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Abstract

Crop scientists occasionally compute sample correlations between traits based on observed
data from designed experiments, and this is often accompanied by significance tests of the
null hypothesis that traits are uncorrelated. This simple approach does not account for effects
due to the randomization layout and treatment structure of the experiments and hence stat-
istical inference based on standard procedures is not appropriate. The present paper describes
how valid inferences accounting for all relevant effects can be obtained using bivariate mixed
linear model procedures. A salient feature of the approach is that the bivariate model is com-
mensurate with the model used for univariate analysis of individual traits and allows bivariate
correlations to be computed at the level of effects. Heterogeneity of correlations between
effects can be assessed by likelihood ratio tests or by graphical inspection of bivariate scatter
plots of effect estimates. if heterogeneity is found to be substantial, it is crucial to focus on the
correlation of effects, and usually, the main interest will be in the treatment effects. If hetero-
geneity is judged to be negligible, the marginal correlation can be estimated from the bivariate
model for an overall assessment of association. The proposed methods are illustrated using
four examples. Hints are given to alternative routes of analysis accounting for all treatment
and design effects such as regression with groups and analysis of covariance.

Introduction

Papers based on designed experiments appearing in agronomy and crop science journals occa-
sionally report bivariate correlations among several traits (response variables) computed from
the observed raw data. Almost invariably, these bivariate correlations are estimated and tested
for significance, as Pearson’s product–moment correlations, without any regard for the ran-
domization layout or treatment structure of the experimental design. This practice is in con-
trast to the univariate analysis of variance (ANOVA) usually presented for the individual traits,
which decomposes total variance into sources of variation due to treatments and the random-
ization layout. So, univariate and bivariate analyses presented in many research papers are not
consistent with one another, and arguably the bivariate analyses presented violate the assump-
tions made in univariate ANOVA.

To illustrate the problem, consider data from eight apple trees for each of 13 different
rootstocks (Andrews & Herzberg 1985, p. 357–360) (Example 1). Two of the traits measured
were trunk girth at 4 years (mm × 100) and weight of tree above ground at 15 years (lb ×
1000). The one-way ANOVA for both traits using rootstock as the treatment factor is
shown in Table 1. The bivariate raw data are plotted in Fig. 1. With data from this kind
of experiment, many research scientists would not hesitate to compute and test pairwise sam-
ple correlations r between traits from the observed raw data. A pairwise sample correlation
(r) can be regarded as a descriptive statistic and as such is often worth reporting. Here, the
sample correlation between trunk girth and tree weight is r = 0.7490 (for the benefit of read-
ers wishing to reproduce these results using their software, results in the current tutorial
paper are printed with more digits than would normally be required). When trying to inter-
pret and further investigate this correlation, however, or testing its significance, it becomes
necessary to account for the effects involved in the two traits being correlated and make
meaningful distributional assumptions accounting for the presence of these effects. This all
boils down to thinking carefully about a suitable bivariate model for the two traits (response
variables) that are to be correlated. The usual test of significance, for example, assumes that
pairs of observations on the two traits are independent, but in the case at hand pairs of data
from the same rootstock are likely to be more similar than pairs from different rootstocks
because they share effects of the same rootstock, thus violating the assumptions of the
usual test. Note that in a univariate ANOVA, comparing the rootstocks (Table 1) requires
fitting a treatment effect for rootstocks, so such an effect should also be accounted for in
any bivariate analysis.
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In the present paper, it will be demonstrated that it is possible
and useful to reconcile univariate and bivariate analyses of traits
of interest and perform them in a consistent manner using
mixed model procedures (Schabenberger & Pierce 2002; Littell
et al. 2006). It will be shown how to account for treatment effects
in assessing the correlation among response variables. In the next
section, a bivariate model is introduced that is commensurate
with the linear model used for univariate analyses (Hill &
Thompson 1978; Singh & El-Bizri 1992; Booth et al. 2009).
Based on this model, estimation of correlations and associated sig-
nificance tests are described. The methods are illustrated using the
rootstock example (Example 1). Three further examples serve to
show a range of settings, where simple correlation might be con-
templated initially, but closer investigation leads to alternative
analyses, providing more insights.

Materials and methods

This section considers linear models for univariate and bivariate
analysis. Several equations are given to explain how analysis of
simple correlation is different from a bivariate analysis accounting
for treatment and design effects and why the latter is preferable.
In the development, it is assumed for simplicity that a single treat-
ment factor has been tested according to a completely randomized
design (CRD). Extension to blocked experiments is straightfor-
ward and will be illustrated using further examples.

Defining a bivariate model

The linear model underlying a univariate one-way ANOVA for an
individual trait is:

yij = m+ ti + eij (1)

where yij is the response of the jth replicate of the ith treatment, μ
is a general intercept, τi is the effect of the ith treatment, and eij is
the residual error term associated with the response yij. All effects
are assumed to be fixed, except the error term eij, which is
assumed to follow a normal distribution with zero mean and con-
stant variance s2

e , i.e.

eij � N 0,s2
e

( ) (2)

where N 0,s2
e

( )
represents a normal distribution, the first argu-

ment denoting the mean (0 in this case) and the second argument
denoting the variance (s2

e in this case). The expected value, or
mean, of the response yij for a given treatment i is E(yij) = μ + τi.
Thus, the response has an assumed normal distribution with
mean μ + τi, comprised the fixed effects of the model, and variance
s2
e , which in short-hand notation can be written as

yij � N m+ ti,s
2
e

( ) (3)

The natural starting point for bivariate analysis is the model
used for univariate ANOVA. It seems reasonable to require that
the model holding for univariate ANOVA of each individual
trait is also implied by any bivariate model contemplated for
the joint analysis of two traits. In other words, the bivariate
model should be a natural extension of the univariate model.
Thus, model (1) may be assumed to hold for both traits simultan-
eously. All the effects will need to be trait-specific, of course, so all
effects are indexed by traits. For two traits 1 and 2, the two uni-
variate models then are written as:

yij1 = m1 + ti1 + eij1 (4)

and

yij2 = m2 + ti2 + eij2 (5)

The errors are assumed to have zero mean and trait-specific
variances:

var(eij1) = s2
e(1) (6)

and

var(eij2) = s2
e(2) (7)

