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We take advantage of previous research in the field of cyclotron auto resonance
maser (CARM) and undulator-based free electron laser (U-FEL) sources to establish
a common formalism for the relevant description of the underlying physical
mechanisms. This strategy is aimed at stressing the deep analogies between the
two devices and at providing a practical tool for their study based on the use of
well-tested scaling formulae developed independently for the two systems.
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1. Introduction
The theory of cyclotron auto resonance maser (CARM) and undulator-based

free electron laser (U-FEL) devices is well established. The underlying physics
is satisfactorily well described by the theoretical formulations dating back more than
thirty years. The numerical codes originated by these analyses are powerful working
tools, useful to analyse experimental data and to fix the design details of new devices.

Even though different, in many constructive details, the physical mechanism
underlying the operation of the CARM (Nusinovich 2004) and U-FEL (Saldin,
Schneidmiller & Yurkov 2000) traces back to the power transfer from the electron
beam (e-beam) to a high-frequency electromagnetic field, through a klystron-like
mechanism, which is the common ancestor for these families of free electron coherent
generators.

The possibility of establishing a common thread between these devices has been
discussed in many authoritative papers in the past see e.g. Gapanov et al. (1967),
Bratman, Ginzburg & Petelin (1979), Fliflet (1986). More recently (Ceccuzzi et al.
2015) some of the present authors used the theoretical analyses developed by different
authors (Gapanov et al. 1967; Bratman et al. 1979, 1981; Fliflet 1986; Nusinovich,
Latham & Li 1994) to provide the translation of the CARM into U-FEL formalism by
means of the analytical formulae summarized in Dattoli, Ottaviani & Pagnutti (2007),
providing the back-bone of the code named PARSIFEL (Artioli et al. 2012).

The pathway leading to PARSIFEL is the result of an effort aimed at merging
analytical formulae derived from U-FEL theory and scaling relations benchmarked
through the available numerical codes, to get an accurate, reliable and semi-analytical
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physical model of the code devoted to preliminary design of FEL operating in
different configurations.

In this paper we take a step further towards an extension of a PARSIFEL-like
concept to CARM devices.

Regarding CARM we keep, as reference papers, those listed in Gapanov et al.
(1967), Bratman et al. (1979), Bratman et al. (1981), Fliflet (1986), Nusinovich et al.
(1994) and for U-FEL (Saldin et al. 2000) we have referred to the lines developed in
the past by different authors and summarized in books and review articles, a partial
list of which is reported in Marshall (1985), Luchini & Motz (1990), Colson (1990),
Dattoli, Renieri & Torre (1993).

In this introductory section, we will provide a quick review of the results obtained
in Ceccuzzi et al. (2015) and present the formalism we will adopt in the forthcoming
parts of the paper.

We note that in a CARM–FEL a moderately relativistic continuous waveform
e-beam, moves, inside a waveguide under the influence of an axial magnetic field,
executing a helical path with a cyclotron frequency Ω0 = e B/me, ‘e’ being the
electron charge, ‘me’ the electron mass and ‘B’ the magnetic field.

The kinematical variables of the electron beam are specified by the longitudinal (vz)
and transverse (v⊥) velocity components, linked to the relativistic factor γ by:

β2
z + β

2
⊥
= 1−

1
γ 2
,

βz,⊥ =
vz,⊥

c
,

α =
v⊥

vz
,


(1.1)

where α is the so called pitch factor.
The electrons, with longitudinal velocity vz, interact with a co-propagating

electromagnetic field characterized by a wavevector kz, linked to the wavephase
velocity vp with the operational angular frequency (omega) by:

kz =
ω

vp
. (1.2)

In the case of magnetic undulators the electrons (with the same aforementioned
kinematical attributes) enter into an alternating (transverse static) magnetic field with
period λu, where execute transverse oscillations.

In this case the emission process is not constrained by any waveguide condition,
therefore no complications arise with the wavephase velocity.

The two devices can be considered ‘topologically equivalent’, therefore useful
analogies can be defined after an appropriate analysis of the emission mechanisms.

