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Considering that traditional visual navigation cannot be utilised in low illumination and sparse
feature environments, a novel visual-inertial integrated navigation method using a Structured
Light Visual (SLV) sensor for Micro Aerial Vehicles (MAVs) is proposed in this paper. First,
the measurement model based on an SLV sensor is studied and built. Then, using the state model
based on error equations of an Inertial Navigation System (INS), the measurement model based
on the error of the relative motion measured by INS and SLV is built. Considering that the mea-
surements in this paper are mainly related to the position and attitude information of the present
moment, the state error accumulation in traditional visual-inertial navigation can be avoided. An
Adaptive Sage-Husa Kalman Filter (ASHKF) based on multiple weighting factors is proposed
and designed to make full use of the SLV measurements. The results of the simulation and the
experiment based on real flight data indicate that high accuracy position and attitude estimations
can be obtained with the help of the algorithm proposed in this paper.

K E Y W O R D S

1. Integrated Navigation System (INS). 2. Indoor Navigation. 3. Inertial Navigation System (INS).
4. Optical Navigation. 5. LASER.

Submitted: 18 April 2017. Accepted: 15 May 2019. First published online: 1 July 2019.

1. INTRODUCTION. Considering the small size, light weight, low cost, high
manoeuvrability and decreased risk to human life, Micro Aerial Vehicles (MAVs) are
becoming widely used in applications such as infrastructure maintenance and manage-
ment systems (Eschmann et al., 2012), precision farming (Zhang and Kovacs, 2012),
aerial photography and cinematography (Santoso et al., 2017) and security applications
(Tarchi et al., 2017). Low-cost Inertial Measurement Units (IMU) and Global Navigation
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Satellite System (GNSS) receivers are often applied in MAVs to obtain navigation infor-
mation (Zhang et al., 2017). Although an IMU is able to track sudden motions both
in angular velocity and linear acceleration, it is subject to a growing unbounded error
caused by the biases of the sensors. The absolute velocity and position of the vehicle
can be measured by GNSS directly, which is very helpful in decreasing the accumulated
errors of an IMU (Wang et al., 2013; Meng et al., 2017). In a GNSS denied environ-
ment (indoor environments for example), other sensors such as pseudolites (Gioia and
Borio, 2014) and visual sensors are applied to supply the navigation information for
MAVs.

Due to their small size and light weight, visual sensors are widely used in MAVs.
Active vision can send laser or structured light to the environment, and receive reflec-
tion information to perceive the environment, while passive vision can only receive the
natural light of the environment. To obtain detailed information, passive vision requires
features from the environment. Artificial marks are often utilised to calculate the pose
in a cooperative environment (Cocchioni et al., 2014). In a noncooperative environment,
features such as points and lines in two successive images taken by a monocular camera
can be matched to obtain depth and position information (Engel et al., 2014; Zeng et al.,
2017). In a stereo camera, the image features in right and left cameras can be matched
(Liu et al., 2012). However, the former methods will be invalid when the features in
the image are sparse, such as in an indoor environment which lacks illumination or
texture.

The former problem can be solved in active vision methods by projecting light into the
environment. The depth information can be obtained from reflected light, such as using a
Light Direction And Ranging (LIDAR), a Red Green Blue-Depth (RGB-D) camera and a
structured light visual sensor. LIDAR and an RGB-D camera are usually applied to solve
the problem of Simultaneous Localisation And Mapping (SLAM) (Liu et al., 2015; Gao
and Zhang, 2015), because these sensors can be used to generate a point cloud of the envi-
ronment. However, the extremely high costs of hardware and data processing are the major
drawbacks for LIDAR and RGB-D cameras.

