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Universal Alternating Semiregular
Polytopes

B. Monson and Egon Schulte

Abstract. In the classical setting, a convex polytope is said to be semiregular if its facets are regular and
its symmetry group is transitive on vertices. his paper continues our study of alternating semiregular
abstract polytopes, which have abstract regular facets, still with combinatorial automorphism group
transitive on vertices and with two kinds of regular facets occurring in an alternating fashion.

Ourmain concernhere is the universal polytopeUP,Q, an alternating semiregular (n+1)-polytope
deûned for any pair of regular n-polytopes P,Q with isomorphic facets. A�er a careful look at the
local structure of these objects, we develop the combinatorialmachinery needed to explain howUP,Q
can be constructed by “freely assembling” unlimited copies of P, Q along their facets in alternating
fashion. We then examine the connection group ofUP,Q, and from that prove thatUP,Q covers any
(n + 1)-polytopeB whose facets alternate in any way between various quotients ofP or Q.

1 Introduction

he cuboctahedron is a familar example of what we will call an alternating semireg-
ular 3-polytope: its facets are squares and equilateral triangles, two of each occuring
in alternate fashion around each vertex. If one takes those words as instructions for
assembling a convex model, then up to similarity there can be only one end result S
(the cuboctahedron). It is a little remarkable that the polyhedron S then has a sym-
metry group that is transitive on vertices. Because the facets are regular, this means
that S also belongs to the even more general class of uniform polytopes.

his sort of alternating behaviour also appears in the tiling of Euclidean 3-space
by regular octahedra and tetrahedra. he tiling is therefore an inûnite alternating
semiregular 4-polytope.

Our main concern in this paper will be abstract semiregular polytopes like this,
with two kinds of regular facets occurring in an “alternating” fashion.1 In [12], we
established a basic construction for such polytopes as a kind of coset geometry over
a tail-triangle C-group. (See also heorem 2.7.)

Here we investigate in a deeper way the structure of the universal alternating
semiregular polytopeUP,Q along with its covering properties. his (n+1)-polytope is
deûned for any pair of regular n-polytopes P,Q with isomorphic facets. In Section 3,
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explicitly.

Canad. J. Math. Vol. 73 (2), 2021 pp. 572–595

https://doi.org/10.4153/S0008414X20000085 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X20000085&domain=pdf
https://doi.org/10.4153/S0008414X20000085


we recall the construction and take a closer look at the local structure of UP,Q. his
is followed in Section 4 by a careful description of what must be involved in attaching
an abstract polytope (really a very special sort of �agged poset) to another abstract
polytope, along some pair of isomorphic facets. hen in heorem 4.10 we can explain
how it is that UP,Q can be constructed by “freely assembling” unlimited copies of P,
Q along their facets in alternating fashion. Finally, in heorem 5.7 and Corollary 5.9,
we prove that UP,Q covers any (n + 1)-polytope B whose facets alternate in any way
between any sorts of “nice” quotients of P or Q.

In separate papers, we will explore a parameter called the interlacing number (see
Section 2). First, in [14], we examine general covering properties of the universal poly-
tope Uk

P,Q attached to a speciûc interlacing number k. (With this modiûed notation,
the polytope UP,Q studied in this paper becomes U∞

P,Q.) Second, in [13], we consider
situations in which Uk

P,Q does not even exist, even when P and Q have isomorphic
facets.

2 Flagged Posets and Polytopes

An abstract n-polytope P has certain key combinatorial properties of the face lattice
of a convex n-polytope; in general, however,P need not be a lattice, need not be ûnite,
need not have any familiar geometric realization. For a detailed look at the theory of
abstract polytopes we refer to [9].

Later on we will frequently encounter structures that “aren’t quite” polytopes.
Because of this, we ûnd it useful in the following overview to rearrange properties
P1, P2, P3, and P4 of [9, §2A] and relabel them below as B, A, D, and C, respectively.
(Our description of these in [12] is diòerent again.)

Deûnition 2.1 A �agged poset is a partially ordered set P with property A below.
Such a poset is closed and has rank n if it also satisûes property B (taking n = m−2). A
pre-polytope of rank n is a closed, �agged poset (of rank n), that also satisûes property
C. An abstract n-polytope P is a pre-polytope of rank n which also satisûes D.

he elements F of P are called its faces. A maximal chain in P is called a �ag. We
let F(P) be the set of all �ags in P.

We now examine more carefully the key properties mentioned above.

A. Every �ag in P contains a ûxed (ûnite) number (say m) of faces.
B. P has two faces, denoted F−1 and Fn , such that F−1 ⩽ F ⩽ Fn , for all F ∈ P. hus,
F−1 is the uniqueminimal face in P and Fn is the uniquemaximal face.

Remark 2.2 It is easy to see that a �agged poset P has a strictly monotone rank
function rk. Indeed, for any face F ∈ P, we will let rk(F) ∶= j if there are j + 1 faces
strictly below F in any �agΦ containing F. he range of rk is therefore {−1, . . . ,m−2}.
We also say thatP itself has rank m−2. (his way of deûning rank is motivated by the
notion of dimension for the faces of a convex n-polytope and will seem more natural
in the presence of condition B, with m = n + 2.) An element F ∈ P with rk(F) = j is
called a j-face. Faces of rank 0, 1, n − 2 or n − 1 in a �agged poset of rank n are called
vertices, edges, ridges, or facets, respectively.
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Whenever F ⩽ G are incident faces in P, with rk(F) = j ⩽ k = rk(G), the section
G/F is deûned by

G/F ∶= {H ∈ P ∣ F ⩽ H ⩽ G}.
It is easy to check that the section G/F of the �agged poset P is itself a �agged poset
(of rank k − j − 1).

If P is closed and m = n + 2, then the rank function has range {−1, 0, . . . , n}. he
improper faces F−1 and Fn have ranks −1 and n, respectively. If, in this case, F is a
vertex of P, then the section Fn/F is called the vertex-ûgure at F. More generally, if F
is a j-face, then F is said to have co-rank n − j − 1, that being the rank of its co-face
Fn/F.
Each face of a convex polytope is itself a convex polytope with its own internal

structure. Extending that point of view to general closed, �agged posets, we can ca-
sually treat any face F as if it were the section F/ ∶= F/F−1 below it. (We use “ ” as an
unobtrusive place-holder for minimal elements.) See also Remark 3.1.
According to the terminology of [16, p. 244], a poset that satisûes properties A and

B is a graded poset of rank n+1. However, we prefer to say that the rank is n, this being
the more natural geometric parameter. Note that n is the number of proper faces in
any �ag of a closed, �agged poset of rank n.

C.Whenever F < G with rk(F) = j− 1 and rk(G) = j+ 1, there are exactly two j-faces
H with F < H < G.

Remark 2.3 For 0 ⩽ j ⩽ n − 1 and any �ag Φ ∈ F(P), there thus exists a unique
j-adjacent �ag Φ j , diòering from Φ in just the face of rank j . With this notion of
adjacency, F(P) becomes the �ag graph for P. ∎

D. P is strongly �ag–connected; that is, the �ag graph for each section is connected.

Remark 2.4 Observe that every section of a (pre-) polytopeP is itself a (pre-) poly-
tope (of suitable rank).

he automorphism group Γ(P) of a �agged posetP consists of all order-preserving
bijections on P. Now suppose for the moment that P is an n-polytope. We say P is
regular if Γ(P) is transitive on the �ag set F(P). In this case, we can choose any one
�ag Φ ∈ F(P) as base �ag, then deûne ρ j to be the (unique) automorphism mapping
Φ to Φ j , for each j in the index set N ∶= {0, . . . , n − 1}. From [9, 2B], we recall that
Γ(P) is then a string C-group. his means ûrst that Γ(P) is generated by {ρ j ∶ j ∈ N}.
Second, these involutory generators satisfy the commutativity relations typical of a
Coxeter group with string diagram, namely,

(2.1) (ρ jρk)p jk = 1, for 0 ⩽ j ⩽ k ⩽ n − 1,

where p j j = 1 and p jk = 2 whenever ∣ j − k∣ > 1. Finally, Γ(P) is a C-group, meaning
that it satisûes the intersection condition

(2.2) ⟨ρk ∶ k ∈ I⟩ ∩ ⟨ρk ∶ k ∈ J⟩ = ⟨ρk ∶ k ∈ I ∩ J⟩, for any I, J ⊆ N .

he fact that one can reconstruct a regular polytope in a canonical way from any
string C-group Γ is at the heart of the theory [9, 2E].
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he periods p j ∶= p j−1, j in (2.1) satisfy 2 ⩽ p j ⩽ ∞ and are assembled into the
Schlä�i symbol {p1 , . . . , pn−1} for the regular polytope P. As a familiar example, we
recall that every 2-polytope is automatically abstractly regular. Indeed, a p-gon has
Schlä�i symbol {p}, and its automorphism group is the dihedral group Dp of order
2p. Usually, however, Γ(P) is not a Coxeter group. his happens when the relations
in (2.1) do not suõce for a presentation.

here are many ways to relax symmetry and thereby broaden the class of groups
Γ(P) [8, p. 77]. In [12], we restricted our considerations to the kind of polytopes
described in the following deûnition.

