t. In Pham et al. (2016), the problem of estimating
f (d);d = 1, . . . ,D and η = {η1, . . . , ηN} is formulated as the maximization of the log-likelihood
function of the GT model with suitably added regularization terms to avoid overfitting. That is,
the following objective function is maximized:

l∗( f , η)= l( f , η)+ regf + regη, (3)

where regf and regη are the regularization terms for the PA function and the node fitness,
respectively, and

l( f , η)=
T∑
t=1

N∑
i=1

zi,t log
(
f (di,t)

) +
T∑
t=1

N∑
i=1

zi,t log (ηi)−
T∑
t=1

N∑
i=1

zi,t log

⎛
⎝ N∑

j=1
f (dj,t) ηj

⎞
⎠

See Appendix A for more details.
We have used the R package PAFit1 (Pham et al., 2017) to fit the GT model to the Vipps data.

Here, the maximization problem is solved using the Minorize–Maximization (MM) algorithm
(Hunter & Lange, 2000). See Appendix B for more details. For more stable estimation of the f (d)-
function, logarithmic binning is used. The degrees are divided intoK bins, and the f (d) function is
estimated for each bin k= 1, . . . ,K instead of each degree d = 1, . . . ,D. The logarithmic binning
ensures small-width bins in low-degree regions with many data points, while large-width bins are
created for higher degrees. Choosing the number of bins K is a trade-off between stability and
accuracy. A small K means high stability at the risk of loosing fine details.

5. Experiments with Vipps data
As described in Section 2, we divide the data set into two periods; May 30th, 2015, to February
17th, 2016, and February 18th, 2016, to September 30th, 2016. The data from the first period
are used to fit the GT model. Section 5.1 describes this process, while the characteristics of the
estimated fitness values are discussed in Section 5.2. To check whether the estimated model also
fits the data from a later period, we performed a simulation experiment in which we expanded the
network at February 17th, 2016,with 730,145 nodes, corresponding to the new users joining Vipps
during the period February 18th, 2016, to September 30th, 2016. The results from this experiment
are treated in Section 5.3.
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Figure 4. Left: The estimated f (d)-function
assuming that all fitness are one. Right:
The estimated f (d)-functionwhen the fitness
effect is taken into account. Both plots are
on a log–log scale.

5.1 Estimation
The data set from the period May 30th, 2015, to February 17th, 2016, consists of 1,038,997 nodes.
We first fitted the GT model to this data set fixing all ηi’s to 1, i.e., ignoring fitness. The resulting
f (d)-function is shown to the left in Figure 4 (the plot is on a log–log scale). As can be seen from
the figure, the f (d)-function shows a strange behavior for large degrees. We believe that this is due
to too few data points in this area (there are, e.g., only 7 persons who have recruited more than 55
users). For log(degrees) smaller than 4, the logarithm of the estimated f (d)-function is quite linear.
Hence, we fitted a regression line to this part. The slope of this line is 0.66, clearly indicating the
existence of the rich-get-richer phenomenon.

Next, the full GT model was fitted, with K = 50 bins and regularization parameters
λ = 0.5

∑K−1
k=1 wk and s= 10. The regularization parameters were determined by cross-validation,

splitting the training data into two sets; a learning set and a validation set, where the learning set
consisted of data from the first 189 days of the training period, while the validation set consisted of
the last 74 days. The cross validation was performed as described in Pham et al. (2016). For many
different combinations of λ and s the f (d)-function and fitness parameters were estimated using
the learning data, and then the likelihood of these parameters were computed for the validation
data. The solid line to the right in Figure 4 shows the logarithm of the estimated f (d)-function
obtained when using λ = 0.5

∑K−1
k=1 wk og s= 10. Comparing it to the one to the left in the same

figure, we see that the rich-get-richer effect becomes smaller when the fit-get-richer effect is taken
into account. The slope of the dotted blue line is in this case 0.42.

