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Abstract
Aiming at the problem of low accuracy of robot joint fault diagnosis, a fault diagnosis method of robot joint based
on BP neural network is designed. In this paper, the UR10 robot is taken as the research object, and the end pose
data of the robot are collected in real time. By injecting different joint errors and changing the sampling frequency,
the joint fault database is collected and established, and the BP neural network is used for training to obtain the
robot neural network fault diagnosis model. The fault diagnosis model can output the joint fault of the input end
pose data. And we analyzed the influence of different joint angle errors and different training sets on the accuracy
of joint fault diagnosis of the robot. The results show that when the sampling frequency is 250 Hz, the simulation
result of joint fault diagnosis accuracy with the fault degree of 0.5◦ is 99.17%, and the experimental result is 97.87%.
Compared with traditional data-driven methods, it has higher accuracy and diagnostic efficiency, and compared with
existing machine learning methods, it also achieves a high accuracy while reducing the network complexity. The
effectiveness of the BP neural network robot joint fault diagnosis method is verified by experiments.

1. Introduction
In the processing of flexible production line, it is particularly important to maintain the craft level
of products and improve the productivity, which will directly impacts the production efficiency and
economic benefits of enterprises [1–3]. The excellent technological level of products in the flexible pro-
duction line is mainly guaranteed by the high accuracy of the motion trajectory of the robot [4]. As an
important operating object of the production line, the joint failure of the robot will directly affect the
accuracy of the end position and attitude, thus affecting the processing quality of the products in the
flexible production line [5–7].

Fault diagnosis is a kind of technology that detects the state of the equipment during operation, can
determine the overall or partial abnormality of the equipment, and find the location of the fault. Since it is
usually difficult to obtain equipment fault data, fault injection is a key step of fault diagnosis. Therefore,
manual fault injection is particularly important for the collection of fault databases. After completed
the establishment of the fault database, we need to perform feature extraction on the fault data and the
normal data, so as to realize the judgment of the fault state. Komal researched on robot fault diagnosis by
establishing a fuzzy fault tree for the robot, the fault tree is an inverted tree-like logic causality diagram
that connects events with logic gate symbols, fault tree analysis (FTA) is a top-down deductive failure
analysis method to analyze undesired states in the system [8]. Xu et al. determined the motion state
of the robot by analyzing the motion signal of the robot arm and comparing the velocity curve and
threshold of the robot end joint, and then carried out the fault diagnosis of the robot arm joint [9]. Ma
et al. proposed a linear adaptive observer to estimate the fault parameters with predefined error bounds
for fault detection and isolation of robots [10]. Sathish regarded the problem of fault diagnosis and
isolation in robots as a causal analysis problem in the dynamic coupling process and proposed a transfer
entropy method for fault diagnosis of robots [11]. Huang proposed an observer-based actuator fault
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diagnosis method to estimate the fault signal of the system actuator and complete the fault diagnosis
task of the manipulator actuator [12]. Ahmad proposed a robot joint fault diagnosis method based on
modular joint torque sensor, which independently performs fault detection for each joint [13]. Yang et
al. based on the nuclear principal component analysis method analyzed the sensitivity of the reliability
influencing factors of the industrial robot and conducted the robot joint fault diagnosis based on KPCA
method [14].

The above research based on data-driven or observer methods for robot joint fault diagnosis usually
have the shortcomings of large amount of calculation and the diagnostic accuracy is not as high as
expected. It is difficult to deal with the database with large amount of data. The artificial neural network
method can greatly reduce the complexity of processing a large amount of data and improve the accuracy
of fault diagnosis [15–17]. As a kind of high-precision equipment with complex internal structure, it is
necessary to ensure the motion accuracy of the end of the industrial robot. Due to the complex coupling
structure of the robot, there are many internal factors that will directly or indirectly affect the robot’s
movement accuracy. The multimapping model in ref. [18] pointed out that the wall rod flexibility factor,
joint flexibility factor, joint gap, although they cannot directly establish a relationship with the robot
end pose accuracy, will affect the joint rotation angle, and joint angle as an intermediate variable will
directly affect the robot end pose accuracy. The gap between the joint axes is the most important factor
affecting the joint angle, simply solve the joint angle through inverse kinematics or read the joint angle
data through the robot controller, compared with the actual robot joint angle has errors. In this paper, we
use machine learning to establish joint fault database and use robot end pose data for training, aiming to
build a direct mapping between the end pose deviations and the joint angle errors through the adaptive
and inductive capabilities of the neural network. In this way, it is possible to find out which joint has
errors of the rotation angle when the robot’s end pose is deviated during the movement, avoiding the
complex mathematical calculation of the multi-mapping model.