In addition, now that a bivariate analysis is considered, the
correlation among traits also needs to be accounted for. Errors

Table 1. Univariate analyses of variance for trunk girth at 4 years (mm × 100) and tree weight at 15 years (lb × 1000) of six rootstocks of apple (Malus domestica L.)
each tested on eight trees (Example 1)

Trunk girth (mm × 100) Tree weight (lb × 1000)

M Degrees of freedom Mean square F-value P-value Mean square F-value P-value

Rootstocks 12 0.1062 16.44 <0.001 1.3289 22.05 <0.001

Error 91 0.006462 0.0603

Fig. 1. Scatter plot of trunk girth at 4 years (mm × 100) v. tree weight at 15 years (lb ×
1000) for apple (Malus domestica L.) rootstock data from an experiment with 13 root-
stocks (Example 1).
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for observations on the two traits made on the same plot can be
assumed to be correlated with covariance:

cov(eij1, eij2) = se(1,2) (8)

The correlation is defined as:

corr(eij1, eij2) = re(1,2) =
se(1,2)

se(1)se(2)
(9)

For bivariate analysis it is convenient to collect effects of the
same type into vectors of length two, allowing Eqns (4) and (5)
to be written more compactly as

yij1
yij2

( )
= m1

m2

( )
+ ti1

ti2

( )
+ eij1

eij2

( )
(10)

A short-hand notation for the distributional assumption for
the errors then is

eij1
eij2

( )
� BVN w = 0

0

( )
,S = s2

e(1) se(1,2)
se(1,2) s2

e(2)

( )[ ]
(11)

where BVN(w, Σ) represents a bivariate normal distribution, with
the first argument (w) denoting the mean vector (here, means for
both eij1 and eij2 are zero) and the second (Σ) the variance-
covariance matrix with the two variances s2

e(1) and s2
e(2) on the

diagonal and the covariance σe(1,2) on the off-diagonal. With
this assumption, the distributional model for the observed data
can be stated as:

yij1
yij2

( )
� BVN

m1 + ti1
m2 + ti2

( )
,

s2
e(1) se(1,2)

se(1,2) s2
e(2)

( )[ ]
(12)

It is important to note that the bivariate distributional model
(12) is consistent with the assumption that the univariate distribu-
tional model (3) holds for each of the two traits because both
comprise the same set of parameters (effects and variances).

It may now be asked: what is the implicit assumption for the
distribution of the bivariate observations ( yij1, yij2), if simple sam-
ple correlations r are computed from the observed data and sub-
jected to a significance test? The answer is that we are effectively
assuming that the paired observations are a simple random sam-
ple from the same (!) population, implying this bivariate model:

yij1
yij2

( )
� BVN

m1
m2

( )
,

s2
e(1) se(1,2)

se(1,2) s2
e(2)

( )[ ]
(13)

In particular, this is the assumption needed for the classical
t-test of the null hypothesis that the two traits are uncorrelated,
based on the test statistic t = r

������
n− 2

√
/

�������
1− r2

√
where n is the

sample size, or the equivalent F-statistic F = t2 (Mead et al.
1993). So, when simple correlations are computed and tested, the
treatment effects implicitly drop out of the model! From the devel-
opment of the bivariate model (12) as a natural extension of the
univariate model (1), however, it is clear that the simple model
(13) violates the distributional assumption made about each indi-
vidual trait in a univariate ANOVA. Specifically, under model
(12), each observation vector ( yij1, yij2) has its own expected
value (μ1 + τi1, μ2 + τi2), as opposed to (13), where all observation
vectors have the same expectation (μ1, μ2). For this reason,
model (13) is not tenable for data from a designed experiment,

yet many researchers readily assume that model, presumably
often without realizing, when computing pairwise correlations
from plot data and performing significance tests on them.
Subsequently, a method to estimate bivariate correlations will be
outlined that takes treatment effects into account. Before doing
so, the related problem of assessing the importance of the variabil-
ity of treatment effects for single traits will be considered. This is
done to motivate the approach proposed for bivariate analysis.

Defining and estimating variance and covariance for
treatment effects

When computing a marginal correlation for the bivariate observa-
tion vector ( yij1, yij2) in a designed experiment, the effects of the
model must be taken into account. Rather than thinking directly
in terms of a correlation of the observed data, one may consider
correlations at the level of each of the effects in the model. Here is
where the bivariate formulation is given in Eqn (10) comes in
handy. For a CRD, there are two bivariate vectors of effects that
vary across the data, i.e. treatment effects (τi1, τi2) and residual
errors (eij1, eij2). The important point here is that a bivariate cor-
relation for each of these bivariate effects should be expected.

As a prelude to defining a general procedure for estimating
bivariate correlations in designed experiments, taking all effects
into account, this section considers the problem of estimating a
variance of treatment effects for a single trait and the related prob-
lem of estimating a covariance of treatment effects for two traits.
It will be argued that it is both reasonable and convenient for this
particular purpose to consider treatment effects as random and
estimate variances and covariances using residual maximum like-
lihood (REML) (Patterson & Thompson 1971; Searle et al. 1992),
even in situations where the treatment effect would normally be
regarded as fixed. To justify the approach, a variance estimator
for a balanced one-way layout as in Example 1 will first be intro-
duced under the assumption of fixed treatment effect. Next, it will
be stressed that this estimator coincides with that obtained under
a random-effects model. Subsequently, the equivalence of estima-
tors under the fixed and random assumptions will also be demon-
strated for the covariance.