The derivation of the wavelength, characterizing the emission process inside the
undulator, can be obtained using a fairly simple argument. The difference in velocities
is such that, after one undulator period, the radiation has slipped ahead of the electron
beam by the so called slippage length:

δ = (c− vz)
λu

c
= (1− βz) λu. (1.3)

Since δ is linked to the phase advance of the electromagnetic wave with respect to
the electrons, constructive interference of the wavefront of the emitted radiation at the
next undulator period is ensured if:

δ = λ, (1.4)

where λ is the wavelength of the co-propagating field.
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The last two equations yield the FEL resonance condition, which can also be cast
in the form:

ω=
2π c
λ
=

ωu

1− βz
,

ωu =
2 π c
λu

.

 (1.5)

To this aim we note that the electrons, with relativistic factor γ , enter inside the
undulator, where on account of the Lorenz force induced by the magnetic field they
acquire a transverse velocity component β⊥, the longitudinal velocity can accordingly
be written, using (1.1), as

βz =

√
1−

1
γ 2

z

,

γz =
γ

√
1+ ᾱ2

,

ᾱ = γβ⊥.


(1.6)

If the relativistic factor is large enough to allow a series expansion of the square root,
in the first of the equations (1.6), at the lowest order in 1/γ 2

z , we find:

ω∼= 2
γ 2

1+ ᾱ2
ωu. (1.7)

The previous derivation can be extended to CARM by noting that the relevant
‘resonance’ condition, can be determined by using the same argument as before about
constructive interference, which occurs whenever the accumulated slippage between
radiation and electrons, in a helix period, equals the wavelength Λ. By taking into
account that the link between helix period and guiding magnetic field is provided by

Λ=
2πc
Ω
. (1.8)

We impose the resonance condition as

(vp − vz)
Λ

c
= λ, (1.9)

where we have used the phase velocity vp to determine the radiation electron slippage.
The previous equation (1.9) can also be written in the more familiar form:

ω=
Ω0

γ
+ kzvz. (1.10)

The above equation has been derived by using a kinematic argument and the analogy
with U-FEL has been the pivotal element of the discussion. The physical origin of
the previous identity can however be understood on the basis of different arguments,
involving e.g. momentum (electron and fields) conservation (Bratman et al. 1981).
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We can further elaborate the previous identities, denoting by ωR the resonant
frequency, we obtain, from (1.10)

ωR =
Ω

1−
vz

vp

,

Ω =
Ω0

γ
.

 (1.11)

It is worth stressing that, since the phase velocity is dependent on the field frequency,
(1.11) is not an explicit solution for ω but only an approximation.

Before establishing further the analogy between U-FEL and CARM, we discuss the
physical meaning of the previous equations.

The CARM resonance condition can also be derived by requiring the matching
between (1.10) and the waveguide dispersion relation:

ω2
= c2(k2

⊥
+ k2

z ), (1.12)

where k⊥ is the transverse mode wavenumber, associated with the cutoff frequency
ωc = ck⊥. It is easily checked that, from (1.10) and (1.11), one gets

ω± ∼=
Ω

1∓
βz

βp

. (1.13)

The down shifted intersection, yielding the gyrotron mode (Nusinovich 2004), will not
be considered in the following.

The upper shifted counterpart ω+ is the resonant (CARM) frequency and to better
understand its role it will be rewritten as:

ωR
∼=

Ω

1−
βz

βp

=
Ω

1−
1
βp

√
1−

1
γ 2

z

∼= 2βp γ
2
z Ω,

γz =
γ

√
1+ ᾱ2

,


(1.14)

based upon the assumption that γz be sufficiently large that
√

1− (1/γ 2
z )
∼=

1− (1/2 γ 2
z ) and βp ' 1.

Equation (1.14) accounts for the frequency Doppler up-shift mechanism, characte-
rizing most free electron devices.

It is important to emphasize that, at least formally, we have established so far an
important analogy between CARM and U-FEL, namely Λ↔ λu, which justifies the
remark that the two devices are topologically equivalent.

