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Abstract
In this paper we develop an in-depth analysis of non-reversible Markov chains on denumerable state space
from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition
kernel is in the similarity orbit of a normal transition kernel, such as that of birth–death chains or reversible
Markov chains. We start by identifying a set of sufficient conditions for a Markov chain to belong to the
similarity orbit of a birth–death chain. As by-products, we obtain a spectral representation in terms of
non-self-adjoint resolutions of identity in the sense of Dunford [21] and offer a detailed analysis on the
convergence rate, separation cutoff and L2-cutoff of this class of non-reversible Markov chains. We also
look into the problem of estimating the integral functionals from discrete observations for this class. In
the last part of this paper we investigate a particular similarity orbit of reversible Markov kernels, which
we call the pure birth orbit, and analyse various possibly non-reversible variants of classical birth–death
processes in this orbit.

2010 MSC Codes: Primary 60J05, 60J10, 60J27; Secondary 60J20, 37A25, 37A30

1. Introduction
The spectral theorem of normal operators is undoubtedly a powerful tool for dealing with substan-
tial and difficult issues arising in the analysis of Markov chains. The intrusion of spectral theory
into the analysis of Markov chains dates back to the long line of work initiated by Ledermann and
Reuter [40] and Karlin and McGregor [32], who were among the first to offer a detailed spectral
analysis in the direction of reversible birth–death processes. Beyond eigenvalue expansions, the
spectral theorem also appears in the study of the rate of convergence to equilibrium, mixing time,
eigentime identity, separation cutoff and L2-cutoff (see e.g. [1, 10, 20, 41, 45]), to name but a few.
It is also central to their statistical estimations, as is demonstrated by the recent work of [2] on the
integral functionals of normal Markov chains.

However, the lack of a spectral theorem for non-normal operators causes major difficulties in
tackling these fundamental topics in the context of general Markov chains, since the transition
kernel P is a non-normal linear operator in the weighted Hilbert space

�2(π)=
{
f : X �→C; ‖ f ‖2π =

∑
x∈X

| f (x)|2π(x)< ∞
}
,
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where π is a reference (invariant or excessive) measure of P and π(x)> 0 for all x ∈X . Not only
is the non-reversibility property, or generally the non-normality of P, a generic property from
a theoretical perspective, it is also natural, and it has recently become increasingly popular in
various applications. For instance, non-reversible Markov chains appear in the study of queue-
ing networks and fluid approximation [26], hyperplane rearrangement [53] and the very recent
introduction of non-reversible Metropolis–Hastings and its variants; see e.g. [6, 54].

To overcome the challenge of analysing non-self-adjoint operators, a wide variety of intrigu-
ing ideas has been elaborated to deal with specific issues. This includes, for example, the dilation
concept developed by Kendall [33], reversibilization techniques as in [24, 51] or recasting to a
weighted-L∞ space [37, 38, 39].

In this paper we propose an alternative remedy by resorting to the algebraic concept of sim-
ilarity orbit of normal Markov chains, as defined in Definition 1.1 below. This identifies a class
of transition kernels of Markov chains, denoted by S , which is a subset of M, the set of Markov
transition kernels acting on a countable state space X . We emphasize that our approach offers
a unifying framework to analyse all substantial and classical topics for Markov kernels in S that
were enumerated above for normal Markov chains. This extends the work by the authors in [13]
from skip-free Markov chains to general ones. It is also in line with the papers by Miclo [47], Patie
and Savov [49] and Patie and Zhao [50] for the study of spectral theory of non-reversible Markov
processes and by Diaconis and Fill [17], Chafaï and Joulin [7] and Cloez and Delplancke [15]
for birth–death processes, which rely on the notion of intertwining relationships. We proceed by
recalling the definition of similarity orbit as introduced in [13].

Definition 1.1 (similarity). We say that the transition kernel P ∈M of a Markov chain X is
similar to the transition kernel Q of a Markov chain on X , and we write P ∼Q if there exists a
bounded linear operator � : �2(πQ)→ �2(π) (πQ being a reference measure for Q) with bounded
inverse such that

P� = �Q. (1.1)

We also write �̂ to denote the adjoint operator of �. When needed we may write P �∼Q to specify
the intertwining or the link kernel �. Note that ∼ is an equivalence relationship on the set of
transition kernelsM.

Remark 1.2. In the discrete-time setting, for n ∈N, if P �∼Q then Pn �∼Qn.

Remark 1.3. Note that this definition carries over when we study similarity on the level of
infinitesimal generators in the continuous-time setting. For example, we write L �∼G if L (resp. G)
is the infinitesimal generator associated with the continuous-time Markov semigroup (Pt)t�0

(resp. (Qt)t�0). It follows easily that if L
�∼G then Pt

�∼Qt for t� 0.

Remark 1.4. We compare our definition of similarity with other notions of intertwining in the lit-
erature. In [47], both the link kernel � and Q are assumed to be Markovian, while in [7, 15], both
P and Q are assumed to be birth–death processes. In [17], the authors construct the strong sta-
tionary duality theory for general Markov chains. However, in Definition 1.1 we do not require �

to be a Markov operator, and P,Q are general Markov operators instead of birth–death processes.

The S class is now defined as the similarity orbit in M consisting of all Markov transition
kernels that are similar to a normal transition kernel on X . Note that reversible Markov kernels
are normal operators in �2(π). From now on we write N for the set of normal transition kernels
Q on X , that is, QQ̂= Q̂Q in �2(πQ), wherê denotes throughout the corresponding object for
the time-reversal process.
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Definition 1.5 (the S class). Suppose that Q ∈N . The similarity orbit of Q (inM) is
S(Q)= {P ∈M; P ∼Q},

and the S class is the union over all possible orbits, that is,

S =
⋃
Q∈N

S(Q).

We point out that according to [60], the class S is also characterized as the class of Markov chains
whose transition kernel is a spectral scalar-type operator in the sense of [21, Section 3]; see also [22,
p. 1938, Definition 1]. As we will see in Section 2, this characterization will be crucial to proving
many of our later results. Note that we could also study a wider class of transition kernels S ′ in
which Q is not necessarily a Markov operator. However, we intend to focus our investigation on
the class S in this paper, as it is the appropriate setting to extend various substantial results that
have been developed for reversible chains.

We now summarize the major contributions of this work in the analysis of general Markov
chains, which also serve as an outline of the paper. In Section 2 we begin by showing how the
concept of similarity orbit is natural for developing the spectral decomposition of non-reversible
Markov operators in the class S . Indeed, each of its elements admits a spectral representation with
respect to non-self-adjoint resolution of identity as introduced by Dunford [21]; see also [22]. We
also remark on the growing interest in non-self-adjoint operators with real spectrum that arise in
the study of pseudo-Hermitian quantum mechanics; see e.g. [30] and the references therein. As a
by-product, one can develop a functional calculus for this class as for normal operators. Moreover,
we obtain, under mild conditions, an eigenvalue expansion expressed in terms of a Riesz basis, a
notion that generalizes an orthogonal basis and was introduced in non-harmonic analysis; see
[61]. Another intriguing aspect of the similarity orbit analysis is that in the continuous-time set-
ting with L ∈ S(G) (see Remark 1.3 above), where G is the generator of a normal Markov chain,
then both the heat kernel (etL)t�0 and (etG)t�0 share the same eigentime identity, offering new
examples and insights into the sequence of work by Aldous and Fill [1], Cui and Mao [16] and
Miclo [45]. Added to the above, we obtain a two-phase refinement for the convergence rate of the
Markov kernels in the class S measured in the Hilbert space topology or in total variation dis-
tance: recall that in the normal case the rate of convergence in the Hilbert space topology is given
by exactly the second largest eigenvalue in modulus; for class S , however, for small times we adapt
the singular value upper bound of [24], while for large times the decay rate is the second largest
eigenvalue in modulus, up to a constant, which is the condition number of the link kernel �. This
offers an original spectral explanation of the hypocoercivity phenomenon that has been observed
and studied intensively in the PDE literature; see for instance [59]. All these first consequences of
the spectral representation are stated and proved in Section 2. In view of the tractability and the
fascinating properties that the class S possesses, it will be very interesting to characterize this class
in terms of the one-step transition probabilities of P ∈ S . Although fundamental, this issue seems
to be very challenging. However, we manage to identify a set of sufficient conditions that define
what we call the generalized monotonicity condition class GMC, such that the time-reversal P̂
intertwines with a birth–death chain in Section 3. This GMC class rests on the assumption of
stochastic monotonicity in which � is the so-called Siegmund kernel. This readily generalizes the
MC class introduced by Choi and Patie [13] in the context of skip-free chains. Note that the notion
of stochastic monotonicity is studied by Siegmund [57] and Clifford and Sudbury [14] and inter-
twining between stochastic monotone birth–death chains, which are reversible chains, has been
previously investigated in detail by Diaconis and Fill [17], Huillet and Martinez [29] and Jansen
and Kurt [31]. Relying on the spectral decomposition as well as the fastest strong stationary time
result of general chains obtained by Fill [25], we study the separation cutoff phenomenon and
demonstrate that the famous ‘spectral gap times mixing time’ conjecture as well as the proof in
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[20] carries over to the subclass GMC+ ⊂ GMC in Section 3. Next, building upon the concept of
the non-self-adjoint spectral measure and the Laplace transform cutoff criterion proposed in [10]
and further elaborated in [8], we illustrate that the usual L2-cutoff criterion for reversible chains
generalizes to the class S in Section 4.

