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Abstract

Answer Set Programming (ASP) is a logic programming paradigm featuring a purely declarative
language with comparatively high modeling capabilities. Indeed, ASP can model problems in
NP in a compact and elegant way. However, modeling problems beyond NP with ASP is known
to be complicated, on the one hand, and limited to problems in ΣP

2 on the other. Inspired by
the way Quantified Boolean Formulas extend SAT formulas to model problems beyond NP,
we propose an extension of ASP that introduces quantifiers over stable models of programs. We
name the new language ASP with Quantifiers (ASP(Q)). In the paper we identify computational
properties of ASP(Q); we highlight its modeling capabilities by reporting natural encodings of
several complex problems with applications in artificial intelligence and number theory; and we
compare ASP(Q) with related languages. Arguably, ASP(Q) allows one to model problems in
the Polynomial Hierarchy in a direct way, providing an elegant expansion of ASP beyond the
class NP.

KEYWORDS: ASP, Quantified Logics, Polynomial Hierarchy

1 Introduction

Answer Set Programming (ASP) (Brewka et al. 2011) is a logic programming paradigm

for modeling and solving search and optimization problems. It is supported by a purely

declarative formalism of logic programs with the semantics of stable models (Gelfond

and Lifschitz 1991) (also known as answer sets (Lifschitz 2002)), and by several systems

able to compute them (Gebser et al. 2018). ASP was primarily aimed at problems whose

decision versions are in the class NP. Indeed, ASP can model problems in NP in a compact

and elegant way by means of an intuitive and easy to follow methodology known as

generate-define-test (Lifschitz 2002) (also known as guess and check (Eiter et al. 2000)).

Furthermore, implementations such as clasp (Gebser et al. 2015), and wasp (Alviano

et al. 2015; Alviano et al. 2019) have been shown to be effective in solving problems of

practical interest (Gebser et al. 2017) on industrial-grade instances (Dodaro et al. 2016;

Gebser et al. 2018; Erdem et al. 2016).

Modeling problems beyond the class NP with ASP is possible to some extent. Namely,

when disjunctions are allowed in the heads of rules, every decision problem in the class

ΣP
2 can be modeled in a uniform way by a finite program (Dantsin et al. 2001). However,

modeling problems beyond NP with ASP is complicated and the generate-define-test
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approach is no longer sufficient in general. Additional techniques such as saturation

(Eiter and Gottlob 1995) are needed but they are difficult to use, and may introduce

constraints that have no direct relation to constraints of the problem being modeled. As

stated explicitly in (Gebser et al. 2011) “unlike the ease of common ASP modeling, [...]

these techniques are rather involved and hardly usable by ASP laymen.”

The primary goal of our work is to address the shortcomings of ASP in modeling

problems beyond NP. Building on the way Quantified Boolean formulas (QBFs) extend

SAT formulas to model problems from PSPACE, we propose a generalization of ASP

that introduces quantifiers over stable models of programs. We name the new language

ASP with Quantifiers (ASP(Q)) and refer to programs in that language as quantified

programs.

In the paper we formally introduce the language ASP(Q) and its semantics. We identify

computational properties of ASP(Q). In particular, we show that every problem in the

Polynomial Hierarchy can be uniformly modeled by a quantified program. Moreover, we

show that no loss of expressivity results if we restrict programs defining quantifiers to

be normal. An important consequence of that observation is that when using ASP(Q)

to model problems, one can resort to the generate-define-test approach to specify these

“quantifying” programs. This typically simplifies modeling and verifying correctness. We

illustrate these claims by presenting natural encodings of several complex problems with

applications in artificial intelligence and mathematics.

In the last part of the paper, we compare ASP(Q) with alternative approaches for mod-

eling problems beyond NP. Earlier efforts in this direction include: the stable-unstable

formalism (Bogaerts et al. 2016), various program transformations (Eiter and Polleres

2006; Redl 2017; Faber andWoltran 2011), applications of meta-programming (Redl 2017;

Gebser et al. 2011) and more.1 In particular, we deepen the comparison with disjunctive

programs and the stable-unstable formalism, indicating key differences and their impli-

cations by means of additional modeling examples. We also extensively compare ASP(Q)

with the language of QBFs, which served as a direct inspiration for our work. A single sen-

tence summary of our work is: ASP(Q) allows one to model problems in the Polynomial

Hierarchy in a direct way, providing an elegant expansion of ASP beyond the class NP.

2 Formal Framework

We start by recalling syntax and semantics of Answer Set Programming (ASP). We then

introduce syntax and semantics of ASP with Quantifiers (ASP(Q)).

2.1 Answer Set Programming

Let R be a set of predicates, C a set of constants, and V a set of variables. A term is a

constant or a variable. An atom a of arity n ∈ N is of the form p(t1, ..., tn), where p is a

predicate from R and t1, ..., tn are terms. A disjunctive rule r is of the form

a1 ∨ . . . ∨ al ← b1, . . . , bm, not c1, . . . , not cn, (1)

where all ai, bj , and ck are atoms; l,m, n ≥ 0 and l+m+n > 0; not represents negation-

as-failure, also known as default negation. The set H(r) = {a1, ..., al} is the head of r;