The role of the transverse velocity needs a more accurate comment. In the case of
the U-FEL the transverse component, induced by the Lorenz force, is the tool allowing
the coupling with the co-propagating electromagnetic (transverse) field. The explicit
dependence of ᾱ on the undulator parameters is provided by:

ᾱ =
K
√

2
,

K ∝ e B0λu.

 (1.15)
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In the case of the CARM the role of the transverse velocity component is the same
as that of the undulator strength in the FEL undulator.

This velocity component should be induced during the electron beam preparatory
phase, before the injection into the cavity.

What we have described so far are the physical conditions underlying the
‘spontaneous’ emission, which is the prerequisite for the onset of the coherent
emission process. As is well known, it occurs via the bunching mechanism. The
interaction of the electrons with the cavity mode electric field determines their energy
modulation, which transforms into a density modulation, followed by a coherent radio
frequency (RF) emission when the electrons are bunched on a scale comparable to
the RF electric field wavelength.

This description encompasses all devices of FEL type, CARM is however made
peculiar by the fact that the auto resonance is guaranteed even near saturation because
any increase of Ω is balanced by a corresponding decrease of the longitudinal
velocity∗.

A further important quantity, characterizing U-FEL, is the number of undulator
periods, which is associated with the oscillations executed by an electron while
travelling inside the undulator. In the case of CARM it can be linked to the number
of helical turns of the electrons inside the magnet. Accordingly we get

Ω
L
βzc
= 2 π N,

N ∼=
L
Λ
,

 (1.16)

where L is the interaction length.
So far we have explained the main elements of our approach and in the following

section we will see how the correspondences we have established may provide an
effective tool to evaluate the CARM operation.

2. The CARM small signal theory

In this section we will develop further the analogy with U-FEL by showing that the
equation describing the CARM field evolution in the linear regime can be written by
taking advantage of the simplified expression which is valid in the former case.

In the analysis of the previous section we did not include any consideration
regarding the interaction of the wave with the e-beam. The dispersion relation in
(1.10)–(1.11) is appropriate for the ‘cold’ waveguide condition, which merely applies
to the kinematic of the mode propagation.

The CARM dynamics, associated with the radiation intensity growth in the
waveguide, undergoes different phases characterized by the amount of the field
power density.

The weak coupling regime is characterized by a power level well below the
threshold of the saturation intensity (namely the power density halving the small
signal gain) and the relevant theory can be treated using perturbative methods and, to
some extent, useful information can be drawn using analytical means. A significant
result from such a treatment is the derivation of a modified dispersion relation

∗The efficiency enhancement is induced in undulator-based FELs by tapering the undulator, by reducing
e.g. the undulator period, in order to maintain the resonance condition in (1.5) fixed when βz decreases, thus
realizing the effect naturally entangled with the CARM operating mechanism.
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including the interaction of the electrons with the waveguide modes. According to
Chen & Wurtele (1991), and Friedman et al. (2012) we find

ω2

c2
= (k2

⊥
+ k2

z )+ ε̃
2k2
⊥
(ω− kzvz)(

ω−
Ω0

γ
− kzvz

) − ε̃ k2
⊥
β2
⊥

(
ω2
− c2k2

z

)(
ω−

Ω0

γ
− kzvz

)2 , (2.1)

where ε̃ plays the role of coupling parameter. It depends on the beam current and
on the geometrical parameters of the waveguide itself and will be specified later in
this section. In (2.1) the terms containing the coupling ε are those ruling the field
electron evolution, we simplify the analysis by neglecting the first because the second
is dominating near the resonance. We are therefore left with

ω2

c2
= (k2

⊥
+ k2

z )− ε
k2
⊥

(
ω2
− c2k2

z

)(
ω−

Ω0

γ
− kzvz

)2 , (2.2)

in which we have set ε= ε̃β2
⊥

.
The previous identity is the crucial element of the forthcoming discussion and, for

later convenience, we set

k̃z = kz + δkz,

kz =

(
ω2

c2
− k2
⊥

)1/2

=
γ ω−Ω0

γ vz
,

 (2.3)

with δkz representing the deviation of the field longitudinal wavevector induced by the
coupling with the electrons. Inserting (2.3) into (2.2) we find that δkz is specified by
the following fourth degree algebraic equation