Deûnition 2.5 An abstract polytope S is semiregular if it has regular facets and its
automorphism group Γ(S) is transitive on vertices. he semiregular polytope S is
alternating if its facets (all regular) are of two kinds P and Q, which further occur in
alternating fashion around any face in S of co-rank 2. (We allow P ≃ Q.)

Every regular polytope is clearly semiregular. Notice that in an alternating semireg-
ular polytope S, there is, for each face F of co-rank 2, some k ⩾ 1 such that F is sur-
rounded by 2k facets. Usually for us, k will be constant from one such F to another.
his certainly happenswhenS has rank 3 (by vertex transitivity) and also, for instance,
if S is hereditary [10]. In a hereditary polytope, every automorphism of every facet
extends to an automorphism of the whole polytope. However, such nice conditions
might fail.

Example 2.6 Construct a 3-polytope K by gluing two regular octahedra face-to-
face, removing the triangular barrier between. K has vertices of valency 4 or 6. Now
construct the 4-polytope S = 2K, as described in [15, §3]. From heorem 3.1 there, we
observe that S is vertex-transitive, with each vertex-ûgure isomorphic to K. More-
over, all facets of S are isomorphic to 2{3}, that is, to the cube, which of course is
regular. herefore, S is a semiregular 4-polytope, but with 4 facets surrounding some
edges and 6 facets around certain others.

Evidently, there will be a huge variety of abstract semiregular polytopes. As in
[12], we conûne our investigation to a very symmetric class of semiregular polytopes
in which the parameter k is constant for all faces F of co-rank 2 in S. We call this value
of k the interlacing number for S.

In fact, we will focus mainly on semiregular polytopes that can be constructed us-
ing the combinatorial version ofWythoò ’s construction described in [12, §4]. Suppose
that Γ = ⟨α0 , . . . , αn−2 , αn−1 , βn−1⟩ is a group generated by involutions that satisfy the
commutativity relations implicit in the tail-triangle diagram

(2.3)

he label “k” indicates that αn−1βn−1 has period k, for some k = 2, . . . ,∞. How-
ever, all other periods of products of two “adjacent” generators are unspeciûed for the
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moment and indicated by a ∗. he label “2” is possible and indicates the actual ab-
sence of the corresponding branch in the diagram. he group Γ is called a tail-triangle
group. (Anticipating heorem 2.7, we also say that the group Γ has interlacing num-
ber k.) We allow the degenerate (base) case n = 1, in which Γ = ⟨α0 , β0⟩ is just the
dihedral group Dk .

Suppose also that Γ is a C-group, now satisfying the intersection condition (2.2)
over a suitable index set N for the n + 1 generators of Γ. hen Γ is a tail-triangle
C-group. It follows that the subgroups

ΓP
n ∶= ⟨α0 , . . . , αn−2 , αn−1⟩

and

ΓQ
n ∶= ⟨α0 , . . . , αn−2 , βn−1⟩

are string C-groups; indeed, automorphism groups for the regular n-polytopes P and
Q, respectively.
As described in [12, Deûnition 4.2], the ringed node in (2.3) initiates Wythoò ’s

construction for an (n + 1)-polytope S = S(Γ) as a coset geometry over Γ. First of all,
for 0 ⩽ j ⩽ n − 1, we let

Γ−j ∶= ⟨α0 , . . . , α j−1⟩, Γ+j ∶= ⟨α j+1 , . . . , αn−1 , βn−1⟩(2.4)

and

Γj ∶= ⟨α0 , . . . , α j−1 , α j+1 , . . . , αn−1 , βn−1⟩ = Γ−j × Γ+j .(2.5)

he direct product follows easily from (2.2) and the structure of the diagram in (2.3).
When j = n − 1, we interpret (2.4) and (2.5) as Γn−1 = Γ−n−1, with Γ+n−1 = {1}.

he j-faces of S with j ⩽ n − 1 can be identiûed with all right cosets of Γj in Γ.
Likewise, the n-faces of S are all right cosets of either ΓP

n or ΓQ
n . For the improper

faces of S, we can take two distinct copies of Γ. Faces of distinct rank are now incident
if and only if the corresponding cosets have non-empty intersection. We ûnd that the
polytope S has two �ag orbits under the action of Γ, with base �ags

(2.6) Φ ∶= [Γ0 , . . . , Γn−2 , Γn−1 , ΓP
n ] and Ψ ∶= [Γ0 , . . . , Γn−2 , Γn−1 , ΓQ

n ].
(As usual, we have suppressed improper faces.) Flags in the two orbits are said to
have type P, Q, respectively. Such base �ags are indicated for the 3-polytope U{4},{3}
displayed in Figure 3 in Section 5.

We combine the key results of [12, §4] about the structure of S into the following
theorem.

heorem 2.7 Suppose Γ is a tail-triangle C-group corresponding to the diagram (2.3)
and let S = S(Γ) be the resulting (n + 1)-polytope.

(i) S is an alternating semiregular polytope. Its facets are isomorphic to P or Q, with
k of each of these occurring alternately around each face R of co-rank 2. Each 2-section
S/R is therefore a 2k-gon, and S has interlacing number k.

(ii) he face-wise Γ-stabilizer of any ridge of S is trivial.
(iii) Each vertex-ûgure of S is isomorphic to the alternating semiregular n-polytope

Ŝ deûned by the tail-triangle C-group whose diagram is obtained by deleting the node
labelled α0 in the diagram (2.3), then ringing the node labelled α1.
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(iv) S is a regular polytope if and only if Γ admits a group automorphism induced by
the diagram symmetry which swaps αn−1 and βn−1 in (2.3), while ûxing the remaining
α j ’s. In this case P ≃ Q, say with Schlä�i type {p1 , . . . , pn−1}, and S is regular of type
{p1 , . . . , pn−1 , 2k}; moreover, Γ(S) ≃ Γ ⋊ C2.

(v) If S is not regular, then S is a 2-orbit polytope and Γ(S) ≃ Γ. In particular, this
is so if the facets P and Q are non-isomorphic.

Recall that an abstract polytope is called a 2-orbit polytope if its automorphism
group has precisely two �ag orbits. (See [6]; for general structural results about the
groups of 2-orbit polytopes, see also [7].)
Each ridge K in the polytope S of heorem 2.7 can just as well be viewed as a

facet of either P or of Q. hus, the regular n-polytopes P and Q have all their facets
isomorphic to K, which in turn is a regular (n − 1)-polytope with automorphism
group Γ(K) ≃ Γn−1.

In fact, whenever P and Q have matching facetsK, we can amalgamate the groups
Γ(P) and Γ(Q) along the common facet subgroup Γ(K). his construction is de-
scribed in [12, Section 5] and summarized in Section 3. It does indeed yield a tail-
triangle C-group, with interlacing number k = ∞. he resulting alternating semireg-
ular (n+ 1)-polytope is denotedUP,Q. he remaining sections describe algebraic and
geometric constructions for UP,Q, as well as its universal property.

3 The Universal Semiregular Polytope UP,Q

In this and the following section, we set up the machinery needed to understand
how we can freely assemble compatible regular polytopes in an alternating way. Re-
ferring to [12, §5], let us ûrst recall some features of our construction of the universal,
semiregular (n+1)-polytopeUP,Q, which for brevity we call S. We begin with regular
n-polytopes P and Q, each with facets isomorphic to a common regular (n − 1)-
polytopeK. hus,

(3.1) Γ(P) = ⟨α0 , . . . , αn−2 , αn−1⟩, Γ(Q) = ⟨β0 , . . . , βn−2 , βn−1⟩,
and Γ(K) ≃ ⟨α0 , . . . , αn−2⟩ ≃ ⟨β0 , . . . , βn−2⟩. he tail-triangle C-group used to man-
ufacture S is the amalgamated product

Γ = Γ(P)∗Γ(K)Γ(Q) = ⟨α0 , . . . , αn−2 , αn−1 , βn−1⟩
obtained by identifying α j with β j for 0 ⩽ j ⩽ n − 2. herefore, with no loss of
generality, we can conveniently take

Γ(P) = ⟨α0 , . . . , αn−2 , αn−1⟩,
Γ(Q) = ⟨α0 , . . . , αn−2 , βn−1⟩,
Γ(K) = ⟨α0 , . . . , αn−2⟩,

all subgroups of Γ.
Every (n− 1)-face (ridge) in S is equivalent toK under Γ. he n-faces (facets) of S

are isomorphic to either P or Q (which could themselves be isomorphic). One copy
of each lies on each ridge. In particular, P and Q can be identiûed with the n-faces on
the base ridge K of S. hen, for each µ ∈ Γ, the n-faces of S on Kµ are given by Pµ

Universal Alternating Semiregular Polytopes 577

https://doi.org/10.4153/S0008414X20000085 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000085


and Qµ. Also, the base face L of rank n − 2 (i.e., with co-rank 2 in S) is stabilized by
the subgroup Γ(L) = ⟨α0 , . . . , αn−3 , αn−1 , βn−1⟩. Inûnitely many copies of P and Q lie
alternately onL. Indeed, for each µ ∈ Γ, the n-faces onLµ are all Pλµ,Qλµ, where λ
runs through the inûnite dihedral group ⟨αn−1 , βn−1⟩.