The one-way ANOVA has two sources of variation, corre-
sponding to the two effects in the model, i.e. treatments τi and
error eij. Table 2 shows the sums of squares of a one-way
ANOVA with t treatments and r replications per treatment. It
may be of interest to quantify the importance of treatment effects
in relation to the total variation. A possible measure is the ‘sample
variance’, or finite-population variance, of the fixed treatment
effects, given by:

Q(t) =
∑t

i=1 (ti − �t†)2
t − 1

(14)

where �t† denotes the arithmetic mean of the treatment effects τi.
This is a natural measure to quantify the variability of the fixed

treatment effects (Winer et al. 1991; Gelman 2005). Q(τ) can be
estimated from the two ANOVA mean squares as

Q̂(t) = MStreat −MSerror
r

(15)

where MStreat = SStreat/(t− 1), MSerror = SSerror/[t(r− 1)], with
treatment and error sums-of-squares a given in Table 3. The
error variance is estimated by ŝ2

e = MSerror.
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So far, the treatment effect has been regarded as fixed. Since
the interest here is in quantifying variability, one may alternatively
consider the treatment effect as random and define a variance of
treatment effects, s2

t = var(ti). Using the expected sums of
squares in Table 2, the treatment variance s2

t can be estimated
from the two ANOVA mean squares as:

ŝ2
t = MStreat −MSerror

r
(16)

This is the ANOVA or methods-of-moments estimator of the
treatment variance s2

t (Winer et al. 1991, p. 92; Searle et al. 1992,
p. 59). Assuming normality of the treatment effects and non-
negativity of the variance estimator, (16) also coincides with the
REML estimator of s2

t (Searle et al. 1992, p. 92). The important
point to make here is that the estimator of Q(τ) in (15), assuming
fixed treatment effects, is identical to the estimator of s2

t in (16),
assuming random effects, i.e. Q̂(t) = ŝ2

t .

The same idea can be applied to define and estimate a covari-
ance between treatment effects. Just as one can define a ‘sample
variance’ Q(τ) of fixed treatment effects for a single trait, one
can also define a ‘sample covariance’ of fixed treatment effects
for two traits as

Q(t1, t2) =
∑t

i=1 (ti1 −�t†1)(ti2 −�t†2)
t − 1

(17)

This covariance can be estimated by the method of moments
using two sums of cross-products:

SPtreat = r
∑t

i=1

(�yi†1 − �y††1)(�yi†2 − �y††2) (18)

and

SPerror =
∑t

i=1

∑r

j=1

(yij1 − �yi†1)(yij2 − �yi†2) (19)

The method-of-moments estimator for (17) and the covari-
ance of errors, σe(1,2), are:

Q̂(t1, t2) = MPtreat −MPerror
r

(20)

and

ŝe(1,2) = MPerror (21)
where MPtreat = SPtreat/(t− 1) and MPerror = SPerror/[t(r− 1)].
When treatments are taken as random and there is a covariance
between random treatment effects, st(1,2) = cov(ti1, ti2), the
same estimators are obtained, i.e. ŝt(1,2) = Q̂(t̂1, t̂2) and
ŝe(1,2) = MPerror , and these estimators coincide with the REML
estimators based on a model with random treatment effects (see
the following subsection), provided the variance estimates
obtained from (15) are non-negative (Searle et al. 1992; Thimm
2002, p. 378). It is noted that sums of cross-products can be
obtained conveniently from ANOVA means squares for the two
traits and their sum or difference (Searle et al. 1992; Piepho

Table 2. Variance parameter estimates for the apple (Malus domestica L.)
rootstock data in Table 1 (Example 1) under the hypotheses HA : ρy(1,2)≠ 0

Parameter Effect Estimate S.E.

s2
t(1) Treatment 0.01247 0.005422

s2
t(2) Treatment 0.1586 0.06781

ρτ(1,2) Treatment 0.8908 0.06978

s2
e(1) Error 0.006462 0.000958

s2
e(2) Error 0.06026 0.008933

ρe(1,2) Error 0.4572 0.08292

s2
y(1)

a Total 0.01893

s2
y(2)

a Total 0.2188

σy(1,2)
a Total 0.04863

ρy(1,2)
a Total 0.7556

Trait 1 = trunk girth at 4 years (mm × 100), trait 2 = tree weight at 15 years (lb × 1000).
aThese values were read off the output of the statistical package and are slightly different
from the values one would obtain by plugging the estimates of variances and covariances
for the effects shown in this table, which are rounded to the forth decimal place, into Eqns
(26)–(28) for the marginal variances, covariance and correlation.

Table 3. One-way ANOVA table with expected sums of squares (E(SS)) and mean squares for models with fixed and random treatment effects

Source Degrees of freedoma Sum of squares (SS)

E(SS)

τi fixed
b τi random

c

Treatments t− 1 SSTreat = r
∑t
i=1

(�yi† − �y††)2 (t − 1)[s2
e + rQ(t)] (t − 1)(s2

e + rs2
t)

Error t(r− 1) SSError =
∑t
i=1

∑r
j=1

(yij − �yi†)2 t(r − 1)s2
e t(r − 1)s2

e

Corrected total rt− 1 SSTotal =SSTreat + SSError

=
∑t

i=1

∑r

j=1

(yij − �y††)2
(rt − 1)s2

e + (t − 1)rQ(t) (rt − 1)s2
e + (t − 1)rs2

t

at = number of treatments; r = number of replications per treatment.

bQ(t) =
∑t

i=1 (ti − �t†)2
t − 1

; see, e.g. Winer et al. (1991, p. 85).

cSee, e.g., Winer et al. (1991, p. 92) or Searle et al. (1992, p. 60).
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et al. 2014). For example,

SPerror = [SSerror(y1 + y2) − SSerror(y1) − SSerror(y2)]
2

(22)

where SSerror ( y1), SSerror ( y2) and SSerror ( y1 + y2) denote the error
sum-of-squares for the two traits and their sum, respectively.

The practical upshot of all this is that the same estimator of the
variance is obtained as well as the covariance of treatment effects,
no matter whether treatment effects are modelled as fixed or ran-
dom. This suggests that for the purpose of estimating covariance
and correlation for treatment effects, treatment effects can be
taken as random and fit a bivariate model even in situations
where the treatment effect would normally be taken as fixed.

The development here is for the balanced case. Residual max-
imum likelihood is generally applicable also to unbalanced data,
and one of its advantages over an ANOVA approach is the
uniqueness of the estimators (Searle et al. 1992). Hence, it is
desirable to generally use REML to implement the proposed pro-
cedures, which involves the explicit assumption of random effects,
which will be examined below.

Decomposing the correlation using random effects

In the statement of model (1), the treatment effects were taken as
fixed, and there are usually good reasons for this assumption. For
example, the treatments are not usually randomly sampled from a
larger population of treatments (Searle et al. 1992; Gelman 2005).
The same can often be said about the blocks, for example in a field
experiment where blocks are placed adjacent to each other and
their position is generally purposely selected (Dixon 2016).
Nevertheless, based on the reasoning in the previous section, it
is proposed here to take effects as random in such settings for
the purpose of defining and estimating covariances and correla-
tions among effects.