1 For example, weak constraints allow to model decision problems that are ΔP
3 -complete

(Buccafurri et al. 2000).
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the sets B+(r) = {b1, ..., bm} and B−(r) = {c1, . . . , cn} are the sets of the positive body

and the negative body atoms of r, respectively. A rule r is safe if each of its variables

occurs in some positive body atom. We restrict attention to programs built of safe rules

only. A rule r is a fact, if B+(r) ∪ B−(r) = ∅ (we then omit ← from the notation); a

constraint, if H(r) = ∅; normal, if |H(r)| ≤ 1; and positive, if B−(r) = ∅. A (disjunctive

logic) program P is a finite set of disjunctive rules. P is called normal [resp. positive]

if each r ∈ P is normal [resp. positive]. We define At(P ) =
⋃

r∈P At(r), that At(P ) is

the set of all atoms occurring in the program P . A program P is stratified if there is a

level mapping ‖.‖s of P such that for every rule r of P : (i) For any predicate p occurring

in B+(r), and for any p′ occurring in H(r), ‖p‖s ≤ ‖p′‖s, and (ii) For any predicate p

occurring in B−(r), and for any p′ occurring in H(r), ‖p‖s < ‖p′‖s.
The Herbrand universe of P , denoted by UP , is the set of all constants appearing in P ,

except that when no constants appear in P , we take UP = {a}, where a is an arbitrary

constant. The Herbrand base of P , denoted as BP , is the set of all ground atoms that

can be obtained from the predicate symbols appearing in P and the constants of UP .

Given a rule r occurring in a program P , a ground instance of r is a rule obtained from

r by replacing every variable X in r by σ(X), where σ is a substitution mapping the

variables occurring in r to constants in UP . The ground instantiation of P , denoted by

ground(P ), is the set of all the ground instances of the rules occurring in P . Any set

I ⊆ BP is an interpretation; it is a model of a program P (denoted I |= P ) if for each

rule r ∈ ground(P ), we have I ∩ H(r) �= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅
(in such case, I is a model of r, denoted I |= r). A model M of P is minimal if no

model M ′ ⊂ M of P exists. We denote by MM(P ) the set of all minimal models of P .

For a program P without constraints we write P I for the well-known Gelfond-Lifschitz

reduct (Gelfond and Lifschitz 1991) with respect to interpretation I, that is, the set of

rules H(r) ← B+(r), obtained from rules r ∈ ground(P ) such that B−(r) ∩ I = ∅. An
answer set (or stable model) of a program P without constraints is an interpretation I

such that I ∈ MM(P I). For the general case, we write P← for the set of constraints of

a disjunctive logic program P . We denote by AS(P ) the set of all answer sets (or stable

models) of such programs P , that is, the set of all answer sets of P \P← that are models

for P←.

We say that a program P is coherent, if it has at least one answer set (that is, AS(P ) �=
∅), otherwise, P is incoherent.

2.2 Answer Set Programming with Quantifiers

An ASP with Quantifiers (ASP(Q)) program Π is an expression of the form:

�1P1 �2P2 · · · �nPn : C, (2)

where, for each i = 1, . . . , n, �i ∈ {∃st, ∀st}, Pi is an ASP program, and C is a

stratified normal ASP program.2 Symbols ∃st and ∀st are named existential and universal

answer set quantifiers, respectively. An ASP(Q) program Π of the form (2) is existential

2 This condition is sufficient to model compactly constraints by exploiting the modeling advantages
of inductive definitions. C is contemplated in the definition of ASP(Q) just because it makes more
natural the modeling of problems.
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(universal, respectively) if �1 = ∃st (= ∀st, respectively). If for each i = 1, . . . , n the

ASP program Pi is normal, then Π is called a normal ASP(Q) program. Given a logic

program P and an intepretation I over BP , and an ASP(Q) program Π the form (2), we

denote by fixP (I) the set of facts and constraints {a | a ∈ I} ∪ {← a | a ∈ BP \ I}, and
by ΠP,I the ASP(Q) program of the form (2), where P1 is replaced by P1∪fixP (I), that
is, ΠP,I = �1(P1∪fixP (I)) · · ·�nPn : C. We now define coherence of ASP(Q) programs

by induction on the number of quantifiers in the program.

• ∃stP : C is coherent, if there existsM ∈ AS(P ) such that C∪fixP (M) is coherent;

• ∀stP : C is coherent, if for every M ∈ AS(P ), C ∪ fixP (M) is coherent;

• ∃stP Π is coherent, if there exists M ∈ AS(P ) such that ΠP,M is coherent;

• ∀stP Π is coherent, if for every M ∈ AS(P ), ΠP,M is coherent.

For instance, an ASP(Q) program Π = ∃stP1∀stP2 · · · ∃stPn−1∀stPn : C is coherent if

there exists an answer set M1 of P ′1 such that for each answer set M2 of P ′2 there is

an answer set M3 of P ′3, . . . , there is an answer set Mn−1 of P ′n−1 such that for each

answer set Mn of P ′n, there is an answer set of C ∪ fixP ′
n
(Mn), where P

′
1 = P1, and

P ′i = Pi ∪ fixP ′
i−1

(Mi−1), if i ≥ 2.

For an ASP(Q) program Π of the form (2) such that �1 = ∃st, we say thatM ∈ AS(P1)

is a quantified answer set of Π, whenever (�2P2 · · ·�nPn : C)P1,M is coherent, in case

of n > 1, and whenever C ∪ fixP1
(M) is coherent, in case of n = 1. We denote by

QAS(Π) the set of all quantified answer sets of Π. Finally, note that the definition

of quantified answer set can be naturally extended to programs with strong negation,

choice rules, aggregates and other extensions (Gebser and Schaub 2016). Thus, in the

examples we resort also to these extensions that are part of the ASPCore standard input

language (Gebser et al. 2018).