In summary, the fault database of the end position and attitude data in the process of robot motion is
established, and the joint fault diagnosis of the robot in the flexible production line is studied based on
neural network. By changing the sampling frequency and the angle errors of input fault samples, different
types of fault database samples are obtained to study the influence of different sampling frequencies and
different angle errors on the comprehensive accuracy of fault diagnosis.

2. The establishment of kinematics model of robot
The D-H parameter method is used to establish the kinematics coordinate system for UR10 robot. UR10
is an industrial robot launched by the Danish Universal Robots Company in 2012. We use the UR10 robot
for joint fault diagnosis research. First, established the coordinate system of each link in the robot. Then
established the motion coordinate system of each joint of the UR10 of each joint of the robot according
to the principle of coordinate system establishment, so as to visually display the motion relationship
between each joint of the robot. The structure and kinematic coordinate system of the UR10 are shown
in Fig. 1.

Homogeneous transformation matrix expression between adjacent link coordinate systems as
i−1

iT = Rotzi−1 (θi) · Transzi−1 (di) · Transxi (ai) · Rotxi−1 (αi)

=

⎡
⎢⎢⎢⎢⎣

cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (1)

In the formula (1), ai represent the length of the connecting rod, which is defined as the distance
from Zi−1 to Zi, and is positive along the Xi axes. αi represent the angle of the connecting rod, which is
defined as the angle from Zi−1 to Zi. di represent the joint offset, which is defined as the distance from
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Figure 1. UR10 structure and kinematic coordinate system model.

Xi−1 to Xi. θ i represent the joint angle, which is defined as the angle from Xi−1 to Xi. The homogeneous
transformation matrix between the robot end-effector coordinate system and the robot base coordinate
system is shown in the formula (2). Table I is the theoretical D-H parameter of the robot UR10.

T0
6 = T0

1 T1
2 T2

3 T3
4 T4

5 T5
6 (2)

3. The joint fault diagnosis method for robot
3.1. BP neural network model
The fault diagnosis method based on artificial neural network has high adaptability, self-learning ability,
and strong fault tolerance [19]. In this paper, we use BP neural network as the algorithm support for fault
diagnosis. The structure of the BP neural network is shown in Fig. 2, including the input layer, middle
layer, and output layer.

For the neuron i, if [x1, x2, x3, . . . , xn] is the external input, ωk1,ωk2,ωk3, . . . ,ωkn is the weight, the
linear weighted summation is usually used as the net input of neurons, as shown in the formula:

Netjn =
n∑

j=1

ωkj · xj (3)

ϕkj represent the threshold value of the neuron. In this paper, the Sigmoid function is used as the
activation function, the definition formula of the Sigmoid function is as follows:

f = 1

1 + e−x
(4)

Through the threshold discrimination and activation function of neurons, the output of neurons as

yj = f

(
Netjn =

n∑
j=1

ωkj · xj − ϕj

)
(5)
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Table I. DH parameters of UR10.

Joint i ai (mm) αi (
◦) di (mm) θi (

◦)
1 0 90 127.3 θ1

2 −612.0 0 0 θ2

3 −572.3 0 0 θ3

4 0 90 163.9 θ4

5 0 −90 115.7 θ5

6 0 0 92.2 θ6

Figure 2. Structure of BP neural network.