Remark 3.1 Here, and frequently below, we indulge in an abuse of notation. For
example, byPµ, we really mean a section of S, rather thanmerely the image Fµ of the
base facet F of type P in S. In particular, P ≃ F/ .

Now suppose that TP and TQ are right transversals for Γ(K) in Γ(P) and Γ(Q),
respectively, with TP ∩TQ = {1} (the identity in Γ). he facets of P and of Q are in 1–1
correspondence with the elements of TP and TQ, respectively. hese transversals also
enable more explicit calculation in Γ. However, the particular choice of transversals
will ultimately not matter for our applications.

Let us say that a product such as ω = λ1 ⋅ ⋅ ⋅ λm , with all λ j ≠ 1 and with λ j and
λ j+1 in diòerent transversals TP , TQ, for 1 ⩽ j < m, is an alternating word of length
m. We allow the empty word ω = 1 as the only alternating word of length 0. Referring
to [2, Chapter 1, §7.3, Proposition 5], we recall that each µ ∈ Γ has a unique reduced
decomposition

(3.2) µ = κλ1 ⋅ ⋅ ⋅ λm = κω,

where κ ∈ Γ(K) and ω = λ1 ⋅ ⋅ ⋅ λm is an alternating word. Note that the length m
of the reduced decomposition of an element µ ∈ Γ is independent of the particular
choice of transversals TP and TQ. (It will not matter to us that a product might be
an alternating word with respect to one choice of transversals but not with respect to
another.)

Notice as well that if τ ∈ TP and κ ∈ Γ(K), then there exist unique τ′ ∈ TP,
κ′ ∈ Γ(K) such that τκ = κ′τ′; here, τ = 1 if and only if τ′ = 1. A similar calcula-
tion works for Γ(K) and TQ. It is then easy to see that if ω is an alternating word
of length m and κ ∈ Γ(K), then ωκ = κ′ω′, where κ′ ∈ Γ(K) and ω′ is another
alternating word of length m.

To serve Deûnition 3.2, it is helpful to single out certain µ ∈ Γ. We say that µ =
τ l+1σl τ l ⋅ ⋅ ⋅ σ1τ1, when k = 2l + 1 is odd (resp. µ = σl τ l ⋅ ⋅ ⋅ σ1τ1, when k = 2l is even)
has type k. Here, all σ j ∈ TQ/{1} and τ j ∈ TP, where we allow τ j = 1 only when j = 1.
Also, µ = 1 is the unique element of type 0. (hus, µ is an alternating word, so long as
we suppress τ1 when it equals 1. his slight asymmetry of type is due to our starting
the construction below with P rather than Q.)

Now we can deûne a certain subposet Sk of rank n in S. Our goal in Section 4 will
be to understand Sk in a more intuitively geometrical way.

Deûnition 3.2 Let S0 ∶= P (as before, we really mean the section under the base
facet of type P in S). For k ⩾ 1, Sk is the subposet of S induced on all faces of the
union of Sk−1 with all facetsQµ (resp.Pµ), where µ is a word of type k, with k = 2l + 1
odd (resp. k = 2l even).

Remark 3.3 Note that Sk is independent of our choice of transversals TP , TQ (with
TP∩TQ = {1}). his is because the length of a reduced decomposition is independent
of this choice. Recall that such transversals merely index the facets of P and Q.
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Now we investigate more carefully the structure of Sk .

Lemma 3.4 If Pµ = Pγ (resp. Qµ = Qγ) for two elements µ, γ of even type (resp. odd
type), then µ = γ. Also, ifKµ =Kγ for two elements µ, γ of any types, then µ = γ.

Proof Suppose Pµ = Pγ for two elements

µ = σl τ l ⋅ ⋅ ⋅ σ1τ1 , γ = σ ′mτ′m ⋅ ⋅ ⋅ σ ′1 τ′1
of even types. Since µγ−1 stabilizes P, we have µγ−1 ∈ Γ(P), so that µγ−1 = κτ for
some unique κ ∈ Γ(K), τ ∈ TP. But then

µ = 1 ⋅ σl τ l ⋅ ⋅ ⋅ σ1τ1 = κτ ⋅ σ ′mτ′m ⋅ ⋅ ⋅ σ ′1 τ′1 .
By the uniqueness in (3.2), we have κτ = 1 (and l = m), so µ = γ. he conclusion holds
even if, as is possible, τ1 = 1 or τ′1 = 1. he calculations for Q andK are similar. ∎

Some properties of these posets are summarized in the next result.

Proposition 3.5 (i) Sk is a �agged poset of rank n, always with a uniqueminimal ele-
ment but not with a unique maximal element when k ⩾ 1. For k ⩾ 1, we have Sk−1 ⊂ Sk .

(ii) Every face of rank n in Sk is isomorphic to P or to Q.
(iii) Every face of rank n − 1 in Sk is isomorphic to K.
(iv) Each face of rank n − 1 in Sk that also lies in Sk−1 is covered, that is, lies in

two faces of rank n in Sk , namely Pµ and Qµ, and coincides with Kµ, for some unique
element µ of some type m, with m ⩽ k.

(v) Each (n − 1)-face K̃ of Sk that does not lie in Sk−1 is exposed, that is, lies in just
one face of rank n in Sk . If k = 2l is even, this one face is Pµ, for a unique µ of type
k; and K̃ = Kµ̃, for some unique element µ̃ = τ l+1µ of type k + 1. On the other hand,
if k = 2l + 1 is odd, the single face is Qµ, again for a unique element µ of type k; and
K̃ =Kµ̃, for some unique element µ̃ = σl+1µ of type k + 1.

(vi) S (with its unique maximal element deleted) equals ∪∞k=0 Sk .

Proof Parts (i) and (ii) are clear from Deûnition 3.2. Part (iii) follows, since all
(n − 1)-faces in the regular polytopes P,Q are isomorphic to K.

Parts (iv) and (v) are proved by induction on k. he base case k = 0 is settled easily
by inspection (interpret S−1 as ∅). So assume (iv) and (v) hold for Sk−1, with k ⩾ 1.
Let K̃ be an (n − 1)-face of Sk .

Suppose ûrst that K̃ ∈ Sk−1. hen by induction, either K̃ = Kµ ∈ Sk−2 is covered,
for some µ of type m ⩽ k − 1; or K̃ ∈ Sk−1/Sk−2 is exposed in Sk−1. In this case, there
are two subcases.

(a) k is odd and K̃ lies on just Pµ in Sk−1, where k − 1 = 2l , µ = σl τ l ⋅ ⋅ ⋅ σ1τ1. hus,
K̃µ−1 is a facet of P, say K̃µ−1 =Kτ l+1 for τ l+1 ∈ TP. But then K̃ also lies on Qµ̃ (and
Pµ̃ = Pµ) in Sk , where µ̃ = τ l+1µ. Notice that µ̃ has type k. In fact, if τ l+1 = 1, then
µ̃ = µ, and so K̃ lies on both Pµ and Qµ; but then

Qµ = Qσl τ l ⋅ ⋅ ⋅ σ1τ1 = Qτ l ⋅ ⋅ ⋅ σ1τ1 ∈ Sk−2 ,

again by induction. his is a contradiction unless k = 1 (and τ l+1 = τ1 = 1). hus K̃ is
covered, as required.
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(b) k is even and K̃ lies on justQµ in Sk−1, where k−1 = 2l+1, µ = τ l+1σl τ l ⋅ ⋅ ⋅ σ1τ1.
Now K̃ also lies on Pµ̃ in Sk , where µ̃ = σl+1µ has type k. Again K̃ is covered.

Uniqueness of µ follows from Lemma 3.4.
To ûnish part (v) we ûnally suppose that K̃ ∈ Sk/Sk−1. he proof that K̃ is exposed

inSk is very similar towhatwe have seen before. For example, if k = 2l is even, then by
deûnition K̃ lies on somePµ, with µ = σl τ l ⋅ ⋅ ⋅ σ1τ1. ButQµ = Qτ l ⋅ ⋅ ⋅ σ1τ1 ∈ Sk−1, so K̃
cannot lie on Qµ. hus, K̃ lies only on Pµ, which is indeed a face of Sk . Furthermore,
K̃µ−1 lies on P, so K̃µ−1 = Kτ l+1 for some τ l+1 ∈ TP. hen µ̃ = τ l+1µ has type k + 1.
Otherwise, we would have τ l+1 = 1 and µ̃ = µ of type k = (k − 1) + 1; by induction,
this would put K̃ in Sk−1.

