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Global stability of base and mean flows:
a general approach and its applications to

cylinder and open cavity flows
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(Received 5 April 2007 and in revised form 22 August 2007)

This article deals with the first Hopf bifurcation of a cylinder flow, and more
particularly with the properties of the unsteady periodic Kármán vortex street regime
that sets in for supercritical Reynolds numbers Re > 46. Barkley (Europhys. Lett.
vol. 75, 2006, p. 750) has recently studied the linear properties of the associated mean
flow, i.e. the flow which is obtained by a time average of this unsteady periodic flow.
He observed, thanks to a global mode analysis, that the mean flow is marginally stable
and that the eigenfrequencies associated with the global modes of the mean flow fit
the Strouhal to Reynolds experimental function well in the range 46 < Re < 180.
The aim of this article is to give a theoretical proof of this result near the bifurcation.
For this, we do a global weakly nonlinear analysis valid in the vicinity of the critical
Reynolds number Rec based on the small parameter ε = Re−1

c − Re−1 � 1. We
compute numerically the complex constants λ and µ′ which appear in the Stuart–
Landau amplitude equation: dA/dt = ελA − εµ′A|A|2. Here A is the scalar complex
amplitude of the critical global mode. By analysing carefully the nonlinear interactions
yielding the term µ′, we show for the cylinder flow that the mean flow is approximately
marginally stable and that the linear dynamics of the mean flow yields the frequency
of the saturated Stuart–Landau limit cycle. We will finally show that these results
are not general, by studying the case of the bifurcation of an open cavity flow. In
particular, we show that the mean flow in this case remains strongly unstable and
that the frequencies associated with the eigenmodes do not exactly match those of the
nonlinear unsteady periodic cavity flow. It will be demonstrated that two precise condi-
tions must hold for a linear stability analysis of a mean flow to be relevant and useful.

1. Introduction
The prediction of the frequency of globally unstable flows has recently received

much attention. In the framework of weakly non-parallel flows, linear (see Monkewitz,
Huerre & Chomaz 1993) and fully nonlinear criteria (see Pier & Huerre 2001) have
successively been built to predict this frequency. In the case of wake flows, Hammond
& Redekopp (1997) and Pier (2002) have noticed that a linear criterion applied to the
mean flow, and not to the base flow, yields particularly good results for the prediction
of the frequency of the unsteadiness. Barkley (2006) confirmed this result thanks to
a global linear stability analysis, and showed in addition that the mean flow was
marginally stable. These two results are illustrated for the cylinder flow in figure 1.
Figures 1(a) and 1(b), respectively, represent the pulsation and amplification rate of
the eigenmodes as a function of the Reynolds number. The results concerning the base
flow are shown by dotted lines, while those for the mean flow are given by triangles.
We have also sketched the experimental pulsation obtained by Williamson (1988)
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Figure 1. Cylinder flow. (a) Pulsation ω against Reynolds number Re. The solid line represents
the experimental results of Williamson (1988). The dotted line sketches the pulsations obtained
by Barkley (2006), thanks to linear global stability analyses applied to the base flows. The
triangles, also from Barkley (2006), refer to analogous calculations applied to the mean flows.
The dashed line represents ωBF as defined in (2.29), while the long-dashed line represents
ωLC and ωMF as defined in (2.35) and (2.45). (b) The same information as in (a), but for the
amplification rate σ . Note that there is no solid line representing experimental data and that
the long-dashed line only represents σMF since σLC is not defined.

using a solid line in figure 1(a). It clearly appears that in figure 1(a) the triangles
closely follow the experimental data for the pulsation, i.e. the mean flow calculations
yield the true nonlinear frequency, and that in figure 1(b) the triangles are located on
the horizontal axis for the amplification rate, i.e. the mean flow is stable. The aim of
this article is to give a theoretical justification of these two observations thanks to a
global weakly nonlinear analysis valid in the vicinity of the critical Reynolds number.
More precisely, the final outcome of this paper will be a condition for the mean flow
to be stable and for the mean flow eigenfrequencies to match the experimental ones.

The present article is based on a weakly nonlinear stability analysis performed in
a global framework, i.e. the unknowns depend on two spatial coordinates x and y.
From a historical point of view, Jackson (1987) and Zebib (1987) were the first to
approach the linear stability problem globally. In the case of the cylinder flow, several
authors, including Ding & Kawahara (1999), Barkley (2006) and Giannetti & Luchini
(2007), revisited the linear stability of this flow recently. The idea of performing a
weakly nonlinear stability analysis in a global framework has been suggested by
Chomaz (2005). By the way, it is interesting to note that a weakly nonlinear analysis
is ill-posed in the case of a weakly non-parallel flow (see Le Dizès, Huerre & Chomaz
1993) and that it is well-posed again in the strongly non-parallel case, i.e. in the global
framework.

The paper is organized as follows. Section 2 is devoted to the cylinder flow and to
the derivation of the two conditions that exist for a mean flow to be approximately
marginally stable and for the mean flow eigenfrequencies to match the true frequencies
of the unsteadiness. We will show that these conditions are satisfied in the case of
the cylinder flow. In § 3 we demonstrate that these conditions are not satisfied for
all globally unstable open flows by considering a counter-example, i.e. the case of an
open cavity flow.
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Figure 2. Mesh structure for the cylinder flow: x−∞, x+∞ and y+∞ are, respectively, the
location of the inlet, outlet and transverse boundaries. The thick solid line, the thin solid line
and the dashed line are, respectively, characterized by the vertex densities n1, n2 and n3; x+ is
the downstream location of the region meshed with the n1 vertex density.

2. The case of the cylinder
2.1. Geometry

We consider a cylinder of diameter D in a uniform flow of velocity U∞. In the
following, all quantities are made non-dimensional using these reference length and
velocity scales. The two-dimensional incompressible Navier–Stokes equations then
read:

∂t u + ∇u · u + ∇p − Re−1�u = 0 and ∇T u = 0, (2.1)

where (u, p) represent the velocity and pressure of the flow field and Re is the
Reynolds number based on D and U∞. Note that T designates the transpose, so that
∇T u represents the divergence of the flow field u. We use a Cartesian coordinate
system (x, y) whose origin is located at the centre of the cylinder. The longitudinal
and transverse velocities are denoted u = (u v)T . The configuration is shown in
figure 2. The upstream ∂Ω1, downstream ∂Ω3 and upper boundary ∂Ω4 are located
respectively at x = x−∞, x = x+∞ and y = y+∞. We use Dirichlet boundary conditions
(u, v) = (1, 0) on the inlet ∂Ω1, no-slip boundary conditions (u, v) = (0, 0) on the
cylinder boundary ∂Ω0, symmetric boundary conditions (∂yu = 0, v = 0) on the upper
boundary ∂Ω4 and outflow boundary conditions on the outlet ∂Ω3. Note that we
only consider the domain y � 0, the boundary ∂Ω0 representing the upper half of the
cylinder and ∂Ω2 the symmetry plane.

For the spatial discretizations, we use Taylor–Hood (P2, P2, P1) finite elements
to represent the unknowns (u, v, p). Six different meshes, denoted C1 to C6, have
been used, which exhibit various spatial extents and various vertex densities. The
spatial extents of the meshes are governed by the parameters x−∞, x+∞ and y+∞,
while the vertex densities are fixed by the parameters x+, n1, n2 and n∞. The three
last parameters are the number of vertices per unit length on some particular curves.
On the thick solid curve in figure 2, the size of the triangle sides is equal to 1/n1,
on the thin solid curve it is equal to 1/n2, and on the dashed curve to 1/n∞. Here
x+ is the downstream abscissa of the region meshed by the n1 vertex density. These
parameters are given for all meshes in table 1. C1 and C2 have the same spatial
extent but have different vertex densities. C1 and C4 have the same vertex densities
but the downstream boundary x+∞ is moved. In the same spirit, C1 and C5 differ
by the position of the upstream boundary x−∞, while C1 and C6 have a different
transverse boundary position y+∞. C3 has a maximal vertex density with upstream
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Mesh x−∞ x+∞ y+∞ x+ n1 n2 n3 nt nd.o.f.