β2
z δ

4
kz
+ 2β2

z kzδ
3
kz
+ εk2

⊥
δ2

kz
+ 2 ε k2

⊥
kzδkz − ε k4

⊥
= 0. (2.4)

The roots of the above equation specifies the evolution of the CARM field amplitude
along the coordinate z, according to

E (z)∝
4∑

j=1

eje(δkz )jz, (2.5)

where j refers to the roots of (2.4) and ej are integration constants, fixed by the
conditions

E (0)= 1,((
d
dz

)k

E(z)

)
z=0

= 0,

k= 1, 2, 3.

 (2.6)

The linearized field growth along the longitudinal coordinate can accordingly be
obtained by plotting |E(z)|2 as shown in figure 1.
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FIGURE 1. Comparison between U-FEL (blue) and CARM (green) intensity growth curves
in a small signal regime with the result reported in Chen & Wurtele (1991).

The evolution curve exhibits the well-known shape, characterizing also the high gain
U-FEL operating mode, namely an initial phase during which the electrons acquire the
bunching, allowing the second phase, characterized by a linear (in logarithmic scale)
growth with a characteristic gain length lg. In the case of CARM such a quantity is
specified by (Chen & Wurtele 1991)

l−1
g = 2Γ =

√
3
[
ε k4
⊥

16 kzβ2
z

]1/3

. (2.7)

Let us now invoke the analogy with the U-FEL, whose gain length is defined as
(Dattoli et al. 2007)

lg =
λu

4 π
√

3 ρ
, (2.8)

with ρ being the Pierce parameter linked to the small signal gain coefficient g0 by
the identity (Dattoli et al. 2007)

ρ =
(π g0)

1/3

4 π N
. (2.9)

The use of the correspondences established in the previous section and the
comparison between (2.7), (2.8) allows the following identification

ρ =
ΛΓ

4 π
√

3
. (2.10)

The dependence of the U-FEL field amplitude on the longitudinal coordinate has
been shown to be provided by (Dattoli et al. 2007)†.

†Equation (2.11), obtained from the U-FEL third-order dispersion equation solved using the Cardan rule
is reported in Dattoli et al. (2007), we must stress that an analogous expression has also been derived by
Professor H. Fang in an unpublished note, written prior to 1990.
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a(τ ) =
a0

3 (ν + p+ q)
e−(2/3) iν τ

{
(−ν + p+ q) e−i/3 (p+q) τ

+ 2 (2 ν + p+ q) ei/6 (p+q) τ

×

[
cosh

(√
3

6
(p− q) τ

)
+ i

√
3 ν

p− q
sinh

(√
3

6
(p− q) τ

)]}
, (2.11a)

p =
[

1
2(r+

√
d)
]1/3

, (2.11b)

q =
[

1
2(r−

√
d)
]1/3

, (2.11c)

r = 27 π g0 − 2 ν3, (2.11d)
d = 27 π g0[27 π g0 − 4 ν3

]. (2.11e)

The various parameters entering the above expression are recognized as

ν ≡ detuning parameter, (2.12a)
z≡ longitudinal coordinate, (2.12b)

L≡N λu ≡ interaction length, (2.12c)
τ ≡ dimensionless time. (2.12d)

The correspondence with the CARM variables is obtained by defining the
normalized detuning ν̄ parameter as

ν̄ =
ν

(27π g0)
1/3 , (2.13)

and then by casting, using the relations (2.7)–(2.9), the dimensionless time in the form

τ =
z
L
=

z

Nlg4π
√

3ρ
=

2Γ z
√

3(πg0)1/3
, (2.14)

thus finally ending up with
ντ = 2

√
3Γ ν̄z. (2.15)

The complex amplitude (2.11) can now be assumed to be a function of the
normalized detuning parameter ν̄ and of the inverse gain length, Γ , which will be
exploited to describe the small signal growth of the radiation field amplitude, namely

a(z, Γ, ν̄) =
a0

3
e−i(4Γ ν̄z/

√
3βz) ·

{
A1e−i(2Γ zA(+)3 /

√
3)
+ 2A2ei(Γ zA(+)3 /

√
3)

