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Non-collapsing in homogeneity greater than one
via a two-point method for a special case
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We study the mechanism of proving non-collapsing in the context of extrinsic
curvature flows via the maximum principle in combination with a suitable two-point
function in homogeneity greater than one. Our paper serves as the first step in this
direction and we consider the case of a curve which is C2-close to a circle initially
and which flows by a power greater than one of the curvature along its normal
vector.
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We begin this short note with the definition of δ-non-collapsing, cf. for example, [4].

Definition 1.1. A mean-convex hypersurface M bounding an open region Ω in
R

n+1 is δ-non-collapsed (on the scale of the mean curvature) where δ > 0 is a
constant if for every x ∈ M there is an open ball B of radius ((δ)/(H(x))) contained
in Ω with x ∈ ∂B.

Note that the relevant case here is δ � 1, e.g. the unit circle is δ-non-collapsed only
for these values of δ. Sheng and Wang [24] showed that any compact mean-convex
solution of the mean curvature flow is δ-non-collapsed for some δ > 0. Related
statements have been proven earlier by White [25]. The proofs in [24,25] are quite
long compared with Andrews’ method [4] which uses a cleverly chosen ansatz func-
tion of two variables and the maximum principle to show that a mean-convex,
closed, embedded and δ-non-collapsed initial hypersurface remains δ-non-collapsed
under the mean curvature flow. Note that by compactness any mean-convex, closed,
embedded hypersurface is δ-non-collapsed for some δ > 0. The challenge was to
show that such a δ is preserved under the mean curvature flow. Andrews’ new,
short and nice method [4] was generalized by Andrews, Langford and McCoy [7]
to flows with fully nonlinear, homogeneous degree one, concave or convex, nor-
mal speeds. Later, Brendle [10] improved the non-collapsing estimate [4] and gave
a sharp bound for the inscribed radius under mean curvature flow. Brendle [11]
also showed an inscribed radius estimate for mean curvature flow in Riemannian
manifolds.
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A modification of Andrews’ ansatz function from [4] served as a crucial tool in
Brendle’s proof [8] of the Lawson conjecture. Andrews method [4], furthermore,
led to a streamlined and new theory of mean-convex mean curvature flow (with
surgery), see [12–14].

Andrews and Li [5] applied a similar argument as in [8] to embedded constant
mean curvature tori and proved a conjecture of Pinkall and Sterling of the year
1989.

Summarized Andrews’ method [4] turned out to be quite rich in content as a
tool for further interesting applications, cf. also [9] for an overview about two-point
functions.

All the above-mentioned cases use Andrews’ tool [4] only in the case that the flow
speed is homogeneous of degree one in the principal curvatures. We are aware of only
two papers which treat non-collapsing in combination with a different homogeneity
of the flow speed, namely Ju and Liu [19] and Liu [20]. They consider in both
papers the case of homogeneity −1, that is, expanding curvature flows. While the
assertion of [20] is rather in the spirit of [10] the proof in the paper [20] is along
Andrews’ method [4].

It seems to be tantalizing to show non-collapsing by using the maximum principle
in combination with a cleverly chosen ansatz function for extrinsic curvature flows
with a general degree of homogeneity greater than one. We are not able to do the
latter in full generality.

The aim of our paper is to study the mechanism of applying the maximum princi-
ple to obtain non-collapsing in the well-understood setting of flowing convex curves
(with curvature being initially sufficiently close to a constant) by powers greater
than one of the curvature. This setting can be seen as a fully nonlinear variant of
the classical curve shortening flow, cf. [15], [16], and [17] for the higher dimensional
case, has been treated in [1,3] without the assumption on the curvature of the ini-
tial curve and the second named paper observes convergence to the round circle
after proper rescaling with other methods. In this sense, our non-collapsing result
is judged from the point of its assertion far behind of what is already known but
interesting from the point of view to see how the two-point method [4] based on the
maximum principle works in this case of higher homogeneity. To the best knowledge
of the author, this is the first paper in this direction and it would be interesting to
generalize our assumptions further. We remark that in order to obtain convergence
on the C2-level after suitable rescaling pinching of the principal curvatures (which
corresponds to the fact that the curvature is closed to a constant in the case of
curves) is a natural assumption in the case of surfaces when being evolved under
flows by higher degrees of homogeneity in the curvature, see for example, [6,22].
On the other hand in the special case of the Gauss curvature flow of surfaces such
an assumption is not necessary [2].