C1 −60 200 30 1.5 24 7 1 190868 864514
C2 −60 200 30 10.0 24 11 1 409955 1853313
C3 −60 100 30 50.0 37 11 1 462635 2090363
C4 −60 175 30 1.5 24 7 1 172034 779261
C5 −30 200 30 1.5 24 7 1 167038 756679
C6 −60 200 25 1.5 24 7 1 173776 787575

Table 1. Cylinder flow. Different meshes used with characteristic parameters: x−∞, x+∞ and
y+∞ are, respectively, the location of the inlet, outlet and transverse boundaries; n1, n2 and n3,
respectively, designate the vertex densities on the thick solid line, the thin solid line and the
dashed line presented in figure 2; x+ is the downstream location of the region meshed with
the n1 vertex density; nt is the number of triangles, while nd.o.f. is the number of degrees of
freedom of an unknown (u, v, p). The meshes C1 and C2 have the same spatial extent but
with different vertex densities. C1 and C4 have the same vertex densities but with a different
location of the outlet boundary. In the same way, C1 and C5 differ by the location of the inlet
boundary, while C1 and C6 differ by the location of the transverse boundary.

and transverse boundaries located as in C1 and C2. Table 1 also includes the number
of triangles nt and the number of degrees of freedom nd.o.f. to represent the unknowns
(u, v, p). Hence, in the following, nd.o.f. is the size of the various matrices. Note that all
matrices are built thanks to the FreeFEM++ software (see www.freefem.org), while
all matrix inverses are handled using the UMFPACK library, which uses a sparse
direct LU solver based on an unsymmetric-pattern multifrontal method (see Davis &
Duff 1997; Davis 2004).

In the following, we will focus on mesh C1 to present all results. A comparison of
the results obtained with the meshes C1 to C6 is given in Appendix A.

2.2. Presentation of the weakly nonlinear analysis

The Reynolds number Re is chosen to be very close and slightly above the critical
Reynolds number Rec where the first bifurcation occurs:

Re−1 = Re−1
c − ε (2.2)

with 0 < ε � 1. In the following, we will perform a multiple time scale analysis based
on the ‘fast’ time scale t and the ‘slow’ time scale t1 = εt . We consider the following
asymptotic expansion of the flow field U = (u v p)T with the small parameter ε:

U(t) = U0 +
√

εU1(t, t1) + εU2(t, t1) + ε
√

εU3(t, t1) + · · · . (2.3)

Note that U0 is a steady flow which is symmetric in y, i.e. ∂t U0 = ∂t1 U0 = 0 on
the whole domain and (∂yu0 = 0, v0 = 0) on ∂Ω2. It corresponds to the flow that
is observed around the cylinder at the critical Reynolds number Re = Rec. This
expansion is introduced in the Navier–Stokes equations (2.1) with the Reynolds
number given in (2.2) in terms of ε. For small ε, we obtain a series of equations at

various orders in
√

ε
i
.

(i) At order
√

ε
0
, we are faced with a nonlinear equation specifying that U0 is a

solution of the steady Navier–Stokes equations at the critical Reynolds number Rec.

(ii) At order
√

ε
1
, we obtain an eigenproblem specifying that U1 may be taken as

a superposition of global modes of the steady flow field U0. We can therefore choose
that U1 be the critical eigenmode multiplied by a scalar amplitude A.
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(iii) At order
√

ε
2

we obtain inhomogeneous linear non-degenerate equations that
may readily be solved.

(iv) At order
√

ε
3
, we obtain similar linear inhomogeneous equations, except that

some of them are degenerate. Hence, compatibility conditions for the associated
forcing terms have to be enforced in order for these equations to have a solution.
These conditions will yield the ‘slow’ time scale behaviour of the complex scalar
amplitude A(t1): dA/dt1 = λA − (µ + ν)A|A|2, where λ, µ and ν are three complex
constants whose meanings and values will be given in the next sections. This is a
Stuart–Landau amplitude equation which may be re-written as

dA

dt
= ελA − ε(µ + ν)A|A|2. (2.4)

In the next section, we will successively solve the equations at each order
√

ε
i
. Note

that the Hopf bifurcation and the associated Stuart–Landau amplitude equation have
already been introduced for the cylinder flow by Provansal, Mathis & Boyer (1987)
and Dusek, Le Gal & Fraunie (1994). Both articles try to evaluate the Landau
constants, Provansal et al. (1987) by means of an experiment and Dusek et al. (1994)
by means of a direct numerical simulation performed at Re = 48. But these articles
did not consider A as the amplitude of a global structure but only as a scalar variable
(like a velocity component) taken at some particular point in the flow. Hence, their
coefficients are relative to a particular point in space and to a particular variable.
The present approach is global in nature. Once one knows the spatial structure of
the critical global mode and the value of the Stuart–Landau coefficients presented
above, one readily obtains, for every point in the spatial domain, the Stuart–Landau
coefficients governing any variable. Finally, let us recall that the present approach is
only valid in the vicinity of the bifurcation, i.e. for Reynolds numbers Re which are
very close to Rec.

2.3. Weakly nonlinear analysis

2.3.1. Order
√

ε
0

At order
√

ε
0
, we obtain the following nonlinear equation for U0 (recall that

U0 = (u0, v0, p0)
T and u0 = (u0, v0)

T ):

∇u0 · u0 + ∇p0 − Re−1
c �u0 = 0 and ∇T u0 = 0, (2.5)

with Dirichlet boundary conditions (u0, v0) = (1, 0) on the inlet ∂�1, no-slip boundary
conditions (u0, v0) = (0, 0) on the cylinder boundary ∂ �0, symmetric boundary
conditions (∂yu0 = 0, v0 = 0) on the symmetry plane ∂�2 and on the upper boundary

∂�4, and outflow boundary conditions (p0 − Re−1
c ∂xu0 = 0, ∂xv0 = 0) on the outlet

∂�3. These nonlinear equations for U0 are solved using an iterative Newton method.
For this, we go through the following steps:

(a) Find an approximate guess solution U which satisfies the above boundary
conditions. For example, this guess solution may be obtained by a few time steps of
a Direct Numerical Simulation of equations (2.1).

(b) Solve for δU = (δu δv δp)T in(
∇ () · u + ∇u · () − Re−1

c � ∇
∇T 0

)(
δu
δp

)
= −

(
∇u · u + ∇p − Re−1

c �u
∇T u

)
. (2.6)

For this linear problem, we impose homogeneous Dirichlet boundary conditions on
the inlet ∂�1 and on the cylinder boundary ∂�0, symmetric boundary conditions
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Figure 3. Cylinder flow at Rec = 46.6. Representation of the various flow fields appearing
at each order in the weakly nonlinear analysis. Mesh C1. Only a small portion of the full
computational domain is shown, (a) base flow u0, (b) base flow modification u1

2 due to an
ε Reynolds increase, (c) first harmonic Re(vA

1 ), (d) corresponding adjoint eigenmode Re(v̂A
1 ),

(e) zeroth (mean flow) harmonic u
|A|2
2 , (f) second harmonic Re(uA2

2 ).

on the symmetry plane ∂�2 and on ∂�4. On the left-hand side, we recognize the
steady Navier–Stokes operator linearized around U and on the right-hand side, the
residual of the steady Navier–Stokes equations for U . This is an inhomogeneous
non-degenerate linear problem which may readily be solved.

(c) Set U = U + δU .

(d) If
√∫

�
(δu2 + δv2)dxdy > 10−14 (machine precision), go to step (b).

(e) Set U0 = U .
In practice, only few iterations, e.g. typically 7 or 8, are needed to converge the
solution of equation (2.5) to machine precision. For Re = 46.6, the solution of this
nonlinear equation is represented in figure 3(a). As expected, we observe a large
recirculation region developing in the wake of the cylinder with negative values of
the longitudinal velocity attaining u0 = −0.11. In addition, the longitudinal velocity
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Figure 4. Eigenvalues of the cylinder flow in the (σ, ω) plane at Re = 46.6. Mesh C1. A
marginally stable eigenmode exists for ω = 0.74 (see the circled triangle). The filled triangles
represent antisymmetric modes and the filled circles symmetric modes.

u0 on the symmetry plane is shown in figure 5(b) by a dotted line. We can see that
the recirculation length is equal to 3.2, which is typical for this Reynolds number.