·

[
cosh(Γ zA(−)3 )+ ı

√
3ν̄

A(+)3

sinh(Γ zA(−)3 )

]}
, (2.16)

with

A1 := A1(ν̄)=
(−ν + p+ q)
ν + p+ q

=

(
3
√

1− 2ν̄3 +
√

1− 4ν̄3 +
3
√

1− 2ν̄3 −
√

1− 4ν̄3 −
3
√

2ν̄
)

(
3
√

1− 2ν̄3 +
√

1− 4ν̄3 +
3
√

1− 2ν̄3 −
√

1− 4ν̄3 +
3
√

2ν̄
) , (2.17a)
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FIGURE 2. Small signal CARM growing intensity, with and without the imaginary
contributions from (2.4).

A2 := A2(ν̄)=
(2ν + p+ q)
ν + p+ q

=

(
3
√

1− 2ν̄3 +
√

1− 4ν̄3 +
3
√

1− 2ν̄3 −
√

1− 4ν̄3 + 2 3
√

2ν̄
)

(
3
√

1− 2ν̄3 +
√

1− 4ν̄3 +
3
√

1− 2ν̄3 −
√

1− 4ν̄3 +
3
√

2ν̄
) , (2.17b)

A(±)3 := A(±)3 (ν̄)=
1

3
√

2

(
3
√

1− 2ν̄3 +

√
1− 4ν̄3 ±

3
√

1− 2ν̄3 −

√
1− 4ν̄3

)
,

(2.17c)

(p± q)τ =

√
3

3
√

2
2Γ z

(
3
√

1− 2ν̄3 +

√
1− 4ν̄3 ±

3
√

1− 2ν̄3 −

√
1− 4ν̄3

)
= 2
√

3Γ zA(±)3 . (2.17d)

In figure 1 we have provided a comparison between the prediction of the CARM
theory and of the U-FEL scaling equations, given in (2.11). The agreement is
satisfactory and further comments will be given below.

We should put in evidence that the linear solution obtained solving the dispersion
relation (2.2) has been regularized neglecting the oscillating root of the (2.4) as
reported in figure 2 comparing the amplitude signal with and without the oscillating
solution .

The following two remarks are in order to complete the previous discussion:

(i) The dispersion relations for CARM and U-FEL lead to a fourth and third degree
algebraic equations respectively. This is a consequence of the fact that the
CARM field equations have been derived without the assumption of paraxial
approximation, while in the case of U-FEL the small signal problem is solved
by the approximation of a slowly varying envelope (SVE). This assumption leads
to a treatment involving algebraic equations of one degree lower. In adapting
U-FEL to CARM theory, according to the prescription of this paper and of those
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reported in Ceccuzzi et al. (2015), we did not find particular differences, except
for the initial part, where the SVE approximation smoothen the field oscillations.
We must underline that the approximation of the dispersion equation with the
elimination of the quasi resonant term is a further cause of the fluctuation at
low intensities.

(ii) The equations (2.2)–(2.7) have been written without fixing the waveguide mode
structure, we can however factorize the ε coupling parameter as the product of
two terms, namely

ε=Ξ f,

f=
4 πβ2

⊥

γ βz

(
Ib

IA

)
,

 (2.18)

where Ib,A denote the beam and Alfvén current, the parameter Ξ summarizes
the details of the cavity mode and the effect due to the geometrical overlapping
between electrons and waveguide modes.

This is not a secondary issue, in particular when the operation on higher-order
transverse modes is foreseen. In this case the relevant spatial distribution is not
provided by a Gaussian, covering smoothly the transverse surface, but by a kind of
circular corona which demands an appropriate shaping of the transverse structure of
the e-beam to optimize the coupling.

In figure 3 we have reported the gain length for different higher-order modes, along
with the transverse mode distribution.