Part (vi) follows from the fact that every µ ∈ Γ has a reduced decomposition as
described in equation (3.2). ∎

Next we show that the “outer” n-faces meet Sk as we would expect. To prepare the
way, we must reûne our choice of transversals TP , TQ (see Remark 3.3). We simply
extract, with a bit of relabelling, what we need from [12, Lemmas 5.1–5.2].

Lemma 3.6 (i) here are transversals TP and TQ such that for −1 ⩽ j ⩽ n − 2,
TP contains a transversal TP, j for ⟨α j+1 , . . . , αn−2⟩ in ⟨α j+1 , . . . , αn−2 , αn−1⟩, and TQ

contains a transversal TQ, j for ⟨α j+1 , . . . , αn−2⟩ in ⟨α j+1 , . . . , αn−2 , βn−1⟩. Moreover,

{1, αn−1} = TP,n−2 ⊆ TP,n−3 ⊆ ⋅ ⋅ ⋅ ⊆ TP,0 ⊆ TP,−1 = TP

and

{1, βn−1} = TQ,n−2 ⊆ TQ,n−3 ⊆ ⋅ ⋅ ⋅ ⊆ TQ,0 ⊆ TQ,−1 = TQ .

(ii) For −1 ⩽ j ⩽ n − 2, Γ+j = ⟨α j+1 , . . . , αn−2 , αn−1 , βn−1⟩ is isomorphic to the amal-
gamated product

⟨α j+1 , . . . , αn−2 , αn−1⟩ ∗⟨α j+1 , . . . ,αn−2⟩ ⟨α j+1 , . . . , αn−2 , βn−1⟩.

his tail-triangle C-group is the automorphism group for (the isomorphic) co-faces
of co-rank n − j in S. In particular, ⟨αn−1 , βn−1⟩ is the inûnite dihedral group, and
⟨αn−2 , αn−1 , βn−1⟩ is a Coxeter group (usually with triangular diagram).

Let us work from now on with the transversals described in Lemma 3.6.

Proposition 3.7 Suppose for some k ⩾ 0 that µ̃ ≠ φ̃ are two elements of type k + 1
in Γ. hen for k even (resp. k odd)

(i) each face G of Sk that is incident with Qµ̃ (resp. Pµ̃) must also be incident
with Kµ̃.

(ii) each face G of Sk+1 that is incident with both Qµ̃ and Qφ̃ (resp. both Pµ̃ and
Pφ̃) must also be incident with both Kµ̃ and Kφ̃. hese (n − 1)-faces, and hence also
G, actually lie in Sk .

Proof Assume k = 2l is even; the calculations for k odd are quite similar. Suppose
then for part (i) that G is a j-face incident with both Sk andQµ̃. By Deûnition 3.2 and
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Lemma 3.4, Qµ̃ is not itself an n-face of Sk , so we can assume j ⩽ n − 1. By Proposi-
tion 3.5, we can further assume that G is incident with an (n − 1)-faceKλ, for some
λ of type m ⩽ k + 1.

Now recall that faces are right cosets, which here must intersect. For some γ ∈ Γ
we have G = Γjγ, for the subgroup Γj = Γ−j Γ

+
j described in (2.5). his coset meets

Kλ = Γn−1λ. Our goal is to exploit the special structure of the transversals to ûnd an
alternative expression for G as a coset of Γj from which we can read oò the incidence
with Kµ̃. Now since Γ−j ⩽ Γn−1, we have η1 ∈ Γ+j , κ1 ∈ Γn−1 such that

η1γ = κ1λ.

Likewise, since G is incident with Qµ̃, we have η2 ∈ Γ+j , κ2 ∈ Γn−1 , σ ∈ TQ such that
η2γ = κ2σ µ̃. Now suppose µ̃ = τ l+1σl τ l ⋅ ⋅ ⋅ σ1τ1, and let λ = ⋅ ⋅ ⋅ σ ′1 τ′1. A little thought
shows that µ̃λ−1 = κ′ω′, where κ′ ∈ Γn−1 and ω′ is an alternating word of length at
least k + 1 −m. hus, µ̃λ−1κ−1

1 = κ′ω′κ−1
1 = κ3ω, say, where κ3 ∈ Γn−1 and ω is also an

alternating word of length at least k + 1−m. In fact, if ω is non-empty, then ω = τ ⋅ ⋅ ⋅ ,
for some τ ∈ TP/{1}. Likewise, σκ3 = κ4 σ̃ for some κ4 ∈ Γn−1 , σ̃ ∈ TQ. hus,

η2η−1
1 = κ2σ µ̃λ−1κ−1

1 = κ2σκ3ω = (κ2κ4)σ̃ω.

But η2η−1
1 ∈ Γ+j . By the choice of transversals described in Lemma 3.6, it must be that

both κ2κ4 and σ̃ lie in Γ+j ; compare [12, Lemma 5.3]. hus,

G = Γjγ = Γjη−1
2 κ2σ µ̃ = Γjκ2σ µ̃ = Γj(κ2κ4)σ̃κ−1

3 µ̃ = Γjκ−1
3 µ̃.

Hence, κ−1
3 µ̃ ∈ Γjγ ∩ Γn−1 µ̃, so that G is incident with Kµ̃ = Γn−1 µ̃. his is part (i).

he calculations for (ii) are much the same. Given G = Γjγ, we obtain η1 , η2 ∈ Γ+j ,
κ1 , κ2 ∈ Γn−1, σ1 , σ2 ∈ TQ such that

η1γ = κ1σ1 µ̃, η2γ = κ2σ2φ̃.

Now µ̃ φ̃−1 = κω for some κ ∈ Γn−1 and alternating word ω. But from the uniqueness
of the reduced decomposition in Γ, it is easy to check that ω is non-empty, since µ̃ ≠ φ̃
(and elements of type k + 1 cannot diòer by a nontrivial element from Γn−1), so that
ω = τ . . . τ′ begins and ends with elements of TP/{1}. As before, we obtain certain
κ j ∈ Γn−1 , σ j ∈ TQ such that σ−1

2 κ−1
2 = κ3σ3; then ωκ3 = κ4ω1, where ω1 is non-empty

of the same structure as ω. Next, we get σ1(κκ4) = κ5σ4, so that

η1η−1
2 = κ1σ1(µ̃ φ̃−1)σ−1

2 κ−1
2 = κ1σ1κωκ3σ3 = κ1σ1(κκ4)ω1σ3

= (κ1κ5)(σ4ω1σ3).

Since ω1 is non-empty and alternating, σ4ω1σ3 is also that way. hus, we force κ1κ5,
σ4, ω1, σ3 to lie in Γ+j . From this we have

Γjγ = Γjη−1
1 κ1σ1 µ̃ = Γj(κ1κ5)κ−1

5 σ1 µ̃ = Γjσ4κ−1
4 κ−1 µ̃ = Γjκ−1

4 ωφ̃

= Γjω1κ−1
3 φ̃ = Γjκ−1

3 φ̃.

hus, κ−1
3 φ̃ ∈ Γjγ ∩ Γn−1φ̃, so G is incident withKφ̃. By a symmetrical argument with

η2η−1
1 , we get that G is also incident with Kφ̃. ∎
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At this point, it is convenient to deûne the facet graph G for S = UP,Q: its nodes are
all facets of S (i.e., copies of P or Q) and two distinct facets are adjacent if and only if
they share an (n − 1)-face (i.e., copy ofK).

Proposition 3.8 he facet graph G for UP,Q is an inûnite tree.

Proof he (n − 1)-face Kµ of S lies on just the two n-faces Pµ and Qµ. If Kλ also
lies on these two n-faces, then µλ−1 ∈ ΓP

n ∩ ΓQ
n = Γ(K). his forces Kµ = Kλ a�er

all. It follows that G is a simple, bipartite graph. Its branches correspond exactly to
the (n − 1)-faces Kµ of S, which in turn are in one-to-one correspondence with the
special elements µ of all types k ⩾ 0 (Lemma 3.4).

Suppose G has a cycle. Since Γ acts transitively on each facet class, we can assume
that the cycle contains the base n-faceP as a node. If k+1 is the largest integer m such
that Sm/Sm−1 contains a node in the cycle, then clearly the n-face of S corresponding
to this node lies in Sk+1/Sk and must be adjacent to two diòerent n-faces in Sk . his
contradicts Proposition 3.7(i). ∎

We will make use of these results in the next section. But before that we need a
careful discussion of certain quotients.

4 Quotients of Flagged Posets

It is intuitively clear what it means to identify faces in a polytope, or to attach one
polytope to another along a common facet. However, if we are to prove things, we
need to set down some precise terms and constructions. See [11, pp. 2655–2659] for
some related ideas.