Second, in Section 5, we would like to estimate integral functionals of the type

�T( f )=
∫ T

0
f (Xt) dt, T � 0,

where T is a fixed time and f is a function such that the integral �T( f ) is well-defined, by the
Riemann sum estimator given by, for n ∈N,

�̂T,n( f )=
n∑

k=1

f (X(k−1)�n)�n,

where we observe (Xt)t∈[0,T] at discrete epochs t = (k− 1)�n with k ∈ �n� := {1, . . . , n} and�n =
T/n. This work is motivated by the recent work of Altmeyer and Chorowski [2], who studied the
same problem with the outstanding assumption that the infinitesimal generator of the Markov
process (Xt)t�0 is a normal operator, to yield interesting results on the estimator error bound by
spectral theory. We demonstrate that a number of their results can be readily generalized to the
class S on the infinitesimal generator level.

Finally, in Section 6, we examine a particular similarity orbit of reversibleMarkov chains, which
we call the pure birth orbit. More precisely, suppose that we start with a reversible generator G
such that G �∼ L, where L is the generator of a contraction yet possibly non-Markovian semigroup
(etL)t�0; we would like to investigate various properties of L with � being a pure birth kernel.
This idea is powerful enough to allow us to generate completely new Markov or contraction ker-
nels from known ones in which we have precise control and exact expressions on the stationary
distribution, eigenfunctions and the speed of convergence. In particular, we perform an in-depth
study of the pure birth variants of a constant-rate birth–death model.

2. Spectral theory of the class S and its convergence rate to equilibrium
In this section we develop an original methodology to obtain the spectral decomposition in
the Hilbert space of the transition operator of Markov chains that belong to the class S , a
subclass of M which is defined in Definition 1.5. We write ‖·‖op for the operator norm, i.e.
‖P‖op = sup‖ f ‖π=1 ‖Pf ‖π , and �a, b� := {a, a+ 1, . . . , b− 1, b} for any a� b ∈Z. We proceed by
recalling that P has a time-reversal P̂, that is, for x, y ∈X ,

π(x)̂P(x, y)= π(y)P(y, x),
where π is a reference measure for P. We equip the Hilbert space �2(π) with the usual inner
product 〈·, ·〉π defined by

〈f , g〉π =
∑
x∈X

f (x)g(x)π(x), f , g ∈ �2(π),

where g is the complex conjugate of g. A spectral measure (or resolution of identity) in the sense
of [21, Section 3] and [22, p. 1929, Definition 1] of a Hilbert spaceH on C is a family of bounded
operators E = {EB; B ∈ B(C)}, where B(C) is the Borel algebra on C, satisfying the following.

(1) E∅ = 0, EC = I.
(2) For all A, B ∈ B(C),

EA∩B = EAEB,
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while for disjoint A, B,
EA∪B = EA + EB.

(3) There exists a constant C > 0 such that ‖EB‖op � C for all B ∈ B(C).

For normal operatorQ ∈N , its resolution of identity E is self-adjoint and hence E is a self-adjoint
orthogonal projection. We also denote E∗

B to be the adjoint of EB. Recall that by the spectral
theorem for normal operators the spectral resolution of Q is

Q=
∫

σ (Q)
λ dEλ,

where σ (Q) is the spectrum ofQ. More generally, forM ∈M, we write σ (M) (resp. σc(M), σp(M),
σr(M)) to denote the spectrum (resp. continuous spectrum, point spectrum, residual spectrum)
of M. We proceed to recall the notion of a Riesz basis, which will be useful when we derive the
spectral decomposition for compact P ∈ S in our main result Theorem 2.1 below. A basis ( fk) of a
Hilbert space H is a Riesz basis if it is obtained from an orthonormal basis (ek) under a bounded
invertible operator T, that is, Tek = fk for all k. It can be shown (see e.g. [61, Theorem 9]) that
the sequence ( fk) forms a Riesz basis if and only if ( fk) is complete in H and there exist positive
constants A, B such that, for arbitrary n ∈N and scalars c1, . . . , cn, we have

A
n∑

k=1

|ck|2 �
∥∥∥∥ n∑
k=1

ckfk
∥∥∥∥2 � B

n∑
k=1

|ck|2. (2.1)

If (gk) is a biorthogonal sequence to ( fk), that is, 〈fk, gm〉π = δk,m, k,m ∈N and δk,m is the
Kronecker symbol, then (gk) also forms a Riesz basis. We are now ready to state the main result of
this paper, and the proof can be found in Section 2.1.

Theorem 2.1. Assume that P ∈ S with P �∼Q ∈N . Then the following holds.

(a) Let E = {EB; B ∈ B(C)} denote the self-adjoint spectral measure of Q. Then

{FB := �EB�−1; B ∈ B(C)}
defines a spectral measure and P is a spectral scalar-type operator with spectral resolution
given by

P =
∫

σ (P)
λ dFλ,

P̂ =
∫

σ (̂P)
λ dF∗

λ.

Note that
σ (P)= σ (Q), σ (P)= σ (̂P), σc(P)= σc(Q), σp(P)= σp(Q), σr(P)= σr(Q),

and the multiplicity of each eigenvalue in σp(P) is the same as that of σp(Q). For analytic and
single-valued function f on σ (P), we have

f (P)=
∫

σ (P)
f (λ) dFλ.

In particular, if P is compact on X with distinct eigenvalues, then for any f ∈ �2(π) and
n ∈N,

Pnf =
∑
k∈X

λnk〈f , f ∗k 〉π fk,
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where the ( fk) are eigenfunctions of P associated with the eigenvalues (λk) and form a Riesz
basis of �2(π), and the ( f ∗k ) form the unique Riesz basis biorthogonal to ( fk). For any x, y ∈X
and n ∈N, the spectral expansion of P is given by

Pn(x, y)=
∑
k∈X

λnkfk(x)f
∗
k (y)π(y).

(b) P �∼Q if and only if Q̂ �̂∼ P̂.
(c) Suppose that� is a unitary operator, that is,�−1 = �̂. Then P is a normal (resp. self-adjoint)

operator in �2(π) if and only if Q is a normal (resp. self-adjoint) operator in �2(πQ).
(d) (Lattice isomorphism.) Suppose that X is a finite state space. � is an invertible Markov ker-

nel on X with �−1 having non-negative entries if and only if � ∈P , the set of permutation
kernels. We recall that � ∈P if � = �σ := (1y=σ (x))x,y∈X with σ : X �→X being a permu-
tation of the state space, and note that �σ is a unitary Markov kernel. Moreover, for any
Q ∈M, the permutation orbit SP (Q) of Q is given by

SP (Q)= {P ∈M; P� = �Q,� ∈P} ⊂M,

whereM is the set of square matrices on X .
(e) Suppose that X is a finite state space and Q is the transition kernel of an irreducible birth–

death process. Then P �∼Q if and only if P has real and distinct eigenvalues.

Remark 2.2. As suggested by item (c), we can generate new non-normal examples via non-
unitary links from known normal Markov chains such as birth–death processes. In Section 6 we
investigate a particular non-unitary orbit that we call the pure birth orbit.

Remark 2.3. The result in Theorem 2.1(d) has also been obtained by Miclo using a different
proof; see Lemma 12 in [46].

Remark 2.4. The key to Theorem 2.1(e) lies on the simplicity of the spectrum ofQ. In the context
of non-negative Jacobi matrices, the inverse eigenvalue problem has been studied by Friedland
and Melkman [27, Theorem 4].

Remark 2.5. Theorem 2.1 can be generalized easily to the continuous-time setting; see also
Remark 1.3. Indeed, suppose that L ∈ S(G), where G is a normal generator with spectral measure
E = {EB; B ∈ B(C)}. Then, for t� 0,

Pt =
∫

σ (L)
etλ dFλ,

where {FB := �EB�−1; B ∈ B(C)}.

As a first application of the spectral decomposition stated in Theorem 2.1, we derive accurate
information regarding the speed of convergence to stationarity for ergodic chains in S in both the
Hilbert space topology and in total variation distance. There has been a rich literature devoted to
the study of convergence to equilibrium for non-reversible chains by means of reversibilizations;
see e.g. [1, 24, 41, 48] and the references therein. Our approach reveals a natural extension to the
non-reversible case of the classical spectral gap that appears in the study of reversible chains. To
state our result we now fix some notations. We denote the second largest eigenvalue in modulus
(SLEM) or the spectral radius of P in the Hilbert space

�20(π)= {f ∈ �2(π); 〈f , 1〉π = 0},
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by

λ∗ = λ∗(P)= sup{|λi|; λi ∈ σ (P), λi �= 1}.
Then the absolute spectral gap is γ∗ = 1− λ∗. For any two probability measures μ, ν on X , the
total variation distance between μ and ν is given by

‖μ − ν‖TV = 1
2
∑
x∈X

|μ(x)− ν(x)|.

For n ∈N, the total variation distance from stationarity of X is

d(n)=max
x∈X

‖δxPn − π‖TV .

For g ∈ �2(π), the mean of g with respect to π can be written as Eπ (g)= 〈g, 1〉π . Similarly,
the variance of g with respect to π is Varπ (g)= 〈g, g〉π −E

2
π (g). Finally, we recall that Fill [24,

Theorem 2.1], in the finite state space case, obtained the following bound valid for all n ∈N0:

d(n)� σ n∗ (P)
2

√
1− πmin

πmin
, (2.2)

where πmin =minx∈X π(x) and σ∗(P)=
√

λ∗(PP̂) is the second largest singular value of P. We
obtain the following refinement for Markov chains in the class S . The proof is deferred to
Section 2.2.

Corollary 2.6. Let P ∈ S with invariant distribution π , that is, πP = π , and assume that P is
compact.

(1) For any n ∈N0, we have

λn∗ � ‖Pn − π‖�2(π)→�2(π) �min (σ n∗ (P), κ(�)λn∗)= σ n∗ (P)1{n<n∗} + κ(�)λn∗1{n�n∗},
(2.3)

where

n∗ =
⌈

ln κ(�)
ln σ∗(P)− ln λ∗

⌉
,

and

κ(�)= ‖�‖�2(πQ)→�2(π) ‖�−1‖�2(π)→�2(πQ) � 1

is the condition number of �. When X is a finite state space, a sufficient condition for which
λ∗ < σ∗(P) is given by maxi∈X P(i, i)> λ∗. In this case, for n large enough, the convergence
rate λ∗ given (2.3) is strictly better than the reversibilization rate σ∗(P).