Because the estimated fitness values may have been influenced by the strange behavior of the
f (d)-function for large degrees, we reestimated the fitness values keeping the f (d)-function fixed
to the best linear fit, shown to the right in Figure 4, namely

f (d)= exp
{
0.42 log (d)+ 0.06

}
. (4)

The resulting fitness distribution is shown in Figure 5 and its properties are given in Table 3. As
can be seen from the figure, almost all fitness values are concentrated around the mean, which is 1.
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Table 3. Properties of the fitness distribution for the users recruited
before February 18th, 2016

Median Mean 99% Max

0.99 1.00 1.36 11.92

0.5 1.0 2.0 5.0 10.0

0
2

4
6

8
10

Fitness

D
en

si
ty

Figure 5. Fitness distribution. The x-axis is on log
scale.

There are however some users with significantly higher fitness values, indicating that the fit-get-
richer phenomenon is clearly present in this data set.

5.2 Fitness characteristics
Figures 6 and 7 show examples of degree growth curves for nodes with high and low fitness. As
can be seen from the figure, there is a tendency of nodes with high fitness having very steep degree
growth curves, while nodes with lower fitness having more moderate growth curves. Based on
this, one would think that the fitness represents the ability of the Vipps user to rapidly acquire
contacts. However, this is not the whole picture. Figure 8 shows the degree growth curves for two
nodes that both ended up at degree 35 at February 17th, 2016. The first node enters the network at
May 30th 2015 and after 27 days, its degree raises very rapidly to 32. The second node enters the
network 103 days after the first and its degree steadily increases until February 17th, 2016. Based
on these evolutions, one would assume that the fitness of the first is larger than that of the latter.
However, on the contrary the two fitness values are 2.06 and 3.61, respectively.

This may be explained by having a closer look at Equation (2). We see that the probability of
a node acquiring new edges is not only dependent on its fitness value and current degree, but
also on the corresponding quantities of all other nodes in the network. In the early phase, when the
network is small, there is a relatively small number of nodes competing for the new edges. When
time goes by, however, and the size of the network increases, it becomes much harder for a certain
node to attract links added to the network. Consequently, the nodes that arrive late and end up at
a high degree will be the ones with the highest estimated fitness values in the GT model. This may
be verified studying the equation for updating the fitness of node i:

ηi = Final degree at time T∑T
t=1 f (di,t) · totalNumEdges(t) ·

(
1/

∑Nt
j=1 ηj f (dj,t)

)
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Figure 6. Degree growth curves for selected nodes with high estimated fitness.

From this equation, it is evident that of two nodes that end up with the same degree, it is the one
that arrives last that get the highest fitness.

One may also view this in a different way. Assume that we have two nodes with fitness ηi and
ηj and that their degrees at time t are di,t and dj,t , respectively. Assume further that f (d)= b dα .
Then, for the probabilities pi,t and pj,t to be equal, we must have that

di,t = dj,t
(

ηj

ηi

)1/α

With α = 0.42 like in Equation (4), ηj being twice as large as ηi means, e.g., that the degree of node
i must be 5 times larger than the degree of node j for the probabilities of attracting new edges to
be equal.

Returning to our example in Figure 8, at day 27 there are only 123,741 nodes competing for
3,123 new edges. Hence, the gray node “does not need” a large fitness value to attract many links.
However, 103 days later when the black node enters the network, the total number of nodes in
the network is approximately 500,000, while the number of new edges is still approximately 3,000.
Nevertheless, this node manages to acquire 35 new contacts during the consecutive 163 days,
while the corresponding number for the first node is 3. Hence, the fitness of the black node must
be much higher than that of the gray.

5.3 Simulation study
During the period from February 18th, 2016, to September 30th, 2016, 730,145 new users joined
Vipps. To check whether the model estimated for the period May 30th 2015, to February 17th,
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Figure 8. Degree growth curves for two nodes with fitness values equal to 3.61 (black) and 2.06 (red), respectively.