2.3.2. Order
√

ε
1

At order
√

ε
1
, we obtain the following homogeneous equation determining U1:

(∂tL + M) U1 = 0 (2.7)

with the linear operators:

L =

(
I 0
0 0

)
, M =

(
∇ () · u0 + ∇u0 · () − Re−1

c � ∇
∇T 0

)
(2.8)

Focusing on the global normal modes, we look for eigenvalues σ + iω associated to
eigenvectors U such that: MU = −(σ + iω)LU . Introducing the linear operator

Kψ = ψL + M =

(
ψI + ∇ () · u0 + ∇u0 · () − Re−1

c � ∇
∇T 0

)
(2.9)

this generalized eigenproblem may be written in the form: Kσ+iωU = 0. Homogeneous
boundary conditions are specified on the inlet ∂�1 and on the cylinder ∂�0,
antisymmetric (resp. symmetric) boundary conditions (u = 0, ∂yv = 0) (resp. (∂yu =
0, v = 0)) on the symmetry plane ∂�2 for antisymmetric (resp. symmetric) modes. On
the outlet ∂�3, we specify outflow boundary conditions: (p − Re−1

c ∂xu = 0, ∂xv = 0).
This problem is solved thanks to an Arnoldi method based on a shift-invert strategy
(ARPACK library). In figure 4, the eigenvalues are displayed for Re = 46.6 in
the (σ, ω) plane, filled triangles (resp. filled circles) representing antisymmetric (resp.
symmetric) modes. Only the domain ω � 0 has been shown, since the plot is symmetric
with respect to ω = 0: if Kσ+iωU = 0, then Kσ−iωU = 0. We can see that there exists
an antisymmetric eigenvector which is marginally stable for ω = 0.74. This particular
eigenvalue will be denoted by ω0, and the associated eigenvector by UA

1 so that

Kiω0
UA

1 = 0. (2.10)
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Figure 5. Cylinder flow at Rec = 46.6. Mesh C1. (a) The first harmonic is described through
the real and imaginary parts of the transverse velocity vA

1 on the symmetry plane. The
eigenmode experiences a dramatic increase in strength in the region 0 < x < 25 before slowly
decaying. The real and imaginary parts are analogous and are approximately 1/4 spatial period
out of phase, which enables a continuous downstream convection of the vortical structures.
(b) Longitudinal velocity on the symmetry plane for the base flow u0 (dotted line), for the
base flow modification u1

2 and for the mean flow modification u∗
2. The base flow exhibits a

recirculation extending up to x = 3.2. The base flow modification u1
2 tends to lengthen this

region since u1
2 < 0 for x > 0. The mean flow modifications on the contrary tend to reduce

this length since u∗
2 > 0 for x > 2.25.

Note also that 0 and 2iω0 are not eigenvalues in figure 4, so that K0 and K2iω0
are

non-degenerate linear operators, i.e K−1
0 and K−1

2iω0
exist. The existence of K−1

0 also
justifies the validity of the Newton method used in § 2.3.1, since the linear operator
in (2.6) is equal to K0 for the last Newton iterations.

The real part of the transverse velocity of the eigenmode vA
1 is represented in figure

3(c). It represents an array of counter-rotating vortices which develop in the wake of
the cylinder. In figure 5(a), we show the corresponding real and imaginary parts of the
transverse velocity on the symmetry plane. We can see that they are approximately 1/4
spatial period out of phase, which enables a continuous downstream convection of the
vortical structures. We also observe that the eigenmode strengthens in the near-wake
of the cylinder and reaches a maximum for x ≈ 25. Downstream of this location, the
eigenmode continuously loses its energy and slowly vanishes. This may be explained
by considering the longitudinal velocity of the base flow u0 on the symmetry plane,
which is represented in figure 5(b) with dotted lines. We notice that the velocity
deficit, which is responsible for the instability, is maximum in the near-wake and
then slowly decreases due to viscous diffusion. Note that these descriptions are in
agreement with the experimental and numerical study of Wesfreid, Goujon-Durand
& Zielinska (1996), who analysed the structure of the global mode in the wake of a
trapezoidal and a triangular-shaped cylinder.

In the following, we choose for U1:

U1 = Aeiω0t UA
1 + c.c., (2.11)
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where A is a complex scalar which depends on the ‘slow’ time scale t1 = εt according
to (2.4) and c.c. designates the complex conjugate. This flow field is also termed the
first harmonic or critical eigenmode in the literature. The superscript A in (2.11) refers
to the amplitude A of the structure UA

1 .
Note also that we use the following normalization condition for UA

1 : vA
1 (1, 0) =

0.4612. This normalization condition seems odd a priori, but it has an advantage that
we briefly explain here. It may be shown that the complex constant λ introduced
in (2.4) is independent of the normalization, while µ and ν strongly depend on it.
Hence, if UA

1 is multiplied by αeiβ , then λ remains unchanged while µ and ν are both
multiplied by α2. This degree of freedom on the normalization of the eigenvector UA

1

is used here, i.e. the precise choice of the value 0.4612, so as to achieve λr ≈ µr + νr .
This normalization comes out naturally when studying the saturated limit cycle of
the bifurcation (see § 2.4.2).

2.3.3. Order
√

ε
2

At order
√

ε
2
, we obtain the following inhomogeneous linear equation determining

U2:

(∂tL + M)U2 = F1
2 + |A|2F|A|2

2 + (A2e2iω0tFA2

2 + c.c.) (2.12)

with

F1
2 =

(
−�u0

0

)
, (2.13a)

F
|A|2
2 =

(
−∇uA

1 · uA
1 − ∇uA

1 · uA
1

0

)
, (2.13b)

FA2

2 =

(
−∇uA

1 · ∇uA
1

0

)
. (2.13c)

Note again that superscripts are used to identify different terms according to their
respective amplitude, e.g.1, |A|2 and A2

. The terms on the right-hand side of (2.12)
are forcing terms. All the velocity fields involved in these forcing terms have been

determined at lower orders, i.e. at order
√

ε
0

for u0 and at order
√

ε
1

for uA
1 , and

are therefore known here. We seek a form for U2 that matches the structure of these
forcing terms:

U2 = U1
2 + |A|2U |A|2

2 + (A2e2iω0t UA2

2 + c.c.). (2.14)

Introducing this relation in (2.12) and identifying analogous terms yields three

equations determining U1
2, U |A|2

2 and UA2

2 :

K0U1
2 = F1

2, (2.15a)

K0U |A|2
2 = F

|A|2
2 , (2.15b)

K2iω0
UA2

2 = FA2

2 , (2.15c)

The three unknowns U1
2, U |A|2

2 and UA2

2 are symmetric in y since all forcing terms are
symmetric in y. On the other boundaries, we enforce boundary conditions analogous
to those used in the previous section, in particular, homogeneous on the inlet ∂�1
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and on the cylinder ∂�0. As already mentioned, the operators K0 and K2iω0
are non-

degenerate since 0 and 2iω0 are not eigenvalues in figure 4. Hence, one may obtain
the three unknowns from non-degenerate matrix inverses. The three unknowns may
be interpreted in the following manner.

(i) U1
2 consists of the base flow modifications related to the increase of the external

control parameter ε > 0. In other words, U0 + εU1
2 is a first-order approximation

(in ε) of the base flow which exists at the Reynolds number ε > 0. As expected, the
forcing term F1

2 corresponding to this flow field involves the Laplacian of the base
flow U0.

(ii) |A|2U |A|2
2 consists of the response of the flow to the steady nonlinear interactions

involving the first harmonic, i.e. the interaction between the eigenmode Aeiω0t UA
1 and

its conjugate. It is therefore a steady flow field, whose magnitude is proportional to
|A|2. It will be shown below that this flow field corresponds to the difference between
the mean flow and the base flow. This term is also called the zeroth (mean flow)
harmonic.

(iii) A2e2iω0t UA2

2 consists of the response of the flow to the harmonic nonlinear
interactions involving the first harmonic, i.e. the interaction of the eigenmode Aeiω0t UA

1

with itself. It is therefore a harmonic flow field characterized by the pulsation 2ω0,
whose magnitude is proportional to |A|2. This term may also be called the second
harmonic.

The longitudinal velocity fields u1
2, u

|A|2
2 and Re(uA2

2 ) are represented in figures 3(b),

3(e) and 3(f). We can see that u1
2 and u

|A|2
2 display large structures characteristic of

steady flows while Re(uA2

2 ) exhibits small structures characteristic of harmonic flows.

