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Abstract

This paper investigates a wideband and low axial ratio circularly polarized (CP) antenna,
which is composed of a monopole on a novel polarization rotating reflective surface
(PRRS) based on a corner-truncated artificial magnetic conductor (AMC) structure. By
adjusting the dimensions of truncated corner properly, the PRRS has two polarization rotation
(PR) frequency points. Then, a large PR band of 18% (5.55–6.65 GHz) can be achieved with
two adjacent PR frequency points coming together. The profile of the newly PRRS is
only0.04λ0. With corner-truncated AMC-based PRRS loading, a measured impedance
bandwidth of 1.8 GHz (5.4–7.2 GHz) and the 3 dB axial ratio bandwidth of 1 GHz
(5.55–6.65 GHz) could be obtained by the monopole antenna and validated by measurements.
The values of AR were well below 1 dB at most of the CP region, which show a perfect
CP performance. Moreover, the proposed antenna has exhibited a large axial ratio beam-
width in both the xoz- and yoz-planes and a peak gain of 6.1 dBic within the operational
bandwidth.

Introduction

Metamaterials, such as frequency-selective surface (FSS), metasurface, left-handed materials,
and electromagnetic band gap structures are broadly defined as inhomogeneous or inartifi-
cially homogeneous electromagnetic structures for unique properties [1, 2]. Recently, enhance-
ments in bandwidth and an overall reduction in size have been improved by utilizing
metamaterials. To realize compact structures, the reactive impedance surface and artificial
magnetic conductor (AMC) were introduced to design several wideband circularly polarized
(CP) antennas by Agarwal et al., in [3]. Fed by a microstrip feedline through a slot cut on
the ground plane, a good metamaterial-based low-profile and high-gain mushroom antenna
was proposed, but linearly polarized in [4]. An artificial ground structure, which was engi-
neered by arranging truncated corner patch cells, was adopted to achieve an AR width of
20.4% with an overall size of 0.78λ0 × 0.80λ0 × 0.96λ0 [5]. Coupling by Z-shaped slot through
microstrip feedline, a metasurface-based low-profile antenna was designed with CP radiation,
but narrow [6]. In our previous work, a 4 × 4array mushroom antenna coupled by an L-shaped
slot antenna, which was fed by CPW, was designed to achieve wideband CP radiation and per-
formance of high gain. With metamaterials loading and fed by an L-shaped slot source
antenna, CP radiation was enhanced significantly and broadside gain was improved to
>10 dBic with a low profile of 0.08 λ0 .

On the other hand, polarization rotation (PR) technology is commonly used to achieve PR
of an electromagnetic wave in quasi-optical systems and microwave as an important applica-
tion [7–9]. Polarization rotating reflective surfaces (PRRSs) have been widely used in the
design of the reflector antennas [7, 9], which can be constructed simply by combining the
polarization reflector and rotator in a single component. By introducing slots etched along
the diagonal line and triangular-shaped fingers in the design of a metal patch cell, a novel
PRRS fed by monopole with size reduced was reported [10]. The interdigitated capacitor load-
ing PRRS can achieve a 10% PR bandwidth, but have a worse PR property with a lowest AR of
1.9 dB. In [11], a PR bandwidth of 9.1% was obtained by a novel PRRS based on FSS and using
SIW technology. However, dual-via AMC-based PRRS was reported and exhibits a low profile
of 0.04λ0 and a larger PR bandwidth of 29.1%.

In this paper, a novel corner-truncated AMC-based PRRS is proposed for circular
polarization. This structure exhibits better PR property and wider PR bandwidth than the
dual-via PRRS [12], resulting in a much better tunability. Fed by monopole antenna, a
wideband and 1 dB AR CP radiation is produced with an application of 4 × 4 proposed
PRRS cell.
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Antenna configuration and novel PRRS design

A. Antenna configuration: The configuration of the singly loaded
PRRS-based CP antenna is depicted in Fig. 1. The antenna is
composed of a PRRS-loaded AMC backed by a metallic sheet
and a planar monopole feed. The monopole antenna consists of
a partial ground plane and a circular metal patch, which printed
on the two sides of a Rogers 3003 substrate (εr = 3 and tan
δ = 0.0013), respectively. The height of the substrate is 1.5 mm.
The AMC-based PRRS is arranged in a 4 × 4 layout with a peri-
odicity W.

B. Novel PRRS cell design and analysis: A novel PRRS cell using
a newly corner-truncated AMC structure is proposed. The meta-
surface is a periodic structure with 16 square metal plates
arranged in a 4 × 4 layout with a periodicity W. It is shown that

the AMC-based PRRS unit cell consists of a square metal patch
with a pair of symmetric corner-truncated cut in Fig. 1(a). It is
placed on top sides of a dielectric slab of FR4 (εr = 4.4, tan δ =
0.02) with a thickness of H = 2.4 mm (0.043λ0 at 5.4 GHz).