There are two possible reactions for the reader at this juncture:
(1) one insists on the fixed-effects assumption and concludes that
correlations can only be defined by the residual errors (eij1, eij2).
In this case, a study of marginal correlations at the level of the
observed data ( yij1, yij2), or at the level of treatment effects (τi1,
τi2) becomes basically meaningless, or (2) one regards the random
assumption mainly as a convenient device allowing for estimates
of correlation to be obtained and tested for all effects and a mar-
ginal correlation to be defined at the level of the observed data.
The following considerations are based on this pragmatic view.
Before proceeding, however, it should be mentioned that an alter-
native route to analysis observing all effects but allowing some of
them to be fixed is to consider a regression analysis that uses one
variate as the response and the other as a regressor variable. This
option will be touched upon in Examples 3 and 4, but the focus
will remain on correlation.

Assuming that all effects are random corresponds to the
assumption of bivariate normality for the vectors of error and
treatment effects in model (10). For the errors (eij1, eij2), this
assumption has been specified in Eqn (11). For treatments the
assumption can be stated as:

ti1
ti2

( )
� BVN

0
0

( )
,

s2
t(1) st(1,2)

st(1,2) s2
t(2)

( )[ ]
(23)

where st(1,2) = cov(ti1, ti2),s2
t(1) = var(ti1), and s2

t(2) = var(ti2).

With this assumption, correlations may be defined for the treat-
ment effects as:

corr(ti1, ti2) = rt(1,2) =
st(1,2)

st(1)st(2)
(24)

Moreover, the marginal (total) correlation for the observed
data ( yij1, yij2) may be defined as:

corr(yij1, yij2) = ry(1,2) =
sy(1,2)

sy(1)sy(2)
(25)

where the marginal (total) variances and the covariance of the
response variables are defined as the sums of variances and cov-
ariances of the corresponding effects:

s2
y(1) = var(yij1) = s2

t(1) + s2
e(1) (26)

s2
y(2) = var(yij2) = s2

t(2) + s2
e(2) (27)

and

sy(1,2) = cov(yij1, yij2) = st(1,2) + se(1,2) (28)

The bivariate mixed model just described may be estimated by
REML using a suitable mixed model package. Here, the
GLIMMIX procedure of SAS is used. If the assumption of random
effects is tenable, correlations may be tested for significance using
likelihood-ratio tests (LRT). The random assumption will always
be tenable for the error effects, but not necessarily for the other
effects in the model. For this reason, the focus here is on the
error effects and treatment effects taken as fixed, keeping them
in the model throughout. Generally, the test statistic T is com-
puted as the difference in −2 log LR between the reduced model
under the null hypothesis (H0) and the full model under the alter-
native (HA), where LR is the maximized residual likelihood. Here,
the H0 is that the errors (eij1, eij2) are uncorrelated. In order to
obtain the likelihood under H0, the model under H0 needs to
be fitted to both traits simultaneously, constraining the covariance
(or correlation) to be zero. Under the alternative HA, the covari-
ance is allowed to differ from zero. Under the null hypothesis H0,
the test statistic has an approximate chi-squared (χ2) distribution
with degrees of freedom (d.f.) equal to the number of parameters
equated to zero under H0 (Schabenberger & Pierce 2002). Thus,
under the null hypothesis H0 : ρe(1,2) = 0, we set σe(1,2) = 0, so
the test statistic T has 1 d.f. One can also test the correlations
of other effects by an LRT in the same way, provided the random
assumption is tenable. Using the same general approach, one may
also perform an LRT of the null hypothesis that error and treat-
ment effects are equally correlated. If this null hypothesis is
rejected, interpretation should focus on the correlations for
effects. Otherwise, the marginal correlation provides a meaningful
measure of association.

An attractive feature of the sample correlation coefficient r is
that there is a simple link to the scatterplot of the data. When a
bivariate mixed model is fitted, such plots can also be generated
for each of the effects using their best linear unbiased predictors
(BLUP). In case of the error effects, their estimators correspond
to the residuals. The bivariate scatter plots for the effects can fur-
ther be used to check that the association is approximately linear,
which is a prerequisite for the bivariate model to be appropriate,
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and to inspect the degree of heterogeneity between effects in their
bivariate correlations.

Extensions of the bivariate model

In the development of the bivariate mixed model, a CRD has been
assumed so the model only had a treatment effect and a residual
error. It is straightforward to extend the model to allow for more
complex designs and covariance structures. For example, for
blocked designs, the model is augmented by adding a block effect
for each trait, which has a trait-specific variance and a bivariate
correlation (Booth et al. 2009). It is also possible to allow for het-
erogeneity between treatments in the variance of error effects.
Both of these extensions will be illustrated with examples.

Application to four examples

This section will look at four examples. Example 1 serves to dem-
onstrate that treatment and error effects can have rather different
correlations, in which case it is essential to inspect correlations for
each type of effect. Example 2 is used to demonstrate how block
effects can be incorporated into the model and that block effects
can have a correlation that is rather different from that of treat-
ment effects. Example 3 shows that there may be heterogeneity
between treatments in the correlation as well as the variance of
residual errors and that a regression analysis may be more inform-
ative than a simple correlation analysis. In Example 4, an experi-
ment with subsampling on the plots is considered to demonstrate
that the general approach also works with more complex mixed
models and that the marginal correlation can provide a meaning-
ful summary of the data when the residual variances are large in
comparison with the variances of other effects.