3. Numerical analysis, saturation and final comments
In the previous section we have developed quite a straightforward formalism to

prove that most of the scaling formulae developed within the framework of FEL
theory can be adapted to the study and design as well of CARM devices, at least for
the case of the small signal regime.

In this section we include the nonlinear contributions and show that the logistic
curve model (Artioli et al. 2012; Ceccuzzi et al. 2015) is an effective tool to study
the evolution of the system up to the saturation.

We will provide a comparison of this analysis with the logistic growth model based
on a family of S-shaped curves, the model has been shown to be very effective in
reproducing the evolution of any system undergoing a dynamical behaviour ruled by
an equation of the type

d
d z

P=
P
lg

[
1−

P
PS

]
, (3.1)

even though either CARM and U-FEL satisfy more complicated nonlinear equations
for the growth of the power density. Equation (3.1) captures the essential physics of
the problem, namely a linear growth followed by a quadratic nonlinearity when the
power approaches PS which denotes the saturated power. The solution of (3.1) can be
written as

P (z)= P0
ez/lg

1+
P0

PS

[
ez/lg − 1

] , (3.2)

where P0 is the input radiation seed.
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(a) (b)

(c) (d)

FIGURE 3. Transverse mode pattern and associated gain length. The circle in the middle
represents the electron beam transverse distribution, which is assumed to stay well inside
the mode itself thus maximizing the filling factor.

The definition of the CARM saturated power PS is easily given by just following
the prescriptions reported in Bratman et al. (1981), we set therefore

PS
∼= η PE, (3.3)

where PE is the electron beam power and η the efficiency of the device in turn
provided by

η= ηspηC, (3.4)

where we have denoted by ηsp the single particle efficiency, (Bratman et al. 1981)
which can be written using the analogy in terms of the Pierce parameter (Saldin et al.
2000; Dattoli et al. 2012) as

ηsp
∼=

√
2ρ =

√
2ΛΓ

4 π
√

3
, (3.5)
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while the collective efficiency ηC is specified by (Bratman et al. 1981)

ηC
∼=

1
(1− β−2

p ) (1− γ −1)

β2
⊥

b
, with b=

β2
⊥

2βzβp

(
1−

βz

βp

) , (3.6)

where, using the terminology of Bratman et al. (1981), b denotes the electron recoil
parameter. It accounts for the auto resonance contribution, including the effect of axial
momentum and velocity change with the electron energy loss (Bratman et al. 1981).
Regarding the analogy with U-FEL it can be associated with the undulator tapering
parameter (Kroll, Morton & Rosenbluth 1981; Dattoli et al. 2012).

According to the previous identity the saturated power can be cast in the form

PS
∼=

√
2

4π
√

3

ΛΓ

(1− β−2
p ) (1− γ −1)

β2
⊥

b
PE. (3.7)

We have recovered all the crucial parameters (gain length and saturated power) to
draw the CARM power growth curve using the logistic equation. However, equation
(3.2) accounts only for the exponential growth prior to the saturation and does not
contain any lethargic phase. To overcome this problem we replace the exponential
term in (3.2) with the square modulus of the small signal amplitude derived in the
previous section, thus writing

P(z)∼= P0
|β(z)|2

1+
P0

PS

(
|β(z)|2 − 1

) and β(τ)=
a(τ (z))

a0
, (3.8a,b)

with a0 initial amplitude.
To check the validity of the previous formula we have developed an ad hoc

numerical code to integrate the CARM equations (Gapanov et al. 1967; Bratman
et al. 1979, 1981; Fliflet 1986; Chen & Wurtele 1991; Nusinovich et al. 1994).