Example 1

Consider the ASP(Q) program Π = ∃stP1∀stP2 : C, where P1 = {a(1) ∨ a(2)}, P2 =

{b(1) ∨ b(2) ← a(1); b(2) ← a(2)}, and C = {← b(1), not b(2)}. The program P1 has

two answer sets {a(1)} and {a(2)}. Hence, to establish the coherence of Π, we have to

check if at least one of {a(1)} and {a(2)} is a quantified answer set of Π. Considering

{a(1)}, we have fixP1
({a(1)}) = {a(1);← a(2)}. Under the notation used above, P ′2 =

P2∪fixP1
({a(1)}). Thus, AS(P2∪fixP1

({a(1)})) = {{a(1), b(1)}, {a(1), b(2)}}. ForM =

{a(1), b(1)} we have fixP ′
2
(M) = {a(1); b(1); ← a(2); ← b(2)}, and it is clear that the

program C ∪ fixP ′
2
(M) is not coherent. Therefore, {a(1)} is not a quantified answer set

of Π. On the other hand, a similar analysis for the other answer set of P1, {a(2)}, shows
that it is a quantified answer set of Π.

ASP(Q) is a straightforward generalization of ASP in a sense made formal in the

following theorem.3

Theorem 1

Let P be an ASP program, and let Π be the ASP(Q) program of the form (2), where

n = 1, �1 = ∃st, P1 = P , and C = ∅. Then, AS(P ) = QAS(Π).

3 The proof of this result and of some other theorems are given in the appendix available as supplemental
materials published with the paper.
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3 Complexity issues

We now study the computational properties of the ASP(Q) language. As it is customary

in the literature we focus on the ground case, that is we assume that no variable occurs

in programs.

Because it is possible to alternate universal and existential answer set quantifiers,

it is clear that ASP(Q) can model probelms beyond NP. In particular, each problem

in PSPACE can be modeled by using an ASP(Q) program. Formally, we define the

Coherence problem as follows: Given an ASP(Q) program Π as input, decide whether

Π is coherent.

Theorem 2

The Coherence problem is PSPACE-complete, even under the restriction to normal

ASP(Q) programs.

As for QBFs, there is a direct correspondence between the number of alternating

quantifiers and the level of the Polynomial Hierarchy (PH) for which we have competeness

of the coherence problem.

Theorem 3

The Coherence problem is (i) ΣP
n -complete for normal existential ASP(Q) programs

with n quantifiers in the prefix; and (ii) ΠP
n -complete for normal universal ASP(Q)

programs with n quantifiers in the prefix.

We note that, for classes of disjunctive programs that can be translated in polynomial

time to normal ones, such as Head-Cycle Free (HCF) (Ben-Eliyahu and Dechter 1996), the

correspondence between quantifier alternations and the level of the Polynomial Hierarchy

is preserved.

We also note that the theorem concerns, in each of the two cases, the corresponding

class of all ASP(Q) programs with n quantifiers. In particular, the membership part is

proved for that class. The proof of hardness explicitly usues special programs in that

class, the ones in which quantifiers alternate.

4 Modeling in ASP(Q)

In this section, we focus on the modeling capabilities of our language. Thus, we study

some well-known problems that are computationally beyond NP, and show how to solve

them in ASP(Q).

4.1 Minmax Clique

Minmax problems play a key role in various fields of research, including game theory,

combinatorial optimization and computational complexity (Cao et al. 1995). A minimax

problem can be formulated as minx∈Xmaxy∈Y f(x, y), where f(x, y) is a function de-

fined on the product set of X and Y . Here, we focus on the so-called Minmax Clique

problem (Ko 1995), but our approach can be easily adapted to model other minmax

problems.

Let G = 〈N,E〉 be a graph, I and J two finite sets of indices, and (Ai,j)i∈I,j∈J a

partition of N . We write JI for the set of all total functions from I to J . For every total

function f : I → J we denote by Gf the subgraph of G induced by
⋃

i∈I Ai,f(i). We define
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the Minmax Clique problem as follows: Given a graph G, sets of indices I and J , a

partition (Ai,j)i∈I,j∈J (all as above), and an integer k, decide whether

min
f∈JI

max{|Q| : Q is a clique of Gf} ≥ k.

It is known that this problem is Πp
2-complete (Ko 1995).

Consider the following ASP(Q) program Π = ∀stP1∃stP2 : C. The ASP program P1 is

given by:

P1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

edge(a, b) ∀(a, b) ∈ E
node(a) ∀a ∈ N
v(i, j, a) ∀i ∈ I, j ∈ J, a ∈ Ai,j

setI(X) ← v(X, , )

setJ(X) ← v( , X, )

1{f(X,Y ) : setJ(Y )}1 ← setI(X)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Informally, the role of P1 is to specify the input graph, the sets I and J of indices, a

partition (Ai,j), and the search space of all total functions from I to J . Specifically, the

first two sets of facts encode the graph by using two predicates: a binary one named

edge, collecting all edges of the graph; and a unary one named node collecting all nodes

of the graph. Then, the third set of facts encodes the partition (Ai,j) by using a ternary

predicate v. Projections applied to v (rules four and five) define elements of the sets I

and J , respectively. Finally, the last rule defines the space of all total functions f from I

to J . The ASP program P2 is defined as follows:

P2 =

⎧⎪⎪⎨
⎪⎪⎩

inInduced(Z) ← v(X,Y, Z), f(X,Y )

edgeP(X,Y ) ← edge(X,Y ), inInduced(X), inInduced(Y )

{inClique(X) : inInduced(X)}
← inClique(X), inClique(Y ), not edgeP(X,Y )

⎫⎪⎪⎬
⎪⎪⎭

Its role is to define the subgraph Gf of G determined by a total function f , and to select

a clique in this subgraph. In particular, the first rule defines the set of nodes of the

subgraph Gf (whenever a node Z belongs to the set AX,Y , and the function f maps X

to Y , then Z is a node of Gf ). The second rule ensures that whenever there is an edge

from X to Y , and both X and Y are nodes of Gf , then the edge (X,Y ) is an edge of

Gf (Gf is the induced subgraph). The third rule allows to select nodes of the partition

as candidates for a clique. The final constraint requires that it is not possible that two

nodes X and Y are in a clique and there is no edge in the subgraph Gf from X to Y .