A Structured Light Visual (SLV) sensor has many advantages, such as simple construc-
tion, fast speed and low cost (Wei et al., 2005). Structured light visual sensors have been
used in MAV for pose measurement or obstacle avoidance over the past few years. Natraj
et al. (2013) presented a pose measurement method using a monocular camera and a circle
structured light projector to measure the pitch, roll and altitude of a MAV in dark envi-
ronments. Sanahuja and Castillo (2013) presented an embedded system composed of a
monocular camera and a line structured light projector for indoor MAV navigation. The
system detected line structured light on a wall in front of the MAV, to estimate the distance
to the wall and yaw angle of the MAV. In Dougherty et al. (2014), multiple dot structured
light projectors and monocular vision were used to measure the relative pose between a
MAV and an inclined plane for MAV landing. In Wang et al. (2015), a cross-structured
light sensor was used to calculate the related pose between MAV and the line on the floor.
Harmat and Sharf (2014) combined a dot matrix structured light projector and a stereo cam-
era to estimate the depth of the complex environment. It is similar to the Time of Flight
(ToF) camera and RGB-D camera in a certain sense, but it has a lighter weight and can also
be used in an outdoor environment. However, the former research works did not take full
advantage of the high-frequency IMU information, and the robustness of the system could
be improved further.
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According to the different combinations, the filtering fusion solutions based on the
visual and inertial information can be grouped into loosely coupled and tightly coupled
approaches. In the loosely coupled approach, the measurements from IMU and camera can
be processed separately, with low complexity algorithms (Huang et al., 2014). In Wang
et al. (2013), the motion of a vehicle was estimated by a homography-based approach and
the visual measurement was fused with IMU based on an indirect Extended Kalman Filter
(EKF). Weiss et al. (2012) fused the camera and IMU data within a real-time EKF frame-
work. In Liu et al. (2016), three separated Kalman Filters (KF) for attitude, orientation
and position were assembled for a stereo visual-inertial odometry. Tightly coupled visual-
inertial navigation was used to augment the Three-Dimensional (3D) feature positions in
the filter state, and to estimate the pose and 3D points concurrently (Kelly and Sukhatme,
2011). Xian et al. (2015) employed two categories of features called 3D points and Inverse
Depth (ID) points to integrate with inertial information based on the iterative EKF. Kong
et al. (2015) employed the EKF for error state prediction and covariance propagation, and
the Sigma Point Kalman filter (SPKF) for measurement updating. The state vectors of
these methods can be augmented to obtain the measurements related to the last and current
moments. So, the measurement model of a Kalman Filter has to be built, which increases
the complexity of the integrated navigation system.

In this paper, a cross-structured light visual sensor, which consists of a cross-structured
light projector and a monocular camera, is proposed to integrate with an IMU for MAV
navigation. The pose of the MAV can be obtained when the cross-structured light and a
segment line on the floor are captured by a monocular camera. Pose information can be
obtained even when the MAV is in an insufficient illumination and sparse feature envi-
ronment. An adaptive Sage-Husa Kalman filter (ASHKF) with multiple weighting factors
based on the SLV and Inertial Navigation System (INS) is proposed to solve the problem
of the measurement errors in the integrated navigation system.

This paper is organised as follows: The pose measurement model based on cross-
structured SLV is introduced in Section 2. The sensor time synchronisation method and
adaptive filter are described in Section 3. In Sections 4 and 5, simulation analyses and a
real data experiment are carried out, respectively. Finally, the conclusion of this work is
summarised in Section 6.

2. POSE ESTIMATION BASED ON CROSS-STRUCTURED LIGHT VISUAL
SENSOR. Based on research of the measurement model of the cross-structured light
visual sensor, the pose estimation algorithm is proposed in this section.

2.1. Coordinate systems of cross-structured light visual sensor. The model of the
cross-structured light visual sensor is shown in Figure 1. C − XcYcZc represents the camera
frame. o − uv represents the image frame. Axis Zc is along the forward optical axis of the
camera. L − XlYlZl represents the cross-structured light frame, which consists of two struc-
tured light planes s1 and s2. Point L is the firing point of cross-structured light. Axis Zl is
along the forward intersecting line of the two light planes. Axes Xl and Yl are perpendicular
to axis Zl in each structured light plane. W − XwYwZw represents the world frame. Axis Zw
is perpendicular to the floor which is represented by plane XwWYw. Point P is an arbitrary
point of the intersections of plane XwWYw and structured light planes. The image point of
P on the image plane is p . O − XoYoZo represents the segment frame. The origin point O
is an arbitrary point on the segment. Axis Xo is along the segment on the floor. Axis Yo is
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Figure 1. The model of cross-structured light sensor.

perpendicular to axis Xo and is on the floor. Axis Zo is perpendicular to the floor. All the
frames are right-hand Cartesian frames.

Coordinates of point P in the camera frame are (xc
P, yc

P, zc
P). Coordinates of the image

point p on the image frame are (up , vp ). The distortion of the camera is tiny so it can
be ignored here. The relationship of image coordinates and camera coordinates are as
Equation (1):
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where K is called the internal parameter matrix of the camera. It can be obtained through
camera calibration (Bouguet, 2015), dx and dy are the effective pixel pitches in the direc-
tions of x and y on the image plane, respectively. f is the focal length of the camera and
(u0, v0) are the optical centre coordinates on the image plane.

According to Equation (1), there is a unique point p in the image frame and there is
a unique straight line Cp , which is associated with the camera (C) and the point p . The
coordinates of point p in the camera frame are ((up − u0)dx, (vp − v0)dy, f ), so the equation
of Cp in the coordinate system of the camera can be represented as Equation (2), where
(X , Y, Z) represent the coordinates of the point on the Cp ray.