(2) Suppose that X is a finite state space. For any n ∈N0,

d(n)� min (σ n∗ (P), κ(�)λn∗)
2

√
1− πmin

πmin
,

where λ∗ � σ∗(P).

Remark 2.7. Recall that when P is reversible and compact then the sequence of eigenfunctions is
orthonormal, and thus an application of the Parseval identity yields the well-known result (see e.g.
[10, Section 4.3]) ‖Pn − π‖�2(π)→�2(π) = λn∗ and κ(�)= 1, which is a specific instance of item (1).
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Remark 2.8. We also recall the discrete analogue of the notion of hypocoercivity introduced in
[59], that is, there exists a constant C < ∞ and ρ ∈ (0, 1) such that, for all n ∈N,

‖Pn − π‖�2(π)→�2(π) � Cρn.
Note that, in general, these constants are not known explicitly. We observe that the upper bound
in (2.3) reveals that the ergodic chains in S satisfy this hypocoercivity phenomenon. More inter-
estingly, our similarity concept approach enables us to obtain both an explicit rate of convergence
and a spectral interpretation of this rate. Indeed, it can be understood as a modified spectral gap
where the perturbation from the classical spectral gap is given by the condition number κ(�),
which can be interpreted as a measure of deviation from symmetry. In this vein we mention the
recent work of Patie and Savov [49], where a similar spectral interpretation of the hypocoercivity
phenomenon is given for a class of non-self-adjoint Markov semigroups.

Remark 2.9. Here we provide an alternative expression for the upper bound of (2.3). Let �2(X )
be the space of square summable functions on X equipped with the standard inner product
〈·, ·〉. Suppose that P ∈ S(Q) with QU =UD, where D is a diagonal matrix and U is an isome-
try from �2(X ) to �2(πQ). Then B= �U is an eigenbasis for P with κ(B)= κ(�), where κ(B) :=
‖B‖�2(X )→�2(π)‖B−1‖�2(π)→�2(X ) is the condition number of B, so the upper bound in (2.3) can
be written as

‖Pn − π‖�2(π)→�2(π) � κ(B)λn∗.

As a second application of Theorem 2.1, we first recall the celebrated eigentime identity studied
by Aldous and Fill [1], Cui and Mao [16] and Miclo [45]. Suppose that we sample two points x
and y randomly from the stationary distribution of the chain and calculate the expected hitting
time from x to y. The expected value of this procedure is the sum of the inverse of the non-zero
(and negative of the) eigenvalues of the generator. Since similarity preserves the eigenvalues (see
Theorem 2.1(a)), we can easily see that both P and Q share the same eigentime identity.

Corollary 2.10 (eigentime identity). Suppose that X is a finite state space and (Qt)t�0 (resp.
(Pt)t�0) has generator G (resp. L) associated with the ergodic Markov chain (Xt)t�0 (resp. (Yt)t�0).
If L ∈ S(G), with G being a normal generator and common eigenvalues (− λi)i∈�|X |�, then (Pt)t�0

and (Qt)t�0 share the same eigentime identity. That is, if τ
Q
y := inf{t� 0; Xt = y} (resp. τPy :=

inf{t� 0; Yt = y}), then
∑
x,y∈X

Ex(τQy )πQ(x)πQ(y)=
∑
x,y∈X

Ex(τPy )π(x)π(y)=
|X |∑

i=1,λi �=0

1
λi
.

2.1 Proof of Theorem 2.1
We first show item (a). Since E is a spectral measure, it follows easily that {FB = �EB�−1; B ∈
B(C)} is a spectral measure. The fact that the spectrum coincides and

σ (P)= σ (Q), σ (P)= σ (̂P), σc(P)= σc(Q), σp(P)= σp(Q), σr(P)= σr(Q)

follows from Proposition 3.9 in [3]. Define P := ∫
σ (P) λ dFλ. We have

P =
∫

σ (P)
λ d(�Eλ�

−1)= �

(∫
σ (Q)

λ dEλ

)
�−1 = �Q�−1 = P,

so the desired spectral resolution of P follows, and thus it is a spectral scalar-type operator. The
spectral resolution of P̂ follows from that of P. The functional calculus of P follows immediately
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from that of the spectral scalar-type operator; see e.g. [22, Theorem 1, Chapter XV.5, p. 1941]. We
proceed to handle the case when P is compact. Let (gk) denote the (orthogonal) eigenfunctions
of the normal transition kernel Q. Since fk = �gk and � is bounded, ( fk) is complete as (gk) is a
basis. As � is bounded from above and below, for any n ∈N and arbitrary sequence (ck)nk=1, we
have

A
n∑

k=1

|ck|2 �
∥∥∥∥ n∑
k=1

ckfk
∥∥∥∥2

π

=
∥∥∥∥� n∑

k=1

ckgk
∥∥∥∥2

π

� B
n∑

k=1

|ck|2,

where we can take A= ‖�−1‖−2 and B= ‖�‖2, so (2.1) is satisfied. It follows from [61,
Theorem 9] that there exists the sequence ( f ∗k ) being the unique Riesz basis biorthogonal to ( fk),
and any f ∈ �2(π) can be written as

f =
∑
k∈X

ckfk,

where ck = 〈f , f ∗k 〉π . The desired result follows by applying Pn to f and using Pnfk = λnkfk. In par-
ticular, if we take f = δy, the Dirac mass at y, and evaluate the resulting expression at x, we obtain
the spectral expansion of P.

Next we show item (b). If P �∼Q, then for f ∈ �2(πQ) and g ∈ �2(π),

〈f , �̂P̂g〉πQ = 〈P�f , g〉π = 〈�Qf , g〉π = 〈f , Q̂�̂g〉πQ ,

which shows that Q̂ �̂∼ P̂. The opposite direction can be shown similarly.
For item (c), since � is unitary, the spectral measures of P and Q are related by FB = �EB�̂, so

FB is self-adjoint if and only if EB is self-adjoint, which implies that P is normal if and only if Q is

normal. If Q is self-adjoint, then item (b) yields P �∼Q if and only if Q �−1
∼ P̂, which implies that

P̂ = P in �2(π). The opposite direction can be shown similarly.
Next we show item (d). If � is a permutation link, then it is trivial to see that � is an invertible

Markov kernel. For the opposite direction, it is known (see e.g. [5, Section 3]) that � =D�σ ,
where D is a diagonal matrix. We then have 1= �1=D�σ1=D1, which gives D= I, and hence
� = �σ . Now let Q ∈M and P ∈ SP (Q). Then, since P = �Q�−1 with �,�−1 ∈P , we deduce
readily that P ∈M.

Finally, to show item (e), if P �∼Q, then P has real and distinct eigenvalues since Q has real and
distinct eigenvalues. Conversely, if P has real and distinct eigenvalues, P is diagonalizable, so there
exists an invertible � such that

P = �D�−1.

where D is the diagonal matrix storing the eigenvalues of P. Given the spectral data D, by the
inverse spectral theorem (see e.g. [23, Section 5.8]), one can always construct an ergodic Markov
chain with transition matrix Q such that

Q=VDV−1.

2.2 Proof of Corollary 2.6
We first show the upper bound in item (1). Define the synthesis operator T∗ : �2 → �2(π) by
α = (αi) �→ T∗(α)=∑

i∈X αifi, where ( fi) are the eigenfunctions of P and ( f ∗i ) are the unique
biorthogonal basis of ( fi) as in Theorem 2.1. For i ∈X , we take αi = αi(n)= λni 〈g, f ∗i 〉π , and
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denote (qi) to be the orthonormal eigenfunctions of Q ∈N , where fi = �qi. Note that ‖T∗‖op �
‖�‖�2(πQ)→�2(π) < ∞, since

‖T∗(α)‖�2→�2(π) =
∥∥∥∥∑
i∈X

αi�qi
∥∥∥∥

�2→�2(π)

� ‖�‖�2(πQ)→�2(π)

∥∥∥∥∑
i∈X

αiqi
∥∥∥∥

πQ

� ‖�‖�2(πQ)→�2(π)‖α‖�2 .

For g ∈ �20(π), we also have∑
i∈X

|〈g, f ∗i 〉π |2 =
∑
i∈X

|〈g, (�∗)−1qi〉π |2

=
∑
i∈X

|〈�−1g, qi〉πQ |2

= ‖�−1g‖2πQ

� ‖�−1‖2
�2(π)→�2(πQ)‖g‖2π ,

where the third equality follows from Parseval’s identity, which leads to

‖Png − πg‖2π = ‖T∗(α)‖2
�2→�2(π)

� ‖�‖2
�2(πQ)→�2(π)‖α‖2l2

� ‖�‖2
�2(πQ)→�2(π)‖�−1‖2

�2(π)→�2(πQ)λ
2n∗ ‖g‖2π . (2.4)

The desired upper bound follows from (2.4) and

‖Pn − π‖�2(π)→�2(π) � λ∗(̂PP)n/2 = λ∗(PP̂)n/2

(see e.g. [24]). The lower bound in (1) follows readily from the well-known result that the nth
power of the spectral radius λn∗ is less than or equal to the norm of Pn on the reduced space
�20(π). For the sufficient condition in item (1), that is, maxi∈X P(i, i)> λ∗ implies λ∗ < σ∗(P), it is
a straightforward consequence of the Sing–Thompson theorem; see [58].