If the output of the neural network is the m dimension vector Yk = (
y1

k, y2
k, y3

k, . . . , ym
k
)
, and the Tk

j

is the target value. The error of the output results is expressed by the least square method as follows:

Ek = 1

2

m∑
j=1

(
yk

j − Tk
j

)2 (6)

According to the gradient descent method can be obtained:

(1) The parameter adjustment from the middle layer to the output layer is

�θjh = −λ∂Ek

∂θjh

= −λ
m∑

j=1

(yk
j − Tk

j ) · Yj · (1 − Yj) ·
t∑

j=1

f (αh − λh) (7)

(2) The parameter adjustment from the input layer to the middle layer is

�ωih = −λ ∂Ek

∂ωih

= −λ
(

m∑
j=1

(yk
j − Tk

j ) · ḟ (βj − φj) · θjh

)
· ḟ (αh − λh) ·

n∑
i

xi (8)

In formulas (7) and (8), ωih is the weight of the input layer neurons to the middle layer neurons, λh

is the threshold of the neurons in the middle layer, θjh is the weight of the middle layer neurons to the
output layer neurons, and ϕj is the threshold of the output layer neurons. The training flow chart of BP
neural network is shown in Fig. 3.

3.2. Establishment of joint fault database
According to the actual processing movement process of the robot on the production line, the end motion
trajectory of a robot is determined as the research object, as shown in Fig. 4, and the motion time
T = 4 s.

The end pose corresponding to the two limit positions of the start point and the end point of the robot
end trajectory is shown in Table II.
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Figure 3. BP neural network training flow chart.
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Figure 4. Initial end trajectory of robot.

The end pose data collected in the process of robot motion are processed by injecting angle errors,
and the influence of the joint angle errors and training set number on joint fault diagnosis of robot are
studied. Different number of training sets can be obtained by changing the sampling frequency during
the robot movement. By changing the size of joint angle error injected into the faulty joint to achieve
different degree of joint angle faults. The specific research classification is shown in Table III, the number
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Table II. Initial and final position and joint angle data of the trajectory.

Data type P (mm) Joint number θ (◦)
Joint pose data of trajectory start point x 612.000 Joint 1 0

y −256.100 Joint 2 −90.00
z 815.300 Joint 3 90.00

Roll −180.000 Joint 4 0
Pitch 0 Joint 5 0
Yaw 90.000 Joint 6 0

Joint pose data of trajectory end point x 572.700 Joint 1 30
y 59.837 Joint 2 −120
z 473.358 Joint 3 130

Roll 165.557 Joint 4 −30
Pitch 64.975 Joint 5 40
Yaw 121.313 Joint 6 30

Table III. Specific research classification.

Sampling frequency Sampling interval Size of joint Number of training
f (Hz) t (ms) angle error (◦) sets N
50 20 1 1400

0.5
0.1

250 4 1 7000
0.5
0.1

1250 0.8 1 35, 000
0.5
0.1

of training groups is as follows:

N = T · f (9)

In refs. [14] and [18], the conclusion that the factors of rod flexibility, joint flexibility, and joint gap
will affect the joint rotation angle was proposed. However, these factors are difficult to be quantitatively
analyzed. Therefore, only the constant offset of the joint angle was considered in the simulations and
experiments. In this paper, the constant offset of the joint angle is the result of comprehensive consid-
eration of joint angle error, joint clearance, rod flexibility factor, and joint flexibility factor. The joint
angle error in this paper is not a single robot control angle error.

3.3. The process of robot joint fault diagnosis method
The BP neural network model for robot joint fault diagnosis is established in Matlab, as shown in Fig. 5.
The number of neurons in the middle layer is 13. The end position and end attitude data of the UR10 robot
generated by the joint deviation data and unbiased data are used as the input samples of the neural net-
work, and the training samples accounts for 70% of the total samples, the proportion of cross-validation
samples is 15%, and the proportion of test samples is 15%. The output set is a series of 0 and 1 [20, 21].
If the test result indicates that there is no fault in the robot, output R0. If the test results indicates that
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Figure 5. Flow chart of neural network fault diagnosis for robots.

the joint 1 has an angle error, output R1. If the test results indicates that the joint 2 has an angle error,
output R2, and so on, R0∼6 as shown in formula (10).