Finally, the program C is defined as follows.

C =
{ ← #count{X : inClique(X)} < k

}
The constraint forces the number of nodes in a clique to be greater or equal to k.

Intuitively, we check if for each answer set of P1, that is for each total function f from

I to J , there exists an answer set of P2, that is a clique in the subgraph of G induced by

f , such that its cardinality is not less than k. If so, a quantified answer set of Π exists.

Theorem 4

Let I = 〈G, (Ai,j)i∈I,j∈J , k〉 be an instance of the Minmax Clique problem. Then,

min
f∈JI

max{|Q| : Q is a clique of Gf} ≥ k
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if and only if the ASP(Q) program Π, defined as above, has a quantified answer set.

4.2 Pebbling Number

Graph pebbling is a well-known mathematical game (Hurlbert 1999). It was first sug-

gested as a tool for solving a particular problem in number theory (Chung 1989). The

game consists of a graph with pebbles placed on (some of) its nodes. The goal is to place

a pebble on a target node by performing a sequence of pebbling moves. More formally,

let G = 〈N,E〉 be a directed graph whose nodes may contain pebbles. A pebbling move

along an edge (a, b) ∈ E requires that node a contains at least two pebbles; the move

removes two pebbles from a and adds one pebble to b. The pebbling number, denoted by

π(G), is the smallest number of pebbles such that for every assignment of k pebbles to

nodes of G and for every node w ∈ N (the target), some sequence (possibly empty) of

pebbling moves results in a pebble on w. The Pebbling number problem asks whether

π(G) is less than or equal to k. This problem is Πp
2-complete, and it remains so also when

the target node is part of the input (Milans and Clark 2006). (For the latter version, we

redefine π(G) accordingly.)

To capture the definition of the Pebbling number problem we construct an ASP(Q)

program Π = ∀stP1∃stP2 : C. Its program P1 is defined as follows:

P1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

edge(a, b) ∀(a, b) ∈ E
node(a) ∀a ∈ N
pebble(i) ∀i = 0, 1, . . . , k

1{onNode(X,N) : pebble(N)}1 ← node(X)

← #sum{N,X : onNode(X,N)} �= k

1{target(X) : node(X)}1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

The first two sets of facts encode the input graph, and the third one the set of integers

that can serve as the number of pebbles a node can have. The first rule of the program

(line 4) selects, for each node X, the number N of pebbles on X. The second rule (line 5)

ensures the total number of pebbles on all nodes of G is k. The last rule selects exactly

one node as the target allowing any node to be selected. Thus, answer sets of P1 capture

all possible “input configurations” for G, each configuration defined by a distribution of

k pebbles among nodes of G and the target node.

The ASP program P2 in Π is defined as follows:

P2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

step(i) ∀i = 0, 1, . . . , k − 1

1{endstep(S) : step(S)}1
onNode(X,N, 0) ← onNode(X,N)

1{move(X,Y, S) : edge(X,Y )}1 ← step(S), endstep(T ), 1 ≤ S, S ≤ T

← move(X,Y, S), onNode(X,N, S), N < 2

affected(X,S) ← move(X,Y, S)

affected(Y, S) ← move(X,Y, S)

onNode(X,N − 2, S) ← onNode(X,N, S − 1),move(X,Y, S)

onNode(Y,M + 1, S) ← onNode(Y,M, S − 1),move(X,Y, S)

onNode(X,N, S) ← onNode(X,N, S − 1),not affected(X,S)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The first set of facts (line 1) encodes all integers i that can serve as the number of

pebbling moves. Since each pebbling move removes one pebble, any successful sequence

of pebbling moves has length at most k−1. Consequently, we may (and do) restrict these
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integers to 0, 1, . . . , k− 1. The first rule of P2 (line 2) selects a single integer to represent

the number of pebbling moves. The second rule of P2 (the next line) defines the initial

state of the graph (before any pebbling moves). It is given by the initial distribution of

pebbles obtained from an answer set of the program P1 (we overload the notation here;

the predicate onNode defining the initial configuration in P1 is binary, while the predicate

onNode defined in P2 is ternary; it has an additional argument to represent the step).

The third rule selects an edge for the pebbling move step S = 1, 2, . . . , T , where T is the

end step (defined via endstep). The constraint that follows imposes the pebbling move

precondition: there must be at least two pebbles on the node where the pebbling move

originates. The next two rules define the two nodes affected by the move. The last three

rules define the state of the graph after the pebbling move in step S (applied to the graph

after S − 1 pebbling moves). The first two of these three rules describe how the number

of pebbles change on the nodes that are involved in the move. The last rule is the inertia

rule that keeps the number of pebbles unchanged on all nodes unaffected by the move.

Informally, answer sets of P2 correspond to all valid sequences of pebbling moves that

do not eliminate all pebbles and start in the initial state of the graph, together with the

corresponding sequence of states of the graph.

Finally, the program C in Π is defined as follows.

C =

{
ok(W ) ← onNode(W,N, S), target(W ), endstep(T ) N > 0

← target(W ), not ok(W )

}

First rule defines ok(W ) to hold whenever W is a target node and there is a pebble on

it after the last pebbling move T . The constraint ensures no answer set if ok(W ) has not

been inferred.