X
(up − u0)

· f
dx

=
Y

(vp − v0)
· f

dy
= Z (2)

The structured light planes s1, s2 in the camera frame can be assumed as:

a1xc
s1 + b1yc

s1 + c1zc
s1 + d1 = 0 (3)

a2xc
s2 + b2yc

s2 + c2zc
s2 + d2 = 0 (4)

where, (xc
s1, yc

s1, zc
s1) is an arbitrary point on the plane s1, so as (xc

s2, yc
s2, zc

s2).
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(a) (b)

Figure 2. Illustration of attitude and position measurement (a) Relationship between each frame for posture
measurement (b) Relationship between three structured light points.

The equations of structured light in the camera frame can be obtained by calibration
of the structured light sensor (Kiddee et al., 2016). Then the coordinates of point P in the
camera frame can be obtained by calculating the intersection of ray Cp and plane s1 or s2.

2.2. Pose measurements based on cross-structured light visual sensor. In Figure 2(a),
Pi (i = 0, 1, 2) are the points on the cross-structured light. Point P0 is the intersection of two
structured light planes on the floor. Points P1 and P2 are the intersections of the cross-
structured light and the segment on the floor.

As shown in Figure 2(b), the relationship between Pi (i = 0, 1, 2) is:⎡
⎢⎣
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1
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1

zo
1

⎤
⎥⎦ =
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⎤
⎥⎦ (5)

where [ xo
i yo

i zo
i ]T , (i = 0, 1, 2) are the coordinates of Pi (i = 0, 1, 2) in the segment frame.

The segment P0P′
0 = h is perpendicular to the segment P1P2 = b and c = P1P′

0.
The following equations can be obtained from Equation (5):⎡
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where RC
O =

[
CψCθ −CψSθSγ−SψCγ −CψSθCγ +SψSγ
SψCθ −SψSθSγ +CψCγ −SψSθCγ−CψSγ

Sθ CθSγ CθCγ

]
is the rotation matrix from the segment

frame to the camera frame and TC
O is the translation matrix from the segment frame to

the camera frame.
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With Equations (6) to (8), eliminating TC
O and xo

0, yo
0 , zo

0, the angles in the rotation matrix
RC

O can be obtained in Equations (6).

θ = arcsin
zc

1 − zc
2

b

ψ = arctan
yc

1 − yc
2

xc
1 − xc

2

γ = arctan
(zc

1 − zc
0)Cθ − (yc

1 − yc
0)SθCψ − (xc

1 − xc
0)SθSψ

Cψ (yc
1 − yc

0) − Sψ (xc
1 − xc

0)

(9)

where b =
√

(xc
1 − xc

2)2 + (yc
1 − yc

2)2 + (zc
1 − zc

2)2.
In Figure 2(a), p1 and oo are the image points of P1 and Oo. According to Equation (3),

the equations of CP1 and COo in the camera frame can be obtained with Equations (10)
and (11), respectively.

XP1

(up1 − u0)
· f

dx
=

YP1

(vp1 − v0)
· f

dy
= ZP1 (10)

XOo

(uoo − u0)
· f

dx
=

YOo

(voo − v0)
· f

dy
= ZOo (11)

where (up1 , vp1 ) and (uoo , voo ) are the coordinates of p1 and oo in the image frame.
As the rotation matrix RC

O shows, the direction vector of axis Zo in the camera frame is:

⎡
⎣xZo

yZo

zZo

⎤
⎦ =

⎡
⎣− cosψ sin θ cos γ + sinψ sin γ

− sinψ sin θ cos γ − cosψ sin γ
cos θ cos γ

⎤
⎦ (12)

Then the included angle αP1 between axis Zo and CP1 can be calculated using the
included angle formula, as well as the included angle αOo between the axis Zo and the
axis COo.

As Figure 2(a) shows, CO is perpendicular to plane S and the perpendicular foot is O.
There are right triangles�COP1 and�COOo. The length of CP1 can be obtained using the
coordinates of P1 in the camera frame, which can be calculated with Equation (7).

CP1 =
√

xc2
1 + yc2

1 + zc2
1 (13)

In the right triangle �COP1:

CO = CP1 cosαP1 (14)

In the other right triangle �COOo:

COo =
CO

cosαOo

(15)
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The length of COo can be represented as COo = λOo ·
√

x2
Oo

+ y2
Oo

+ z2
Oo

. Therefore, λOo =

COo/

√
x2

Oo
+ y2

Oo
+ z2

Oo
can be represented as:

λOo =

√
xc2

1 + yc2
1 + zc2

1√
x2

Oo
+ y2

Oo
+ z2

Oo

· cosαP1

cosαOo

(16)

where [ xOo yOo zOo ]T is the direction vector of COo in the camera frame. According to
Equation (1), xOo = (uoo − u0) · dx/f , yOo = (voo − v0) · dy/f and zOo = 1. The coordi-
nates (λOo xOo , λOo yOo , λOo zOo ) of Oo in the camera frame can be obtained. Therefore, the
translation matrix from segment frame to the camera frame is:

TC
O = λOo

[
(uoo − u0)dx

f
(voo − v0)dy

f
1
]T

(17)

Through the calculation above, the rotation matrix RC
O,k and translation matrix TC

O,k from
the segment frame to the camera frame at moment k can be obtained. The rotation matrix
and translation matrix at moment k − 1 is expressed as RC

O,k−1 and TC
O,k−1. So, the rota-

tion matrix and translation matrix of the camera from moment k − 1 to moment k can be
calculated by Equations (18) and (19), respectively.

Rk,k−1 = RC
O,k

[
RC

O,k−1

]T
(18)

Tk,k−1 = TC
O,k − TC

O,k−1 (19)

3. ADAPTIVE FILTER MODEL FUSING STRUCTURED LIGHT VISUAL SENSOR
AND INERTIAL SENSOR. Although the pose of an MAV can be calculated by the
cross-structured light visual sensor, it will still be invalid in some situations such as when
the segment line is out of sight, or the intersections between structured light and the seg-
ment are unable to be detected. Taking these situations into account, the information of
the Inertial Navigation System (INS) is used to integrate with the information of the SLV
sensor. Although the EKF is still the standard technique for non-linear attitude estimation
in practical terms, the EKF suffers from linearization error and requires more system com-
plexities and computational time than a regular Kalman Filter (KF) (Li and Wang, 2013).
For the loosely coupled approach, the indirect KF has been applied successfully by many
researchers (Liu et al., 2016; Ligorio and Sabatini, 2013).

In this section, the state model based on error equations of an inertial navigation and
measurement model based on the error of the relative motion measured by INS and SLV
are first built. The augmented state and the measurement model are simplified, because the
error analysis of the measurement model in the augmented state method is based on the true
values at previous and current moments. While the measurement model is built based on
the estimated values of the state at the last moment, and the estimated values of the attitude
and position at the last moment can be calculated, the measurement error is only related to
the position error and angle error at the present moment. An adaptive Sage-Husa Kalman
filter (ASHKF) with forgetting factor matrix is designed to deal with the problem of the
varying measurement noise of the SLV sensor.
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3.1. System state model. The state vector of an integrated navigation system is:

X =
[
φT δvT δPT εT

b εT
r ∇T]T (20)

where φT denotes the plane error angle, δvT denotes the velocity error, δPT denotes the
position error, εT

b denotes the triaxial arbitrary constant, εT
r denotes the triaxial first-order

Markov error of the gyroscope and ∇T denotes the triaxial first-order Markov error of the
accelerometer.

Then the system state model can be written as:

Ẋ18×1 = F18×18X18×1 + G18×9W9×1 (21)

where:

F18×18 =
[

FN FS
09×9 FM

]
(22)

FN =

⎡
⎢⎣

−ωw
iw 03×3 03×3

−(w
b Rf b) −2ωw

iw 03×3

03×3 I3×3 03×3

⎤
⎥⎦ (23)

FS =

⎡
⎢⎣

w
b R w

b R 03×3

03×3 03×3
w
b R

03×3 03×3 03×3

⎤
⎥⎦ (24)

FM = Diag
[
0 0 0 − 1

Tgx
− 1

Tgy
− 1

Tgz
− 1

Tax
− 1

Tay
− 1

Taz

]
(25)

W9×1 =
[
wg wr wa

]T (26)

G18×9 =

⎡
⎢⎢⎢⎣

w
b R 03×3 03×3

09×3 09×3 09×3

03×3 I3×3 03×3

03×3 03×3 I3×3

⎤
⎥⎥⎥⎦ (27)

where f b represents the output of the accelerometer. w
b R represents the transformation

matrix from the body frame to the world frame. ωw
iw represents the angular velocity of

the world frame in the inertial frame. Tg and Ta represent the correlation time of triaxial
first-order Markov error of gyroscope and accelerometer, respectively. wg , wr and wa are
both white noises.

Then, the discrete-time state model can be written as:

Xk = �k,k−1Xk + �k−1Wk−1 (28)

where:

�k,k−1 =
∞∑

n=0

[F(tk)T]n/n! (29)

https://doi.org/10.1017/S0373463319000511 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000511


24 YUNSHU WANG AND OTHERS VOL. 73

�k−1 =

{ ∞∑
n=0

[F(tk)T]n−1/n!