Next we show item (2). Using (2.4), we get

Varπ (̂Png)� κ(�̂)2λ2n∗ Varπ (g)= κ(�)2λ2n∗ Varπ (g), n ∈N0, (2.5)

where we used the obvious identity κ(�)= κ(�̂) in the equality. This leads to

‖δxPn − π‖2TV = 1
4
E
2
π

∣∣∣∣δxPnπ
− 1

∣∣∣∣
� 1

4
Varπ

(
δxPn

π

)
= 1

4
Varπ

(
P̂n

δx
π

)
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� 1
4
κ(�)2λ2n∗ Varπ

(
δx
π

)
= 1

4
κ(�)2λ2n∗

1− π(x)
π(x)

� 1
4
κ(�)2λ2n∗

1− πmin
πmin

,

where the first inequality follows from the Cauchy–Schwarz inequality. The proof is completed by
combining the above bound with (2.2).

3. The GMC class and separation cutoff
As Theorem 2.1 suggests, the class S is highly tractable and enjoys a number of attractive proper-
ties. It will therefore be very interesting to characterize this class in terms of the one-step transition
probabilities of P, a fundamental yet challenging issue. However, we manage to identify a set of
sufficient conditions that we call the generalized monotonicity condition class GMC, generalizing
the MC class for skip-free chains as introduced in [13], such that the kernels in GMC have real
and distinct eigenvalues and the time-reversal P̂ intertwines with a birth–death chain with the link
kernel � being related to the Siegmund kernel HS(x, y)= 1{x�y}.

Definition 3.1. (the GMC class). We say that, for some r� 3, P ∈ GMCr if P ∈M with X =
�0, r� and for every x ∈ �0, r− 1�, its time-reversal (X, P̂) satisfies

(1) (stochastic monotonicity) P̂x+1(X1 � x)� P̂x(X1 � x),
(2) (strict stochastic monotonicity) P̂x+1(X1 � x− 1)< P̂x(X1 � x− 1), x �= 0, and
(3) (strict stochastic monotonicity) P̂x+1(X1 � x+ 1)< P̂x(X1 � x+ 1), x �= r− 1, and
(4) (restricted downward jump) P̂x+1(X1 � x− k)= P̂x(X1 � x− k), k ∈ �2, x�, and
(5) (restricted upward jump) P̂x+1(X1 � x+ k)= P̂x(X1 � x+ k), k ∈ �2, r− 1− x�.

Moreover, we say X ∈ GMC+
r if X ∈ GMCr and for every x ∈ �0, r− 1�,

(6) (lazy Siegmund dual) P̂x(X1 � x)− P̂x+1(X1 � x)� 1/2.

When there is no ambiguity of the state space, we write GMC = GMCr (resp. GMC+ = GMC+
r ).

Note that the superscript plus sign in GMC+ means that this class has non-negative eigenvalues;
see Remark 3.9 below.

Remark 3.2. Recall that in [13], if P ∈MC, that is, P is upward skip-free and satisfies (1), (3)
and (5), then it is clear that MC ⊂ GMC, as items (2) and (4) in Definition 3.1 are automatically
satisfied since the time-reversal P̂ is downward skip-free.

Next, we formally state that a transformation of P ∈ GMC is contained in the similarity orbit
of an irreducible birth–death kernel. The proof can be found in Section 3.1. For any square matrix
M on �0, r�, we writeM�0,r−1� to denote the principal submatrix on �0, r− 1�.

Theorem 3.3. Let P ∈ GMC and write M := P� on �0, r�, where � = (HT
S Dπ )−1 and Dπ is the

diagonal matrix of π . Then (�−1)�0,r−1�(P�)�0,r−1� ∈ S(Q) with Q being an irreducible birth–
death transition kernel on �0, r− 1�.
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Remark 3.4 (on the connection to the strong stationary duality theory of [17]). We would
like to highlight the connection between Theorem 3.3 and the classical construction of strong sta-
tionary duality (SSD) proposed by Diaconis and Fill. In [17, Theorem 5.5], writing π0 to be the
initial distribution at time 0, if π0(x)/π(x) is decreasing in x and the time-reversal is stochastically
monotone, then the SSD of a chain X can be derived as the Doob H-transform of the Siegmund
dual of the time-reversal of X, withH =HT

S π being the cumulative distribution function of π . As
we shall see in the proof of Theorem 3.3, our result bears a resemblance to the above construction
by Diaconis and Fill, withQ in Theorem 3.3 being a Doob transform of the state-restriction of the
Siegmund dual of the time-reversal. Note that both our result and the classical SSD construction
require stochastic monotonicity of the time-reversal, yet our GMC class requires more condi-
tions (namely items (2) to (4) of Definition 3.1). While we apply the same Doob H-transform
to the Siegmund dual, we apply a further Doob h̃-transform for the state-restricted and Doob
H-transformed Siegmund dual restricted to �0, r− 1�, where h̃ is defined in (3.2) below.

We now give an example that illustrates the GMC class.

Example 3.5.

P̂ =

⎛⎜⎜⎜⎜⎜⎝
0.5 0.35 0.05 0.1
0.3 0.5 0.1 0.1
0.2 0.1 0.5 0.2
0.2 0.05 0.25 0.5

⎞⎟⎟⎟⎟⎟⎠, P =

⎛⎜⎜⎜⎜⎜⎝
0.5 0.2629 0.1157 0.1213

0.3994 0.5 0.0660 0.0346
0.0864 0.1515 0.5 0.2621
0.1648 0.1444 0.1907 0.5

⎞⎟⎟⎟⎟⎟⎠
has eigenvalues 1, 0.54, 0.28, 0.18, and satisfies (1)–(6) of Definition 3.1. Note that

(�−1)�0,r−1�(P�)�0,r−1� =

⎛⎜⎜⎝
0.2 0.1 0
0.05 0.5 0.05
0 0.1 0.3

⎞⎟⎟⎠.

We proceed to investigate the separation cutoff phenomenon for the GMC class. For birth–
death chains such phenomena were studied in [20] and [11], and were recently extended to
upward skip-free chains in [42] and [13]. In order to establish the famous ‘spectral gap times
mixing time’ criterion (see e.g. [52]) for this class, we will build upon the result of [25] to first
analyse the fastest strong stationary time of this class, followed by demonstrating that the proof in
[20] carries over for this class of non-reversible chains.

To this end, we recall the definition of separation distance of Markov chains, which is used as
a standard measure for convergence to equilibrium. For n ∈N, the maximum separation distance
s(n) is defined by

s(n)= max
x,y∈E

[
1− Pn(x, y)

π(y)

]
=max

x∈E sep(Pn(x, ·), π)=max
x∈E sx(n).

One of the nice features is its connection to strong stationary times, which we now describe. We
say that a randomized stopping time T for a Markov chain X with stationary distribution π is a
strong stationary time T, possibly depending on the initial starting position x if, for all x, y ∈ E,

Px(T = n, XT = y)= Px(T = n)π(y).
It is well known (see e.g. [41, Lemma 6.11]) that the tail probability of a strong stationary time U
provides an upper bound on the separation distance, that is,

sx(n)� P(U > n).
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The fastest strong stationary time T is a strong stationary time such that, for all n ∈N, sx(n)=
P(T > n). We now provide a description of the cutoff phenomenon for Markov chains. Recall
that the separation mixing times are defined, for any x ∈ E and ε > 0, as

Ts(x, ε)=min{n� 0; sep(Pn(x, ·), π)� ε}
and

Ts(ε)=min{n� 0; s(n)� ε}.
A family, indexed by n ∈N, of ergodic chains X(n) defined on Xn = �0, rn� with transition matrix
Pn, stationary distribution πn and separation mixing times Tn(ε)= Ts

n(ε) or Ts
n(x, ε), for some

x ∈ E, is said to present a separation cutoff if there is a positive sequence (tn) such that, for all
ε ∈ (0, 1),

lim
n→∞

Tn(ε)
tn

= 1.

The family has a (tn, bn) separation cutoff if the sequences (tn) and (bn) are positive, bn/tn → 0
and for all ε ∈ (0, 1),

lim sup
n→∞

|Tn(ε)− tn|
bn

< ∞.

We now proceed to discuss the main results of this section, with Theorem 3.6 addressing the
case of a discrete-time family of Markov chains, and Theorem 3.8 discussing the continuous-time
version. Recall that the notation GMC+ introduced in Definition 3.1 represents the generalized
monotonicity class with non-negative eigenvalues. This is an important subclass since the eigen-
values of the transition kernel (resp. negative of the generator) are the parameters in the geometric
distribution (resp. exponential distribution) of the fastest strong stationary time in Theorem 3.6
(resp. Theorem 3.8).

Theorem 3.6. For n� 1, suppose that Pn ∈ GMC+
rn on the state spaceXn = �0, rn� that started at 0.

Let (θn,i)rni=1 be the non-zero eigenvalues of I − Pn, and let (cn,i)rni=0 be the mixture weights of the nth
chain defined in (3.3) in Lemma 3.10. Define

wn,i :=
rn∑
j�i

cn,j, tn :=
rn∑
i=1

wn,i
θn,i

, θn := min
1�i�rn

θn,i, ρ2
n :=

rn∑
i=1

w2
n,i
1− θn,i

θ2n,i
.

Then this family has a separation cutoff if and only if tnθn → ∞. Furthermore, if tnθn → ∞, then
there is a (tn, max{ρn, 1}) separation cutoff.

Remark 3.7. For discrete-time stochastically monotone birth–death chains that start at 0, we have
wi = 1 for i ∈ �1, rn� and cn,0 = 0, and hence we recover [20, Theorem 5.2].

Theorem 3.8. For n� 1, suppose that Ln = Pn − I is the infinitesimal generator with P ∈ GMC+
rn

on the state space Xn = �0, rn� that started at 0. Let (θn,i)rni=1 be the non-zero eigenvalues of −Ln,
and let (cn,i)rni=0 be the mixture weights defined in (3.4) in Remark 3.13. Define

wn,i :=
rn∑
j�i

cn,j, tn :=
rn∑
i=1

wn,i
θn,i

, θn := min
1�i�rn

θn,i, ρ2
n :=

rn∑
i=1

w2
n,i

θ2n,i
.

Then this family has a separation cutoff if and only if tnθn → ∞. Furthermore, if tnθn → ∞, then
there is a (tn, ρn) separation cutoff.