Intuitively then, Π is coherent precisely when for each assignment of k pebbles to nodes

of a given graph and for every choice of a target node (that is, for every answer set M1

of P1) there is a sequence of pebbling moves of length at most k − 1 (that is, there is an

answer set M2 for P2 ∪ fixP1
(M1) = P ′1) such that the target node has a pebble on it

(that is, C ∪ fixP ′
1
(M2) has an answer set).

Theorem 5

Let I = 〈G, k〉 be an instance of the Pebbling Number Problem. Then, π(G) ≤ k if and

only if the ASP(Q) program Π, defined as above, is coherent.

4.3 Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis dimension (VC dimension) is a fundamental concept in ma-

chine learning theory (Vapnik and Chervonenkis 2015). The VC dimension is a measure

of the capacity of a space of functions that can be learned by a statistical classification

algorithm (Blumer et al. 1989). In particular, it is the cardinality of the largest set of

points that the algorithm can shatter. In statistical learning theory, the VC dimension

can predict probabilistic upper bounds on the test error of a classification model (Vapnik

1998). Further applications include finite automata, complexity theory, computability

theory, and computational geometry.

Here, we focus on the so-called discrete VC dimension problem, where the consid-

ered universe is finite. The problem concerns families of subsets that are represented by

Boolean circuits. However, we assume that the representation is given by a logic program
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capturing the corresponding formula. Specifically, we assume that a program PC repre-

senting a family C of subsets of U contains a unary predicate true, and that extensions

of the predicate true in answer sets of PC are precisely the elements of C . Constructing a

program PC from a Boolean circuit representing C is a matter of routine and can be ac-

complished in linear time. Let k be an integer, U a finite set, and C = {S1, . . . , Sn} ⊆ 2U

a collection of subsets of U represented by a program PC . The VC Dimension problem

asks whether there is a subset X of U of size at least k, such that for each subset S of

X, there exists Si such that S = Si ∩X. The VC dimension of C is defined as maximum

size of such a set X and is denoted by V C(C ). Hence, the VC Dimension problem asks

whether V C(C ) ≥ k. It is known that this problem (assuming a circuit or a program

representation of C ) is Σp
3-complete (Schaefer 1999). We will show that the problem can

be described by an ASP(Q) program Π = ∃stP1∀stP2∃stP3 : C. The ASP program P1 is

defined as follows:

P1 =

{
inU(x) ∀x ∈ U

k{inX(X) : inU(X)}
}

The set of facts in line 1 encodes the elements of the set U , while the choice rule in line

2 selects a subset X of U with at least k elements. It is clear that answer sets of P1 are

all subsets of U with at least k elements.

The ASP program P2 consists of a single choice rule:

P2 =
{ {inS(X) : inX(X)} }

Thus, answer sets of P2 are subsets of a set X (determined by a selected answer set of

P1).

For P3 we simply take PC . Wlog, we may assume that PC shares no vocabulary

elements with P1 and P2. Thus, for every possible “input” from P1 and P2, answer sets

of P ′3, that is, P3 extended with the input from P1 and P2, determine elements of C via

extensions of the predicate true.

Finally, the program C is defined as follows (understanding true as defined above):

C =

⎧⎨
⎩

inIntersection(X) ← true(X), inX(X)

← inIntersection(X), not inS(X)

← not inIntersection(X), inS(X)

⎫⎬
⎭

The first rule collects into predicate inIntersection, the intersection of the selected set

Si from C (represented by an answer set of P ′3 by means of the predicate true) and X, a

subset of U selected via an answer set of P1. The two constraints force this intersection

to coincide with the subset S of X (an answer set of P2 extended with a selected answer

set of P1 as input representing X).

Intuitively, the program Π is coherent when there exists an answer setM1 of P1 (that is,

a subsetX of U of size at least k) such that for each answer setM2 of P
′
2 = P2∪fixP1

(M1)

(that is, for each subset S of X), there exists an answer set M3 of P ′3 = P3 ∪ fixP ′
2
(M2)

(that is, an element Si of C ), such that C ∪ fixP ′
3
(M3) is coherent (that is, Si ∩ X is

equal to S).

Theorem 6

Let I = 〈U,C , k〉 be an instance of the VC dimension problem. Then, V C(C ) ≥ k if

and only if the ASP(Q) program Π defined as above has a quantified answer set.
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5 Related Work and Discussion

We now compare ASP(Q) with related work discussing pros and cons of the various

approaches.

ASP(Q) vs QBF. We first compare our proposal with Quantified Boolean Formulas

(QBF) (Biere et al. 2009). QBF is a natural extension of propositional formulas with

quantifiers ∃ (existential) and ∀ (universal) operating on propositional variables. QFB was

motivated by questions arising from computational complexity (Stockmeyer and Meyer

1973). The problem of checking the satisfiability of a propositional formula (SAT) is the

canonical problem for the complexity class NP. The addition of quantifiers increases the

complexity of satisfiability problem (QSAT) to PSPACE (Stockmeyer 1976), and prefixes

of k alternating quantifiers yield problems that are complete for each complexity class

of the Polynomial Hierarchy. For this reason the satisfiability problem of QBF formulas

with prefixes of alternating k quantifiers (k-QSAT becomes the canonical problem for the

k-th level of the Polynomial Hierarchy). More precisely, k-QSAT restricted to prefixes

of length k starting with an existential (resp. universal) quantifier is complete for ΣP
k

(resp. ΠP
k ). ASP(Q) and QBF share the same motivation and intuition, indeed ASP(Q)

extends ASP with quantifiers (as QBF extends SAT) to increase the modeling capabilities

of the language beyond NP. As studied in Section 3, propositional ASP(Q) and QBF

have similar computational properties. In particular, the coherence problem for both

is PSPACE-complete and an even tighter correspondence holds between propositional

normal ASP(Q) and QSAT. Nonetheless, there are important differences among the two

languages, some inherited form the relation between SAT and ASP, and other concerning

the semantics of quantifiers.