}
G(tk)T (30)

and T is the sampling period.
3.2. Measurement model. Assume that unit quaternions qSLV

k−1,k and qINS
k−1,k represent

the rotation from moment k − 1 to moment k, which correspond to the rotation matrix
RSLV

k,k−1 and RINS
k,k−1 measured by SLV and INS respectively. The translation matrices TSLV

k,k−1

and TINS
k,k−1 represent the translation from moment k − 1 to moment k which are measured

by SLV and INS, respectively. ⊗ denotes the multiplication operation of the quaternion.
Then the error equations of the SLV measurements are:

qSLV
k,k−1 = qk,k−1 ⊗ δqSLV

k = qk,k−1 ⊗
[

1
1
2θSLV

k

]
(31)

TSLV
k,k−1 = Tk,k−1 + δTSLV

k (32)

where qk,k−1 represents the rotation from moment k − 1 to moment k, which correspond to
the rotation matrix Rk,k−1 in Equation (18). δqSLV

k and θSLV
k represent the measurement error

of qk,k−1 in the form of quaternion and Euler angle respectively. ⊗ is the product sign of
the quaternion. The translation matrix Tk,k−1 represents the translation from moment k − 1
to moment k. δTSLV

k represents the error of Tk,k−1 measured by the SLV.
For convenience, assume that the IMU frame overlaps the body frame, the quaternion

b
wqINS represents the rotation from the world frame to the body frame which is measured
by the INS. It can be represented based on the operation rules of the quaternion, which is
shown in Equation (33):

b
wqINS

k = b
wqk ⊗ δqINS

k = b
wqk ⊗

[
1

1
2�

]
(33)

where � is used to describe the rotation vector.
The quaternion qINS

k,k−1 can be obtained by Equation (34):

qINS
k,k−1 = w

b q̂k−1 ⊗ b
wqINS

k

≈ w
b qk−1 ⊗ b

wqk ⊗ δqINS
k

= qk,k−1 ⊗ δqINS
k

(34)

where w
b q̂k−1 is the estimation of w

b q at the last moment.
The error equations of TINS

k,k−1 are:

TINS
k,k−1 = b

wR̂k−1(PINS
k − P̂k−1)

= b
wR̂k−1(Pk + δPk − P̂k−1)

= b
wR̂k−1(Pk − P̂k−1) + b

wR̂k−1δPk

≈ Tk,k−1 + b
wR̂k−1δPk

(35)

where, b
wR̂k−1 represents the estimated rotation from the world frame to the body frame at

moment k − 1. PINS
k represents the position in the world frame measured by INS at moment

k. P̂k−1 represents the estimated position in the world frame at moment k − 1.
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In Figure 2(a), it can be seen that CO is the height between the MAV and floor, and it
can be calculated through Equation (14). Therefore, the height in P̂k−1 can be replaced by
the value of CO. Error accumulation of height can be eliminated by this approach.

Then, the measurement error between INS and SLV sensors can be represented as:

(
qSLV

k,k−1

)T ⊗ qINS
k,k−1 =

(
δqSLV

k

)T ⊗ (
qk,k−1

)T ⊗ qk,k−1 ⊗ δqINS
k

=
[

1
− 1

2θSLV
k + 1

2� − 1
4θSLV

k × �

]
(36)

On the other hand, we denote
(
qSLV

k,k−1

)T ⊗ qINS
k,k−1 =

[
z0 z1 z2 z3

]T. There is z0 ≈ 1

because the angle corresponding to
(
qSLV

k,k−1

)T ⊗ qINS
k,k−1 is tiny. Ignoring the second order

small quantity, the following equations can be obtained:

zr,k =
[
z1 z2 z3

]T =
1
2
� − 1

2
θSLV

k (37)

zt,k = TINS
k,k−1 − TSLV

k,k−1 = b
wR̂k−1δPk − δTSLV

k (38)

Finally, the measurement model is:

Zk =
[

zr,k
zt,k

]
= HkXk + Vk (39)

where the measurement matrix Hk and measurement noise matrix V18×1 are:

Hk =
[ 1

2 I3×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3
b
wR̂k−1 03×3 03×3 03×3

]
(40)

Vk =
[− 1

2θSLV
k 03×3 δTSLV

k 03×3 03×3 03×3
]T

(41)

3.3. Adaptive Sage-Husa Kalman filter based on multiple forgetting factor. The sta-
tistical property of noise is assumed to be known in a regular Kalman Filter. In this paper,
the measurement noise θSLV

k and δTSLV
k vary with the measurement distance of the SLV

sensor (Wang et al., 2015). In this case, the measurement covariance matrix U is uncertain.
U influences the weight that the filter applies between the existing process information
and the latest measurements. Errors in U may result in the filter being suboptimal or even
cause it to diverge (Ding et al., 2007). Thus, the adaptive filter which can adjust U online
is significant in improving the stability and accuracy of the integrated navigation system.