Example 1 (continued)

Parameter estimates for the bivariate model for the rootstock data
are shown in Table 3. The marginal correlation between trunk
girth at 4 years and tree weight at 15 years is estimated as
r̂y(1,2) = 0.7556, which is rather similar, but not identical to, the
sample correlation of r = 0.7490. These correlations agree with
the visual impression from the scatter plot of tree weight against
trunk girth in Fig. 1. By contrast, the correlation estimates for the
treatment and error effects are r̂t(1,2) = 0.8908 and r̂e(1,2) = 0.4572,
respectively, which are rather different in value from each other and
from the marginal correlation. Notably, there is a relatively high
correlation between treatments, but a low correlation for errors
within treatments. Taking treatment effects as fixed, the LRT of
H0 : ρe(1,2) = 0 for residual errors is significant at the 5% level
(T = 21.34, d.f. = 1, P < 0.001). The difference in correlations is
also apparent from a bivariate plot of BLUPs of random treatment
effects (Fig. 2) and of residuals (Fig. 3). These scatter plots show no
indication of departure from linearity. A further LRT shows
that treatment and error correlations are significantly different
(T = 7.16, d.f. = 1, P = 0.0074). The fact that correlations are rather
different for error and treatment effects underscores the import-
ance of accounting for treatment effects when estimating correla-
tions and suggests that the marginal correlation ρy(1,2) is not a very
meaningful summary of the data for this example. It is more
informative to focus interpretation on the treatment and error
effects.

The observant reader may be given to wonder why r and r̂y(1,2)
are different, for they seem to be estimating the same thing. The

answer is that they are clearly different estimators, even if one
assumes that they are estimating the same population correlation.
The usual estimator r falsely assumes independence of the bivari-
ate observations, while r̂y(1,2) accounts for the correlation among
bivariate observations induced by the presence of block and treat-
ment effects. The usual estimator r is biased on account of these
correlations between bivariate observations. This problem is rem-
iniscent of, for example, the bias in the sample variance estimator
in the presence of serial correlation among univariate observa-
tions (Anderson 1971, p. 448).

Fig. 3. Scatter plot of residuals for trunk girth at 4 years (mm × 100) v. tree weight at
15 years (lb × 1000) for apple (Malus domestica L.) rootstock data from an experiment
with 13 rootstocks (Example 1).

Fig. 2. Scatter plot of BLUPs of treatment effects trunk girth at 4 years (mm × 100) v.
tree weight at 15 years (lb × 1000) for apple (Malus domestica L.) rootstock data from
an experiment with 13 rootstocks (Example 1).
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One might consider correlating observed treatment means
rather than fitting a bivariate mixed model with correlated treat-
ment effects (Fig. 4). The sample correlation of treatment means
is r = 0.8675 (P < 0.001), which is lower than the estimated correl-
ation of random treatment effects under the bivariate mixed
model (r̂t(1,2) = 0.8908). The reason for this dilution is that
sample means (i.e. �yi† = m+ ti + �ei†) are functions not only of
the treatment effects but also of the treatment averages of the
residual errors, which have a considerably lower correlation
(r̂e(1,2) = 0.4572) than the treatment effects. This suggests that
it is preferable to fit a bivariate mixed model and inspect the
bivariate scatter plot of the BLUPs of treatment effects.

For comparison, tree weight at 15 years was jointly analysed
with trunk girth at 15 (not 4!) years (Table 4). The correlations
for both treatment and error effects are now rather high and
also quite similar (r̂t(1,2) = 0.9337 and r̂e(1,2) = 0.8616). An
LRT reveals no significant difference between the two correlations
(T = 2.885, d.f. = 1, P = 0.0894), so the marginal correlation
(r̂y(1,2) = 0.9137) is a meaningful measure of association that is
also close to the sample correlation (r = 0.9127).

Example 2

A field experiment with 64 breeding lines of oats (Avena sativa L.)
was laid out as a square lattice with three replicates (Friedrich Utz,
personal communication). Two of the traits assessed were yield
(tonnes/ha × 10) and plant height (cm) (Fig. 5). Three outlying
observations for yield were set to missing after careful inspection
of residuals (it should be stressed here that outlier removal
requires great care and observations should be dropped only
with good justification). The sample correlation between the
two traits is r = 0.5750 based on n = 189 plots with data on both
traits. The following mixed model was fitted:

yijk = m+ ti + rk + b jk + eijk (29)

where yijk is the response of the ith genotype in the jth incomplete
block nested within the kth replicate. In addition to the treatment
and error effects also present in (1), model (29) has an effect for
the kth replicate (rk) and for the jth incomplete block nested within
the kth replicate (bjk). The bivariate model then involves correlations
not only among the treatment and error effects for both traits, but
also among the replicate and incomplete block effects.

The fitted variance parameters are shown in Table 5. The
estimated marginal correlation of r̂y(1,2) = 0.6000 is slightly larger
than the sample correlation. The correlation of treatment effects
is rather smaller (r̂t(1,2) = 0.4796), as is the correlation of
error effects (r̂e(1,2) = 0.2795), whereas the correlation of block
effects (r̂b(1,2) = 0.9118) is considerably larger than both the

Table 4. Variance parameter estimates for the apple (Malus domestica L.)
rootstock data in Table 1 (Example 1) under the hypotheses HA : ρy(1,2)≠ 0

Parameter Effect Estimate Standard error

s2
t(1) Treatment 0.4221 0.1780

s2
t(2) Treatment 0.1585 0.06779

ρτ(1,2) Treatment 0.9337 0.03944

s2
e(1) Error 0.1128 0.01672

s2
e(2) Error 0.06026 0.008933

ρe(1,2) Error 0.8616 0.02701

s2
y(1)

a Total 0.5349

s2
y(2)

a Total 0.2188

σy(1,2)
a Total 0.3126

ρy(1,2)
a Total 0.9137

Trait 1 = trunk girth at 15 years (mm × 100), trait 2 = tree weight at 15 years (lb × 1000).
aThese values were read off the output of the statistical package and are slightly different
from the values one would obtain by plugging the estimates of variances and covariances
for the effects shown in this table, which are rounded to the forth decimal place, into Eqns
(26)–(28) for the marginal variances, covariance and correlation.

Fig. 5. Scatter plot of yield (kg/ha) v. height (cm) for oat (Avena sativa L.) data
(Example 2).

Fig. 4. Scatter plot rootstock means for trunk girth at 4 years (mm × 100) v. tree
weight at 15 years (lb × 1000) for apple rootstock data from an experiment with 13
apple (Malus domestica L.) rootstocks (Example 1).
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model-based marginal correlation and the sample correlation. The
bivariate scatter plots of BLUPs for effects of treatment (Fig. 6)
and blocks (Fig. 7) as well as the residual plot (Fig. 8), confirm
these divergent correlations. The example reinforces the observa-
tion that correlations can be quite different for different effects

and it is therefore important to study correlations at the level of
effects. In this application, the main interest will be in the correl-
ation among the treatment effects because these can be used to
infer if indirect selection for yield via plant height would be a
more promising approach than direct selection (Falconer &
Mackay 1996). The relatively weak correlation for treatment effects
suggests that indirect selection is not worthwhile in the case at hand.