2016, also fits the data from the later period, we decided to perform a simulation experiment in
which we expanded the network from February 17th with 730,145 nodes. The daily growth of
the Vipps network depends on several factors, e.g., on external marketing. Our main aim is to
study the mechanism that governs the growth, not the size of it. Hence, we decided to use the
same number of new users every day in the simulated data set as what was observed in the actual
data set.

In the simulation procedure, we assumed the log-linear PA-function from Equation (4). As far
as the fitness values were concerned, we used the estimated values for the users already present
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Table 4. Different characteristics for the six Vipps users recruited before February 18th, 2016, having
highest estimated fitness

Total Day Total Test Pos
Estimated number of joining number number number

User fitness friends Vipps recruit recruit recruit

1 11.92 581 13 208 0 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 8.76 712 165 98 0 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 4.82 289 39 106 1 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 4.52 314 118 42 0 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 4.37 730 149 56 16 48
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 4.15 424 162 54 15 35

in the network. For the new users, we first tried to fit a lognormal and a gamma distribution,
respectively, to the empirical fitness distribution in Figure 5. However, none of these distributions
provided an adequate fit to the estimated fitness values. Hence, we decided to simulate fitness
values for the new users by bootstrapping from the observed distribution in Figure 5.

To check whether the simulated network evolution during the period from February 18th,
2016, to September 30th, 2016, has the same characteristics as the actual network evolution, we
computed the mean absolute error (MAE)2:

MAE= 1
Nold

Nold∑
i=1

|final_deg_real(i)− final_deg_est(i)|

where Nold is the number of users already in the system at February 18th, 2016, and
final_deg_real(i) and final_deg_est(i);i= 1, ...,Nold are their actual and simulated degrees at
September 30th, 2016. The simulated degrees are obtained as follows. At day t in the simula-
tion period Jt new nodes j= 1, ..., Jt are inserted into the network. For each of these new nodes,
one and only one edge is produced to one of the nodes existing at day t − 1. The probability of
choosing a specific existing node i is given in Equation (2). From this formula, we see that this
probability is based on the fitness of node i as well as its degree at day t − 1 (numerator) and the
fitness and current degree of all nodes that existed at day t − 1 (denominator). Hence, the order
in which the new nodes enter the network at day t will not matter.

ThisMAEwas computed both for our estimated GTmodel and for the GTmodel with α = 0.66
and all ηsi fixed to one. The resulting values were 0.718 and 0.732, respectively. Hence, the differ-
ence between the two models is not very large and probably not significantly different from zero.
By having a closer look at the real data, the following may be observed. First, most of the users
having a large degree and/or fitness at the end of the training period recruit zero or very few new
users during the testing period. This might be due to the fact that they almost have reached their
full potential during the training period, i.e., that most of their friends already have been recruited
by February 18th, 2016.3 Table 4, containing different figures for the six Vipps users from Figure 6
shows that this is not very far from the truth. For each user, the table shows the following quan-
tities: (i) its estimated fitness value, (ii) its total number of friends,4 (iii) the day at which the user
was recruited, (iv) the total number of other users being recruited by this user, (v) the number
of other users being recruited by this user during the test period, and (vi) the number of friends
who potentially could have been recruited during the test period. The two users in Table 4 with
the highest estimated fitness values do not recruit any new users during the test period. This is
not strange, since they already have reached their full potential. All their friends have either been
recruited by themselves or by others.