Let P be any �agged poset and let ∼ be any equivalence relation on the faces of P.
he quotient set Q ∶= P/∼ consists of all classes F̂ ∶= {G ∈ P ∶ G ∼ F}. Let

η∶PÐ→ Q

F z→ F̂

be the corresponding natural map. In order that Q be partially ordered, and more
speciûcally a �agged poset, we need some sensible restrictions on ∼. First, we assume:
Q1. he equivalence relation ∼ on P is stratiûed by rank, that is, for all F ,G ∈ P,

F ∼ G Ô⇒ rk(F) = rk(G).
hen Q can be ordered by agreeing that F̂ ⩽ Ĝ if and only if there exists a ûnite se-
quence of faces F1 , . . . , Fk ,G1 , . . . ,Gk in P such that

F = F1 ∼ G1 ⩽ F2 ∼ G2 ⩽ ⋅ ⋅ ⋅ ⩽ Fk−1 ∼ Gk−1 ⩽ Fk ∼ Gk = G .

Certainly “⩽” is a re�exive and transitive relation onQ. Moreover, if rk(F) = rk(G) in
such a chain of faces, then all facesmust have the same rank and so lie in the same class.
Hence, the relation is also antisymmetric, andQ is partially ordered. (We have deûned
the transitive closure of the more obvious “order” relation.) In fact, Q is a �agged
poset of the same rank as P and the natural map η is a rank-preserving, surjective
poset homomorphism. Of course, we say that Q is the quotient of P induced by ∼.

B. Monson and E. Schulte582

https://doi.org/10.4153/S0008414X20000085 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000085


his notion of quotient is still very general. See [11, §2.4] for some counter-intuitive
examples.

Soon we will work with the disjoint union of several �agged posets. In order that
the union be �agged, we next require the following condition:

Q2. In a disjoint union of �agged posets, all components must share a common rank.

Suppose now that our �agged posets are closed. Perhaps we want the quotient of
some disjoint union to be closed. But then, by condition Q1, all maximal (resp. mini-
mal) elements for diòerent components have to be identiûed. Consider, for example,
the two 1-polytopes (segments) ab and cd in Figure 1, in which we want to identify
vertices b and c. Now we could, if we wanted, identify just the 0-faces b and c and
nothing else. But, conventionally, and certainly here, we really do mean to fully iden-
tify along the isomorphic sections b/ ≃ c/ , so that minimal elements should also be
identiûed under ∼.

Figure 1: Two attached segments require higher rank.

he resulting closed, �agged poset in the above example is unsatisfactory if we
also identify maximal elements, since then we could only interpret the structure on
the right in Figure 1 as a single segment with three vertices. his was not our intent.

How then can we distinguish the two segments a�er attachment? One way is to
view them as beginning a polygon, so that the structure really wants to have rank 2.
We can achieve this by formally adjoining a new maximal element.

Deûnition 4.1 he cap P of a �agged poset P is obtained from P by adjoining a
new, unique maximal element.

It is clear then that rk(P) = rk(P) + 1. For our two segments, the Hasse diagrams
evolve as in Figure 2.

Figure 2: Two disjoint segments joined then capped oò.

Clearly, we do want the right-most structure in Figure 2. But now if wemust attach
a third segment, we run up against requirement Q2. We can readily describe all sorts
of contrary situations like this, so that it is awkward to establish general rules. For our
purposes, we will make do with a ûnal requirement, which is more a rule of thumb.
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Q3: When making identiûcations within the disjoint union of �agged posets (of like
rank), be sure to identify all separate minimal elements. When ûnished, cap oò the
resulting �agged poset, unless it already has a unique maximal element.

Remark 4.2 By judiciously obeying requirements Q1, Q2, Q3, we will clearly pro-
duce closed, �agged posets. It is peculiar that a capped segment ab, considered as a
closed, �agged poset of rank 2, is dual as a poset to a single vertex with two semi-edges:

We could (somewhat eccentrically) interpret ab as having two semi-vertices.

For the rest of this section we will be concerned with �agged posets, each having
a unique minimal element. (Such a poset is closed if it also has a unique maximal
element.) We attempt to identify these objects along isomorphic facets.

Suppose that P is such a poset of rank n. Say {F( j) ∶ j ∈ J} is a non-empty indexed
family of distinct facets of P. he indexing set J could be ûnite or countably inûnite
(if P itself is inûnite). Notice that all F( j) share the same unique minimum as P.
Suppose also that for each j ∈ J there is a �agged poset Q j (of rank n, with unique
minimum), with a speciûed facetG( j) isomorphic to F( j). hismore preciselymeans
that there is an isomorphism

φ j ∶ F( j)/ Ð→ G( j)/ .

Our goal is to glue each Q j to P along the speciûed pair of isomorphic facets. We
start with the disjoint union

D ∶= P ⊔⊔
j∈J

Q j ,

which has an obvious structure as a �agged poset of rank n. (here will usually be
many distinct maximal or minimal elements.) Notice that we can identifyP and each
Q j , as a poset, with their images in D.

Next deûne on D the equivalence relation ∼ generated by all pairs (G ,H), where
G ⩽ F( j) and H = (G)φ j ∈ Q j , for some j ∈ J. Notice that minimal elements of P, Q j
are equivalent under ∼. And observe that the only other pairs of distinct ∼-equivalent
faces in D must look like ((G)φ i , (G)φ j), for i ≠ j ∈ J, when G is incident to both
F(i) and F( j) in P.
Clearly, ∼ is stratiûed by rank, so that G ∶= D/∼ is a �agged poset of rank n, now

with a unique minimum. Let
η∶DÐ→ G

be the natural map, a rank-preserving epimorphism of posets. It follows from the
observations just above that P and each Q j can be identiûed with their η-images in G.

We now have the following proposition.

Proposition 4.3 For P, Q j , φ j ( j ∈ J), as above,
(i) the quotient G is a �agged poset of rank n and with a unique minimal element;
(ii) the cap G is a closed, �agged poset of rank n + 1;
(iii) the posets P and all Q j are isomorphic to sections of rank n in G.
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Proof he overriding assumption is that J ≠ ∅ forces G to have at least twomaximal
elements (one fromP and from eachQ j). hus, the closure is required and G has rank
n + 1. ∎

Remark 4.4 SupposeK is a facet of P or some Q j used in the construction. hus,
K appears as a facet in G and so also as a ridge in G. Note that ingredients such as P
need not be polytopes. he construction is far more general than our use of it below
would suggest.

A more subtle possibility is that the structure of G can also depend on the chosen
isomorphisms φ j . However, this will not concern us in our main applications, since
we will restrict ourselves to more controlled situations involving regular polytopes, as
outlined next.

Remark 4.5 Suppose that the �agged posets Q j ( j ∈ J) are regular polytopes, and
that the family of facets {F( j) ∶ j ∈ J} contains all facets of P. (We are not assum-
ing that P is a regular polytope.) hen the structure of the quotient G of Proposi-
tion 4.3 does not depend on the particular choice of the facets G( j) of Q j ( j ∈ J)
nor on the isomorphisms φ j ∶ F( j)/ → G( j)/ ( j ∈ J). In other words, a diòerent
choice of G( j), φ j ( j ∈ J) leads to an isomorphic poset. he proof of this rests on the
properties of the automorphism groups of regular polytopes. For example, if G( j)′ is
another facet of Q j and φ′j ∶ F( j)/ → G( j)′/ is a corresponding isomorphism, then
κ ∶= φ−1

j φ′j ∶G( j)/ → G( j)′/ is an isomorphism between facets of Q j . But for a regu-
lar polytope, any isomorphism between facets can be extended uniquely to the entire
polytope. It follows that κ is the restriction to G( j)/ of an automorphism, again κ
(say), of Q j . hus, φ′j = φ jκ with κ ∈ Γ(Q j). In other words, changing G( j), φ j to
G( j)′ , φ′j amounts to replacing Q j by the isomorphic copy Q jκ. In essence, this says
that one can push any change in the G( j), φ j ( j ∈ J) into the components Q j . As the
components are mutually disjoint, and disjoint from P, we can safely manufacture an
overall isomorphism of the new resulting poset with the original poset G.

Now we resume our main construction and return to the situation described in
Section 3, where we took P and Q to be regular n-polytopes, each with facets isomor-
phic to the regular (n − 1)-polytope K. Notice that Remark 4.5 applies in this case.
Our chief goal with all the above machinery is to rigorously describe the process of
freely attaching copies of Q to all facets of one P, then copies of P to all remaining
facets of all the Q’s, and so forth, alternating between P’s and Q’s without end. As in
Proposition 3.5, we say that an (n − 1)-face in a poset of rank n is exposed (resp. cov-
ered) if it lies on one (resp. two) n-faces.