We will only prove Theorem 3.6 as the proof of Theorem 3.8 is very similar and thus omitted.
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3.1 Proof of Theorem 3.3
We write P̃ for the so-called Siegmund dual (or HS-dual) of P̂. That is, P̃T =H−1

S P̂HS where
HS = (HS(x, y))x,y∈X is defined to be HS(x, y)= 1{x�y} and its inverse H−1

S = (H−1
S (x, y))x,y∈X

is H−1
S (x, y)= 1{x=y} − 1{x=y−1}; see [57]. Since X ∈ GMC, then P̂ is stochastically monotone,

hence from [4, Proposition 4.1] we have that P̃ is a sub-Markovian kernel. For x ∈ �0, r− 2�, con-
ditions (2) and (3) in GMC yield, respectively, p̃(x, x+ 1)> 0, while for x ∈ �1, r− 1�, we have
p̃(x, x− 1)> 0. Conditions (4) and (5) in GMC guarantee that p̃(x, y)= 0 for each x ∈ �0, r− 3�
and y ∈ �x+ 2, r− 1� and for each x ∈ �2, r− 1� and y ∈ �0, x− 2�. That is, P̃ is a (strictly sub-
stochastic) irreducible birth–death chain when restricted to the state space �0, r− 1�. Let P̃bd
denote the restriction of P̃ to �0, r− 1�. By breaking off the last row and last column of P̃, we
can write

P̃ =
(
P̃bd v
0 1

)
= (H−1

S P̂HS)T , (3.1)

where 0 is a row vector of zero, and v is a column vector storing p̃(x, r) for x ∈ �0, r− 1�.
Considering the h-transform of P̃ with h=HT

S π > 0 (see e.g. [29, Theorem 2]), we see that

M = P� = �P̃,

where � = (HT
S Dπ )−1 (Dπ is the diagonal matrix of π). Observing that the last row of P̃ is zero

except the last entry, we have

M�0,r−1� = ��0,r−1�P̃bd.

Note that P̃bd is a strictly substochastic matrix with r as a killing boundary. Let T̃bd denote the
lifetime of Markov chain with transition kernel P̃bd. However, defining, with the obvious notation,
for any x ∈ �0, r− 1�,

h̃(x)= Px(T̃bd
r−1 < T̃bd), (3.2)

we have, according to [13, Theorem 3.1], that h̃ is a harmonic function for P̃bd, i.e. P̃bdh̃= h̃.
Hence, a standard result in Martin boundary theory (see e.g. [13, Theorem 2.2]) entails that the
Markov chain with transition kernel Q, defined on �0, r− 1� × �0, r− 1� by

Q(x, y)= h̃(y)
h̃(x)

P̃bd(x, y),

is an ergodic birth–death chain, which completes the proof.

Remark 3.9. Note that condition (6) in GMC+ guarantees that P̃ is a lazy chain, i.e. P̃(x, x)� 1/2
for all x ∈X , and hence the class GMC+ possesses non-negative eigenvalues.

3.2 Proof of Theorem 3.6
Following the plan as outlined above in Section 3, we first analyse the distribution of the fastest
strong stationary time of the class GMC+ in Lemma 3.10, followed by detailing the proof of
Theorem 3.6.

Lemma 3.10. Suppose that X is an ergodic Markov chain on the state space X = �0, r� (and
r� 3) with transition matrix P and stationary distribution π which starts at 0. If P ∈ GMC+,
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then the fastest strong stationary time is distributed as the c-mixture of convolution of geometric∑r
k=1 ckG(λ1, . . . , λk), where i, j, k ∈ �0, r�,

Qk := (P − λ1I) · · · (P − λkI)
(1− λ1) · · · (1− λk)

, �(i, j) :=Qi(0, j), ck := �(k, r)− �(k− 1, r)
π(r)

, (3.3)

{λk}rk=1 are the non-unit eigenvalues of P in non-decreasing order and G(λ1, . . . , λk) is the
convolution of geometric distributions with success probabilities 1− λ1, . . . , 1− λk respectively.

Remark 3.11. We alert the readers that Qk are the so-called spectral polynomials and �(i, j) is
�(i, j) of [25, Theorem 5.2] (since � is used as the link kernel throughout this paper).

Remark 3.12 (on the fastest strong stationary time of P and the absorption time of Q). We
would like to highlight the connection between the fastest strong stationary time T of P and
the absorption time to r of Q. According to Lemma 3.10, if P ∈ GMC+, then T is distributed
as

∑r
k=1 ckG(λ1, . . . , λk). On the other hand, according to Theorem 3.3, Q is an irreducible

birth–death process on �0, τ − 1�; then, using [44, Theorem 1.1], there exists a probability mea-
sure such that the absorption time to τ of Q starting from 0 is distributed as, in our notations,∑r

k=1 akG(λ1, . . . , λk). In these two distributions, the same eigenvalues appear as parameters
in the geometric distributions. See [44] for further connections with the class of phase-type
distribution.

Proof. Suppose that P� = �Q. In view of [25, Theorem 5.2], it suffices to show that ck � 0. First,
we show that (Q− λ1I) · · · (Q− λkI) are non-negative matrices, where Q is the Siegmund dual
of P̂. We will prove this via induction on k. For k= 1, thanks to [43, Theorem 3.2], we have
QBD − λ1I � 0, where QBD :=Q�0,r−1� is the restriction of Q except the last row and column,
which leads to

Q− λ1I =
(
QBD − λ1I h

0T 1− λ1

)
� 0.

Suppose that
k∏

i=1
(Q− λiI)=

⎛⎝∏k
i=1 (QBD − λiI) n

0T
∏k

i=1 (1− λi)

⎞⎠� 0,

where n� 0 is a non-negative vector. Therefore,
k+1∏
i=1

(Q− λiI)=
⎛⎝∏k+1

i=1 (QBD − λiI)
∏k

i=1 (QBD − λiI)h+ (1− λk+1)n

0T
∏k+1

i=1 (1− λi)

⎞⎠� 0,

which completes the induction by using [43, Theorem 3.2] again on
∏k+1

i=1 (QBD − λiI). Define

Zk := (HT
S )

−1
k∏

i=1

Q− λiI
1− λi

HT
S .

Note that P =D−1
π (HT

S )−1QHT
S Dπ , so ck � 0 if and only if Zk(0, r)− Zk−1(0, r)� 0 if and only if

(here we make use of HT
S )( k∏

i=1

Q− λiI
1− λi

)
(0, r)−

(k−1∏
i=1

Q− λiI
1− λi

)
(0, r)=

(k−1∏
i=1

QBD − λiI
1− λi

h
)
(0)� 0,

which is true.
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When we have a handle on the fastest strong stationary time, we can then analyse the separa-
tion cutoff phenomenon, and the rest of the proof follows the Chebyshev inequality framework
introduced by Diaconis and Saloff-Coste [20]. More precisely, let Pkn be the distribution of the nth
chain at time k, πn the stationary measure, and Tn the fastest strong stationary time of the nth
chain. We note that E(Tn)= tn and Var(Tn)= ρ2

n . The key to the proof is the following:

ρ2
n = θ−2

n

rn∑
i=1

w2
n,i
(1− θn,i)θ2n

θ2n,i
� θ−2

n

rn∑
i=1

wn,i
θn
θn,i

= θ−1
n tn,

where we use θn,i � 0, θn/θn,i � 1 and wi � 1 in the first inequality. The rest of the proof follows
like that of [13, Theorem 8.1], which does not require reversibility of the chain.

Remark 3.13. The corresponding result of Lemma 3.10 in the continuous-time setting is stated as
follows in order to prove Theorem 3.8. Suppose that X is a continuous-time ergodic Markov chain
on the state space X = �0, r� (and r� 3) with generator L= P − I and stationary distribution π

which starts at 0. If P ∈ GMC+, then the fastest strong stationary time is distributed as the c-
mixture of convolution of exponential

∑r
k=1 ckE(θ1, . . . , θk), where i, j, k ∈ �0, r�,

Qk := (L+ θ1I) · · · (L+ θkI)
θ1 · · · θk , �(i, j) :=Qi(0, j), ck := �(k, r)− �(k− 1, r)

π(r)
, (3.4)

and {θk}rk=1 are the non-zero eigenvalues of −L in non-increasing order and E(θ1, . . . , θk) is the
convolution of exponential distributions with mean 1/θ1, . . . , 1/θk respectively.

4. L2-cutoff
The aim of this section is to investigate the spectral criterion for the existence of L2-cutoff for
the class of Markov chains in a continuous-time setting with generator L and similarity on the
generator level. That is, in the notation of Definition 1.1 and 1.5, L ∈ S(G), where G is a reversible
generator. We denote the spectral gap λ = λ(L) of L by

λ = λ(L)= inf{〈−Lf , f 〉π ; f ∈Dom(L), real-valued,Eπ ( f )= 0,Eπ ( f 2)= 1}. (4.1)

This follows and generalizes the work of Chen, Hsu and Sheu [8] and Chen and Saloff-Coste [9,
10], who studied the L2-cutoff phenomenon in the context of normal Markov processes. Adapting
the notations therein, we proceed to provide a quick review of the notion of L2-cutoff.

Definition 4.1. For n� 1, let gn : [0,∞) �→ [0,∞] be a non-increasing function vanishing at
infinity. Assume that

M = lim sup
n→∞

gn(0)> 0.

Then the family G = {gn : n� 1} is said to have:

(1) a cutoff if there exists a sequence of positive numbers tn, known as the cutoff time, such
that, for ε ∈ (0, 1),

lim
n→∞ gn((1+ ε)tn)= 0, lim

n→∞ gn((1− ε)tn)=M,

(2) a (tn, bn)-cutoff if tn > 0, bn > 0, where bn is known as the cutoff window, bn = o(tn) and

lim
c→∞ lim sup

n→∞
gn(tn + cbn)= 0, lim

c→−∞ lim inf
n→∞ gn(tn − cbn)=M.
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If ηPt � π with density f (t, η, ·), then the chi-squared distance is given by

D2(η, t)2 =
∫
X

| f (t, η, x)− 1|2 π(dx).