Ri = ri(M)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

4. Simulation verification of joint fault diagnosis method for robotic arm
4.1. Simulation results of robot joint fault diagnosis based on BP neural network
The BP neural network is trained based on the fault database of robot end pose. The fault diagnosis
results of robot joints with the fault degree of 0.5◦ in the training set of 7000 groups are shown in Fig. 6.
The number of input samples for each joint errors is 7000 groups. Each group includes the X-axis,
Y-axis, Z-axis coordinates and the rotation angles of X-axis, Y-axis, and Z-axis. In the input sample,
there are 1000 groups of the end pose data without joint errors, and the errors of joints 1–6 are totally
6000 groups of data. If the output result is closer to 1, it means that the failure probability of the joint
is higher, and if the output result is closer to 0, it means that the failure probability of the joint is lower.
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(a)

(c)

(e) (f)

(b)

(d)

Figure 6. Fault diagnosis neural network outputs with 7000 training sets and angle error of 0.5◦. (a)
Joint 1 angle error 0.5◦ fault diagnosis. (b) Joint 2 angle error 0.5◦ fault diagnosis. (c) Joint 3 angle
error 0.5◦ fault diagnosis. (d) Joint 4 angle error 0.5◦ fault diagnosis. (e) Joint 5 angle error 0.5◦ fault
diagnosis. (f) Joint 6 angle error 0.5◦ fault diagnosis.

And the training data accounted for 70%, the validation data accounted for 15%, the test data accounted
for 15%. The calculation formula of fault diagnosis accuracy of each joint as (11). The comprehensive
accuracy of fault diagnosis is the arithmetical mean value of six joint fault diagnosis accuracy as (12).

λj = 1 − Ej = 1 − 1

2mn

m∑
k=1

n∑
i=1

(
yi

k − Targeti
k
)2 (11)

ψ = 1

6

6∑
j=1

λj (12)
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Table IV. Comprehensive simulation results of joint fault diagnosis for robots.

Sampling frequency Number of Size of joint Comprehensive accuracy
f (Hz) training sets angle error (◦) of fault diagnosis (%)
50 1400 1 92.33

0.5 88.30
0.1 86.06

250 7000 1 99.34
0.5 99.17
0.1 96.52

1250 35, 000 1 99.78
0.5 99.46
0.1 96.83

The comprehensive simulation results of joint fault diagnosis are shown in Table IV. When the sam-
pling frequency is 50 Hz, the diagnosis accuracy of angle error 1◦ is 92.33%, the diagnosis accuracy of
angle error 0.5◦ is 88.30%, and the diagnosis accuracy of angle error 0.1◦ is 86.06%. When the sampling
frequency is 250 Hz, the diagnosis accuracy of angle error 1◦ is 99.34%, the diagnosis accuracy of angle
error 0.5◦ is 99.17%, and the diagnosis accuracy of angle error 0.1◦ is 96.52%. When the sampling fre-
quency is 1250 Hz, the diagnosis accuracy of angle error 1◦ is 99.78%, the diagnosis accuracy of angle
error 0.5◦ is 99.46%, and the fault diagnosis accuracy of angle error 0.1◦ is 96.83%.

In ref. [15], The Kernel Principal Component Analysis (KPCA) method was used to perform joint
fault diagnosis, which is a kind of data-driven method. Injected 1◦ joint angle error into each joint
separately to get joint fault database. When the KPCA output joint angle comprehensive contribution
rate is higher, then it shows that the greater the probability of joint failure, the diagnosis results of the
six joint failures are shown in Fig. 7.

We can see that the KPCA method has some effects on the fault diagnosis of robot joints, but the
difference in the output results of the fault diagnosis of each joint is small, the accuracy of the diagnosis
is not very high. In this paper, we used BP neural network for joint fault diagnosis, and the accuracy of
joint fault diagnosis has been significantly improved, and in the case of smaller joint error like 0.1◦, the
BP neural network method still has high accuracy in joint fault diagnosis.