The dynamical systems accounting for the evolution of CARM devices are described
by a set of equations coupling electrons and field. From the mathematical point of
view the problem is that of solving a system of nonlinear ordinary differential
equation, consisting of four differential equations three of which account for the
electron motion and the other for the complex field amplitude evolution inside the
cavity, namely:

du
dζ
=
[1− u]s/2

1− bu
Re(Fse−iθ), (3.9a)

dθ
dζ
=

1
1− bu

[
∆− u− bΥ (ζ )+

s
2
[1− u](s/2)−1Re(iFse−iθ)

]
, (3.9b)

dΥ
dζ
=−
[1− u]s/2

1− bu
Re
(

i
dFs

dζ
e−iθ

)
, (3.9c)

where the normalized u, θ, Υ variables are associated with the electron energy, the
electron wavephase and the axial momentum correction respectively, s is the order of
the harmonics, ζ is the normalized space variable and Fs accounts for the complex
mode field amplitude, whose evolution is fixed by the equation

dFs

dζ
= Ig

〈
[1− u]s/2

1− bu
eiθ

〉
, (3.10)
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FIGURE 4. The revisited semi-analytical formula from FEL compared with numerical
code.

with 〈· · ·〉θ0 denoting the average taken on the initial phase distribution (Fliflet 1986;
Dattoli et al. 1993; Nusinovich 2004; Ceccuzzi et al. 2015).

The pivotal parameters characterizing the previous equations system related to the
CARM dynamics are summarized by three dimensionless quantities: b, accounting for
the auto resonance, ∆, normalized detuning

∆=

2
(

1−
βz

βp

)2 (
1−

ωR

ω

)
β2
⊥(1− β−2

p )
, (3.11)

and Ig normalized beam current, proportional to the beam current Ib and expressible
in terms of ρ parameter as

Ig =

4 3
√

2
(

1−
βz

βp

)
β2
⊥

(
1− β−2

p

) ρ


3

. (3.12)

We will solve the previous set of equations valid, as already underscored, in the linear
and nonlinear regimes and compare the result with the small signal analysis of the
previous sections.

The adopted numerical procedure uses a Runge–Kutta scheme for the electron
dynamics, with the field amplitude kept constant during one discretization step.
Furthermore, a finite difference method has been applied to evaluate the differential
equation concerning the amplitude wave evolution, in which the crucial step is
the careful average of the electron phase distribution and the transverse velocity
distribution in order to include correctly the effect of the beam qualities.

To study the effect of the particles velocity spread, starting form a fixed γ0 beam
energy and an α0 pitch, a Gaussian distribution of the transverse velocity has been
generated centred at the initial value of β⊥0.
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FIGURE 5. The analytical growth linear rate of the signal compared with the numerical
simulation.

FIGURE 6. Efficiency behaviour (for optimal detuning ∆) versus transverse velocity spread
for different values of Ig (dotted line numerical computation, red line Lorentzian fit).

For each particle we considered an ODE system characterized by a b(β i
⊥0) and

∆(β i
⊥0) parameters and the integral average of the electron phase and velocity

distribution have been evaluated by the use of a standard trapezoidal scheme.
Furthermore, the orbital efficiency has been obtained by averaging the electron

motion on the electron phase and velocity distribution, allowing to evaluate the
CARM power growth versus z as reported in figure 4.

The comparison between (3.8) and the power evolution obtained via the numerical
implementation are shown in figures 4 and 5. The two curves compare fairly well; the
use of these formulae for fixing the working points of a CARM device is therefore
justified. The aim of the paper is to explore the analogy between CARM and U-FEL
on the basis of a unifying common theoretical framework. This attempt is far from
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being exhaustive and the analogies should be exploited with care, for example we
have not clarified whether the effects of beam quality on CARM performance can be
accounted for by the ‘universal’ scaling formula as happens in the case of the U-FEL
(Dattoli et al. 2007; Artioli et al. 2012).

The impact of the beam qualities on the CARM output power is shown in figure 6
where we have reported the power versus the root mean square of the transverse
velocity (σβ⊥). The curves are nicely fitted by a Lorentzian (η̂sp ∝ (1/(1+ aσ 2

β⊥
)),

with η̂sp the numerical single particle efficiency and a is a fit parameter), but a
‘universal parameter’ embedding inhomogeneous broadening effects and Ig (or ρ

as well) has not been formulated yet. According to the suggestion put forward in
Nusinovich et al. (1994) and later in Ceccuzzi et al. (2015) this seems to be possible,
but further numerical analysis is needed to provide a more sound conclusion and is
left for future investigations.
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