Suppose that we have a family of measurable spaces (Xn, Bn)n∈N. For n ∈N, we let pn(t, ηn, ·),
defined on (Xn, Bn), be the transition function with initial probability law ηn � πn and t� 0. We
denote fn to be the L2-density of ηn with respect to πn. The family {pn(t, ηn, ·) : t ∈ [0,∞)} has an
L2-cutoff (resp. (tn, bn) L2-cutoff) if {gn(t)=Dn,2(ηn, t) : n� 1} has a cutoff (resp. (tn, bn)-cutoff)
as in Definition 4.1, where Dn,2(ηn, t) is the chi-squared distance of the nth chain.

Our main result in Theorem 4.2 gives the spectral criterion for L2-cutoff for the family of
processes with Ln ∈ S(Gn), where Gn is a reversible generator. We denote the (non-self-adjoint)
spectral measure of Ln of the nth chain by Fn,B for B ∈ B(C), and Hn,B = Fn,BF∗

n,B. We use the
following notation: for δ, C > 0 and B ∈ B(C), we set, for any n ∈N,

Vn(B)= 〈Hn,Bfn, fn〉πn , tn(δ)= inf{t : Dn,2(ηn, t)� δ},

λn(C)= inf{λ : Vn([λn, λ])> C}, τn(C)= sup
{
log (1+Vn([λn, λ]))

2λ
: λ� λn(C)

}
,

γn = λn(C)−1 and bn = λn(C)−1 log (λn(C)τn(C)).

Theorem 4.2. Suppose that Ln ∈ S(Gn) for each member in the family {pn(t, ηn, ·) : t ∈ [0,∞)},
where Gn is a reversible generator. If πn( f 2n )→ ∞, then the following are equivalent:

(1) {pn(t, ηn, ·) : t ∈ [0,∞)} has an L2-cutoff,
(2) for some positive constants C, δ, ε,

lim
n→∞ tn(δ)λn(C)= ∞, lim

n→∞

∫
[λn,λn(C)]

e−εγ tn(δ) dVn(γ )= 0,

(3) for some positive constants C, ε,

lim
n→∞ τn(C)λn(C)= ∞, lim

n→∞

∫
[λn,λn(C)]

e−εγ τn(C) dVn(γ )= 0.

If (2) (resp. (3)) holds, then {pn(t, ηn, ·) : t ∈ [0,∞)} has a (tn(δ), γn) L2-cutoff (resp. (τn(C), bn)
L2-cutoff).

Remark 4.3. If Ln is reversible, then Hn,B = Fn,BF∗
n,B = F2n,B = Fn,B since Fn,B is a self-adjoint

projection in this case. The above result then retrieves exactly [10, Theorem 4.6].

4.1 Proof of Theorem 4.2
To prove Theorem 4.2 we need the following lemma, which relates the chi-squared distance to
the spectral decomposition of the infinitesimal generator −L, which allows us to connect with the
Laplace transform of the spectral measure HB = FBF∗

B.

Lemma 4.4. Let X be a Markov process with X0 ∼ η, generator L ∈ S(G), where G is a reversible
generator, such that η � π with L2(π)-density f and spectral gap λ > 0. Let {FB : B ∈ B(C)} denote
the non-self-adjoint spectral measure for −L, and we define, for B ∈ B(C),

HB = FBF∗
B.
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Then, for t� 0,

D2(η, t)2 =
∫
[λ,∞)

e−2γ t d〈Hγ f , f 〉π .

Proof. By the definition of chi-squared distance D2 and π( f )= 1, we have

D2(η, t)2 = ‖̂Ptf − π( f )‖2π =
∫
[λ,∞)

e−2γ t d〈Hγ f , f 〉π ,

where the last equality follows from [30, second half of the proof of Lemma 3.19, p. 1542].

Lemma 4.4 reveals that the problem of L2-cutoff reduces to the cutoff phenomenon of the
Laplace transform. We proceed to complete the proof of Theorem 4.2. By Lemma 4.4, we take
gn(t)=Dn,2(ηn, t) in Definition 4.1, and the desired result follows from the Laplace transform
cutoff criterion in Theorems 3.5 and 3.8 of [10]. Precisely, the chi-squared distance is of the form

Dn,2(ηn, t)2 =
∫
[λn,∞)

e−2γ t dVn(λ).

This is exactly the form of function considered in [10, equation (3.1)], and consequently we can
invoke [10, Theorems 3.5 and 3.8].

Remark 4.5. As mentioned in Remark 4.3, if Ln is reversible, then our Theorem 4.2 retrieves
exactly Theorem 4.6 of [10], whose proof is a combination of the results of Theorems 3.5, 3.8
and 4.4 therein. The strategy of the proof is as follows: Theorem 4.4 claims that the chi-squared
distance to stationarity of a reversible Markov process is a Laplace transform, thus the Laplace
transform cutoff results of Theorems 3.5 and 3.8 can be applied. In our proof of Theorem 4.2,
we follow the same strategy. We first show Lemma 4.1 (which is the parallel version of [10,
Theorem 4.4]), which states that for L ∈ S(G) with G being reversible, the chi-squared distance
to stationarity of L is also a Laplace transform. Consequently, the Laplace transform cutoff results
of [10, Theorems 3.5 and 3.8] can be applied in our setting.

4.2 Lp-cutoff
We proceed by investigating the Lp-cutoff for fixed p ∈ (1,∞) for the class S . Recall that Chen
and Saloff-Coste [9, Theorems 4.2, 4.3] have shown that, for a family of normal ergodic transition
kernels Pn, the max-Lp cutoff is equivalent to the spectral gap times mixing time going to infinity.
We can extend their result to the case of the non-normal chains in S as follows, using techniques
similar to those of [13] for the class of skip-free chains similar to birth–death chains.

Theorem 4.6 (max-Lp cutoff). Suppose that, for each n� 1, Ln ∈ S(Gn)with Gn being a reversible
generator, transition kernel Ptn = etLn �n∼ Qt

n = etGn on Xn and spectral gap of Gn given by λn =
λn(Gn), where we recall the definition of spectral gap in (4.1). Assume that the condition numbers
κ(�n) of the link kernels are uniformly bounded, that is,

sup
n�1

κ(�n)< ∞.

Fix p ∈ (1,∞) and ε > 0. Consider the max-Lp distance to stationarity

fn(t)= sup
x∈Xn

(∫
Xn

|pn(t, δx, y)− 1|p πn(dy)
)1/p
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and define
tn = inf{t > 0; fn(t)� ε}, F = { fn; n= 1, 2, . . .}.

Assume that each n, fn(t)→ 0 as t → ∞ and tn → ∞. Then the family F has a max-Lp cutoff if
and only if tnλn → ∞. In this case there is a (tn, λ−1

n ) cutoff.

The proof in [9, Theorems 4.2, 4.3] works nicely as long as we have Lemma 4.7 below, which
gives a two-sided control on the Lp(π) norm of Pt − π . The following lemma is then the key to
the proof.

Lemma 4.7. Suppose that L ∈ S(G), with G being a reversible generator, transition kernel Pt = etL �∼
Qt = etG and the spectral gap of G is λ = λ(G), where we recall the definition of spectral gap in (4.1).
Fix p ∈ (1,∞). Then, for any t� 0, we have

2−1+θp e−λtθp � ‖Pt − π‖Lp(π)→Lp(π) � 2|1−2/p|(κ(�) e−λt)1−|1−2/p|, (4.2)

where θp ∈ [1/2, 1] and κ(�)= ‖�‖L2(πQ)→L2(π) ‖�−1‖L2(π)→L2(πQ).

Proof. By the Riesz–Thorin interpolation theorem (see e.g. [9, equation 3.4]), we have

‖Pt − π‖Lp(π)→Lp(π) � 2|1−2/p|‖Pt − π‖1−|1−2/p|
L2(π)→L2(π),

which when combined with Corollary 2.6 gives the upper bound of (4.2). Next, to show the lower
bound in (4.2), we use another version of the Riesz–Thorin interpolation theorem (see e.g. [9,
Lemma 4.1]) to get

‖Pt − π‖Lp(π)→Lp(π) � 2−1+θp‖Pt − π‖θp
L2(π)→L2(π) � 2−1+θp e−λtθp ,

where we use Corollary 2.6 in the second inequality. This completes the proof.

5. Non-asymptotic estimation error bounds for integral functionals
In this section we would like to estimate integral functionals of the type

�T( f )=
∫ T

0
f (Xt) dt, T � 0,

where T is a fixed time and f is a function such that the integral �T( f ) is well-defined. This follows
the line of work of [2], who studied the same problem with the assumption that the infinitesimal
generator of the Markov process is a normal operator. This type of integral functional appears in
a number of applications. For instance, if we take f = 1B, the indicator function of the Borel set
B, then �T( f ) is the occupation time of the process in B. As another example, it is not hard to see
that this functional appears in the study of path-dependent derivatives in mathematical finance;
see e.g. [12]. In practice, however, we often only have access to a sample path of theMarkov process
at a discrete time point. A natural estimator for �T( f ), known as the Riemann sum estimator, is
given by

�̂T,n( f )=
n∑

k=1

f (X(k−1)�n)�n,

where we observe (Xt)t∈[0,T] at discrete epochs t = (k− 1)�n with k ∈ �n� and�n = T/n, with the
idea that we approximate �T( f ) by its Riemann sum.
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For a stationary Markov process and f ∈ L2(π), both �T( f ) and �̂T,n( f ) are π-a.s. defined
everywhere in L2(P). If L ∈ S(G), we identify, by the Riesz theorem, a linear self-adjoint operator
A such that, for f , g ∈ L2(π),

〈Af , g〉π =
∫

σ (L)
|λ|2 d〈H∗

λ f , g〉π ,

where we recall that H∗
λ = F∗

λ Fλ is a self-adjoint operator and Fλ is the spectral measure of −L.
For s� 0, we define the space Ds(A)=Dom(As)⊂ L2(π) by functional calculus on A with the
seminorm ‖f ‖Ds(A) = ‖As/2f ‖π .