As shown in Fig. 1, the dimensions are listed in detail. In this
paper, Ansoft’s HFSS was used to analyze the proposed PRRS’s
reflection properties by adopting the Floquet-port model. Both
transverse electric (TE) and transverse magnetic (TM) waves
exhibit linearly polarized property, but orthogonal to each
other. As depicted in Fig. 2, when a TM-polarized normally inci-
dent wave, electric field is along the x-direction, is reflected by the
unit cell, both TM- and TE-polarized reflected. As the incident
angle is equal to 0°, the TE model of the total broadside radiation
is nearly equal in amplitude but 90° phase difference to the TM
modes. Then ГTE/TM represents the ratio of an orthogonal
TE-reflected electric field to the TM-incident electric field. A
TE transmission zeros could be defined that a TE-incident wave
mainly converted to an orthogonal TM component. As shown
in Figs 3(a) and 3(b), the proposed PRRS has two zeros ( f1 =
5.6 GHz and f2 = 7.5 GHz). It means that the conversion ratio
of the TE-incident wave to an orthogonal TM-reflected wave is
nearly 100%, while the phase difference between them is around
90°, thus giving rise to the desired CP radiation. These points
could be defined as PR frequency points [12]. Then, between
the PR points f1 and f2, a large PR frequency band could be
observed. As shown in Figs 3(a) and 3(b), about 16.8% of the
PR bandwidth for |ГTM/TM| <− 10 dB is achieved and a 90°
phase difference occurred at 6.2 GHz; it means that a right-hand
circular polarization (RHCP) wave can be readily generated, since
TM-incident wave lags 90° behind the TE-reflected wave.

As illustrated in Figs 4(a) and 4(b), the simulated surface cur-
rent vector distributions of the PRRS cell metal patch at PR

Fig. 1. (a) Configuration of the AMC-based PRRS monopole feeding antenna. (b) Top and bottom view of the monopole feeding antenna. (c) Photographs of the
fabricated AMC-based PRRS monopole feeding antenna. The dimensions are Lg = 9.5, My = 29, G = 0.3, W = 8, cut = 4, ha = 2.4, d = 0.5, hm = 1.5, R = 5.5, Wf = 3, Lf = 12.5,
Lx = 3, Ly = 5.5, L = 31.7, all in millimeters.

Fig. 2. (a) HFSS model for simulating the response of the unit cell to a normally inci-
dent beam containing both a TE- and TM-polarized wave.
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Fig. 4. Surface current vector distribution: (a) at 5.85 GHz, (b) and 7.45 GHz.

Fig. 5. The reflection coefficients of the 2D PRRS for the
cases of different cut increasing from 2 to 5 mm: (a) magni-
tude of ΓTM/TM, (b) magnitude of ΓTE/TM, and (c) phase of ΓTE/
TM.

Fig. 3. The reflection coefficients ΓTM/TM and ΓTE/TM of the 2D PRRS for the case of cut = 4 mm: (a) magnitude, and (b) phase.
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frequency points f1 (5.85 GHz) and f2 (7.45 GHz), respectively, are
all pointing to the diagonal direction in the angle with x-axis at
45°, where symmetric PR properties were validated.

In addition, as demonstrated in Fig. 5, the variations cut of
truncated corner have great effects on the PR property of the
corner-truncated PRRS. Obviously, the PR point f2 and the

magnitude of ΓTE/TM were sensitive to the dimension of cut, but
less impact on the PR point f1 and the 90°-phase point of ГTE/
TM. Remarkably, the magnitudes at f1 and f2 are all below
30 dB, indicating better PR property than previous reported
works. Figure 5(a) shows that, as the cut increases, f2 tends to
shift to higher frequency with impact on PR bandwidth. It
could be found that, when the cut is increased to 4.5 mm, a gap
will be observed in a large PR band, which divide into two separ-
ating PR bands, causing another narrow PR band to shift to high
frequency as the cut continues to increase. Then, the cut = 4 mm
was selected in this paper to achieve wide PR band. Therefore, the
corner-truncated structure can provide wide PR band when total
size was adjusted properly. Therefore, a better tunability to
achieve wider PR band and better PR property than the dual-via
PRRS in [12] has been validated. As depicted in Fig. 6, for com-
parison, magnitudes of both the proposed PRRS and dual-via
PRRS [12] between ΓTM/TM and ΓTE/TM are given.

As shown in Fig. 6, two PR points were observed at the dual-
via PRRS and a wide PR band between the two frequency points
can be found, but due to a higher magnitude of ГTM/TM, the PR
property within the band is worse than that of the proposed
corner-truncated PRRS. It can be conclude that the corner-
truncated PRRS has better PR property within the PR band and
wider PR bandwidth, though two PR points.