The combination of the real and imaginary parts of UA2

2 enables these small structures
to be continuously convected downstream. A cut of the field u1

2 along the symmetry
plane is shown in figure 5(b) by a solid line. We notice that u1

2 is always negative in the
wake. Hence, an increase in Reynolds number yields an increase in the recirculation
length for the base flow.

2.3.4. Order
√

ε
3

At order
√

ε
3
, we obtain the following inhomogeneous linear equation determining

U3:

(∂tL + M) U3 = Aeiω0t
(
−λLUA

1 + FA
3

)
+ A|A|2eiω0t

(
µLUA

1 + F
A|A|2
3

)
+ A|A|2eiω0t

(
νLUA

1 + FĀA2

3

)
+ c.c. + · · · , (2.16)

with

FA
3 =

(
−∇uA

1 · ∇u1
2 − u1

2 · ∇uA
1 − �uA

1

0

)
, (2.17a)

F
A|A|2
3 =

(
−∇uA

1 · ∇u
|A|2
2 − u

|A|2
2 · ∇uA

1

0

)
, (2.17b)

FĀA2

3 =

(
−∇uA

1 · ∇uA2

2 − uA2

2 · ∇uA
1

0

)
, (2.17c)

On the right-hand side of (2.16), only the terms proportional to eiω0t have been given

(many other terms do exist but are not useful here). The terms FA
3 , F

A|A|2
3 and FĀA2

3

may readily be evaluated from calculations performed at lower orders. Note that
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constants λ, µ and ν, which stem from the ‘slow’ time scale behaviour of A prescribed
by equation (2.4), may be given any complex value at this stage of the analysis. As in
§ 2.3.3, we seek a form for U3 that matches the structure of the forcing terms:

U3 = Aeiω0t UA
3 + A|A|2eiω0t UA|A|2

3 + A|A|2eiω0t U ĀA2

3 + c.c. + · · · . (2.18)

Introducing this relation in (2.16) and equating analogous terms yields three equations

governing the unknowns UA
3 , UA|A|2

3 and U ĀA2

3 :

Kiω0
UA

3 = −λLUA
1 + FA

3 , (2.19a)

Kiω0
UA|A|2

3 = µLUA
1 + F

A|A|2
3 , (2.19b)

Kiω0
U ĀA2

3 = νLUA
1 + FĀA2

3 . (2.19c)

In these equations, all forcing terms are antisymmetric in y so that UA
3 , UA|A|2

3 and U ĀA2

3

are also antisymmetric in y. The linear operator Kiω0
is degenerate, and compatibility

conditions have to be satisfied in order to determine UA
3 , UA|A|2

3 and U ĀA2

3 , which
respectively determine λ, µ and ν. The unknowns may be interpreted in the following
manner.

(i) Aeiω0t UA
3 consists of the response of the flow to both the interaction of the first

harmonic Aeiω0t UA
1 with the base flow modification U1

2, and to the viscous diffusion
of the first harmonic. These interactions are responsible for the linear instability of
the flow and determine the value of the complex constant λ.

(ii) A|A|2eiω0t UA|A|2
3 consists of the response of the flow to the interaction of the first

harmonic Aeiω0t UA
1 with the zeroth (mean flow) harmonic |A|2U |A|2

2 . This interaction
yields the complex constant µ.

(ii) A|A|2eiω0t U ĀA2

3 consists of the response of the flow to the interaction of the first

harmonic Āe−iω0t UA
1 with the second harmonic A2e2iω0t UA2

2 . This interaction yields the
complex constant ν.

In order to apply the compatibility conditions, let us introduce the scalar product

〈Uα, Uβ〉 =

∫∫
�

(ūαuβ + v̄αvβ + p̄αpβ)dxdy (2.20)

and the linear operator

K̂ψ =

(
ψ̄I − ∇ () · u0 + (∇u0)

T · () − Re−1
c � −∇

∇T 0

)
. (2.21)

It can be shown that for all flow fields Uα and Uβ which are homogeneous on the inlet
∂�1 and on the cylinder ∂�0, symmetric on the upper boundary ∂�4, antisymmetric
in y, we have

〈Uα, Kψ Uβ〉 = 〈K̂ψ Uα, Uβ〉 (2.22)

This shows that K̂ψ is the adjoint operator to Kψ . Hence, as Kiω0
is degenerate,

K̂iω0
should also be so. Therefore there exists Û

A

1 such that.

K̂iω0
Û

A

1 = 0, (2.23)

with the normalization condition v̂A
1 (1, 0) = 0.5. Note that this normalization

condition on the adjoint does not affect the values of λ, µ and ν and is therefore
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not important. We nevertheless use it so that the computed adjoint is uniquely
defined. Equation (2.23) is a generalized eigenproblem which is solved again thanks

to the Arnoldi method. The adjoint vector Û
A

1 associated with the eigenmode UA
1

is represented in figure 3(d). We notice that the adjoint is located in the region
x < 5 and in particular in the upstream region of the cylinder. This has already been
documented by Giannetti & Luchini (2007), and stems from the non-normality of

the operator Kψ . As a matter of fact, looking at the definitions of Kψ and K̂ψ we
can see that the convection terms ∇() · u0 have opposite signs: the perturbations are

convected downstream for Kψ while they are convected upstream for K̂ψ .
Applying the compatibility conditions then yields the value of the three complex

constants λ, µ and ν:

λ =
〈Û

A

1 , FA
3 〉

〈Û
A

1 , LUA
1 〉

, µ = − 〈Û
A

1 , F
A|A|2
3 〉

〈Û
A

1 , LUA
1 〉

, ν = − 〈Û
A

1 , FĀA2

3 〉
〈Û

A

1 , LUA
1 〉

. (2.24)

Numerically we obtain:

λ = 9.1 + 3.3i, µ = 9.4 − 30i, ν = −0.30 − 0.87i. (2.25)

We may compare the ratio (µi + νi)/(µr + νr ) ≈ −3.4 to the ratio −2.7 obtained
by Dusek et al. (1994) by means of a direct numerical simulation at Re = 48. The
discrepancy between these two values is not explained.

The integrands appearing in any of the scalar products involved in (2.24) are built

from the product of an upstream located field, i.e. the adjoint Û
A

1 , and a downstream

located field, i.e. UA
1 , FA

3 , F
A|A|2
3 and FĀA2

3 . Hence, the integrands are zero far upstream
and downstream of the cylinder, which guarantees the convergence of these integrals.
In order to analyse in more detail the spatial localization of these integrands, let us
introduce the following complex functions depending on the abscissa x:

λ(x) =
〈Û

A

1 , PxF
A
3 〉

〈Û
A

1 , LUA
1 〉

, µ(x) = −〈Û
A

1 , PxF
A|A|2
3 〉

〈Û
A

1 , LUA
1 〉

, ν(x) = −〈Û
A

1 , PxF
ĀA2

3 〉
〈Û

A

1 , LUA
1 〉

, (2.26)

where Px is a matrix step function:

Px0
(x, y) = I if x � x0 (2.27a)

= 0 if x > x0 (2.27b)

Therefore, λ(x−∞) = 0 and λ(x+∞) = λ. Analogous properties hold for µ(x) and ν(x).
These three functions have been represented in figure 6. We can see that all functions
are roughly zero for x < 0. The function λ(x) then abruptly increases within the
region 0 < x < 7.5, reaches a plateau and stays constant and equal to λ. Hence, the
active region building λ is situated within 0 < x < 7.5. The same phenomenon may be
observed for functions µ(x) and ν(x), except that small oscillations are observed until
x ≈ 50. Hence, the active region building constants µ and ν extends far downstream,
i.e. up to x ≈ 50. To conclude, these two results imply the following in particular.

(i) To capture the linear instability, i.e. to achieve the convergence of the constant
λ, the location of the outlet boundary should at least be equal to x+∞ = 7.5.

(ii) To capture the nonlinear regime, i.e. to achieve a precise convergence of the
nonlinear constants µ and ν, the location of the outlet boundary should at least be
equal to x+∞ = 50.
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Figure 6. Cylinder flow at Rec = 46.6. Mesh C1. The downstream convergence of the Landau
constants is characterized by the evolution of the functions λ(x), µ(x) and ν(x). We observe
that the function λ(x) attains its asymptotic value λ for x ≈ 7.5 while the functions µ(x) and
ν(x) experience small oscillations up to x ≈ 50 before converging to µ and ν.