Deûnition 4.6 Let G0 ∶= P. For k ⩾ 1, we obtain Gk as follows: if k is odd
(resp. even), then to each exposed facet (isomorphic toK) in Gk−1 we attach a distinct
copy ofQ (resp.P). We enforce the identiûcations as summarized in Proposition 4.3(i)
to produce Gk .

Of course, we must convince ourselves that this deûnition passes closer inspection
and does what we want.
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Proposition 4.7 Suppose P and Q are regular n-polytopes, each with facets isomor-
phic to the regular (n − 1)-polytope K. Let Gk be the poset deûned in Deûnition 4.6.
hen for each k ⩾ 0,

(i) Gk is isomorphic to the �agged poset Sk described in Proposition 3.5;
(ii) there is a natural embedding εk ∶Gk → Gk+1, for k ⩾ 0.

Proof We prove (i) by induction on k. By deûnition, G0 ≃ P ≃ S0, so assume that
Gk ≃ Sk , for some k ⩾ 0. Let us simply put Gk aside and work with Sk in its place. (We
comment a little on this “transfer of structure” in Remark 4.11.) Recall from Propo-
sition 3.5 that Sk is a subposet of S = UP,Q. It is �agged with rank n, with n-faces
isomorphic to P or Q and with certain faces K̃ of rank n − 1 exposed.

Suppose k = 2l is even (the case k odd is very similar). We want to construct Gk+1
from Sk (well, really from Gk). According to Deûnition 4.6, we must attach disjoint
copies of Q to Sk along the exposed (n − 1)-faces K̃ of Sk . But by Proposition 3.5(v),
these K̃ = Kµ̃ are indexed by the set J of all elements µ̃ = τ l+1µ of type k + 1 in Γ.
(Recall that K is the base (n − 1)-face in S.)

Now in applying Proposition 4.3, Sk plays the role of P, and for each µ̃ ∈ J, we
require a copy of Q. For this copy of Q, let us simply extract from S the subposet Qµ̃,
the “missing” n-face lying onKµ̃. (Recall that Qµ̃ really means a section of rank n in
S; this is even a section of Sk+1.) he required identiûcationmap φ µ̃ is just the identity
map on Kµ̃.

he next step is to form the disjoint union

D ∶= Sk ⊔ ⊔
µ̃∈J

Qµ̃ ,

each component of which is a subposet of Sk+1. Combining several inclusions, we get,
in an obvious way, the poset surjection

λ∶D Ð→ Sk+1 .

Nowwe obtain Gk+1 fromD bymaking identiûcations of the formG ∼ (G)φ µ̃ , when-
ever G is a face of Kµ̃. However, from the point of view of Sk+1 this merely requires
(G)φ µ̃ = G, which holds by our choice of φ µ̃ . hus, λ induces a well-deûned surjec-
tive poset map

λk+1∶Gk+1 Ð→ Sk+1 .

Some careful thought shows that Proposition 3.7 is just what we need to show that
λk+1 is injective. It is then easy to check that λ−1

k+1 is order preserving.
For part (ii), the mapping εk comes from the remarks preceding Proposition 4.3,

whereby the P there (here Gk) can be identiûed with its image in the quotient G
(here Gk+1). More simply, we have εk = λk ιkλ−1

k+1, where ιk ∶Sk → Sk+1 is inclusion. ∎

Our next task is to assemble the Gk into one package. To do so, we take a direct
limit [1, pp. E.R.29–30]. Let εkk be the identity map on Gk ; and for k < l , let

εk l = εkεk+1 . . . ε l−1∶Gk → Gl ,
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with the ε j as in Proposition 4.7(ii), and composing le� to right. Notice that each εk l
is injective. We obtain a directed system (of �agged posets of rank n). Let

G ∶= lim
→

Gk .

To describe this more explicitly, we ûrst take the disjoint union of all the Gk . In this,
we factor by the equivalence relation “≡” under which F ≡ G, for F ∈ Gi and G ∈ G j ,
whenever there is some k ⩾ max{i , j} such that (F)ε i k = (G)ε jk . Now in our case,
the directed system is indexed by non-negative integers. hus, more simply, we can
say that F ≡ G if i = j and F = G, or if i < j, say, with (F)ε i , j = G. As part of this
construction, we get natural injective maps (still of �agged posets of rank n)

ηk ∶Gk → G,

such that εk lη l = ηk whenever k ⩽ l . he �agged poset G now has the universal
property one would expect for a direct limit (of �agged posets). We summarize this
in the following proposition.

Proposition 4.8 If H is a �agged poset and λk ∶Gk → H are morphisms such that
εk l λ l = λk , for l ⩾ k, then there exists a unique morphism λ∶G→H such that ηkλ = λk
for all k.

Remark 4.9 By “morphism” here, we naturally mean “rank preserving homomor-
phism of posets”. It is easy to check that λ is injective if all λk are injective. Further-
more, λ is onto if

H = ⋃
k⩾0

(Gk)λk .

Now for formal purposes, let S∗ be S with its unique maximal element removed.
hus, S∗ has rank n and S∗ ≃ S. From Proposition 4.7 we have isomorphisms

λk ∶Gk Ð→ Sk ⊂ S∗ , for k ⩾ 0.

hese satisfy εk l λ l = λk , for l ⩾ k. From Proposition 4.8 we then get a morphism
λ∶G → S∗. By Remark 4.9, λ is an isomorphism. Finally, let us reintroduce maximal
elements (by capping oò). Taking note of Proposition 3.5, we obtain the key result of
this section.

heorem 4.10 he poset G described in Deûnition 4.6 can be capped oò to give
G ≃ UP,Q .

Remark 4.11 We have described the universal, alternating, semiregular polytope
UP,Q as the end result of the free assembly described in Deûnition 4.6. To even more
closely mimic that construction, we could, in the proof of Proposition 4.7, refuse to
“casually identify” Gk with Sk . But this would require introducing several more or
less obvious layers of isomorphisms; we trust that we have been precise enough in the
discussion above.

To convince oneself that this machinery has some power, consider the case where
P = {4} and Q = {3} (see Figure 3). Say we have unlimited supplies of (�exible)
squares and triangles. Take one square, attach a triangle along each of its edges, then to
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each le�over edge attach a square, then continue without end in this alternating
fashion. heorem 4.10 asserts that the resulting structure is U{4},{3}. Surely it is not
obvious (without having ûrst followed our discussion) that the automorphism group
for this intuitively described object is the Coxeter group with diagram

(4.1)

Another non-obvious consequence is that we get the same object starting with the
triangle (Q) rather than with the square (P).

5 Coverings by UP,Q

If the universal polytope UP,Q is to merit its name, it should have some sort of uni-
versal mapping property. To understand this we must ûrst choose a sensible class of
morphisms.

Deûnition 5.1 ([9, Sect. 2D]) LetA andB be (pre-) polytopes, both of rank n+ 1. A
rap-map is a rank and adjacency preserving homomorphism η∶A → B. A surjective
rap-map is called a covering; we then sayA is a cover ofB and writeA↘ B.

Remark 5.2 hedeûnition requires that η induce amappingF(A) → F(B) (of �ag
sets) that sends any j-adjacent pair of �ags inA to another such pair inB. It is a useful
exercise to check that the rap-map η∶A → B must be a covering if the pre-polytope
B is actually a polytope (or even just �ag-connected). In this case, B is isomorphic
in a natural way to a quotient of A [11, Lemmas 2.5 and 2.10]. Let us say that B is
induced by the rap-map η from A. (See [11, Example 2.13] for a quotient of a regular
polyhedron that is not induced by a rap-map and which is therefore not suitable for
our use below.)

he choice of n + 1 for the rank here is convenient for the examples that follow.

In order to understand covers ofmost polytopes, we need some new tools. Suppose
A is a (pre-) polytope of rank n + 1. For 0 ⩽ j ⩽ n, let

r j ∶F(A) Ð→ F(A)
Λ z→ Λ j .

hus, r j maps a �ag Λ of A to its j-adjacent �ag Λ j in A. Note that each r j is a ûxed
point free involution on the �ag set F(A).

Deûnition 5.3 he connection group ofA is

Mon(A) = ⟨r0 , . . . , rn⟩.

Remark 5.4 he term “connection group” was introduced in [17]. Indeed, one
can interpret relations in the group as describing how an abstract set of �ags might
be connected together to constitute a polytope. We use the notation Mon(A) as a
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reminder that this group is o�en called the “monodromy group” in the literature.
Etymologically, “monodromy” doesmake sense; however, in complex analysis, “mon-
odromy group” has come to mean something a bit at odds with our intent here.

Clearly, Mon(A) is a subgroup of the symmetric group on the �ag set. It is always
a string group generated by involutions (sggi), meaning that relations parallel to those
displayed in (2.1) must hold on the speciûed generators. However, the intersection
condition (2.2) can fail, even when A is a polytope, if the rank n + 1 ⩾ 4.

Since any automorphism γ ofA preserves adjacency of �ags, we have

(5.1) (Λγ)g = (Λg)γ,
for any �ag Λ ofA and g ∈ Mon(A).