In ref. [22], Long proposed a SAE-SVM multijoint industrial robot transmission fault diagnosis
method based on attitude data. Since the Gear faults in joint transmission system of the robot will lead
to the attitude deviation of the robot end, the attitude sensor collects the attitude data of the robot in each
failure mode and uses the SAE-SVM hybrid learning algorithm to build an intelligent fault diagnosis
model. The results demonstrate that SAE-SVM has high accuracy, reaching 96.75%, and achieves the
highest accuracy in comparison with stacking SAE, multiclass SVM, ELM, DBN and SAE-ELM. In
this paper, the BP neural network is used to perform fault diagnosis based on the robot end position and
attitude data, and the comprehensive accuracy reaches 96.52%. Compared with the method in ref. [22],
it also achieves a high accuracy while reducing the network complexity, which is effective and efficient.
The comparison results of each algorithm are shown in Table V.

4.2. The comparison between the BP neural network and the inverse kinematics method
4.2.1. The measurement error of end pose is not considered
Under the condition of 250 Hz sampling frequency and 0.5◦ error of joint angle, we collected 1000
groups of robot end pose data corresponding to each joint angle error and extracted 100 groups of end
pose data at intervals of 10 groups for inverse kinematics solution. We compared the deviation between
the joint angle solved by inverse kinematics method and the initial joint angle, and the angle average
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Figure 7. Joint angle fault diagnosis result based on KPCA method [15]. (a) Joint 1 diagnostic results.
(b) Joint 2 diagnostic results. (c) Joint 3 diagnostic results. (d) Joint 4 diagnostic results. (e) Joint 5
diagnostic results. (f) Joint 6 diagnostic results.

deviation results are shown in Fig. 8. The results show that in the condition of only considering the
rotation angle error without measurement error, the joint angle fault can be judged by comparing the
data of the fault joint angle solved by the inverse kinematics method with the initial joint angle. The BP
neural network and inverse kinematics solution can estimate the joint angle error without considering
the measurement error of the end pose.

4.2.2. The measurement error of end pose is considered
In practical applications, the position and attitude of the robot terminal are measured by sensors (such as
visual sensors). The measurement error of sensor is inevitable. The error of attitude data will affect the
result of inverse kinematics solution. To assess this impact, we performed a simulation analysis. Under
the condition of 250 Hz sampling frequency and 0.5◦ error of joint angle, we collected 1000 groups of
robot end pose data corresponding to each joint angle error and extracted 100 groups of end pose data
at intervals of 10 groups for inverse kinematics solution. The composition of the end pose data of each
group of measurements as shown in formula (13) is

P = [Px Py Pz α β γ ] (13)

In formula (13), Px, Py, and Pz represent the position data on the x-axis, y-axis, and z-axis respectively,
and α, β, and γ represent the attitude angle data on the x-axis, y-axis, and z-axis, respectively.

Given the 0.5◦ error of z-axis attitude angle γ of the robot end pose data to simulate the measurement
error, the joint angle deviation results solved by inverse kinematics are shown in Fig. 9. The results show
that the joint angle obtained by inverse kinematics solution has a large deviation from the actual given
joint angle error value. In that case, it is invalid to obtain the fault joint by using inverse kinematic
solution.
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Table V. Comparisons of each fault diagnosis algorithms.

Network Testing
Algorithm complexity Training data type Fault type accuracy (%)
BPN 2 Position and Attitude data Joint angle fault 96.52
SAE-SVM 4 Attitude data Gear faults 96.74
SAE-ELM 4 Attitude data Gear faults 90.56
Stacked SAE 3 Attitude data Gear faults 90.62
Multiclass SVM 2 Attitude data Gear faults 53.13
ELM 2 Attitude data Gear faults 67.4
DBN 3 Attitude data Gear faults 80.44

(a) (b) (c)

(d) (e) (f)

Figure 8. The angle average deviation results of each joint solved by inverse kinematics. (a) Joint 1 fault
inverse kinematics results. (b) Joint 2 fault inverse kinematics results. (c) Joint 3 fault inverse kinematics
results. (d) Joint 4 fault inverse kinematics results. (e) Joint 5 fault inverse kinematics results. (f) Joint
6 fault inverse kinematics results.