Due to the fact that only the statistical property of measurement noise is varying in
the integrated navigation system in this study, a simplified Adaptive Sage-Husa Kalman
Filter (ASHKF) is used. The ASHKF has a simple structure and high efficiency so that
it is widely used in engineering (Sun et al., 2016). A time-varying noise estimator with a
forgetting factor matrix is used in the ASHKF. The ordinary forgetting factor has the same
attenuation to each state variable. It is hard to ensure that each estimated accuracy of each
state variable is optimal. To solve this problem, a forgetting factor matrix is used here to
set different forgetting factors for the different state variables.
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The process of the filter is as follows:

(1) Time update: {
X̂k,k−1 = �k,k−1X̂k−1

Pk,k−1 = �k,k−1Pk−1�
T
k,k−1 + �k−1Qk−1�

T
k−1

(42)

(2) Measurement update:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z̃k = Zk − HkX̂k,k−1

Xk = Xk,k−1 + KkZ̃k

Kk = Pk,k−1HT
k

[
HkPk,k−1HT

k + Ûk

]−1

Pk = [I − KkHk] Pk,k−1 [I − KkHk]T + KkÛkKT
k

(43)

where Û is the estimated value of the systematic measurement noise covariance matrix.

Ûk =
√

I − βÛk−1
√

I − β +
√

β(Z̃kZ̃
T
k − HkPk,k−1HT

k )
√

β (44)

β = diag(β1,β2, . . . ,β18); 0 ≤ βi ≤ 1, i = 1, 2, . . . , 18 (45)

where β is the forgetting factor matrix, which can be obtained by optimising the selected
method. In the integrated navigation system, Û can be adaptively estimated based on the
varying noise estimator according to Equations (44) and (45).

4. SIMULATIONS AND ANALYSES. Simulation parameters, a flight trajectory and
simulation flow are designed in a simulation environment. Then, five navigation methods
are compared to verify the proposed method.

4.1. Simulation environment setup. A 1 m interval grid was set on the floor to simu-
late the floor in the real environment. The intersections of structured light and the grid were
captured to calculate the attitude and position by SLV. The flight path of an MAV is shown
in Figure 3. The original longitude, latitude and height are 110◦, 20◦ and 10 m respectively.
The time span of the flight is 300 s. The accuracy of the gyroscopes is 1◦/h. The accuracy of
the accelerometers is 10−3 g. The distance between the structured light sensor and the visual
sensor is 200 mm. The image resolution is 640 × 480 pixels. The coordinate deviation of
the feature points is [−0·5, 0·5]. The sampling rates of INS and SLV are 50 Hz and 10 Hz
respectively. The R matrix in KF is set as

(
diag

[
0·3 1.5 1.5 0·003 0·003 0·007

])2,
which has been analysed in our previous work (Wang et al., 2015). The sequence of ele-
ments in R matrix is roll/◦, pitch/◦, head/◦, longitude/m latitude/m, height/m. For simplicity,
the calibration deviations of structured light planes are ignored.

The simulation flow is shown in Figure 4(a). The true trajectory was generated by the
trajectory generator and the true navigation data was sent to the IMU simulator and cross-
structured light simulator. The angular speed and acceleration with their errors were sent to
the INS to calculate the state of the MAV. The cross-structured light was generated accord-
ing the navigation data by the cross-structured light simulator. The image coordinates of the
intersections between the structured light and grid were calculated by visual sensor imag-
ing simulation. The simulation details of the cross-structured light and images are shown in
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Figure 3. The simulated MAV trajectory.

(a) (b)

Figure 4. The simulation flow. (a) The total simulation flow. (b) The simulation flow of SLV sensor.

Figure 4(b). The equations of the lines on the floor are fixed. The parameters of the struc-
tured light planes change with the camera. Then the intersections of the structured light
planes and the lines on the floor can be calculated. According to the position and attitude of
the camera in the world frame, the coordinates of the intersections in the camera frame can
be obtained. According to the geometry principle, we can check these points and obtain the
non-collinear intersections. If there are three non-collinear intersections, the attitude and
position will be calculated according to the measurement data. If not, the image of the next
moment will be waited for. Then the state of MAV and measurement data are integrated by
ASHKF, and the navigation results are supplied as the initial value for the next moment.

4.2. Comparison of different navigation methods. To obtain the values of the forget-
ting factor matrix, the navigation results with different forgetting factors are compared in
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Figure 5. Mean error and RMSE of KF and ASHKF with different forgetting factors.

this part. Figure 5 shows the mean error and Root Mean Square Error (RMSE) of KF and
ASHKF with different forgetting factors.