Many covering properties can be rephrased in terms of connection groups. For
this, it is, in turn, crucial to understand the �ag stabilizer in Mon(A). (Recall that
when A is a polytope, Mon(A) acts transitively on the �ag set.) For more details, we
refer the reader to [11], in particular to Propositions 3.11 and 3.13, the latter of which
we quote and rephrase as the following lemma.

Lemma 5.5 Suppose that A and B are (n + 1)-polytopes and that

η∶Mon(A) →Mon(B)
is an epimorphism of sggis. Suppose also that there are �ags Λ′ of A and Λ of B such
that η maps the stabilizer of Λ′ in Mon(A) into the stabilizer of Λ in Mon(B). hen
there is a covering η ∶ A→ B that maps Λ′ to Λ.

Let us now return our attention to the universal polytope UP,Q. We carry on
with our earlier, abbreviated notation, so that the polytope S = UP,Q has group
Γ = ⟨α0 , . . . , αn−2 , αn−1 , βn−1⟩ (of index at most 2 in the full automorphism group).
he (n + 1)-polytope S has the two base �ags described in (2.6). We also need the
connection group

M ∶= Mon(S) = ⟨r0 , . . . , rn−1 , rn⟩.
Let K be the stabilizer in M of some �ag, say the base �ag Φ of type P. Since Ψ =
Φn = Φrn , the stabilizer of base �ag Ψ of type Q is K rn ∶= rnKrn .

We illustrate this set-up in Figure 3, which shows a fragment ofU{4},{3}. Its group
Γ is the Coxeter group whose diagram appears in (4.1).

Observe how g in Figure 3 really does stabilizeΦ. Pondering this a little, we see that
g corresponds to a closed walk in the �ag graph, which is somehow patched together
from cycles in copies of P = {4} or Q = {3}. We thereby ûnd that

g = r1r0r1r2r1r2(r1r0)3r1r2r1r0r1r2(r1r0)2

= r1r0r1r2r1r2w1r0r2r1r0r1r2(r1r0)2 (w1 = (r1r0)4)
= w t1

1 r1r0r1r2r1r0r1r0r1r2(r1r0)2 (t1 = r2r1r2r1r0r1)
= w t1

1 r1r0r1r2(r1r0)3r2r0(r1r0)2

= w t1
1 w

t2
2 r1r0r1r0(r1r0)2 (w2 = (r1r0)3 , t2 = r2r1r0r1)

= w t1
1 w

t2
2 w

t3
3 (w3 = (r1r0)4 , t3 = 1).
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Figure 3: he action of g = r1r0(r1r2)2(r1r0)3r1r2r1r0r1r2(r1r0)2 on the base �ag Φ inU{4},{3}.

his calculation illustrates the essential idea in the proof of the following theorem.

heorem 5.6 he stabilizer K of the base �ag Φ forUP,Q under the action of its con-
nection group M is generated by all conjugates of the form w t , where w ∈ ⟨r0 , . . . , rn−1⟩,
t = r i1 ⋅ ⋅ ⋅ r im and either
(i) w stabilizes Φ and rn appears an even number of times in the word for t; or
(ii) w stabilizes Ψ and rn appears an odd number of times in the word for t.

Proof Notice that each g ∈ Mn ∶= ⟨r0 , . . . , rn−1⟩ preserves the �ag set for each facet.
Furthermore, by (5.1), such a g acts in essentially the same way on the �ag set for each
facet in one of the two symmetry orbits. It is easy then to check that the w t described
in (i) or (ii) really do stabilize Φ.

Now consider a general element g = r j1 ⋅ ⋅ ⋅ r jm in the stabilizer K. As suggested by
Figure 3, this g deûnes a closed walk in the �ag graph proceeding through the �ags

Φ, Φ j1 , Φ j1 j2 , . . . , Φ j1 j2 . . . jm−1 , Φ j1 j2 . . . jm−1 jm = Φg = Φ.

Since rn always swaps type P �ags with type Q �ags, the word g must contain rn an
even number 2l times. If l = 0, then g ∈ Mn is of type (i). So consider two consecutive
appearances of rn in g, say

g = g1rn g2rn g3 ,
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where g1 , g3 ∈ M and g2 ∈ Mn . he �ags Φg1 and Φg1 rn g2 rn might contain diòerent
facets, although these facets must be of the same type. By discounting the action of
Mn , we see that g also deûnes a walk in the facet graph of S, which we know to be a
tree by heorem 3.8. Our walk proceeds along a subtree, so we can assume that the
facet X on the �ag Φg1 rn is furthest from the base facet P in this walk. his means,
crucially, that �ags Φg1 and Φg1 rn g2 rn contain the same facet Y , which is adjacent to X.
Since adjacent facets in S share a unique (n−1)-face (of the formKµ), we see that Φg1

and Φg1 rn g2 rn share the same faces of ranks n and n − 1. SinceK is regular, this means
that there exists h ∈ ⟨r0 , . . . , rn−2⟩ such that Φ(g1 rn g2 rn)h = Φg1 ; see [11, Corollary 3.10].
Since h commutes with rn , we have Λw = Λ, forw = g2h ∈ Mn and the �ag Λ = Φg1 rn .
Also, for t = rn g−1

1 , we have
g = w t ⋅ (g1h−1g3),

where g1h−1g3 lies in K and has fewer occurrences of rn . A little thought shows that
w t must have the form required in (i) or (ii), so the proof ends by induction. ∎

Here is our main application of heorem 5.6.

heorem 5.7 Suppose P and Q are regular n-polytopes, each with facets isomorphic
to the regular (n− 1)-polytopeK. LetB be any (n+ 1)-polytope, each of whose facets is
isomorphic to eitherP or toQ, andwhere these facets occur in alternating fashion around
any face of rank n − 2 in B. (he number of such P’s and Q’s can here vary from one
(n − 2)-face to another, as in Example 2.6.) hen there exists a covering η∶UP,Q → B,
so that B is a quotient of the universal alternating semiregular polytope UP,Q.

Proof Let Mon(B) = ⟨r′0 , . . . , r′n⟩. In order to apply Lemma 5.5, we must ûrst show
that the mapping r j ↦ r′j , 0 ⩽ j ⩽ n, induces a well-deûned epimorphism
η∶Mon(S) →Mon(B).

Suppose r j1 ⋅ ⋅ ⋅ r jm = 1 is any relation in M = Mon(S). Certainly for g = r j1 ⋅ ⋅ ⋅ r jm ,
we have Φg = Φ and Ψg = Ψ. (Recall that Φ, Ψ are the base �ags of type P, Q,
respectively.)

Let g′ = r′j1 ⋅ ⋅ ⋅ r
′
jm be the corresponding word in Mon(B). (We are not assuming

that g → g′ is a well-deûnedmapping; formally, we could work instead in a free group
of rank n + 1.)
But the word g is a product of conjugates of the form w t , with w , t as described in

(i) and (ii) of heorem 5.6. Now it is clear from the structure of B that (w′)t′ ûxes
any �ag containing a copy of P in B. hus, g′ ûxes each such �ag. Likewise (by an
analogue of heorem 5.6 for the stabilizer of Ψ), since Ψg = Ψ, g′ also ûxes each �ag
containing a copy ofQ. But these are all �ags inB, so g′ = 1 inMon(B). We therefore
have an epimorphism η as required.
Finally, choose a ûxed (base) �ag Λ for B, say, containing a copy of P. We have

already observed that η maps K, the stabilizer of Φ in Mon(S), into the stabilizer of
Λ in Mon(B). By Lemma 5.5, we have the desired covering η∶S→ B. ∎

Remark 5.8 he covering map η is uniquely speciûed if Φ is required to map
onto Λ.
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Corollary 5.9 Suppose P and Q are regular n-polytopes, each with facets isomorphic
to the regular (n − 1)-polytopeK. Suppose as well that B is an (n + 1)-polytope whose
facets are, in alternating fashion, any selection of quotients induced by rap-maps from
P or Q, respectively. hen there exists a covering η∶UP,Q → B.

Proof he argument used in heorem 5.7 applies with little change. his is because
any �ag relation in, say, P must hold in any quotient via the associated rap-map. ∎

At this point, it is useful to introduce a new construction for groups ∆ =
⟨δ0 , . . . , δm⟩ and ∆′ = ⟨δ′0 , . . . , δ′m⟩, each with speciûed generators. (hese lists of
equal length could include redundant generators.) he mix of ∆ and ∆′ is the sub-
group ∆♢∆′ of the direct product ∆ × ∆′ that is generated by all (δ j , δ′j), 0 ⩽ j ⩽ m
(see [11, Section 5]).