Take joint 5 as an example, the z-axis attitude angle deviation of the end pose during the robot motion
in the state of 0.5◦ angle error is shown in Fig. 10. The average deviation of z-axis attitude angle γ is
1.95◦, which is greater than the measurement error of z-axis attitude angle.

As a comparison, the BP neural network after training is used to diagnose joint faults, and the end
pose data with measurement error of z-axis attitude angle γ are used for test, and the results are shown
in Fig. 11. The results show that BP neural network can accurately detect the faulty joints in the presence
of the measurement error of end pose.

To further investigate the effect of measurement error on the fault diagnosis of the neural network
method, the constant z-axis attitude angle error was replaced with three-axis position data random error
and three-axis attitude angle random error, the random error obeying the normal distribution of (0.5,
0.1). The results of test output by BP neural network in the presence of random measurement errors
are shown in Fig. 12. In the case of random measurement error in the end pose, some fluctuations are
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(a) (b)

Figure 9. The angle deviation results of each joint solved by inverse kinematics in the presence of
measurement error. (a) Given a 0.5◦ rotation angle error of the joint 1. (b) Given a 0.5◦ rotation angle
error of the joint 5.

Figure 10. The deviation of z-axis attitude angle γ caused by joint 5 angle error.

(a) (b)

Figure 11. The test output of joint fault diagnosis by BP neural network in the presence of measurement
error. (a) The test output of joint 1 with 0.5◦ measurement error of z-axis attitude angle. (b) The test
output of joint 5 with 0.5◦ measurement error of z-axis attitude angle.
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(a) (b)

Figure 12. The test output of joint fault diagnosis by BP neural network in the presence of random
measurement errors. (a) The test output of joint 1 with normally distributed pose measurement error.
(b) The test output of joint 5 with normally distributed pose measurement error.

Figure 13. Experimental platform for joint fault.

caused to the neural network test output results, but in general, the neural network method still has the
utility of joint fault diagnosis.

Compared with the inverse kinematics method, the BP neural network method has better adaptability
and robustness for robot joint fault diagnosis. In addition, the accuracy of the robot end pose is affected
by many factors, such as the flexible factors, which will not only affect the kinematic parameter of
joint angle in the robot’s motion but also affect the kinematic parameters such as joint offset d and link
angle α. When the kinematic parameters change slightly, the joint angle obtained by inverse kinematics
cannot reflect the actual joint angle of the robot. In this condition, the inverse kinematics method is not
suitable for joint fault diagnosis.
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Figure 14. Diagram of robot coordinate transformation.

Observation Point

End Pose Point

Figure 15. Signal acquisition interface and sampling frequency setting of the trinocular camera.

4.3. Analysis of robot joint fault diagnosis simulation results
Compared with traditional data-driven methods, using BP neural network for robot fault diagnosis has
higher accuracy. And compared with existing machine learning fault diagnosis methods, using BP neural
network also has high accuracy while reducing network complexity. Relative to the inverse kinematics
method, the BP neural network has better adaptability and robustness for robot joint fault diagnosis.

When the sampling frequency is constant, the accuracy of robot joint fault diagnosis decreases with
the reduction of the given fault joint angle degree. When the sampling frequency reaches 250 Hz, the
comprehensive accuracy of fault diagnosis of 0.5◦ joint error is 99.17%, which is greatly improved com-
pared with the accuracy when the sampling frequency is 50 Hz. When the sampling frequency exceeds
250 Hz, the comprehensive accuracy of fault diagnosis is not significantly improved with the increase
of training set.