Estimating the fitness distribution for the users recruited after February 18th, 2016, using the
same framework as described in Section 5.1, we get the properties shown in Table 5. By comparing
the figures in this table to the ones in Table 3, we see that none of the new users have very high
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Table 5. Properties of the fitness distribution for the users recruited
after February 18th, 2016

Median Mean 99% Max

0.98 1.00 1.24 3.17

Table 6. Different characteristics for the six Vipps users recruited after February 18th, 2016, having
highest estimated fitness

Total Day Total Test Pos
Estimated number of joining number number number

User fitness friends Vipps recruit recruit recruit

1 3.17 694 399 24 24 77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3.14 376 304 25 25 96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 2.93 594 292 23 23 119
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 2.86 718 333 22 22 34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2.65 637 315 19 19 124
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 2.65 148 366 19 19 41

Table 7. Properties of the fitness distribution for the users recruited
before August 9th, 2015

Median Mean 99% Max

0.98 1.00 1.39 7.27

fitness values. Table 6 shows the properties for the six users recruited after February 18th, 2016,
with highest estimated fitness values. The numbers in the third column of this table show that
these users actually have more friends than the users in Table 4 on average. However, from the
last column in the same table it is evident that the majority of their friends already have been
recruited by someone else. Hence, even if these users might be as efficient in recruiting new users
as the ones in Table 4, they will not be able to reach the same level, simply because the number of
possible “prospects” is smaller.

In addition to the above simulation experiment, we also tried to reduce the training set, to
check whether the model correctly predicts the evolution of the network in this case as well. More
specifically, we fitted the GT model to data from May 30th, 2015, to August 8th, 2015, only. This
data set consists of 301,235 nodes. The f (d) function was then estimated to5

f (d)= exp
{
0.52 log (d)+ 0.10

}
(5)

and the properties of the fitness distribution were as shown in Table 7. Having estimated the
model, we performed a simulation experiment in which we expanded the network from August
8th, 2015, with 1,467,907 nodes. Finally, we computed the MAE:

MAE= 1
Nold

Nold∑
i=1

|final_deg_real(i)− final_deg_est(i)|

where Nold now is the number of users already in the system on August 8th, 2015, and
final_deg_real(i) and final_deg_est(i), i= 1, ...,Nold, are their actual and simulated degrees at
September 30th, 2016. The resulting MAE was 1.81, i.e., significantly larger than for the origi-
nal training set. By having a closer look at the smaller training data set, we observe that only 21%
of the nodes have a degree which is larger than 1 at the end of the training period. Hence, this
training period seems to be too short to get proper estimated fitness values. The increase in MAE
may also be partly due to the fact that during most of the test period, there are far more nodes
with simulated fitness values than with estimated ones. The simulated fitness values are generated
from the distribution given by Table 7. Based on the information in Table 3, we believe that many
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of these values are likely to be smaller than the true ones, meaning that the original nodes will
have less competition in the simulation study than in real life. This is verified by comparing the
total number of simulated edges connecting to the original nodes during the test period (507,572)
to the corresponding true number of edges (416,567).

6. Summary and discussion
The peer-to-peer mobile payment solution Vipps, which was launched in May 2015, is now the
number one downloaded app in Norway. The Vipps transaction data may be viewed as a graph
for which the users correspond to the nodes, and the transactions between the users define the
edges. In this paper, we have used the subgraph consisting of all nodes (users), but only having an
edge between nodes A and B if user B was recruited by user A. The Vipps graph is unique in the
sense that we may follow the evolution from the very first user up to now. By fitting a combined
PA and fitness model to this data set, we have shown that the intrinsic quality of the nodes in the
Vipps network plays an important part in the evolution of the network.