The main results are the following error bounds, in which the proof is similar to that of
[2, Theorem 2.2, Corollary 2.3, Theorem 2.4] and is deferred to Section 5.1. Note that (5.2)
gives the error bound on the space average of X with the finite-time and finite-sample estima-
tor T−1�̂T,n( f ), while (5.3) offers the error bound for the non-stationary Markov process such
that X0 ∼ η.

Theorem 5.1. Let X be a Markov process with X0 ∼ π and generator L ∈ S(G). There exists a
constant C such that, for all T � 0, 0� s� 1, f ∈Ds(A), f0 ∈Dom(A−1) with f0 = f − ∫

f dπ ,

‖�T( f )− �̂T,n( f )‖L2(P) � C
√

‖f ‖Ds(A)‖f ‖πT�1+s
n , (5.1)

‖T−1�̂T,n( f )−
∫

f dπ‖L2(P) �
C√
T

(√
‖f ‖Ds(A)‖f ‖π�n +

√
‖A−1f0‖π‖f0‖π

)
. (5.2)

If X0 ∼ η such that η � π with density dη/dπ , then there exists a constant C such that, for all T � 0,
0� s� 1 and f ∈Ds(A),

‖�T( f )− �̂T,n( f )‖L2(P) � C
∥∥∥∥ dηdπ

∥∥∥∥1/2∞,π

√
‖f ‖Ds(A)‖f ‖πT�1+s

n , (5.3)

where ‖·‖∞,π is the sup-norm in L∞(π).

Remark 5.2. When L is reversible, then A can be identified as |L|2, where we can then retrieve the
results of [2].

5.1 Proof of Theorem 5.1
We first state a lemma (see [30, first half of the proof of Lemma 3.19, p. 1542]) that will be used
repeatedly in the proof.

Lemma 5.3. For f ∈Ds(A),∣∣∣∣∫
σ (L)

λs d〈Fλ f , f 〉π
∣∣∣∣�(∫

σ (L)
|λ|2s d〈H∗

λ f , f 〉π
)1/2

‖f ‖π = ‖f ‖Ds(A)‖f ‖π . (5.4)

Proof. For the sake of completeness, we repeat the arguments of [30, first half of the proof of
Lemma 3.19, p. 1542]. Let [α, β] be a bounded interval and let (�k)nk=1 be a family of disjoint
intervals whose union is [α, β]. For every k, we choose λk ∈ �k. Fix f ∈ L2(π). For the Cauchy
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sums defining the integrals using the triangle inequality and the Cauchy–Schwarz inequality, we
have ∣∣∣∣ n∑

k=1

λsk〈F�k f , f 〉π
∣∣∣∣� n∑

k=1

|λk|s|〈F�k f , F
∗
�k
f 〉π |

�
( n∑
k=1

|λk|2s〈F�k f , F�k f 〉π
)1/2( n∑

k=1

〈F∗
�k
f , F∗

�k
f 〉π

)1/2

�
( n∑
k=1

|λk|2s〈H∗
�k
f , f 〉π

)1/2
‖ f ‖π .

The inequality (5.4) holds on every finite interval and the desired result follows by taking
limits.

We now proceed to give the proof of Theorem 5.1. We first prove (5.1) and consider

‖�T( f )− �̂T,n( f )‖2L2(P)
=E

[( n∑
k=1

∫ k�n

(k−1)�n
( f (Xr)− f (X(k−1)�n)) dr

)2]

=
n∑

k,l=1

∫ k�n

(k−1)�n

∫ l�n

(l−1)�n
E[( f (Xr)− f (X(k−1)�n))( f (Xh)− f (X(l−1)�n))] dr dh.

Then we proceed to bound the diagonal (k= l) and off-diagonal (k �= l) terms. For the diagonal
terms, by stationarity we have for (k− 1)�n � r� h� k�n

E[( f (Xr)− f (X(k−1)�n))( f (Xh)− f (X(k−1)�n))]

= 〈(Ph−r − I)f + (I − Ph−(k−1)�n)f + (I − Pr−(k−1)�n)f , f 〉π ,
so by symmetry in r and h we have

n∑
k=1

∫ k�n

(k−1)�n

∫ k�n

(k−1)�n
E[( f (Xr)− f (X(k−1)�n))( f (Xh)− f (X(k−1)�n))] dr dh

= 2n
〈(∫ �n

0

∫ h

0
(Ph−r − I) dr dh+ �n

∫ �n

0
(I − Ph) dh

)
f , f

〉
π

= 〈�(L)f , f 〉π
=
∫

σ (L)
�(λ) d〈Fλ f , f 〉π ,

where the last equality follows from the functional calculus of L in Theorem 2.1 and, for λ ∈ σ (L),

�(λ)= 2n
(∫ �n

0

∫ h

0
(eλ(h−r) − 1) dr dh+ �n

∫ �n

0
(1− eλh) dh

)
.

From [2, p. 15] we have |�(λ)|� 4n�2+s
n |λ|s with fixed 0� s� 1. Now we apply Lemma 5.3 to

arrive at∣∣∣∣∫
σ (L)

�(λ) d〈Fλ f , f 〉π
∣∣∣∣� 4T�1+s

n ‖f ‖π

(∫
σ (L)

|λ|2s d〈H∗
λ f , f 〉π

)1/2
= 4T�1+s

n ‖f ‖π‖f ‖Ds(A).
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Next we bound the off-diagonal terms, in which

2
n∑
k>l

∫ k�n

(k−1)�n

∫ l�n

(l−1)�n
E[( f (Xr)− f (X(k−1)�n))( f (Xh)− f (X(l−1)�n))] dr dh

= 2
〈(∫ �n

0

∫ �n

0

( n∑
k>l=1

P(k−l)�n−r

)
(Ph − I)(I − Pr) dr dh

)
f , f

〉
π

= 〈�̃(L)f , f 〉π
=
∫

σ (L)
�̃(λ) d〈Fλ f , f 〉π ,

where the last equality again follows from the functional calculus of L in Theorem 2.1 and, for
λ ∈ σ (L),

�̃(λ)= 2
(∫ �n

0

∫ �n

0

( n∑
k>l=1

eλ((k−l)�n−r)
)
(eλh − 1)(1− eλr) dr dh

)
.

Using [2, (16)], there exists a universal constant C̃ < ∞ such that |�̃(λ)|� C̃T�1+s
n |λ|s, and

together with Lemma 5.3 yield∣∣∣∣∫
σ (L)

�̃(λ) d〈Fλ f , f 〉π
∣∣∣∣

� C̃T�1+s
n ‖f ‖π

(∫
σ (L)

|λ|2s d〈H∗
λ f , f 〉π

)1/2

= C̃T�1+s
n ‖f ‖π‖f ‖Ds(A).

Next we prove (5.2). By (5.1) and the triangle inequality,∥∥∥∥T−1�̂T,n( f )−
∫

f dπ
∥∥∥∥
L2(P)

� T−1‖�̂T,n( f )− �T( f )‖L2(P) +
∥∥∥∥T−1�T( f )−

∫
f dπ

∥∥∥∥
L2(P)

� C√
T

√
‖f ‖Ds(A)‖f ‖π�n + ‖T−1�T( f0)‖L2(P).

We proceed to bound ‖T−1�T( f0)‖L2(P), in which

‖T−1�T( f0)‖2L2(P) = 2T−2
∫ T

0

∫ h

0
〈Ph−rf0, f0〉π dr dh

=
∫

σ (L)
�(λ) d〈Fλ f0, f0〉π ,

where � is defined by, for λ ∈ σ (L),

�(λ)= 2T−2
∫ T

0

∫ h

0
eλ(h−r) dr dh= 2

(λT)−1(eλT − 1)− 1
λT

,
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and there exists a constant C̃ such that |�(λ)|� C̃/(|λ|T). Using Lemma 5.3 gives

‖T−1�T( f0)‖2L2(P) �
C̃
T

∣∣∣∣∫
σ (L)

|λ|−1 d〈Fλ f0, f0〉π
∣∣∣∣

� C̃
T

(∫
σ (L)

|λ|−2 d〈H∗
λ f0, f0〉π

)
‖f0‖π

= C̃
T

‖A−1f0‖π‖f0‖π .

Finally, (5.3) follows via a standard change of measure argument.

6. Similarity orbit of reversible Markov chains
In this section our aim is to provide several illuminating examples for Theorem 2.1, and we will
work in the continuous-time setting as this result generalizes easily to this setting; see Remarks 1.3
and 2.5. More precisely, suppose we start with a reversible generator G with transition semigroup
(Qt)t�0; we would like to characterize the family of Markov chains with generator L associated
with G under the similarity transformation G� = �L with � being a bounded invertible Markov
link. This idea allows us to generate Markov or contraction kernels from known ones in which the
spectral decomposition, stationary distribution and eigenfunctions are linked by �. In addition,
the so-called eigentime identity is preserved under intertwining as the spectrum is invariant under
such transformation, as stated in Theorem 2.1. We will illustrate this approach by studying the
pure birth link in particular. While we consider univariate examples in the subsequent section,
nonetheless we can still handle the orbits of multivariate reversible Markov chains (e.g. [28, 34, 35]
and [62]) by considering the link kernel to be the tensor product from univariate link and analyse
the corresponding tensorized orbits.