We can see that different angle errors of joint and different sampling frequencies of end pose have
regular effects on the accuracy of robot joint fault diagnosis. With a higher sampling frequency, more
end position and attitude data can be obtained in the same trajectory, which can increase the data volume
of the fault database and ultimately improve the accuracy of fault diagnosis. However, due to the limi-
tation of the network’s ability to extract data features, the accuracy of fault diagnosis will not increase
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Figure 16. Experimental results of fault diagnosis with 0.5◦ joint angle error at 250 Hz sampling
frequency.

indefinitely as the amount of data increases, and a larger amount of data will greatly increase the time for
neural network training. According to the results of the simulations, we give the recommended trajec-
tory sampling frequency range for joint fault diagnosis of UR10 robot using BP neural network, which
is about 250 Hz.

5. Robot joint angle fault diagnosis experiment
In order to verify the advantages of the proposed robot joint fault diagnosis method, a robot joint fault
diagnosis test platform was established, as shown in Fig. 13. The test platform includes a 6-axial indus-
trial robot (UR10), a trinocular smart camera (optitrack V120:Trio), four camera observation points,
an attitude sensor (WT61CL), and a laptop (K501b, Asus). It should be noted that the UR10 industrial
robot used in the experiment has no fault, and it meets the accuracy requirements in the repeated posi-
tioning accuracy test. In the process of collecting joint fault data, we simulated joint faults by changing
the commanded positions of the robot joints.

Optitrack V120:Trio intelligent trinocular camera was used to measure and collect the position data
of UR10 robot, the robot end fixed four camera observation points. The wit motion WT61CL attitude
sensor is used to measure and collect the robot end attitude data. The intelligent camera and robot com-
municate with the computer through TCP/IP protocol and control the movement of each joint through
the computer.

The intelligent camera and attitude sensor are used to measure and collect the position and attitude
data of the end of the robot in real time. The camera acquisition frequency is set to 250 Hz, and the
collected end pose data are saved in the computer. The pose data collected by the sensor and the actual
pose data of the robot end are transformed as shown in Fig. 14, and the end pose matrix in the camera
coordinate system is Tc, the transformation matrix of the industrial robot base coordinate system relative
to the camera coordinate system is T as formula (14). The actual pose data transformation matrix of the
robot end is calculated as formula (15).

T =

⎡
⎢⎢⎢⎢⎣

−0.7548 −0.6395 −0.1459 287.0956

0.5397 −0.7319 0.4160 −529.8563

−0.3729 0.23353 0.8976 257.4139

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (14)

Tc = T · 0
6T · 6

toolT (15)
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First, the pose data of the end of the robot in the process of motion without joint fault were recorded.
Then, each joint was injected with an angle error of 0.5◦, and the end position and attitude data were mea-
sured and recorded under the same trajectory. The signal acquisition interface and sampling frequency
setting of the trinocular camera are shown in Fig. 15.

The angle error of 0.5◦ is injected into each joint, and the end position and attitude data are collected
to establish a fault database, the fault database including six sets of end pose data generated by each
fault joint. The collected fault database is tested by the trained BP neural network, and the results are
output to verify the effectiveness of the neural network fault diagnosis model. The experimental output
results of robot joint fault diagnosis accuracy are shown in Fig. 16. The comprehensive accuracy of fault
diagnosis with 0.5◦ joint angle error at 250 Hz sampling frequency is 97.87%.

6. Conclusion
In this paper, the kinematics analysis of the UR10 robotic arm was performed, and the database of joint
fault was established according to the end posture and joint angle of the robot in the process of motion.
The BP neural network algorithm was used to study the joint fault diagnosis of the robot. The trained
BP neural network model was used for joint fault diagnosis. The conclusions are as follows:

1. Compared with traditional data-driven methods and inverse kinematics methods, the BP neural
network method has better adaptability and robustness for robot joint fault diagnosis. When the
measurement error of the end pose is taken into account, BP neural network method is still
suitable for joint fault diagnosis.

2. The influence of sampling frequency on joint fault diagnosis accuracy was analyzed. Under the
same angle error, the comprehensive accuracy of fault diagnosis based on BP neural network
will be improved with the increase of sampling frequency. When the sampling frequency reaches
250 Hz, the accuracy of fault diagnosis is the highest.

In the future, the influence of rod flexibility, joint flexibility and joint gap on the kinematics parameters
will be considered, so as to achieve a more comprehensive joint fault diagnosis.
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