The results in this study may be used for viral marketing. Viral marketing refers to marketing
techniques that use social networks to try to produce increases in brand awareness or to achieve
other marketing objectives such as product sales through self-replicating viral processes, analo-
gous to the spread of viruses. One way of encouraging positive word-of-mouth is by distributing
reduced price or free products to target customers (seed users), who then hopefully will encourage
their friends to buy the product (Stonedahl et al., 2010). If the bank in the future wants to launch
a new solution which is similar to Vipps, a smart strategy might be to select the persons with the
highest Vipps fitness values as seed users, since these persons are the ones who seem to recruit
most other users in shortest time.
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Notes
1 https://cran.r-project.org/web/packages/PAFit/index.html
2 Note that we ignore all the users joining Vipps after February 18th, 2016, when computing the MAE.
3 Nodes A and B being “friends” here mean as previously stated that there has been at least one transaction between A and B
during the whole time period fromMay 30th, 2015, to September 30th, 2016.
4 We assume that the network has reached its saturation point at September 30th, 2016.
5 We used the same regularization parameters as for the longer training period.
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Appendix A: GTmodel: More details
According to the GT model, one starts from a seed network G0 and then at each time step t, nt new nodes andmt new edges
are added independently to Gt−1 to form Gt . The likelihood of the data at time step t is given by

P(Gt |Gt−1, θ t , f , η)= P(mt , nt |Gt−1, θ t) P(Gt |Gt−1,mt , nt , f , η)

wheremt and nt are, respectively, the actual number of edges and nodes that appear between times t − 1 and t, and θ t are the
parameters in the simultaneous distribution ofmt and nt . This distribution is assumed not to depend on f (d) and η, meaning
that we can ignore θ t . Hence, the log-likelihood function of the whole data set may be written as

l( f , η)=
T∑
t=1

log P(Gt |Gt−1,mt , nt , f , η)

Let zi,t be the number of new edges that connect to node i at time t. Givenmt , the quantities z1,t , . . . , zN,t follow amultinomial
distribution. Hence, the log-likelihood function may be written as

l( f , η)=
T∑
t=1

N∑
i=1

zi,t log
(
f (di,t)

) +
T∑
t=1

N∑
i=1

zi,t log (ηi)−
T∑
t=1

N∑
i=1

zi,t log

⎛
⎝ N∑

j=1
f (dj,t) ηj

⎞
⎠

Note that when computing zi,t , the edges corresponding to nodes that appear the same day as the node itself are not taken
into account. This is due to the fact that within each day we do not know the order in which the users were recruited. Hence,
we do not want to introduce spurious effects by randomizing ties.6
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As stated in Section 4, regularization is used to avoid overfitting, meaning that the following objective function is
maximized:

l∗( f , η)= l( f , η)+ regf + regη

The regularization term for the PA function is given by

regf = − λ∑D−1
d=1 wd

D∑
d=1

wd

(
log

(
f (d + 1)

) + log
(
f (d − 1)

) − 2 log ( f (d))
)2

(A1)

where λ determines the amount of regularization of the f (d)-function. This means that regf penalizes the second-order
differentiation of log ( f (d)), encouraging the form f (d)= dα . The latter may also be verified as follows. If f (d)= dα ,
then log ( f (d))/ log (d)= α, and we also have that log ( f (d + 1))/ log (d + 1)= α and log ( f (d − 1))/ log (d − 1)= α. This
again implies that log ( f (d + 1))/ log (d + 1)− log ( f (d))/ log (d)= log ( f (d))/ log (d)− log ( f (d − 1))/ log (d − 1), which
is equivalent to

log
(
f (d + 1)

)
/ log (d + 1)+ log

(
f (d − 1)

)
/ log (d − 1)− 2 log

(
f (d)

)
/ log (d)= 0

For moderately large values of d we have that log (d + 1)≈ log (d)≈ log (d − 1), meaning that the last equation may be
written as

log
(
f (d + 1)

) + log
(
f (d − 1)

) − 2 log
(
f (d)

) = 0

The weights wd may be arbitrarily chosen. We follow Pham et al. (2016) and set them to

wd =
T∑
t=1

md,t

where md,t is the number of edges that connect to a degree-d node at time t. With this choice, one balances the strength of
the regularization and the observed data.