First, ASP(Q) supports variables, which gives a modeling advantage, and supports

rapid prototyping, program optimization and maintenance of problem solution. Indeed,

variables allow one to encode uniform compact representation of a problem over varying

instances, while in QBF (as in SAT) each instance of a problem needs to be encoded in

a specific formula by means of an encoding procedure. Second, even if in general QBF

and ASP(Q) can solve the same computational problems, ASP(Q) inherits from ASP

the possibility of encoding inductive definitions (Denecker and Vennekens 2014), which

are useful in modeling properties such as reachability in graphs (inductive definitions

require larger instances in SAT and QBF that slow down modeling and solving). Next,

ASP supports modeling extensions such as aggregates, choice rules, strong negation, and

disjunction in rule heads that significantly simplify encodings used in SAT (Brewka et al.

2011). We have made extensive use of inductive definitions and aggregates in our examples

in Section 4. Finally, we note that in QBF quantifiers range over variable assignments,

whereas in ASP(Q) they quantify over the answer sets of each subprogram. This is yet

another difference and a reason that ASP(Q) cannot be seen as a straightforward porting

of the ideas behind QBF.

ASP(Q) vs ASP. One of the distinguishing features of ASP is the capability of model-

ing problems in ΣP
2 . This is possible because of the additional expressive power provided

by disjunctive rules. Modeling in ΣP
2 problems with ASP is rather natural if one can

use only positive rules. For example, let us consider the strategic companies problem

(Cadoli et al. 1997). In that problem, one has to compute a set of companies that cover
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the production of a set of goods also controlling other companies. A set of companies S

is said to be strategic if it: (i) covers the productions of all goods; (ii) is subset-minimal;

and, (iii) every company c controlled by at most three strategic companies is also strate-

gic. In the setting in which each product is produced by at most two companies the

problem is ΣP
2 -complete and can be modeled as follows (Leone et al. 2006):

strat(Y ) ∨ strat(X) ← prod by(P,X, Y )

strat(W ) ← contr by(W,X, Y, Z), strat(X), strat(Y ), strat(Z)

The first rule models condition (i), the second rule models condition (iii), and the min-

imality of answer sets ensures (ii). It is clear that this encoding of the problem can be

directly translated to a single-quantifier disjunctive ASP(Q).

When problem constraints to be modeled involve negation, ASP modeling becomes

less intuitive. In particular one has to resort to an encoding technique called saturation

(Eiter and Gottlob 1995). It allows one to simulate a co-NP check in the program reduct.

Saturation is at the basis of the celebrated encoding of 2-QBF by Eiter and Gottlob 1995

used to prove the complexity of checking existence of answer sets in presence of disjunc-

tion in rule heads. Given a 2-QBF formula Φ = ∃X∀Y G, where G = D1 ∨ . . . ∨Dh is a

DNF, and Di = Li,1∧ . . .∧Li,ki
and Li,j are literals over X ∪Y , we encode Φ in an ASP

program as follows. First introduce a fresh atom sat modeling satisfiability, and a fresh

atom nz for every atom z ∈ X∪Y ; and set σ(z) = z and σ(¬z) = nz for every z ∈ X∪Y .

Then write the program PΦ = {z∨nz|∀z ∈ X ∪Y }∪{y ← sat|∀y ∈ Y }∪{ny ← sat|∀y ∈
Y } ∪ {sat← σ(Li,1), . . . , σ(Li,ki

)|i = 1, . . . ,m} ∪ {sat← not sat}.
Here the atoms corresponding to universally quantified variables Y are “saturated”

(i.e., they are forced to be true in any answer set), and since the last rule is always removed

while computing the reduct, sat must be derived for all assignments of truth values to

Y to have an answer set. This trick ensures that Φ is satisfiable if and only if PΦ has an

answers set. Again, one could reformulate the program above into a disjunctive program

with a single quantifier. However, using saturation in modeling is considered difficult.

ASP(Q) offers an alternative and more intuitive approach, It uses normal quantified

programs with two quantifiers that also capture ΣP
2 (see Theorem 3). Indeed, let us

consider a normal quantified program ΠΦ = ∃stP1∀stP2 : C where

P1 = {{x1, . . . , xn}}, P2 = {{y1, . . . , ym}},

C = {sat← σ(Li,1), . . . , σ(Li,ki
) | ∀i = 1, . . . ,m} ∪ {← not sat}.

Here, a satisfiability of an existential 2-QBF is encoded directly. Indeed P1 guesses an

assignment to X s.t. for all assignments to Y generated by P2, sat must be derived by

satisfying at least one conjunct in ϕ, i.e., ΠΦ is satisfiable iff Φ is. This discussion suggests

that ASP(Q) improves on ASP modeling capabilities. It keeps the advantages of ASP

in modeling concisely ΣP
2 problems with positive programs, as for strategic companies,

but also allows us to model other problems without resorting to difficult to use encoding

techniques.