Example 3

In an experiment with three rice cultivars (IR1514A, IR8 and
Peta), the agronomic yield (t/ha) was assessed on seven plots

Table 5. Variance parameter estimates for oats (Avena sativa L.) data (Example
2) under the hypotheses HA : ρy(1,2)≠ 0

Parameter Effect Estimate Standard error

s2
t(1) Treatment 22.9713 4.7077

s2
t(2) Treatment 2.8592 0.6688

ρτ(1,2) Treatment 0.4796 0.1207

s2
r(1) Replicate 13.9498 15.6364

s2
r(2) Replicate 1.7517 2.0340

ρr(1,2) Replicate 0.7661 0.3275

s2
b(1) Block 12.3524 4.2842

s2
b(2) Block 1.9970 0.7245

ρb(1,2) Block 0.9118 0.06440

s2
e(1) Error 8.5396 1.1615

s2
e(2) Error 1.9457 0.2769

ρe(1,2) Error 0.2795 0.08932

s2
y(1)

a Total 8.5537

s2
y(2)

a Total 57.8131

σy(1,2)
a Total 13.3422

ρy(1,2)
a Total 0.6000

Trait 1 = yield (tonnes × 10), trait 2 = height (cm).
aThese values were read off the output of the statistical package and are slightly different
from the values one would obtain by plugging the estimates of variances and covariances
for the effects shown in this table, which are rounded to the forth decimal place, into Eqns
(26)–(28) for the marginal variances, covariance and correlation.

Fig. 6. Scatter plot of BLUPs of treatment effects for yield (kg/ha) v. height (cm) for
oat (Avena sativa L.) data (Example 2).

Fig. 7. Scatter plot of BLUPs of block effects for yield (kg/ha) v. height (cm) for oat
(Avena sativa L.) data (Example 2).

Fig. 8. Scatter plot of residuals for yield (kg/ha) v. height (cm) for oat (Avena sativa)
data (Example 2).
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per variety (Gomez & Gomez 1984, p. 377, Table 9.4). On each
plot, the number of tillers per hill was assessed. It is assumed
here that the experiment was completely randomized, because
Gomez & Gomez (1984) provide no information on any blocks
in their table with the raw data, so our basic model is the one-way
model in Eqn (1). Inspection of residuals for both traits indicated
that approximate normality could be assumed. The sample correl-
ation between the two traits is r = 0.1973 (P = 0.3912). Figure 9
shows a plot of yield versus the number of tillers, along with fitted
regression lines per variety for emphasis of the general pattern.
Obviously, there are strong correlations for the individual var-
ieties, so the simple correlation ignoring the factor variety is
grossly misleading. Moreover, Fig. 9 suggests that residual corre-
lations differ markedly between varieties, meaning that the bivari-
ate mixed model needs to allow for heterogeneity of residual
variances and correlations. Heterogeneity of variance for a ran-
dom effect is straightforward to implement in a mixed model.
For example, in SAS one may use the option GROUP = variety
on the REPEATED statement in order to allow the error variance
to differ between varieties. Allowing for heterogeneity, the
correlation of treatment effects is estimated as r̂t(1,2) = −0.1631
(S.E. = 0.7734). The fit of the error variance parameters of the

heterogeneous model is shown in Table 6. None of the correla-
tions are anywhere near the simple correlation of r = 0.1973.
Correlations for the errors are large in absolute value and positive
for varieties IR1514A and IR8, but negative for variety Peta. This
heterogeneity is significant by an LRT with a chi-squared value of
T = 26.73 on 6 d.f. (P < 0.001). Due to the significant heterogen-
eity, and because correlations for errors are rather different
from the correlation between treatment effects, it would be
inappropriate here to compute a single marginal correlation for
the observed data. This is also clear from graphical inspection
of the scatter of points in Fig. 9. Instead, it seems more reasonable
to focus on the treatment-specific residual correlations shown in
Table 5 or fit variety-specific regression lines as shown in Fig. 3
(Gomez & Gomez 1984). In fact, this ‘regression with groups’
with groups corresponding to varieties may be more informative
for this dataset, but that analysis will not be explored in detail
because our focus is on correlation. It is stressed, however, that
correlation and regression analysis have close links. Specifically,
a regression model can be derived from a bivariate mixed
model by conditioning on one of the variates (Searle et al.
1992, p. 464). In the example, the slope for the regression of
yield of a variety of tiller number can be derived as the ratio of
covariance between the two traits over the variance of tiller num-
ber for that variety. It should also be pointed out that in general
estimating correlation for an effect requires a reasonable number
of levels for that effect. Three effects of treatments in this example
are clearly a rather small number to make any substantive state-
ment about correlation. This is why the focus was on the within-
variety correlation.

Example 4

An experiment with chia (Salvia hispanica L.), laid out according
to a randomized complete block design (RCBD), was performed
in order to derive a prediction model for leaf area as a function
of leaf width (cm) and leaf length (cm) (Mack et al. 2017). The
experiment comprised three nitrogen fertilizer treatments (0, 20
and 40 kg N/ha). On each plot, one chia plant was selected ran-
domly and ten leaves were sampled per plant. For each leaf, the
length, width and area were measured. The objective of the
experiment was to identify a suitable prediction model for leaf
area for individual leaves. As a preliminary step, it was therefore
of interest to estimate the marginal correlation between leaf
width and leaf length. The Pearson correlation between these
two traits is r = 0.9697. The raw data are plotted in Fig. 10.

Since there are subsamples (leaves) taken per plot, the linear
model needs to be extended to comprise both a plot error as

Fig. 9. Plot of yield (t/ha) v. number of tillers for rice (Oryza sativa L.) data for three
varieties of rice, along with fitted regression lines for each variety (Gomez & Gomez
1984, p. 377) (Example 3). Colour online.