Returning to our customary set-up, let us mix the string C-groups Γ(P) and Γ(Q).
It can be tricky to understand the mix of two string C-groups like these. If, however,
P and Q have isomorphic facets K (as we assume here), then we conclude from [11,
heorem 5.12] that Γ(P)♢ Γ(Q) is itself a string C-group, and so is the automorphism
group of some regular n-polytope R ∶= P♢Q, again with facets K. Here, then

Γ(R) = Γ(P)♢ Γ(Q) = ⟨ρ0 , . . . , ρn−2 , ρn−1⟩

is the subgroup of Γ × Γ generated by ρ j ∶= (α j , α j), for 0 ⩽ j ⩽ n − 2, together with
ρn−1 ∶= (αn−1 , βn−1).
Before making use of this mix, it will be useful to take a bit of a detour. Let us

recall that a polytope is said to be �at if each of its vertices is incident with each of its
facets [9, Section 4E]. A familiar �at regular polytope is the dihedron {p, 2}. We can
imagine that its p vertices and edges form a spherical p-gon along a great circle of the
sphere S2. he two hemispheres are then the 2-faces of the polyhedron.

Example 5.10 Deflating flat polytopes.Donald Coxeter was fond of describing the
quadrangular dihedron {4, 2} as an ordinary cushion. his is apt, since we now want
to imagine de�ating and collapsing the cushion onto the quadrangle {4}.

In fact, from any regular (n−1)-polytopeK, wemay construct a “trivial” extension
T = {K, 2}, itself a regular n-polytope with automorphism group

Γ(T) = ⟨τ0 , . . . , τn−2 , τn−1⟩ ≃ Γ(K) × C2 .

Here, Γ(K) ≃ ⟨τ0 , . . . , τn−2⟩, and the C2 factor is generated by τn−1. It is easy to see
that T is �at with each of its two facets a copy ofK.
Continuing with this, suppose R is another regular n-polytope with facets iso-

morphic to K. (For the moment, R need not be the mix of P and Q.) Let Γ(R) =
⟨ρ0 , . . . , ρn−2 , ρn−1⟩ be the automorphism group ofR. We can construct the universal,
alternating semiregular polytopeUR,T . From Section 3, we see that its automorphism
group is the amalgamated product

Γ(R)∗Γ(K)Γ(T) = ⟨ρ0 , . . . , ρn−2 , ρn−1 , τn−1⟩,
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in which τ j and ρ j have been identiûed for 0 ⩽ j ⩽ n − 2. It is also convenient to
simply let ρn ∶= τn−1. he corresponding diagram is

(5.2)

But this diagram straightens into a string (and still satisûes (2.2)), so that the group
⟨ρ0 , . . . , ρn−2 , ρn−1 , ρn⟩ must, from another point of view, be a string C-group. We
use {R,∞} to denote the corresponding regular (n + 1)-polytope; it is called the free
extension of R [9, heorem 4D4].

Now we come to a subtle point. he alternating semiregular polytope UR,T and
the regular polytope {R,∞} have the same group with the same speciûed generators!
However, as coset geometries these (n + 1)-polytopes are slightly diòerent. Compar-
ing the descriptions in [12, Deûnition 4.1] (earlier summarized in Section 2) and in
[9, Section 2E], we ûrst check that the two polytopes have identical j-faces for j ⩽ n−2.
Now the n-faces in {R,∞} are all right cosets of ⟨ρ0 , . . . , ρn−2 , ρn−1⟩ (giving copies
ofR). InUR,T we do have these, as well as all right cosets of ⟨ρ0 , . . . , ρn−2 , ρn⟩ (giving
copies of T). Finally, let us consider (n− 1)-faces. In {R,∞}, these are all right cosets
of

⟨ρ0 , . . . , ρn−2 , ρn⟩ = ⟨ρ0 , . . . , ρn−2⟩ ∪ ⟨ρ0 , . . . , ρn−2⟩ρn .

(Notice howwe use the fact that ρn = τn−1 and ρ j commute for j ⩽ n−2.) On the other
hand, the (n − 1)-faces in UR,T are just all right cosets of ⟨ρ0 , . . . , ρn−2⟩. Each such
(n − 1)-face is a copy ofK, which further lies on one copy ofR and on one copy of T.
herefore, we eòectively pass from the semiregular polytope to the regular polytope
by ûrst collapsing (n − 1)-faces in pairs then discarding the �at facet (a copy of T)
enclosed by each such pair. We might imagine this process as de�ating the copies of
T in UR,T so as to get {R,∞}.

Remark 5.11 Polytopes of the kind described in Example 5.10 are particular in-
stances of the “bubble polytopes” studied in [5]. In the terminology of that thesis,
our (n + 1)-polytope UR,T is the (n − 1)-bubble associated with the (n + 1)-polytope
{R,∞}. ∎

Now let us reconsider the universal alternating semiregular polytope S = UP,Q.
Backtracking a little, we recall the set-up in equation (3.1). In our construction of the
group Γ, we amalgamated Γ(P) and Γ(Q) along Γ(K) by identifying α j with β j for
0 ⩽ j ⩽ n − 2. We also constructed the regular n-polytope R ∶= P♢Q.

Proposition 5.12 Suppose that P and Q are regular n-polytopes, each with facets
isomorphic to the regular (n−1)-polytopeK. LetR = P♢Q. hen themapping ρ j ↦ r j ,
0 ⩽ j ⩽ n, induces an epimorphism

λ∶ Γ({R,∞}) Ð→Mon(UP,Q),
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from the full automorphism group of the free extension of R to the connection group of
UP,Q. Consequently, we have the cover

{P♢Q,∞} ↘ UP,Q .

Proof Recall that the mix R really is a regular n-polytope. Let γ = ρ i1 ⋅ ⋅ ⋅ ρ im = 1 be
any relation holding for the generators of Γ({R,∞}). Wemust show g = r i1 ⋅ ⋅ ⋅ r im = 1
in M ∶= Mon(UP,Q).
As deûning relations for the amalgamated product underlying the diagram in (5.2),

we can take relations γ = ρ i1 ⋅ ⋅ ⋅ ρ im = 1 of two types. First, we have (ρ jτn−1)2 =
(ρ jρn)2 = 1, for 0 ⩽ j ⩽ n − 2, but notice then that (r jrn)2 = 1 in the sggi M.

Second, we have relations that hold in the subgroup Γ(R). But
⟨r0 , . . . , rn−2 , rn−1⟩ ≃ Mon(P)♢Mon(Q) ([11, heorem 5.5])

≃ Γ(P)♢ Γ(Q) ([11, heorem 3.9])
≃ Γ(R).

(he middle isomorphism uses the fact that P,Q are regular.) hus any relation that
holds in Γ(R) implies the corresponding relation in M, indeed in its subgroup Mn .
his means that the epimorphism λ does exist.

he �ag stabilizer in the connection group of the regular polytope {R,∞} is
trivial, and, as with any regular polytope, we have Γ({R,∞}) ≃ Mon({R,∞}). By
Lemma 5.5, the polytope {R,∞} covers UP,Q. ∎

One might reasonably conjecture that the epimorphism λ in Proposition 5.12 is
injective. In fact, this is not so. here are already critical counter-examples when
n = 2.

Example 5.13 LetP={p}, Q={q}. henR={p}♢{q}={r}, where r = lcm(p, q).
he group Γ({R,∞}) = [r,∞] = ⟨ρ0 , ρ1 , ρ2⟩ of the free extension is a string Coxeter
group. he mapping ρ j ↦ r j induces the epimorphism λ∶ Γ({R,∞}) →Mon(UP,Q)
of concern to us. Now suppose p ⩽ q and let

ω = ρ2(ρ0ρ1)pρ2(ρ0ρ1)pρ2(ρ1ρ0)pρ2(ρ1ρ0)p .

A look at a simple ûgure containing a few facets of U{p},{q} will convince one that ω
acts trivially on �ags of both symmetry types in U{p},{q}. hus, ω is in the kernel of
the action. (he same will certainly be true if we replace the exponent p by q.)

In the regular case, with p = q = r, we have ω = 1, as we would expect. But if
p < q (so p < r), then we just have to convince ourselves that ω ≠ 1 in the Coxeter
group [r,∞]. his will become clear from a picture of the corresponding hyperbolic
tessellation {r,∞}. he skeptic can compute concretely with the standard real repre-
sentation of [r,∞].

his sort of behaviour is actually commonplace. Following [4] or [11, Section 4],
we say that the mapping λ in Proposition 5.12 induces the �ag action of the string
C-group Γ({R,∞}) on the �ag set of UP,Q. Using (5.1), it is easy to see that if, under
this action, µ, ν ∈ Γ({R,∞}) stabilize the two base �ags Φ and Ψ, respectively, then
the commutator µνµ−1ν−1 acts trivially on all �ags and thus lies in ker λ. Typically,
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this kernel will not be trivial, and so the structure of Mon(UP,Q) is more elusive than
we might have hoped.

We hope to pursue the questions that arise here elsewhere. In fact, one can broaden
the investigation to include all kinds of 2-orbit polytopes besides UP,Q, including
those without any sort of universal property.
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