2.4. Analysis of the amplitude equations

The weakly nonlinear analysis has shown that the amplitude A of the critical global
mode is governed by (2.4) with the numerical constants shown in (2.25). In this
section, we analyse the behaviour of this equation in the linear and nonlinear regime.
In particular, we will show that a saturated limit cycle exists at large times.

2.4.1. Linear regime

Considering the numerical values obtained in (2.25), we can see that Re(λ) > 0 as
expected, showing that the flow is linearly unstable for ε > 0. For |A| � 1, only the
linear part of the Stuart–Landau amplitude equation (2.4) remains: dA/dt = ελA.
Hence, A(t) = A0 exp(ελt) and U = U0 +

√
ε[A0 exp(iω0t + ελt)UA

1 + c.c.] + · · ·. The
amplification rate and pulsation of the global mode of the base flow therefore reads

σBF = ελr , ωBF = ω0 + ελi , (2.28)

or, numerically,

σBF = 9.1ε, ωBF = 0.74 + 3.3ε. (2.29)

These two asymptotic relations are sketched with dashed lines in figures 1(a) and
1(b). As expected, the associated curves are tangent to the exact curves obtained by
Barkley (2006) for the base flow stability calculations (dotted lines), which validates
the present approach.

2.4.2. Limit cycle

We now study the dynamics of the full nonlinear amplitude equation (2.4). Setting
A = reiφ , we obtain

dr

dt
= ελr r − ε (µr + νr ) r3,

dφ

dt
= ελi − ε (µi + νi) r2. (2.30)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

89
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007008907


346 D. Sipp and A. Lebedev

Hence, as λr = 9.1 > 0 and µr + νr ≈ 9.1 > 0, we have as t → ∞:

r →

√
λr

µr + νr

, φ ∼
(

ελi − ελr

µi + νi

µr + νr

)
t. (2.31)

The flow dynamics therefore converges to a limit cycle for which

A =

√
λr

µr + νr

exp

[
i

(
ελi − ελr

µi + νi

µr + νr

)
t

]
. (2.32)

The leading part of the velocity field is therefore

U = U0 +
√

ε

√
λr

µr + νr

{
exp

[
it

(
ω0 + ελi − ελr

µi + νi

µr + νr

)]
UA

1 + c.c.

}
+ · · · . (2.33)

We then obtain the true frequency of the bifurcated flow field on the limit cycle:

ωLC = ω0 + ελi − ελr

µi + νi

µr + νr

. (2.34)

The first term on the right-hand side is the frequency of the marginally stable global
mode at the critical Reynolds number. The second term designates the shift in
frequency due to linear mechanisms, namely the evolution of the eigenfrequency of
the base-flow global mode as the Reynolds increases. The third term is a shift in
frequency due to the nonlinear interactions. Numerically, we obtain

ωLC = 0.74 + 3.3ε + 31ε. (2.35)

This relation is sketched in figure 1(a) by a long-dashed line. As expected, we can see
that this line is tangent to the nonlinear (experimental) curve of Williamson (1988).
Incidentally, it should be emphasized that this expression invalidates the assumption
of Koch (1985) and Provansal et al. (1987) that nonlinear terms do not influence the
shedding frequency of the wake.

Note that the choice of the normalization of UA
1 yields λr/(µr +νr ) ≈ 1. This deeply

simplifies the interpretation of the expressions involving this term. For example, the
saturation amplitude r is then found to be equal to 1 and the nonlinear frequency
shift reduces to −ε(µi + νi).

2.5. Mean flow

In this section, we introduce the mean flow associated with the periodic flow that sets
in on the limit cycle. For this, recall the form of the flow field on the limit cycle:

U = U0 +
√

ε(Aeiω0tUA
1 + c.c.) + εU1

2 + ε|A|2U|A|2
2 + ε(A2e2iω0tUA2

2 + c.c.) + · · · , (2.36)

where A is given by (2.32). The mean flow U∗ corresponds to a time average of this
expansion, that is,

U∗ = U0 + ε

(
U1

2 +
λr

µr + νr

U
|A|2
2

)
= U0 + εU∗

2, (2.37)

with

U∗
2 = U1

2 +
λr

µr + νr

U
|A|2
2 . (2.38)

Recall that the base flow at the Reynolds number prescribed by ε corresponds to

U0 + εU1
2. Hence, the term λr (µr + νr )

−1U
|A|2
2 is the difference between the mean
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flow and the base flow. It corresponds to the flow field created by the nonlinear
interactions. The longitudinal velocity of the mean flow u∗

2 is represented by a dashed
line on the symmetry plane in figure 5(b). We notice that this velocity is negative for
0.5 < x < 2.25 and that it becomes strongly positive for larger values of x. Hence,
recalling that the recirculation length is equal to 3.2 for the base flow U0, it is clear that
the mean flow modification both shortens and strengthens the recirculation bubble as
the Reynolds number increases. This result is in accordance with the numerical and
experimental observations of Zielinska et al. (1997) who described the mean flow in
the wake of a cylinder and already stressed the role of the nonlinearities to explain
its shape.

2.6. Mean flow stability

We now consider the linear stability of the mean flow. For this, let us introduce the
following two-parameter asymptotic expansion for the flow field U valid for 0 < ε � 1
and 0 < α � 1:

U = U0 + αU1 + εU∗
2 + αεU′

3 + · · · . (2.39)

Here, ε is again the parameter controlling the Reynolds number defined in (2.2),
while α is a new parameter denoting the amplitude of the critical global mode U1.
In the following, we consider very small amplitudes of this global mode which satisfy
α � ε. Hence, the nonlinear interactions in α2 will be negligible at order ε and αε.
Again, we introduce this expansion into the incompressible Navier–Stokes equations
(2.1) and consider the equations at each order αiεj . At order α0ε0, we obtain the base
flow at Re = Rec. At order α1ε0, we choose for U1 the same expression as in (2.11),
i.e. the critical global mode with a scalar complex amplitude A. At order α0ε1, we
obtain as expected that the mean flow is not a solution of the steady Navier–Stokes
equations. This has been discussed by Barkley (2006). At order α1ε1, we obtain a
non-homogeneous linear degenerate operator for U′

3:

(∂tL + M) U′
3 = Aeiω0t

(
−λ′LUA

1 + F′
3

)
+ c.c., (2.40)

with the following forcing term:

F ′
3 =

(
−∇uA

1 · ∇u∗
2 − u∗

2 · ∇uA
1 − �uA

1

0

)
, (2.41)

and the amplitude A depending on a slow time scale

dA

dt
= ελ′A. (2.42)

Applying the compatibility condition yields: λ′ = 〈ÛA

1 , F ′
3〉/〈ÛA

1 , LUA
1 〉. Recalling the

expression of U∗
2 given in (2.38), we may rewrite F ′

3 in the form: F ′
3 = FA

3 + λr (µr +

νr )
−1F

A|A|2
3 . Hence,

λ′ = λ − λr

µr + νr

µ. (2.43)

The amplification rate and pulsation of the global mode of the mean flow are therefore
given by

σMF = ελr

νr

µr + νr

, ωMF = ω0 + ελi − ελr

µi

µr + νr

. (2.44)

Comparing these expressions to σBF and ωLC in (2.28) and (2.34), we readily drew
the following conclusions.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

89
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007008907


348 D. Sipp and A. Lebedev

(i) If |νr/µr | � 1, then |σMF | � |σBF |, i.e. the mean flow is approximately
marginally stable.

(ii) If |νi/µi | � 1, then ωMF is approximately equal to ωLC , i.e. the stability of the
mean flow yields the nonlinear frequency of the limit cycle.

Recalling the definitions of µ and ν given in (2.24) and the definitions of F
A|A|2
3 and

FĀA2

3 in (2.17b) and (2.17c), these two conditions physically mean that the saturation

process on the limit cycle is linked to the zeroth (mean flow) harmonic U
|A|2
2 , i.e. to

the nonlinear interaction of the global mode UA
1 with its conjugate UA

1 and not to

the second harmonic UA2

2 , i.e. the nonlinear interaction of the global mode UA
1 with

itself. In the case of the cylinder, as shown by the numerical values of µ and ν given
in (2.25), these two conditions are well satisfied (|νr/µr | = 0.03 and |νi/µi | = 0.03).