The regularization term for the node fitness is given by

regη =
N∑
i=1

{
(s− 1) log (ηi)− s ηi

}
(A2)

Multiplying the likelihood by a penalty function is equivalent to assigning a Bayesian prior distribution to the unknown
parameters; see, e.g., Cole et al. (2014). The regularization term (A2) is equivalent to a Gamma prior on ηi, with mean and
variance equal to 1 and 1/s, respectively. The larger the value of s, the smaller the variance of the fitness distribution. When
s→ ∞, all ηi’s will be equal to 1. Hence, the special case of the classical PA model is obtained for the combination λ = ∞,
s= ∞.

Appendix B: GTmodel: MM algorithm
As stated in Section 4, the maximization of the penalized log-likelihood function is performed using the MM algorithm
(Hunter & Lange, 2000). The MM algorithm is an iterative optimization method which works by specifying a surrogate
function that majorizes orminorizes the original objective function. Optimizing the surrogate function will drive the objective
function upward or downward until a local optimum is reached. A minorize function Q( f , η) for l( f , η) should satisfy the
following two requirements:

Q( f , η) < l( f , η) for all f and η

Q( f q, ηq) = l( f q, ηq) for all iterations q

It can easily be shown that an appropriate minorize function for l( f , η) then is

Q( f , η) =
T∑
t=1

N∑
i=1

zi,t log
(
f (di,t)

) +
T∑
t=1

N∑
i=1

zi,t log (ηi)

−
T∑
t=1

N∑
i=1

zi,t log

⎛
⎝ N∑

j=1
f q(dj,t) η

q
j

⎞
⎠ −

T∑
t=1

N∑
i=1

zi,t

∑N
j=1 f q(dj,t) η

q
j∑N

j=1 f (dj,t) ηj
+

T∑
t=1

N∑
i=1

zi,t
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Let Ak be the value of f (d) for bin k, and let B(i, t) be the bin of node i at time t. We maximize Q with respect to
A= {A1,A2, . . . ,AK} and η = {η1, η2, . . . , ηN} by solving the equations ∂Q/∂A= 0 and ∂Q/∂η = 0 obtaining

Ak =
∑T

t=1
∑

B(i,t)=k zi,t∑T
t=1

∑N
i=1 zi,t∑N

j=1 AB(j,t)ηj

∑
B(i,t)=k ηi

for k= 1, . . . ,K (B1)

ηi =
∑T

t=1 zi,t∑T
t=1

∑N
i=1 zi,tAB(i,t)∑N
j=1 AB(j,t)ηj

for i= 1, . . . ,N (B2)

Since Ak and ηi appear on both sides of these equations, we must use an iterative procedure. Starting from some initial values
A0 = {1,A0

2, . . . ,A
0
K} and η0 = {1, η02, . . . , η0N} at iteration q= 0, this algorithm iteratively calculates Aq and ηq until some

convergence condition is met. For each iteration, the Ak’s, k= 1, . . . ,K, are first updated. Then, the ηi’s, i= 1, . . . ,N, are
updated using the updated values for the Ak’s. It should be noted that parallel processing may be used both when updating
the Ak’s and the ηi’s.

Optimizing the penalized likelihood function l∗( f , η) instead of l( f , η), Equation (B2) is slightly modified to

ηi =
∑T

t=1 zi,t + s− 1∑T
t=1

∑N
i=1 zi,tAB(i,t)∑N
j=1 AB(j,t)ηj

+ s
for i= 1, . . . ,N (B3)

The new formula for Ak is however no longer available in closed form. Instead it is the solution of a univariate equation that
is obtained by first combing the function Q above with a minorize function for the regularization term regf from Equation
(A1). If the new minorize function is denoted QA( · ), the next step is then solving the equation ∂QA/∂A= 0. The minorize
term for regf may be found in the supplement to Pham et al. (2016). This is chosen in such a way that solving the equation
∂QA/∂A= 0 may be separated into K univariate problems ∂QA/∂Ak = 0, which may be easily solved in parallel.

Cite this article: Aas K., and Rognebakke H. (2019). The evolution of a mobile payment solution network. Network Science
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