ASP(Q) vs Stable-Unstable. To handle problems beyond NP, Bogaerts et al. 2016

proposed an extension of ASP inspired by an internal working principle of ASP

solvers (Gebser et al. 2018). Usually, in ASP solvers designed for problems in ΣP
2 one pro-

cedure generates model candidates and another one, acting as an oracle, tests minimality
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of the candidates produced by the first procedure. It does so by verifying that a certain

subprogram (in some cases, a SAT formula) has no stable models (is not satisfiable). Fol-

lowing this principle, (Bogaerts et al. 2016) introduced combined logic programs, in which

two normal logic programs play a role analogous to the one of the two procedures of ASP

solvers mentioned above. A combined logic program is a pair Π = (Pg, Pt) of normal

logic programs. Its semantics is given by parameterized stable models (Oikarinen and

Janhunen 2006; Denecker et al. 2012); a stable-unstable model of a combined program Π

is a parameterized stable model of Pg, say I, such that no parameterized stable model of

Pt exists that coincides with I in the intersection of the signatures of the two programs.

Comparing ASP(Q) programs with combined programs, we first note that combined

programs involve the concept of parameters. In applications, the parameters of the gen-

erator program are used to represent problem instances (are “extensional”). This use

of parameters is quite natural to ASP programmers and does not pose a conceptual

difficulty. It is also used implicitly in ASP(Q) (stable models from each quantifier are

passed on as “input” parameters to the next one).4 However, the stable-unstable ap-

proach applies the notion of a parameterized stable model also in the checking phase

using “negation,” that is, referring to non-existence of a certain parameterized stable

model. This, arguably, makes the formalism much less direct than ASP(Q). It is espe-

cially clear when we move beyond the second level of the PH and the non-existence

conditions become nested (incidentally, the stable-unstable paper contains no examples

of modeling such problems).

If we factor out the issue of parameters, and limit ourselves to problems in ΣP
2 , com-

bined programs and ASP(Q) are closely related. Indeed, in ASP(Q) one has direct means

to model “testing” conditions of the form “for all stable models (answer sets) of some

program, a certain property holds.” In contrast, combined programs provide direct means

to model “testing” conditions of the form “there exists no stable model of some program

such that a certain property holds.” Switching between ASP(Q) and combined programs

amounts then to simulating conditions of one form with conditions of the other and vice

versa (effectively, negating constraints in a program). Such simulations are easy to design

with the use of a small number of auxiliary variables (often one such new variable suffices).

Consequently, both formalisms are on par for modeling problems that are complete for

ΣP
2 . However, for problem in ΠP

2 , the difference between ASP(Q) and combined programs

becomes evident. As an example, let us consider a 2-QBF formula Ψ = ∀X∃Y ψ, where ψ
is a 3-CNF formula. This problem can be naturally represented in ASP(Q) by using the

encoding employed in the proof of Theorem 2. However once we try to encode it using a

combined logic program (for well-known complexity reasons) we have either to adopt an

exponential encoding, something analogous to quantifier expansion in QBF, or we have

to use an additional nesting of programs (i.e., we are have to push the entire computation

in the oracle). In both cases, the modeling would not result in a solution as natural and

direct as the one provided by ASP(Q). The reason is that combined programs (as well

as their generalizations beyond the second level) represent existential statements. Hence,

they model complements of ΠP
2 problems and not the problems themselves. In contrast,

4 We could also distinguish extensional predicates to specify “parameters,” that is, input instances,
That would allow us to keep instance specification separate from the program. We decided not to do
so here to simplify our presentation.
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ASP(Q) can be used for such problems in a direct way providing representations closely

following original problem descriptions (our examples illustrate this).

A related aspect concerns modeling itself, the process of mapping natural language

specifications to formal expressions, which surfaces when one considers problems that

require more than one quantifier alternation. It is important to note that combined

logic programs were extended to deal with problems from any level of the PH in

(Bogaerts et al. 2016) by resorting to a recursive definition. This definition forces the

programmer to think in terms of “nested oracles”, instead of translating problem de-

scription directly into a formal expression. Whereas for problems at the second level of

the polynomial hierarchy it roughly corresponds to searching for a counterexample, for

problems at higher levels, the recursion and the negation (needed because of the absence

of direct means to represent universal statements), makes it harder to maintain the con-

nection between problem description and oracles forming nested combined programs. In

contrast, the interface between natural language problem description and ASP(Q) pro-

grams is transparent (in the same way as it is for QBF), as it is explicitly supported

by the quantifiers, which may be existential or universal, as needed. In particular, the

difficulty of modeling problems in ΠP
2 , noted above, appears in the general setting of

problems in ΠP
k , for k ≥ 2: the stable-unstable formalism is not designed to directly

express universal statements that characterize problems in ΠP
k .

The discussion above compares at an intuitive informal level the modeling features of

the two formalism. It also suggests how the two are formally related. In the statement

specifying the relation, the depth of the basic combined program is defined as 2. Each

next level of nesting increments the depth by 1.

Theorem 7

(i) There is a polynomial-time reduction that assigns to every propositional nested com-

bined program Π of depth n, a normal existential ASP(Q) program Πq with n ≥ 2

quantifiers such that answer sets of Π and Πq, correspond to each other.

(ii) There is a polynomial-time reduction that assigns to every propositional normal ex-

istential ASP(Q) program Π with n ≥ 2 quantifiers in the prefix, a propositional nested

combined program Πc of depth n such that answer sets of Π and Πc correspond to each

other.

Thus, at the level of expressive power, combined programs of depth n and existential

ASP (Q) programs with n quantifiers are formally equivalent, even if from the modeling

point of view, as we argued, ASP(Q) programs seem to have an advantage. However,

unless the polynomial hierarchy collapses, no reduction from universal ASP (Q) programs

with n quantifiers to combined nested programs of depth n is possible. The following

proposition specifies this property for the particular case of the validity of 2-QBFs, which

we discussed above.