We consider the so-called power curvature flow (PCF) for closed, strictly convex
curves in R

2. This is a family of immersions x(t) = x(t, ·), x : [0, T ) × S1 → R
2,

T a positive time which solves the equation

ẋ = −κpν, p > 1, (1.1)

where κ is the curvature of the evolving curve and ν its outer unit normal. As
mentioned in the introduction this flow has been studied in [1,3].
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PCF is a special case of the power mean curvature flow (PMCF). The definition
of PMCF is analogous to the definition of PCF and can be obtained from the latter
by considering now x : [0, T ) × Sn → R

n+1 and replacing ‘strictly convex curve’
by ‘mean-convex hypersurface’ and, furthermore, by replacing the curvature κ by
the mean curvature H. It was proved in [23] that PMCF shrinks (for all n) a
convex initial hypersurface to a point and in [22] that after a proper rescaling a
sufficiently pinched (i.e. the ratio of the biggest and the smallest principal curvature
is sufficiently close to 1) initial hypersurface converges in C∞ to a unit sphere.

Our aim is to prove the following theorem 1.2 using the two-point-method from
[7]. For technical reasons we denote the constant which is involved in the formulation
of this theorem by μ and remark that it plays the role of 1

δ when δ is as in definition
1.1. Clearly, the natural range for μ is then μ � 1.

Theorem 1.2. Let X : S
1 × [0, T ) → R

n+1 be a family of smooth, strictly convex
embeddings evolving by PCF (1.1). There is μ0 = μ0(p) > 1 so that if M0 = X(S1, 0)
is μ-non-collapsed with some 1 � μ � μ0, then Mt = X(S1, t) is μ-non-collapsed for
all t ∈ [0, T ).

Proof. W.l.o.g. we can assume 1 < μ�μ0, otherwise consider a sequence 1<μk→1.
For example, from [21] we get the evolution equation

d
dt

(κp) − pκp−1Δκp = pκp−1κ2+p (1.2)

and after a short calculation

d
dt

κ − pκp−1Δκ = κ2+p + p(p − 1)κp−2‖Dκ‖2. (1.3)

Following [7] we define

Z(x, y, t) := 2
〈X(x, t) − X(y, t), ν(x, t)〉

‖X(x, t) − X(y, t)‖2
= 2 〈w, νx〉 d−1 (1.4)

for t ∈ [0, T ) and (x, y) ∈ (S1 × S
1)\D where D = {(x, x) : x ∈ S

1}; we use
the abbreviations d = ‖X(x, t) − X(y, t)‖, w = d−1(X(x, t) − X(y, t)), ∂x =
((∂X)/(∂x))(x, t), νx = ν(x, t), κx = κ(x, t), and so on; the sub- or superscript x
(in contrast to y) will be omitted sometimes. The supremum of Z with respect to
y gives the curvature of the largest interior sphere which touches at x.

We show that

w(x, y, t) = Z(x, y, t) − μκ(x, t) � 0 (1.5)

for 0 � t < T .
In view of the assumptions (1.5) holds for t = 0. We argue by contradiction.