Moreover, as shown in Figs 7(a) and 7(b), for better under-
standing of the effect of cell configuration on the PR property
of AMC-based PRRS, 3 × 3 and 5 × 5 cells layout fed by the
same source antenna were simulated and analyzed, it can be
found that the AR bandwidth would be enhanced by increasing
the number of cells, but the property of circular polarization is
much weakened by altering the cells layout. It should be noted
that, to our best, the dimensions of source antennas have been
simulated numerically to achieve optimum performance for dif-
ferent numbers of cells in PRRS. Obviously, a better PR property
of low AR value was exhibited in a 4 × 4 cells layout, and the
values of AR were well below 1 dB at most of the CP region.
Then, to achieve a better property of circular polarization, a trade-
off has to be made when selecting the numbers of cells layout.

Fig. 6. (a) Magnitudes of reflection coefficients ΓTM/TM and ΓTE/TM of the truncated
corner PRRS and dual-via PRRS [12].

Fig. 7. (a) HFSS models of antennas based on PRRS with a different number of patch
cells along the x- and y-direction. (b) Simulated AR of the antennas.

Fig. 8. Surface current vector distribution at 5.76 GHz.
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Circular polarzation mechanism

To illustrate the mechanism of circular polarization, the simulated
surface current vector distributions viewed from the source
antenna are shown in Fig. 8. As illustrated in the figures, the

simulated surface current vector distributions of the source
antenna at 5.76 GHz for four different time phases’ instants,
from 0° to 270°, respectively, with an interval of 90°, rotating
counter clockwise are depicted, where a RHCP radiation was
validated.

Fig. 9. Simulated and measured results of the proposed antenna (a) |S11|, (b) RHCP radiation gain and AR, (c) beamwidths of the PRRS-based monopole feeding
antenna simulated for AR <3 dB at 6.35 GHz in both the xoz- and the yoz-planes.

Fig. 10. Radiation patterns simulated and measured at 5.4 GHz: (a) in xoz-plane, and (b) in yoz-plane.
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Results of simulatied and measured

As depicted in Fig. 9(a), the AMC-based PRRS monopole antenna
has measured a 10 dB bandwidth of 1.8 GHz (5.4–7.2 GHz)
and 3 dB axial ratio bandwidth has measured 1 GHz (5.55–
6.65 GHz), which is a satisfactory agreement with the simulated
results. Its S-parameters were measured using Agilent Vector
Network Analyzer (E8361A). The RHCP and left-hand circular
polarization radiation patterns and AR were measured in an
anechoic chamber using a standard gain horn antenna as a refer-
ence and computed using the data from their far-field compo-
nents and using formulae from the literature [13].

Moreover, as observed in Fig. 9(b), the peak RHCP radiation
gain measured along the z-axis within the PR band is 6.1 dBic
(achieved at 6 GHz), where a 0.5 dBic degradation to the simu-
lated results. It is demonstrated in Fig. 9(c) that the largest beam-
widths, which are achieved at 6.35 GHz, can reach 180° and 75° in
the xoz- and yoz-planes, respectively. Moreover, the values of AR
can reach below 1 dB at most of the CP band and the lowest AR is
0.23 dB, which exhibits perfect CP properties. As shown in Figs
10(a) and 10(b), the proposed AMC-based PRRS monopole
antenna yielded a good broadside RHCP radiation with good
cross-polarizations below 25 dB within the bandwidth of CP
operation in both the two planes. With good performance and
the simple structure, the proposed antenna can be applied on
the C (4–8 GHz) bands (Table 1).

Conclusion

In this paper, an AMC-based PRRS monopole feeding antenna is
proposed for circular polarization. This corner-truncated AMC-
based PRRS cell metal patch has two PR frequency points,
wider PR bands, and better PR property than the dual-via
PRRS in [6]. Fed by monopole antenna, a wideband and 1 dB
AR CP radiation is obtained by adopting the arrays of 4 × 4
PRRS cell, where a measured impedance bandwidth of 1.8 GHz
(5.4–7.2 GHz) and the 3 dB axial ratio bandwidth of 1 GHz
(5.55–6.65 GHz) could be obtained and validated by the measure-
ments. The proposed antenna yielded a good RHCP with a peak
broadside gain of 6.1 dBic. Moreover, a lager beamwidth was
exhibited at 180° and 75° at xoz- and yox-planes, respectively,
within the PR operational bandwidth.
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Table 1. Performance comparison of the propose antenna and recent single-fed wideband CP patch antennas

Antenna type Profile (λ0) Impedance bandwidth (%) 3 dB AR bandwidt (%)h Peak gain (dBic)

3 dB AR beamwidth

xoz yoz

Proposed 0.04 34.3 18 6.1 180° 75°

Ref. [14] 0.096 48.6 20.4 6.6 Not given Not given

Ref. [5] 0.04 16.8 18 6.8 30° 30°
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