Before detailing the examples, we introduce the following notation, which will be used
throughout. Let G be a reversible birth–death generator with respect to πG on X = �0, r�. Let

G(x, x− 1)= dx, G(x, x)= −(dx + bx) and G(x, x+ 1)= bx, (6.1)

where dx (resp. bx) is the death (resp. birth) rate at state x, and eigenvalues/eigenvectors denoted
by (− λj, φj)Nj=0, where φj are orthonormal in l2(πG). We assume that d0 = br = 0. Write (Qt)t�0
for its transition semigroup. Then the spectral decomposition of Qt is given by

Qt(x, y)=
r∑

j=0
e−λjtφj(x)φj(y)πG(y). (6.2)

For further details on various birth–death models and their connections with orthogonal polyno-
mials, we refer interested readers to [18, 32, 36, 55, 56, 62] and the references therein.

6.1 Pure birth link on finite state space
In this section we specialize to the case X = �0, r�, with the link being the pure birth link, as
introduced by Fill [25] to study the distribution of hitting time and fastest strong stationary time,
generated by birth–death processes with birth and death rates being bx and dx respectively. The
particular pure birth link �pb that we study is of the form

�pb(x, y)= 1/2, x ∈ �0, r− 1�, y ∈ {x, x+ 1}, �pb(r, r)= 1, (6.3)
�pb(x, y)= 0 otherwise. (6.4)
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A special feature in the pure birth orbit is that the heat kernel Pt := etL of L need not beMarkovian,
yet it still converges to πL exponentially fast as illustrated in Proposition 6.1 below. However, we
give sufficient conditions on a birth–death generator G to guarantee L is a Markov generator.

Proposition 6.1. Suppose that G
�pb∼ L and let (Pt)t�0 denote the transition semigroup associated

with L. Note that (Pt)t�0 need not be Markov under�pb. For any t� 0 and j, x, y ∈ �0, r�, Pt admits
the following spectral decomposition:

Pt(x, y)=
r∑

j=0
e−λjt fj(x)f ∗j (y)πL(y),

where

f ∗j (y)πL(y)= φj(y− 1)πG(y− 1)
2

1y−1�0 + φj(y)πG(y)
(
1y �=r

2
+ 1y=r

)
,

fj(x)=
r−1∑
k=x

(− 2)k−xφj(k)+ φj(r),

and

‖Pt − πL‖TV �
κ(�pb) e−λ1t

2

√
1− π∗

L
π∗
L

, (6.5)

where

πL(y)= πG(y− 1)
(
1y−1�0

2

)
+ πG(y)

(
1y �=r

2
+ 1y=r

)
,

and recall that π∗
L =miny∈�0,r� πL(y).

Moreover, note that for all x ∈ �0, r�,

L(x, x)= −bx − dmax {x+1,r}
(
1x+1�r

2
+ 1x+1<r

)
< 0,

for x> y+ 1, L(x, y)= 0 and for x< r

L(x+ 1, x)= (21x+1 �=r + 1x+1=r)
dx+1
2

> 0.

If r� 4, for y ∈ �1, r− 1�,

L(y− 1, y)= −dy−1 + by + dy+11y<r−1 + dy+1

2
1y+1=r � 0 and

L(r− 1, r)= −dr−1 + br−1 + dr � 0,

for x ∈ �0, y− 2� and y ∈ �2, r− 1�,

L(x, y)= (− 1)x+y
(

by−2 + dy−1 − by − dy+1 + dr
2
1y=r−1

)
� 0,

and for x ∈ �0, r− 2�,

L(x, r)= (− 1)x+r

(
br−2 + dr−1 − br−1 − dr

2

)
� 0,

and then L is a Markov generator.
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Remark 6.2. We can see that πL is the distribution at time 1 of the Markov chain with transition
matrix �pb under the initial law πG.

Proof. We first observe that the inverse of �pb is given by

�−1
pb (x, y)= (− 1)y−x(21y �=r + 1y=r) for x� y, x, y ∈ �0, r�, (6.6)

�−1
pb (x, y)= 0 otherwise. (6.7)

Upon expanding Pt = �−1
pb Qt�pb, we get

Pt(x, y)=
r∑

k=x
(− 1)k−x(21k�=r + 1k=r)

(
Qt(k, y− 1)

(
1y−1�0

2

)
+Qt(k, y)

(
1y �=r

2
+ 1y=r

))

=
r∑

j=0
e−λjt

( r∑
k=x

(− 1)k−x(21k�=r + 1k=r)φj(k)
)

×
(

φj(y− 1)πG(y− 1)
(
1y−1�0

2

)
+ φj(y)πG(y)

(
1y �=r

2
+ 1y=r

))
,

where the second equality follows from substituting the spectral expansion of (Qt)t�0. The bound
(6.5) follows directly fromCorollary 2.6. To show that L is aMarkov generator under the proposed
conditions on birth and death rates, we need to impose sufficient conditions such that L(x, x)< 0
for all x ∈X and L(x, y)� 0 for all x �= y ∈X ; see e.g. [41, Chapter 20]. We proceed by calculating
G�pb, and the entries not mentioned below are all zero. We have

2G�pb(x, x− 1)= dx, x ∈ �1, r�,
2G�pb(x, x)= −bx − dr1x=r, x ∈ �0, r�,

2G�pb(x, x+ 1)= −dx + br−11x=r−1, x ∈ �0, r− 1�,
2G�pb(x, x+ 2)= bx, x ∈ �0, r− 2�.

Using the form of G�pb described above, we first note that L(x, x)< 0 is automatically satisfied
since

L(x, x)= −bx − dmax {x+1,r}
(
1
2
1x+1�r + 1x+1<r

)
< 0.

It remains to check L(x, y)� 0 for all x �= y. Indeed, we have

L(x, y)=
min {y+1,r}∑

k=max {x,y−2}
(− 1)k−x(21k�=r + 1k=r)G�pb(k, y).

For x> y+ 1, L(x, y)= 0. For x= y+ 1,

L(y+ 1, y)= (21y+1 �=r + 1y+1=r)
1
2

dy+1 > 0.

Thus, it boils down to checking L(x, y)� 0 for x ∈ �0, y− 1�. For y ∈ �1, r− 1� and x= y− 1,

L(x, y)= −dy−1 + by + dy+11y<r−1 + dy+1

2
1y+1=r.

For y= r and x= r− 1,

L(r− 1, r)= 2G�pb(r− 1, r)−G�pb(r, r)= −dr−1 + br−1 + dr.
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For y ∈ �2, r− 1� and x ∈ �0, y− 2�, since r� 4,
L(x, y)= (− 1)x+y(2G�pb(y− 2, y)− 2G�pb(y− 1, y)+ 2G�pb(y, y)− 2G�pb(y+ 1, y))

= (− 1)x+y
(

by−2 + dy−1 − by − dy+1 + dr
2
1y=r−1

)
,

and for y= r and x ∈ �0, y− 2�,
L(x, r)= (− 1)x+r(2G�pb(r− 2, r)− 2G�pb(r− 1, r)+G�pb(r, r))

= (− 1)x+r

(
br−2 + dr−1 − br−1 − dr

2

)
.

Example 6.3. The pair

G=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0
0.5 −1 0.5 0 0
0 0.5 −1 0.5 0
0 0 0.5 −1 0.5
0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, L=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1.5 1 0.5 0 0
0.5 −1 0.5 0 0
0 0.5 −1 0.5 0
0 0 0.5 −1 0.5
0 0 0 0.5 −0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
satisfy the assumption Proposition 6.1, where L is a non-reversible Markov generator since πL =
(0.0625, 0.1875, 0.25, 0.25, 0.25) and πL(0)L(0, 1) �= πL(1)L(1, 0).

Example 6.4. (pure birth variants of constant-rate birth–death processes with reflection at 0
and r). A more general example is that bx = dx = λ for x ∈ �1, r− 1� and b0 = dr = 2λ for some
λ > 0. The stationary distribution πG is πG(x)= 1/r for x ∈ �1, r− 1� and πG(0)= πG(r)= 1/(2r),
and the associated eigenvalues and orthogonal polynomials are, for j, x ∈ �0, r�,

λj = 2λ(1− cos (θj))
φj(x)= cos (θjx+ c),

where (θj)rj=0 and c are determined by the boundary values cos (θx+ c)= cos (θ) cos (c) and
cos (θ(N − 1)+ c)= cos (θ) cos (θN + c) and are arranged such that ( cos (θj))rj=0 is in non-
increasing order; see [19, Proposition 22] and [62]. We proceed to check that the conditions in
Proposition 6.1 are fulfilled: for y ∈ �1, r− 1�,

L(y− 1, y)= −dy−1 + by + dy+11y<r−1 + dy+1

2
1y+1=r = λ1y<r−1 + λ

2
1y+1=r � 0,

and
L(r− 1, r)= −dr−1 + br−1 + dr = 2λ� 0.

For x= 0 and y= 2,
L(0, 2)= λ,

and otherwise for y ∈ �3, r− 1� and x ∈ �0, y− 2�,

(− 1)x+y
(

by−2 + dy−1 − by − dy+1 + dr
2
1y=r−1

)
= 0� 0,

and for y= r and x ∈ �0, y− 2�,

(− 1)x+r

(
br−2 + dr−1 − br−1 − dr

2

)
= 0� 0,
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so L is a Markov generator, with spectral decomposition given by

Pt(x, y)=
r∑

j=0
e−2λ(1−cos (θj))tfj(x)f ∗j (y)πL(y),

‖Pt − πL‖TV �
κ(�pb) e−2λ(1−cos (θ1))t

2

√
1− π∗

L
π∗
L

=O(e−2λ(1−cos (θ1))t),

where

π∗
L = 1

4r
,

fj(x)=
r∑

k=x
(− 1)k−x(21k�=r + 1k=r) cos (θjk+ c),

f ∗j (y)πL(y)= cos (θj(y− 1)+ c)πG(y− 1)
(
1y−1�0

2

)
+ cos (θjy+ c)πG(y)

(
1y �=r

2
+ 1y=r

)
.
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