Table 6. Residual variance parameter estimates by variety for rice (Oryza sativa L.) data of Gomez & Gomez (1984, p. 377) (Example 3) under a model with
heterogeneity between varieties

Parameter

Variety

IR1514A IR8 Peta

Estimate S.E. Estimate S.E. Estimate S.E.

s2
e(1) 1.3688 0.7731 1.8521 1.0964 0.7862 0.4473

s2
e(2) 0.6649 0.3772 1.4543 0.8583 1.0692 0.6105

ρe(1,2) 0.7665 0.1667 0.9702 0.0242 −0.8061 0.1421

Trait 1 = number of tillers, trait 2 = yield of rice (t/ha).
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well as a leaf error. For a single trait, the model is:

yijk = m+ bj + ti + eij + fijk (30)

where yijk is the response of the kth leaf for ith treatment in the jth
block, μ is a general intercept, bj is the effect of the jth block, τi is
the effect of the ith treatment, and eij is the error term associated
with the ijth plot, and fijk is the residual leaf error associated with
the response yijk. This univariate model is extended to the bivari-
ate model for leaf length and leaf width. Fitting this model, the
block variance for leaf length was estimated to be zero (results
not shown), and the statistical package reported a message indi-
cating that the final Hessian was not positive definite. This reflects
the fact that a correlation cannot be computed if one of the asso-
ciated variances is zero. Thus, the random block effect for leaf
length was dropped from the model. This was implemented by
defining a dummy variable z with z = 0 for leaf length and z = 1
for leaf width. In coding the model using the statistical package,
a block effect was then multiplied with this variable, such that
the effect was ‘switched off’ for leaf length (Piepho et al. 2006).
The fitted model parameters for the bivariate model and the cor-
responding model under the null hypothesis that all effects are
uncorrelated is shown in Table 7. The treatment and plot effects
have an estimated correlation of 1.000, whereas the leaf effects
have a correlation of r̂f (1,2) = 0.9736. These very high correlations
also translate into a very large marginal correlation of
r̂y(1,2) = 0.9686, again a meaningful summary in this case because
effect correlations are so similar. The leaf effect correlation is
highly significant (T = 248.73, P < 0.001), whereas the correlations
for plot effects are not significant (T = 1.21, P = 0.2713). Also, the
variances for leaf effects are rather larger than those for treatment
and plot effects. Thus, the variance and covariance of leaf effects
dominate the corresponding marginal variance and covariance for
the observed data. This is also why the leaf error correlation, as
well as the marginal correlation, are both rather close to the

sample correlation of r = 0.9697. But whether a large sample cor-
relation is also associated with large correlations of all the effects
can only be verified by fitting a bivariate model as illustrated here.

Concluding remarks

The present paper has considered the question of how to estimate
and test correlations among traits in designed experiments. The
common practice of merely computing sample correlations
from the raw data should be discouraged because such correla-
tions do not account for effects due to treatments and blocks
and hence are difficult to interpret and the significance test for
these correlations is invalid. The advice given in the current
paper, therefore, is that the simple correlation not been used at
all when the data have structure, as is the case in designed experi-
ments. The main recommendation here is to use methods that
allow accounting for all effects one would consider in a univarate
analysis of a single trait, thus making the univariate and bivariate
analyses commensurate. If one is primarily interested in correla-
tions, then fitting a bivariate mixed model is suggested as a viable
option. The approach allows decomposing correlation according
to effects in the model, providing detailed insight into the struc-
ture of correlation. If the effects display a correlation of about
equal magnitudes, then a marginal correlation accounting for
these effects is a meaningful summary measure.

The first step of the analysis is to inspect the correlations for
each of the effects of the bivariate model. This can be done
using REML estimates of the correlations and use scatter plots

Fig. 10. Scatter plot of leaf length (cm) v. leaf width (cm) for chia (Salvia hispanica L.)
leaves from an RCBD experiment with three nitrogen treatments (0, 20 and 40 kg N/ha)
(Mack et al. 2017) (Example 4). Colour online.

Table 7. Variance parameter estimates for chia (Salvia hispanica L.) data (Mack
et al. 2017) (Example 4) under the hypotheses HA : ρy(1,2)≠ 0

Parameter Effect Estimate Standard error

s2
b(1) Block 0a –

s2
b(2) Block 0.008856 0.02211

σb(1,2) Block 0a –

ρb(1,2) Block 0a –

s2
t(1) Treatment 0.1137 0.2135

s2
t(2) Treatment 0.02437 0.06402

ρτ(1,2) Treatment 1.0000 –

s2
e(1) Plot 0.01181 0.06370

s2
e(2) Plot 0.03219 0.07053

ρe(1,2) Plot 1.0000b –

s2
f (1) Leaf 3.6137 0.5460

s2
f (2) Leaf 1.7052 0.2595

ρf(1,2) Leaf 0.9736 0.005685

s2
y(1)

c Total 3.7480

s2
y(2)

c Total 1.7618

σy(1,2)
c Total 2.4889

ρy(1,2)
c Total 0.9686

Trait 1 = leaf length (cm), trait 2 = leaf width (cm).
aFixed at zero at convergence.
bFixed at unity at convergence.
cThese values were read off the output of the statistical package and are slightly different
from the values one would obtain by plugging the estimates of variances and covariances
for the effects shown in this table, which are rounded to the forth decimal place, into Eqns
(26) to (28) for the marginal variances, covariance and correlation.
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of BLUPs of effects and residuals as illustrated with Examples 1
and 2. If correlations of effects are judged to be similar, either
based on a non-significant LRT or from graphical inspection of
scatter plots, the marginal correlation provides a meaningful sum-
mary of the data. Example 4 provides a case where the marginal
correlation is the primary focus because good predictions are
sought for leaf area at the level of individual observations. If the
marginal correlation is high, which was the case here, one may
fit a regression model for prediction (Mack et al. 2017).
Conversely, when correlations are deemed to be substantially het-
erogeneous between effects, it is necessary to study correlations at
the level of individual effects. Most of the time, the research will
mainly be interested in the treatment effects. Example 2 provides
a pertinent example, where treatments correspond to genotypes
and genetic correlation is a key quantitative genetic parameter.
In Example 3, by contrast, there was heterogeneity of within-
treatment correlation, so the study of the within-treatment error
correlations proved to be most interesting. So, which of the effects
is of primary interest in case of heterogeneity of correlations
between effects needs to be decided on a case-by-case basis.