In Figure 5, if the forgetting factor is 0, the ASHKF is changed to a KF. The results of
forgetting factors bigger than 0·3 are hidden because of their huge errors. It can be seen
from Figure 5 that ASHKF with forgetting factor 0·1 has lower errors than the KF in the
roll, pitch, heading and height channels. However, KF has the least error in the horizontal
position. It can also be seen that ASHKF with forgetting factor 0·1 has better performance
than ASHKF with forgetting factor 0·2 and 0·3. In this case, the values of the forgetting
factor matrix β can be obtained by optimising the parameters, and the forgetting factor
matrix in Equation (45) can be set as: β1 = β2 = β3 = β6 = 0·1; the others are zero.

Five types of navigation results based on different navigation methods are compared
in Figures 6 and 7. “INS only” means that only the inertial navigation system is used in
the navigation solution. “SLV only” means that only the structured light visual system is
used in the navigation solution. “KF” means that the Kalman Filter is used in integrated
navigation. “Forgetting factor 0·1” means that the ASHKF with forgetting factor 0·1 is
used in the integrated navigation. The “Forgetting factor matrix” means that the ASHKF
with the former forgetting factor matrix was used in the integrated navigation. The time
synchronised method was used in the KF and the ASHKF. Due to the errors of different
cases having huge differences, the results of the single navigation systems with large errors
are shown in Figure 6, and the results of different filters with small errors are shown in
Figure 7.

As shown in Figure 6, the attitude error is very large if only the SLV system is used in
the navigation solution. The position error has serious divergence if pure INS is used in the
navigation solution. These two types of systems are difficult to use alone for navigation.
The results of three types of filters are shown in Figure 7. Better accuracy can be obtained
by integrating the two sensors, especially in the height channel. Due to the fact that the
height between the MAV and the floor can be calculated directly by the SLV, there is
no error accumulation in the height channel. Compared with KF, ASHKF with forgetting
factor matrix has better accuracy in the roll, pitch, heading and height channels. Comparing
with ASHKF with forgetting factor 0·1, ASHKF with forgetting factor matrix has better
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(a)

(b)

Figure 6. The navigation results of two cases. (a) The comparison of attitude for single navigation systems. (b)
The comparison of position for single navigation systems.

accuracy in the longitude and latitude channels. The errors of ASHKF with forgetting factor
matrix in three attitude channels can be limited in the range of (−0·2◦, 0·2◦), the errors of
ASHKF with forgetting factor matrix in two horizontal position channels can be limited in
the range of (−0·5 m, 0·5 m). The errors of ASHKF with forgetting factor matrix in height
channel can be limited in the range of (−0·2 m, 0·2 m).
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(a)

(b)

Figure 7. The navigation results of three cases. (a) The comparison of attitude for three cases. (b) The
comparison of position for three cases.

5. EXPERIMENT AND ANALYSIS BASED ON REAL DATA. An experiment based
on real data was carried out on an independently designed quad rotor test bed. The quad
rotor is shown in Figure 8(a). The precision of the gyroscope is 0·01◦/s and the precision
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(a) (b) (c)

Figure 8. The environment of verification. (a) The quad rotor test bed designed independently. (b) The easy
track motion capture system. (c) The screenshot of motion capture system software.

Figure 9. The trajectory of dynamic flight from top view.

of the accelerometer is 0·05 g. The downward camera (resolution: 640 × 480 pixels) and
cross-structured light sensor (power: 5 mW, wavelength: 650 nm) were mounted under-
neath the quad rotor. The standard navigation information was provided by the easy track
motion capture system, which is shown in Figure 8(b) and Figure 8(c). The markers on
the quad rotor were captured by easy track and the attitude and position of the quad rotor
in the motion capture system frame can be calculated. The errors of attitude and position
measured by easy track are less than 0·05◦ and 0·03 mm, respectively. The sampling rates
of INS and the motion capture system are both 50 Hz, and the sampling rate of the SLV is
about 10 Hz. The period of filter interval is 0·1 s. The attitude and position in the motion
capture system frame can be transformed to the navigation frame by calibration.

The quad rotor was flying in the motion capture system. The flight times for the hovering
test and the dynamic flight test were 60 s and 120 s respectively. The trajectory of dynamic
flight is shown in Figure 9. The frame in Figure 8 is East-North-Up (ENU) and the centre
of the frame is at coordinate (0, 0, 0). One of the images captured by the onboard camera is
shown in Figure 10(a). Then the line is extracted by edge detection and Hough transform
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(a) (b) (c)

Figure 10. Lines extraction and intersections detection. (a) The image captured by onboard camera. (b) The
original lines extraction. (c) The lines enhancing and intersections detection.

(a) (b)

(c) (d)

Figure 11. Comparison of hover test between easy track and the proposed method. (a) Attitude com-
parison of hover test. (b) Position comparison of hover test. (c) Attitude error of hover test. (d) Position
error of hover test.