Alternatively, we may consider directly the numerical values of σMF and ωMF :

σMF = −0.30ε, ωMF = 0.74 + 3.3ε + 31ε. (2.45)

Recalling the numerical expression of ωLC given in (2.35), we observe that ωMF ≈ ωLC .
The long-dashed line appearing in figure 1(a) therefore also represents ωMF . We may
conclude that mean flow stability calculations yield the true frequency of the bifurcated
flow field. The relation for the amplification rate σMF appearing in (2.45) has also
been sketched in figure 1(b) with a long-dashed line. We notice that this amplification
rate is approximately located along the horizontal axis, i.e. the mean flow is stable,
which is in accordance with the results and conclusions of Barkley (2006).

3. The case of the open cavity
The two conditions given in § 2.6, i.e. |νr/µr | � 1 and |νi/µi | � 1, are the keys to

justify the marginal stability of the mean flow and the relevance of its eigenfrequencies.
We have tried in Appendix B to find out why this happens for the cylinder. Briefly,
it turns out that this is related in part (but not mainly) to the relative strength of
the zeroth (mean flow) harmonic and the second harmonic, i.e. the zeroth (mean
flow) harmonic is 6.7 times stronger than the second harmonic. But a definite answer
has not been obtained to explain these facts. We will show in this section that these
conditions do not actually hold automatically for all globally unstable flows. For this,
we give a counter-example: the open cavity.

3.1. Geometry

Let us consider an open two-dimensional square cavity of identical length and depth
D. The upstream velocity U∞ and the length D are used to make all quantities
non-dimensional. The configuration and structure of the mesh is shown in figure 7.
The upstream and downstream corners of the cavity are located at (x = 0, y = 0) and
(x = 1, y = 0). The upstream boundary ∂�1, downstream boundary ∂�3 and upper
boundary ∂�4 are, respectively, located at x = −1.2, x = 2.5 and y = 0.5. A uniform
and unitary velocity field is prescribed at the inlet boundary ∂�1 at x = −1.2 and a
laminar boundary layer starts developing on the lower boundary at (x = −0.4, y = 0).
A free-slip condition with zero tangential stress (∂yu = 0, v = 0) is prescribed on the
boundaries (−1.2 � x < −0.4, y = 0) and (1.75 < x � 2.5, y = 0), which together
form ∂�2. No-slip boundary conditions are imposed on (−0.4 � x � 0, y = 0), on
the cavity wall and on the downstream wall (1 � x � 1.75, y = 0). This no-slip
boundary is denoted ∂�0. Note that symmetry boundary conditions are used at the
upper boundary ∂�4.
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Figure 7. Mesh structure for the open cavity flow. The thick solid line is characterized by the
vertex density n. The thin solid line, dashed line and dotted line appearing in the upper part
of the mesh, i.e. in the open flow, are, respectively, characterized by the vertex densities n+

1 , n+
2

and n+
3 . The same lines in the lower part of the mesh, i.e. in the cavity region, are, respectively,

characterized by the vertex densities n−
1 , n−

2 and n−
3 .

Mesh n n+
1 n+

2 n+
3 n−

1 n−
2 n−

3 nt nd.o.f.

D1 350 200 100 100 150 100 50 194771 880495
D2 500 300 150 100 200 150 100 418330 1888003

Table 2. Cavity flow. Different meshes used with characteristic vertex densities. D2 is
much more refined than D1 and is used to test if the small-scale features of this
high-Reynolds-number cavity flow are well resolved; nt is the number of triangles, while
nd.o.f. is the number of degrees of freedom of an unknown (u, v, p).

Concerning the structure of the mesh, the thick solid line in figure 7 is characterized
by the vertex density n. The corresponding region is meshed in a very dense way in
order to capture the small scales of the flow appearing there, namely the upstream
and downstream boundary layers and the shear layer spanning over the cavity. The
thin solid line, dashed line and dotted line appearing in the upper part of the mesh,
i.e. in the open flow, are, respectively, characterized by the vertex densities n+

1 , n+
2

and n+
3 . The same lines in the lower part of the mesh, i.e. in the cavity region, are,

respectively, characterized by the vertex densities n−
1 , n−

2 and n−
3 . Two meshes denoted

D1 and D2 have been used, which have the same spatial extent but different vertex
densities. These vertex densities are given in table 2. Note that the vertex densities
used here are much higher than those used for the cylinder case. This stems from
the fact that the critical Reynolds number, as will be shown below, is nearly two
orders of magnitudes higher for the cavity flow than for the cylinder flow. Hence, the
structures are much smaller here and deserve more refined meshes.

In the following, all results will be presented with mesh D1. A comparison between
the results obtained with D1 and D2 is offered in Appendix C.

3.2. Base flow

For Re = 4140, the base flow u0 is represented in figure 8(a). We observe the thin
free shear layer spanning over the open cavity and the large-scale recirculating flow
inside it. The negative velocities inside the cavity reach u0 = −0.17 near the bottom
of the cavity. In figure 11(b), we have represented u0 by a dotted line in a vertical
cut localized in the middle of the cavity (x = 0.5, −1 < y < 0.5). We can see a nearly
uniform flow in the region outside the cavity, a strong velocity gradient in the shear
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Figure 8. Cavity flow at Rec = 4140. Mesh D1. Representation of the various flow fields
appearing at each order in the weakly nonlinear analysis. (a) Base flow u0, (b) base flow
modification u1

2 due to an increase of the Reynolds number, (c) first harmonic Re(vA
1 ), (d)

corresponding adjoint eigenmode Re(v̂A
1 ), (e) zeroth (mean flow) harmonic u

|A|2
2 , (f) second

harmonic Re(uA2

2 ).

layer, a rigid body rotation inside the cavity, and a boundary layer on the bottom of
the cavity at y = −1.

The characterization of the boundary layer at the upstream corner of the cavity
is important for open cavity configurations. We therefore sketch in figure 9(a) the
velocity profile u0 on the vertical line (x = 0, 0 < y < 0.5). The plot is focused on the
high values of the velocities comprised within 0.96 < u < 1.05. We observe a complex
profile which displays a maximum um = 1.039 at ym = 0.0616. Above y > ym, the
velocity slowly decreases and reaches the value ue = 1.028 at y = 0.5. We notice that
ue is slightly larger than the unitary velocity imposed at the inlet boundary, indicating
that a weak pressure gradient accelerates the flow in the upstream duct. This may
be explained in the following manner. By incompressibility, the mean in y of the
velocity field is equal to 1. Hence, as a strong velocity deficit exists in the boundary
layer, the flow has to accelerate outside the boundary layer to conserve the flow rate.
This is achieved by this weak pressure gradient. This mechanism is at play in the
whole region outside the cavity: we observe in figure 8(a) a continuous downstream
increase of the longitudinal velocities on the line y = 0.25. Let us now explain the
existence of the observed velocity overshoot. The slow downstream thickening of the
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Figure 9. Cavity flow at Re = 4140. Mesh D1. (a) Velocity profile u0(0, y) in a vertical section
localized at the upstream corner of the cavity: (x = 0, 0 < y < 0.5). This profile exhibits
a maximum um at y = ym. For y > ym, u0 decreases with y to reach ue at y = 0.5. The
boundary layer thickness δ1 has also been shown. (b) The function δ1(x) is sketched with filled
triangles for −0.4 � x � 0, i.e. on the upstream no-slip boundary. The solid line depicts the
displacement thickness of a Blasius boundary layer developing at Re = 4140.

boundary layer induces the existence, in the bulk of the upstream duct, of positive
transverse velocities v0 > 0 which decrease downstream, i.e. ∂xv0 < 0. In the case of
a Blasius boundary layer, i.e. a laminar boundary layer developing with no pressure
gradient for high Reynolds numbers, this transverse velocity would have been equal
to v0 = 0.86/

√
4140(x + 0.4) for Re = 4140, which is indeed a decreasing function of

x. Now, in this inviscid bulk region, by Lagrange’s theorem, the vorticity of the base
flow remains zero: ξ0 = ∂xv0 − ∂yu0 = 0. Hence, ∂yu0 < 0 in this region, explaining
the observed maximum in the velocity profile u0(0, y).