Let δ > 0 be small, assume sup w(·, ·, t) = δ for a 0 < t < T and choose t minimal
with these properties. Let x, y ∈ S

1, so that w(x, y, t) = δ, then x �= y. We choose
normal coordinates (x) and (y) around x and y, respectively, and obtain in (x, y, t)
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by adapting the equations [7, (8)–(11)]

0 � ẇ − pκp−1

(
∂2

∂x2
w + 2

∂2

∂x∂y
w +

∂2

∂y2
w

)

= −μ
∂

∂t
κ − 2

d2
κp +

2
d2

κp
y 〈νy, ν − dZw〉 +

2
d
〈w,∇(κp)〉

+ Z2κp +
2p

d2
κp−1 (Z − κ) + pκp+1Z

− 2p

d
κp−1∇κ 〈w, ∂x〉 − pκpZ2

+
4pμ

d
κp−1∇κ 〈w, ∂x〉 + μpκp−1 ∂2κ

∂x2

− 4p

d2
κp−1 (Z − κ) 〈∂y, ∂x〉 − 4pμ

d
κp−1∇κ 〈w, ∂y〉

+
2p

d2
κp−1 (Z − κy)

= −μκp+2 − μp(p − 1)κp−2‖Dκ‖2 + pκp+1Z

− 2(1 + p)
d2

κp +
4p

d2
κp 〈∂y, ∂x〉

+
2
d2

κp
y − 2p

d2
κp−1κy

+
4p

d2
κp−1Z − 4p

d2
κp−1Z 〈∂y, ∂x〉

+ (1 − p)κpZ2

+
4pμ

d
κp−1∇κ 〈w, ∂x − ∂y〉 . (1.6)

The second line of the right-hand side of inequality (1.6) can be rewritten as

− 4p

d2
κp

(
1 + p

2p
− 〈∂y, ∂x〉

)
(1.7)

and the fourth line as

4p

d2
Zκp−1 (1 − 〈∂y, ∂x〉) . (1.8)

From

∂w

∂x
(x, y, t) = 0 (1.9)

we conclude

∇κ =
2
μd

(κ − Z) 〈w, ∂x〉 . (1.10)
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so that inequality (1.6) can be written as

0 � −(μκ − pZ)κp+1 − μp(p − 1)κp−2‖Dκ‖2

+
2
d2

κp
y − 2p

d2
κp−1κy

+ (1 − p)κpZ2

+
4p

d2
κp−1 (Z − κ)

(
1 − 〈∂y, ∂x〉 + 2 〈w, ∂y − ∂x〉 〈w, ∂x〉 +

1 − p

2p

)

+
2(p − 1)

d2
Zκp−1. (1.11)

Using

δ � supZ(y, ·) − μκy = Z(x, y) − μκy (1.12)

we get

κx � κy � Z. (1.13)

Let us write κy = (1 + η + ((δ̃)/(κx)))κx with suitable 0 � η � μ − 1 and 0 � δ̃ � δ.
By using Taylor’s expansion of the function

f(s) = (1 + s)p−1, s � 0, (1.14)

around 0 we obtain at s = η + ((δ̃)/(κx)) the following upper bound for the second
line of (1.11)

2
d2

κp(1 + s)((1 + s)p−1 − p)

� 2
d2

κp

[
1 − p + (p − 1)

(
1 +

p − 2
2

)
s2

+
1
2
(p − 1)(p − 2)

(
1 +

1
3
(p − 3)(1 + ξ)p−4(1 + s)

)
s3

]
(1.15)

with a suitable 0 � ξ � s. We have

4p

d2
κp−1(Z − κ)

1 − p

2p
=

2
d2

(1 − p)
(

μ − 1 +
δ

κ

)
κp. (1.16)

The proof of [7, lemma 6] shows that there are α ∈ [0, π
2 ] and normal coordinates

(x) and (y) so that

|〈w, νx〉| = sinα ∧ 〈∂y, ∂x〉 = − cos 2α (1.17)

and

1 − 〈∂y, ∂x〉 + 2〈w, ∂y − ∂x〉〈w, ∂x〉 = −2 cos2 α. (1.18)
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Estimating (1.11) using (1.15), (1.16) and (1.18) leads to

0 � −(μκ − pZ)κp+1 − μp(p − 1)κp−2‖Dκ‖2

+
2
d2

κp

[
1 − p + (p − 1)

(
1 +

p − 2
2

)
s2

+
1
2
(p − 1)(p − 2)