The proposed approach entails modelling block and treatment
effects as random for the purpose of estimating correlations for
these effects. If one is prepared to estimate a correlation for an
effect, then the assumption of random effects will seem quite nat-
ural. Indeed, without assuming random effects, the notion of a
correlation or covariance for effects, or of observations composed
of these effects, may seem difficult to envisage. Yet, the choice of
both treatments and blocks in a designed experiment may be such
that the assumption of a random sampling of effects is deemed
hard to justify. For this reason, one may insist that these effects
should be modelled as fixed (Dixon 2016). It was shown for the
case of a CRD, however, that variances and covariance for treat-
ment effects can be defined also for fixed effects and that esti-
mates of variances and covariances coincide under the fixed
and random-effects assumptions. This equivalence holds more
generally, as pointed out by Gelman (2005, p. 13), who denotes
a fixed-effects variance such as Q(τ) in (14) as finite-population
variance, and the random-effects equivalent such as s2

t as super-
population variance. This fact lends support to the approach pro-
posed here, i.e. to take effects as random for the purpose of
estimating correlations, even in settings where one would other-
wise hesitate to model block and treatment effects as random.
There is, of course, a long-standing debate in the statistical litera-
ture as to whether blocks should be modelled as fixed or random.
This is not the place to review that debate, but it should be
pointed out that one camp insists that block effects should always
be modelled as random, even for an RCBD (Nelder 1965; Casella &
Berger 1990, p. 530; Giesbrecht & Gumpertz 2004, p. 86; Booth
et al. 2009). The assumption of random treatment effects is less
common, except in breeding experiments where treatments cor-
respond to genotypes which can be regarded as a (usually large)
sample from a common breeding population and the main inter-
est is in making inferences about that population, including esti-
mation of genetic correlation between traits, heritability of traits,
etc. (Falconer & Mackay 1996). But note that even with a rela-
tively small number of levels of an effect and lacking truly random
sampling, the random assumption can be beneficial for inference
about a treatment effect (James & Stein 1961; Lee et al. 2006,
p. 151; Forkman & Piepho 2013). Certainly, if a Bayesian frame-
work is adopted, there is no conceptual difficulty in assuming a
joint probability distribution on all unknown parameters, includ-
ing effects for treatments (Gelman 2005).

The bivariate model used in the current paper has been con-
sidered by Booth et al. (2009), who used it to derive an
analysis-of-covariance model by conditioning on the observed
values of one of the traits, regarded as the concomitant variable
(covariate). The definition of the marginal correlation in (25) is
not entirely novel either. It is very similar to the one proposed
by Hill & Thompson (1978; also see Singh & El-Bizri 1992),
also for an RCBD, for the specific context of genetic experiments
where treatments correspond to genotypes. The difference is that
for a blocked design the marginal correlation in (25) includes the
block effects, while Hill & Thompson (1978) exclude the block
effect from the definition of marginal correlation because it is
irrelevant for selection decisions. Depending on the objective
one may decide to either include or omit the block effect from
the correlation. The same holds for any other design, where one
needs to decide if design effects for blocks should be included
in the definition of total correlation. The great advantage of the
REML framework employed here is its generality and complete
flexibility in terms of the effects that are included in the overall
model and in the definition of total correlation. In plant breeding
and quantitative genetic experiments, where the focus is on gen-
etic correlation, block effects are not relevant in the definition of
marginal correlations, but they need to be fitted nonetheless to
represent the experimental design (Piepho & Möhring 2011).

Before fitting a bivariate random-effects model, it is advisable
to fit univariate random-effects models to the individual traits. If a
variance for an effect is estimated to be zero for at least one of the
traits, a covariance cannot be fitted, because a covariance requires
both variances to be non-zero and a correlation cannot be defined
otherwise. It is then reasonable to constrain the bivariate model to
have a zero covariance for such effects. If the variance of an effect
is zero for only one trait, however, it needs to be kept in the
model, but the covariance explicitly constrained to be zero.
Most mixed models have covariance structures for this case,
known as ‘diagonal model’ in some packages. In SAS, the struc-
ture is denoted as UN(1). Alternatively, one can use dummy cod-
ing as illustrated with Example 4. Diagonal covariance structures
can also be used to fit two univariate models simultaneously as a
joint bivariate model assuming independence for all effects.

The proposed methods were illustrated using experiments laid
out according to a CRD, an RCBD (with sub-sampling per plot)
or a lattice design, but the framework is broadly applicable to any
experimental design. All that needs to be done is taking each
effect of the bivariate model as random, assuming a bivariate nor-
mal distribution. Multivariate linear mixed models can also be fit-
ted to more than two traits simultaneously and when data are
unbalanced (Holland 2006; Piepho & Möhring 2011) or when
spatial covariance needs to be modelled (Ganesalingam et al.
2013; de Faveri et al. 2017), but occasionally convergence pro-
blems may hamper such analyses. Good starting values are crucial
to larger problems. One option to obtain starting values for the
variances is to fit univariate models separately for each trait.
Covariances can be obtained from univariate analyses of differ-
ences or sums of two traits (see Eqn (22) and accompanying
text; Searle et al. 1992; Piepho et al. 2014).

The present paper has focused on correlation in bivariate data,
stressing the importance of accounting for effects of blocks and
treatments. This is also important when regression is used instead
of correlation, which may be more informative. Figure 3 for
Example 3 shows fitted regression lines for each variety, providing
variety-specific predictions of yield as a function of tiller numbers.
The regression lines very clearly show that the associations
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between yield and tiller number are rather different between var-
ieties. In this example, fitting a single regression line through all
points, ignoring the varieties, obviously makes as little sense as
computing a simple correlation coefficient. If the regressor variable
shows no treatment effect and slopes are identical across treat-
ments, regression analysis accounting for block and treatment
effects in the response is known as analysis of covariance
(Milliken & Johnson 2002; Pearce 2006). When there is an inter-
action between treatment and covariate, i.e. slopes differ between
treatments as is the case in Example 3, a regression with groups
is appropriate.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859618000059.
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