The thickness of the incoming boundary layer may be characterized on the upstream
no-slip boundary −0.4 � x � 0 by

δ1(x) =

∫ 0.5

0

yξ0(x, y) dy∫ 0.5

0

ξ0(x, y) dy

; (3.1)

δ1(x) is a generalized displacement thickness. As a matter of fact, if the vorticity
ξ0 ≈ −∂yu0, we recover the usual definition of the displacement thickness:

δ′
1(x) =

∫ 0.5

0

ue(x) − u0(x, y)

ue(x)
dy (3.2)

where ue(x) = u0(x, 0.5). The function δ1(x) is sketched with filled triangles in figure
9(b) for −0.4 � x � 0, i.e. on the upstream no-slip boundary. We have also shown a
relation depicting the displacement thickness of a Blasius boundary layer developing
at Re = 4140. We observe that the two curves are similar, indicating that the present
boundary layer behaves similarly to a Blasius boundary layer. Note that there is no
reason that the two curves should fit exactly since the Blasius boundary layer is valid
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Figure 10. Eigenvalues of the open cavity flow in the (σ, ω) plane at Re = 4140. Mesh D1.
A marginally stable eigenmode exists for ω = 7.5 (see circled triangle).

only for Re → ∞. In the present case, we obtain δ1(x = 0) = 0.0153. This value has
been sketched in figure 9(a).

3.3. Description of the first harmonic

The eigenvalues of this base flow are sketched in figure 10. The eigenvalues verifying
ω < 5 are all stable with σ < 0. The corresponding eigenmodes are localized inside the
cavity (not shown here), describing therefore the dynamics of perturbations localized
in the cavity. In the region ω > 5, we observe two isolated eigenmodes, one of them
attenuated (σ < 0) and the other marginally stable (σ = 0). The spatial structure of
the marginally stable eigenmode, characterized by ω0 = 7.5, is represented in figure
8(c), via its transverse velocity vA

1 . We observe that the eigenmode is localized on
the free shear layer and that it consists of two vortices travelling and strengthening
in the downstream direction. This may also be observed in figure 11(a), where the
transverse velocity vA

1 has been sketched on the line (0 < x < 1, y = 0) which
separates the inside and outside regions of the cavity. The phase shift between the
real and imaginary parts of the flow field enables a smooth downstream convection
of the vortical structures. Note that we normalize here the direct and adjoint global
modes by vA

1 (0.5, 0) = 1.151 and v̂A
1 (0.5, 0) = 1. Comments similar to those given in

§ 2 concerning the choice of these normalizations can be made here.
We will now repeat the steps of the weakly nonlinear analysis presented in § 2. The

critical eigenmode of the cavity presented above is considered in (2.11). It is therefore
the first harmonic of the weakly nonlinear expansion given in (2.3).

3.4. Description of base flow modification, zeroth and second harmonics, adjoint

The various flow fields u1
2, u

|A|2
2 and uA2

2 have been calculated and are shown in

figures 8(b), 8(e) and 8(f). The base flow modification U1
2 due to the increase of

the Reynolds number is spatially localized in the boundary layers and in the shear
layer since the thickness of these zones diminishes with increasing Reynolds number.
As a consequence, the flow acceleration existing in the region outside the cavity
(described in § 3.2) is diminished, which is in accordance with the negative values of
the longitudinal velocity observed in this region. Also, we see that the recirculation
velocities inside the cavity increase slightly.
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Figure 11. Cavity flow at Rec = 4140. Mesh D1. (a) Real and imaginary parts of the
transverse velocity vA

1 for (0 < x < 1, y = 0). The real and imaginary parts are analogous and
are approximately 1/4 spatial period out of phase, which enables a continuous downstream
convection of the vortical structures. (b) Longitudinal velocity on (x = 0.5, −1 < y < 0.5)
for the base flow u0 (dotted line), for the base flow modification u1

2 (solid line), and for the
mean flow modification u∗

2 (dashed line). We observe the thin free shear layer at y = 0, the
strong velocities induced by the mean flow modification inside the cavity, while the base flow
modification remains small in this region.

The zeroth (mean flow) harmonic U
|A|2
2 is strong in the region where the first

harmonic is vigorous, i.e. in the shear layer and in the downstream boundary layer.
We may also observe very high values of the recirculation velocities inside the cavity:
this surprising result means that the instability developing on the shear layer has a
strong nonlinear entrainment effect on the inside cavity flow field.

The second harmonic UA2

2 displays small-scale structures localized near the
downstream corner of the cavity.

The adjoint Û
A

1 is strongly localized with very high values of the velocity on the
upstream corner of the cavity. Again, we observe that the adjoint is situated upstream
of the cavity while all other flow fields are localized more downstream.

3.5. Landau constants and the limit cycle

The numerical evaluation of (2.24) yields

λ = 3500 + 3000i, µ = 2600 − 2200i, ν = 890 + 180i. (3.3)

We therefore obtain for the base flow

σBF = 3500ε, ωBF = 7.5 + 3000ε. (3.4)

As λr > 0 and µr + νr > 0, following the guidelines given in § 2.4.2, a saturated limit
cycle exists in the case of the open cavity. This limit cycle is described by (2.33). The
frequency of the flow on this limit cycle may be numerically evaluated by (2.34):

ωLC = 7.5 + 3000ε + 2000ε. (3.5)
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Comparing this relation to the base flow frequency given in (3.4), it turns out that
nonlinearities strongly affect the frequency of the flow in the supercritical regime
Re > Rec.

3.6. Mean flow and its stability

The mean flow modification U∗
2 may then be defined following (2.38). In figure

11(b), we have sketched the base flow modification u1
2 (solid line) and mean flow

modification u∗
2 (dashed line) in a vertical section localized in the middle of the cavity

(x = 0.5, −1 < y < 0.5): it is interesting to note that u1
2 is equal to u∗

2 in the external
part of the free shear layer (x = 0.5, 0 < y < 0.5), and that u∗

2 strongly affects the
bulk of the cavity whereas u1

2 is nearly zero in the area (x = 0.5, −0.8 < y < −0.1).
The stability of the mean flow may finally be analysed following § 2.6. Equation

(2.44) yields

σMF = 900ε, ωMF = 7.5 + 3000ε + 2200ε. (3.6)

We observe that the limit cycle frequency ωLC , which was given in (3.5), is not exactly
equal to ωMF and that σMF is not small, i.e. the mean flow in the case of the cavity
remains strongly unstable. These results are consistent with the values of the nonlinear
Landau constants given in (3.3). In fact, |νr |/|µr | = 0.34 and |νi |/|µi | = 0.09 are much
larger than in the cylinder case (for which |νr |/|µr | ≈ |νi |/|µi | ≈ 0.03 as shown in
§ 2.6). Hence, the linear stability properties of the cavity mean flow are not obvious:
the mean flow is still unstable and the pulsation does not match closely the true
frequency of the unsteady nonlinear flow. Hence, this is a counter-example which
shows that the results obtained for the cylinder are by no means general.

4. Conclusion
We have achieved a global weakly nonlinear analysis valid in the vicinity of the

critical Reynolds number Rec based on the small parameter ε = Re−1
c − Re−1 � 1.

We have computed numerically the complex constants λ, µ and ν which appear in the
Stuart–Landau amplitude equation. Here λ is the linear constant leading to instability,
while µ refers to the nonlinear interaction of the zeroth (mean flow) harmonic with
the first harmonic and ν refers to the nonlinear interaction of the second harmonic
with the first harmonic. It was shown that:

(i) If |νr/µr | � 1, then the mean flow is approximately marginally stable;
(ii) If |νi/µi | � 1, then the stability of the mean flow approximately yields the

nonlinear frequency of the limit cycle.
It turns out that these conditions are well satisfied in the case of the first bifurcation

occurring for the cylinder flow at Rec = 46.6. This is related in part (but not mainly) to
the relative strength of the zeroth (mean flow) harmonic and the second harmonic, i.e.
the zeroth (mean flow) harmonic is much stronger than the second harmonic. These
results give theoretical support to the numerical observations of Barkley (2006).