(
1 +

1
3
(p − 3)(1 + ξ)p−4(1 + s)

)
s3

]

+ (1 − p)κpZ2 − 8p

d2
κp−1(Z − κ) cos2 α + 2

p − 1
d2

Zκp−1

+
2
d2

(1 − p)
(

μ − 1 +
δ

κ

)
κp

� −(μκ − pμκ − pδ)κp+1

+ (1 − p)κp(μ2κ2 + 2μκδ + δ2)

− 8p

d2
cos2 ακp−1((μ − 1)κ + δ)

+
2
d2

κp

[
(p − 1)

(
1 +

p − 2
2

)
s2

+
1
2
(p − 1)(p − 2)

(
1 +

1
3
(p − 3)(1 + ξ)p−4(1 + s)

)
s3

]

= (1 − p)(μ − 1)μκp+2(1 + O(δ))

+ (μ − 1)κp 2
d2

[−4p cos2 α](1 + O(δ))

+
2
d2

κp

[
(p − 1)

(
1 +

p − 2
2

)
s2

+
1
2
(p − 1)(p − 2)

(
1 +

1
3
(p − 3)(1 + ξ)p−4(1 + s)

)
s3

]

≡ (1 − p)(μ − 1)μκp+2(1 + O(δ))

+ (μ − 1)κp 2
d2

[−4p cos2 α](1 + O(δ))

+
2
d2

κp(p − 1)c(p)sO(s). (1.19)

There holds

d �
√

2
Z

⇔ α � π

4
. (1.20)

In order to see the last equivalence we make a short elementary geometric delibera-
tion. Remember that 1/Z is the radius of the largest open ball B which is enclosed
by M(t) and which satisfies X(x, t) ∈ ∂B. Recall that d is the distance of X(x, t)
and X(y, t) from each other and both of them lie on ∂B. Note that

√
21/Z is the

distance of any point on ∂B from its image under a rotation by π/2 around the
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centre of ∂B. Hence for the angle ϕ ∈ [0, π/2] between νx and w we conclude in
view of

cos ϕ = |〈w, νx〉| = sin α (1.21)

that

d �
√

2
Z

⇔ ϕ � π

4
⇔ α � π

4
. (1.22)

In the following, we may w.l.o.g. use inequality (1.19) under the assumption that
O(δ) = 0, especially we have then Z = μκ. We distinguish cases and show thereby
that a sufficiently strong initial pinching quantified by μ implies non-positivity of
the RHS of (1.19). Since the sufficient condition for p and μ to obtain non-positivity
of the RHS of (1.19) is of polynomial type of higher order we only give an example
condition which is sufficient.

(i) We assume that d �
√

2/Z. Then we can estimate the right-hand side of (1.19)
as follows.

RHS of (1.19) � (1 − p)(μ − 1)μκp 2
μ2d2

+ (μ − 1)κp 2
d2

[−4p cos2 α + (p − 1)c(p)O(s)]

� (1 − p)(μ − 1)μκp 2
μ2d2

+ (μ − 1)κp 2
d2

(p − 1)c(p)O(s)

< 0, (1.23)

or, equivalently, for the last inequality,

1
μ

> c(p)O(s). (1.24)

(ii) We assume that d <
√

2/Z. In view of (1.20) we have α � π/4. Now we
estimate as follows.

RHS of (1.19) � (1 − p)(μ − 1)μκp+2

+ (μ − 1)μ2κp+2[−4p cos2 α + (p − 1)c(p)O(s)]

� (1 − p)(μ − 1)μκp+2

+ (μ − 1)μ2κp+2(−2p + (p − 1)c(p)O(s))

!
< 0. (1.25)

Assuming also in the present case (ii) that (1.24) holds we see that c(p)O(s) < 1
and the last inequality in (1.25) is valid.
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Summarized we get as sufficient condition for the fact that the pinching is
preserved for example,

1
μ

> c(p)O(s). (1.26)

where the quantities c(p) and O(s) are defined in the last line of (1.19). Note that
s � μ − 1 by definition. �
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