Proposition 1

Unless the polynomial hierarchy collapses, there exists no polynomial reduction that

encodes formulas Ψ = ∀X∃Y ψ, where ψ is a 3-CNF formula, as a combined program

P = (P1, P2), where P1 and P2 are normal logic programs, such that Ψ is valid iff P

admits stable unstable models.
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A trivial consequence of Theorem 2 is that this limitation is absent from ASP(Q).

Finally, we note that combined programs under stable-unstable semantics have been

implemented in a proof of concept prototype (Bogaerts et al. 2016) that can only handle

problems at the second level of the polynomial hierarchy. A similar prototype implemen-

tation for ASP(Q) (programs with at most two quantifiers) is possible, too. However,

devising efficient implementations for either formalism in their full generality remains a

non-trivial open research problem.

Further related work. The problem of modeling in a natural way ΣP
2 problems with

ASP was also addressed by Eiter and Polleres (2006). They model problems combining

“guess” program Psolve and “check” program Pcheck, which are transformed into a single

disjunctive ASP program such that its answer sets encode the solutions of the original

problem by means of a polynomial-time transformation. The programs Psolve and Pcheck

must be HCF and propositional, thus limiting this approach to the modeling capabilities

of propositional ASP. An idea analogous to that developed by Eiter and Polleres (2006)

was also proposed by Redl (2017). Redl’s proposal appears to be conceptually simpler

than the earlier one because of the use of conditional literals but suffers from the same

limitations. A general technique to reuse existing ASP systems to evaluate problems of

higher complexity (such as various forms of qualitative preferences among answer sets)

was proposed by Gebser et al. (2011). The idea there was to use a meta program encoding

the saturation technique which, in this way, became transparent to the user. As in the

approach by Eiter and Polleres (2006), the resulting program is a plain ASP program

which can be evaluated by a standard ASP system. Thus, the approach of Gebser et al.

(2011) cannot be used to model problems beyond the second level of the polynomial

hierarchy. Another solution that allows for reasoning within a program over the answer

sets of another program, and thus encode reasoning tasks beyond NP, is provided by

manifold programs (Faber and Woltran 2011; Faber and Woltran 2009). In manifold

programs the calling and the called program are encoded into a single program using

weak constrains. The answer sets of the called program are thus represented within each

answer set of the calling program. Also this approach is limited to the second level of the

polynomial hierarchy, and might generate large specifications.

HEX-programs are an extension of ASP with external sources such as description logic

ontologies and Web resources (Eiter et al. 2008). In HEX-programs external atoms can

exchange information from the logic program to eternal theories in terms of predicate

extensions and constants. Redl (2017) studied a way to avoid saturation for model-

ing ΣP
2 problems with HEX-programs. In particular, the author proposes the model-

ing technique of query answering over subprograms. While encoding a problem on the

second level of the polynomial hierarchy, one has to provide two components. A first

program Pguess modeling the NP part, and a second one Pcheck modeling the co-NP

check. The first program, Pguess, is a HEX program that can query on the answer sets

of the normal ordinary ASP program Pcheck using specific external atoms. This model-

ing approach avoids saturation without introducing quantifiers, but this nice modeling

behavior is limited to ΣP
2 problems. Indeed, the focus of query answering over subpro-

grams is on overcoming saturation and not on reaching high expressibility (Redl 2017).

A recent proposal of an extension of propositional ASP to model planning problems was

described in (Romero et al. 2017; Amendola 2018). The main difference with ASP(Q) is

https://doi.org/10.1017/S1471068419000140 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000140


Beyond NP: Quantifying over Answer Sets 719

on the nature of quantifiers allowed in the two specifications. Indeed, the proposal of

(Romero et al. 2017), mimicking 2QBF, allows quantifiers over propositional atoms,

whereas in ASP(Q) quantifiers are over answer sets.

As a final mention, we observe that the idea of extending the base language with quan-

tifiers has been applied also in the neighboring area of Constraint Satisfaction Problems

(CSP) (Rossi et al. 2006), obtaining Quantified CSP (QCSP) (Bordeaux and Monfroy

2002).

6 Conclusions

In this paper we approached the modeling of problems beyond NP with ASP programs.

Inspired by the way QBFs extend SAT formulas, we have introduced ASP(Q), which

extends ASP via quantifiers over stable models of programs. We have studied the com-

putational properties of the language, provided a number of examples to demonstrate its

modeling capabilities, and compared alternative approaches to the same problem. The

analysis provided in the paper suggests that ASP(Q) is able to model uniformly prob-

lems in the Polynomial Hierarchy in the same compact and elegant way as ASP models

problems in NP.

The definition of ASP(Q) allows for disjunctive programs, thus all the features of

the basic language are retained. However, by limiting to normal (or HCF) programs

(extended with aggregates and other useful modeling constructs) in ASP(Q), one can

take advantage of the classic generate-define-test modular programming methodology

and other modeling techniques developed for these best understood classes of programs

to model any problem in the Polynomial Hierarchy. Indeed, the presence of quantifiers

allows one to model complex properties in a direct way, without the need of recasting

them in terms of checking the minimality of a model, e.g., using saturation. The examples

provided in the paper, indeed, employ normal programs, and the solutions follow directly

from the definition in natural language of the problem at hand.

The key task for the future is to implement ASP(Q). In this respect many possible

solutions are possible, from encoding ASP(Q) in QBF and resorting to QBF solvers, to

evolving ASP solvers to handle quantifiers over stable models.
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