We have finally given a counter-example which shows that the results obtained for
the cylinder are by no means general. Indeed, the two conditions mentioned above are
not fulfilled in the case of an open cavity flow. Hence, generally speaking, the linear
stability analyses performed on mean flows are not always meaningful. In particular,
there is no reason to assume a priori that a mean flow is stable and that the pulsation
of the mean flow matches the pulsation of the fully nonlinear flow. The two conditions
mentioned above have to be checked for each globally unstable flow. To conclude,
we note that the mean flow and the base flow coincide at the bifurcation, i.e. for
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Figure 12. Cylinder flow at Rec = 46.6. Influence of the location of the inlet and outlet
boundaries. (a) Sketch of the adjoint transverse velocity field Re(v̂A

1 ) on the symmetry plane.
The thin (respectively thick) solid line represents the solution on mesh C1 (respectively mesh
C5). (b) Sketch of various flow fields on the symmetry plane in the downstream region

150 < x < 200. The dashed lines represent the zeroth (mean flow) harmonic u
|A|2
2 , the dotted

lines represent the second harmonic Re(uA2

2 ), the solid lines the first harmonic Re(vA
1 ) and

the dash-dotted lines the base flow modification u1
2. All thick lines (dashed, dotted, solid and

dash-dotted) pertain to C4 while all thin lines are relative to C1.

critical parameters. Hence, performing stability calculations for the critical conditions
guarantees in all cases the validity of linear stability analyses.

Appendix A. Comparison of results obtained with the various meshes in the
cylinder case

In this section, we will show how the spatial extent of the computational domains
and the vertex densities affect the results in the cylinder case.

In figure 12(a), we have sketched the transverse component of the adjoint flow field
Re(v̂A

1 ) on the symmetry plane in the upstream region of the cylinder for mesh C1
and C5. These two meshes share identical parameters except for the location of the
upstream boundary x−∞. For C1, x−∞ = −60, and for C5, x−∞ = −30. We observe
discrepancies only in the range −30 < x < −25, i.e. the upstream boundary condition
has some influence on the computed solution on a length scale of order 5. Note that
a homogeneous boundary condition is applied at the inlet boundary for the adjoint

flow field Û
A

1 .

In figure 12(b) we have sketched, for C1 and C4 the values of u
|A|2
2 , Re(uA2

2 ), Re(vA
1 )

and u1
2. C1 is characterized by x+∞ = 200 and C4 by x+∞ = 175. It appears that the

position of the outlet boundary has no impact on all computed solutions.
The values of the Landau constants calculated on C1, C2, C3, C4, C5 and C6 are

given in table 3. Comparing the results obtained for C1 and C4, it is obvious that
the position of the outlet boundary x+∞ has a negligible impact. This result is in
accordance with the spatial localization of the integrands involved in λ, µ and ν, and
which have been given in § 2.3.4. In fact, remember that the functions µ(x) and ν(x)
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Mesh 104σ0 ω0 λr λi µr µi νr νi

C1 −2.241 0.73738 9.1385 3.2704 9.4529 −30.399 −0.30350 −0.86602
C2 −2.180 0.73740 9.1388 3.2593 9.4470 −30.406 −0.30312 −0.86634
C3 −1.516 0.73718 9.1386 3.2563 9.4515 −30.412 −0.30290 −0.86722
C4 −2.239 0.73738 9.1321 3.2686 9.4448 −30.400 −0.30355 −0.86358
C5 2.222 0.73907 9.1235 3.2476 9.4381 −30.007 −0.29926 −0.86455
C6 −0.036 0.73964 9.1657 3.2635 9.4344 −29.482 −0.29993 −0.86668

Table 3. Cylinder flow at Rec = 46.6. Eigenfrequency ω0 and Landau constants λ, µ and ν
obtained for the different meshes C1, C2, C3, C4, C5 and C6 characterized in table 1. Roughly
speaking, these calculations show that on nearly all constants we have three significant digits
and that the location of the inlet and transverse boundaries has an influence on this third
digit.

converge towards µ and ν for x ≈ 50 and that all meshes used here extend at least
up to x = 100. Comparing the results for C1 and C5, C1 and C6, it appears that
the strongest impact stems from the positions of the upstream boundary x−∞ and the
lateral boundary y+∞, which have some influence on the pulsation ω0, and therefore
on the other constants. In fact, if y+∞ is decreased or x−∞ is increased, the pulsation
ω0 slowly increases. This is due to the fact that the flow accelerates a little due to the
increase of the cylinder blockage. Comparing the results from C1, C2 and C3, we can
see that the vertex densities have a small impact on the obtained results. Therefore,
we can conclude that we have almost three significant digits for nearly all computed
constants and that the position of the upstream and lateral boundaries has an impact
on this third digit.

Appendix B. Analysis of the interactions for the cylinder flow
In this appendix, we try to explain why, in the case of the cylinder flow, we have

|ν|/|µ| = 0.029 � 1. For this, let us first define

cs(U, V ) =
|〈U, V 〉|

‖U‖ · ‖V‖ , ‖U‖ =
√

〈U, U〉. (B 1)

Thanks to the Cauchy–Schwarz inequality, 0 � cs(U, V ) � 1 for all U and V . Hence,
cs is a measure of the “angle” between the two vectors U and V . If cs(U, V ) � 1,
then the two vectors are nearly orthogonal. In particular, this is the case when the
two fields are localized in separate regions.

From the definition of µ and ν given in (2.24), it appears that

|ν|
|µ| =

|〈LÛ
A

1 , FĀA2

3 〉|
|〈LÛ

A

1 , F
A|A|2
3 〉|

=
‖FĀA2

3 ‖
‖F

A|A|2
3 ‖

× cs(LÛ
A

1 , FĀA2

3 )

cs(LÛ
A

1 , F
A|A|2
3 )

=
4256

17468
× 0.0001517

0.001282

= 0.24 × 0.12 = 0.029.

(B 2)

The fact that cs(LÛ
A

1 , FĀA2

3 ) � 1 and cs(LÛ
A

1 , F
A|A|2
3 ) � 1 may be explained in

the following manner: Û
A

1 is a flow field which is located upstream of the cylinder,

whereas FĀA2

3 and F
A|A|2
3 are located downstream of it, since they are built from UA

1 ,
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Mesh 104 σ0 ω0 λr λi µr µi νr νi

D1 7.401 7.4930 3454.0 2991.8 2552.5 −2234.2 890.67 184.19
D2 8.961 7.4942 3452.1 2992.3 2563.5 −2233.3 887.79 185.57

Table 4. Cavity flow at Rec = 4140. Eigenfrequency ω0 and Landau constants λ, µ and ν
obtained for the different meshes D1 and D2 characterized in table 2. Depending on the
constants we have two or three significant digits.

U
A|A|2
2 and UĀA2

2 , which are all located downstream of the cylinder. Hence, the angles
between these vectors are not far from being orthogonal, explaining the small values.

As seen from (B 2), the fact that |µ| � |ν| stems from

‖FĀA2

3 ‖
‖F

A|A|2
3 ‖

= 0.24 � 1 (B.3a)

cs(LÛ
A

1 , FĀA2

3 )

cs(LÛ
A

1 , F
A|A|2
3 )

= 0.12 � 1 (B.3b)

The first inequality (B.3a) may be interpreted in the following manner. Recall the

definitions of F
A|A|2
3 and FĀA2

3 given in (2.17b) and (2.17c). Hence, it seems natural
that:

‖FĀA2

3 ‖
‖F

A|A|2
3 ‖

≈ ‖LUĀA2

2 ‖
‖LU

A|A|2
2 ‖

. (B.4)

This may be checked numerically by noting that

‖LUĀA2

2 ‖
‖LU

A|A|2
2 ‖

=
440

2970
= 0.15 ≈ 0.24 =

‖FĀA2

3 ‖
‖F

A|A|2
3 ‖

. (B.5)

Hence, the first inequality (B.3a) stems from the fact that the norm of the second
harmonic is nearly an order of magnitude lower than the norm of the zeroth (mean
flow) harmonic.

For the second inequality (B.3b), there is no a priori reason why cs(LÛ
A

1 , FĀA2

3 ) �
cs(LÛ

A

1 , F
A|A|2
3 ). This is obviously linked to the non-normality of the operators which

separate differently in space the location of the various fields. But nothing more may
be obtained from such an analysis.

Appendix C. Comparison of results obtained with the various meshes in the
open cavity case

In the open cavity case, the eigenfrequencies and Landau constants have been
calculated for the two meshes D1 and D2. Recall that D1 and D2 only differ by the
vertex densities, which are much higher in the case of D2. Results are given in table
4. We observe differences which affect the second or third digits. We conclude that
the Landau constants calculated here have two or three significant digits, depending
on which constant is considered.
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