(Fernandes and Oliveira, 2008). As Figure 10(b) shows, the cross-structured light and seg-
ment lines are disconnected in many places. Thus, the intersections of structured light and
segment lines cannot be detected. If the lines have the same slope and the distances are
within a certain threshold, they will be combined as one line. The result of improved line
detection is shown in Figure 10(c).
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(a) (b)

(c) (d)

Figure 12. Comparison of dynamic flight test between easy track and the proposed method. (a) Attitude
comparison of dynamic flight test (b) Position comparison of dynamic flight test (c) Attitude error of
dynamic flight test (d) Position error of dynamic flight test

The coordinates of the intersections in the image frame can be calculated as follows:

(1) The brightness of each line is analysed, and the two brightest intersecting lines are
recognised as cross-structured light;

(2) The coordinates of intersection points of cross-structured light in the image frame
are calculated;

(3) The closest line to the intersection point of cross structured light is chosen and the
intersection points of the line and cross-structured light are found;

(4) If there are two intersection points in step (3), the relative attitude can be calculated,
and the endpoint of the line will be recognised as the origin of the object frame to
calculate the relative position;

(5) If there are less than two intersection points in step (3), the next closest line will be
chosen. If there are no lines that have two intersection points with cross-structured
light in the image, the pose information of the last measurement will be recognised
as the output of this measurement.

Navigation results of the hover test are shown in Figure 11. The curve “Easy track”
shows the navigation solutions calculated by easy track. The curve “integrated” shows the
data calculated by the proposed method. It can be seen that the errors of attitude are less
than 0·5◦ and the errors of position are less than 0·2 m. In addition, the error of height
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Table 1. The Root Mean Squared Error (RMSE) of the navigation data.

Roll/◦ Pitch/◦ Head/◦ East/m North/m Height/m

Hover test 0·2231 0·1315 0·3884 0·1587 0·1566 0·0481
Dynamic flight test 0·2376 0·1857 0·4794 0·4310 0·3423 0·1044

is not accumulated while the others are both accumulated. This is because the height is
measured by the SLV sensor directly in each measurement period. The advantage will be
more obvious in the dynamic flight test (Figure 12).

Figure 12 shows the results of the dynamic flight test. Images captured in the dynamic
flight are more complex than the images captured in the hover test, such as the overlap
between structured light and the segment on the floor or the endpoint of the segment which
is unable to be detected. These situations will generate saltation or lag on the measurement
such as at about 200 s and 270 s in Figure 12(d). The attitude is influenced little because the
INS can continuously provide accurate attitude data. In this case, the errors of attitude are
less than 1◦ while the errors of position are increased, and the error of height is much less
than the errors of east and north. A more detailed comparison is shown in Table 1.

The RMSE of the navigation solutions are shown in Table 1. The accuracy of attitude
in both the hover test and dynamic flight test is higher than 1◦. The accuracy of east and
north in the hover test is about 0·15 m while it is about 0·4 m in the dynamic flight test.
The accuracy of height is about 0·05 m in the hover test while it is about 0·1 m in the
dynamic flight test. It is difficult to achieve such an accuracy in height measurement by the
traditional integrated navigation algorithm.

6. CONCLUDING REMARKS. To solve the problem that traditional visual navigation
methods are difficult to utilise in insufficient illumination and sparse feature environments,
an active visual inertial navigation method based on a structured light vision sensor for
MAVs is proposed in this paper. Based on the analysis of the characteristics of the struc-
tured light vision sensor, a measurement model for the sensor is built. With the help of
the error equation of an inertial navigation system, the relative motion error measurement
model of inertial navigation system and SLV is built. This model is mainly related to the
position and attitude information at the current moment, which is helpful to decrease the
error accumulation of a traditional visual inertial navigation system. According to the statis-
tical properties of the SLV, an Adaptive Sage-Husa Kalman Filter (ASHKF) with forgetting
factor matrix is designed. The forgetting factor matrix is used to set different forgetting
factors for different stated variables, which is helpful for solving the problem of measuring
noise changing with aircraft height.

Simulation results show that this method has better performance than KF and ASHKF.
The errors of ASHKF with forgetting factor matrix in three attitude channels, two hori-
zontal position channels and height channel can be limited in the range of (−0·2◦, 0·2◦),
(−0·5 m, 0·5 m) and (−0·2 m, 0·2 m), respectively. The results of the experiments indi-
cate that the attitude accuracy is higher than 1◦, location accuracy in north or east is
about 0·4 m, while the accuracy of height is about 0·1 m. The requirements of MAV
navigation in an indoor environment can be satisfied by the work presented in this
paper.
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