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RANDOM ADDITIONS IN URNS OF INTEGERS

MACKENZIE SIMPER ,∗ Stanford University

Abstract

Consider an urn containing balls labeled with integer values. Define a discrete-time ran-
dom process by drawing two balls, one at a time and with replacement, and noting the
labels. Add a new ball labeled with the sum of the two drawn labels. This model was
introduced by Siegmund and Yakir (2005) Ann. Prob. 33, 2036 for labels taking val-
ues in a finite group, in which case the distribution defined by the urn converges to
the uniform distribution on the group. For the urn of integers, the main result of this
paper is an exponential limit law. The mean of the exponential is a random variable with
distribution depending on the starting configuration. This is a novel urn model which
combines multi-drawing and an infinite type of balls. The proof of convergence uses the
contraction method for recursive distributional equations.

Keywords: urn model; exponential limit law; recursive distributional equation; contrac-
tion method
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1. Introduction

In [19], the following urn model was introduced. Balls in an urn are labeled with elements of
a finite group G. To update the urn, two balls are drawn (independently and with replacement)
and their labels recorded. A new ball with the product of the two labels is then added to the
urn. When the initial configuration of the urn contains generators of the group, it is proved that
the composition of the urn converges to a uniform distribution on the group (an alternate proof
is given in [1]). A natural extension of the model is to allow labels with values from an infinite
group. Specifically, this paper considers the same dynamics for an urn containing integers with
the addition operation, and calls such a process a Z-urn.

The behavior of the urn should depend on the initial configuration of balls. Perhaps a natural
first question to explore is the behavior of the urn initially started with an additive basis for
Z, e.g. {−1, 1}. Figure 1 shows the results from two different simulations of this model. An
interesting phenomenon is observed with the starting configuration of {−1, 1}: the values in
the urn either become almost all positive or almost all negative. Furthermore, the curve of the
histogram appears exponential, reflected on either side of the vertical axis. That is, if μn is the
empirical measure defined by the labels of the n balls in the urn, then μn converges to some
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FIGURE 1: Histograms of two different trials of the urn model with initial configuration {−1, 1}, after
5000 balls have been added. Each histogram has 30 bins. The bin width of the left histogram is 100, with

mean 356, and the width of the right histogram is 200, with mean −737.

scaled exponential. Another observation from simulations is that the mean of the distribution
μn varies with different trials, i.e. there is not a deterministic limit.

The appropriately rescaled mean of the empirical measure defined by the urn process con-
verges almost surely to some random variable. The distribution of the limiting random variable
is dependent on the initial configuration of the urn. The distribution of a random draw from
the urn then converges to an exponential. This is our main result, Theorem 1, described in the
following section.

1.1. Model and results

Let τ0 be the number of balls initially started in the urn. For convenience, we begin
the time index at τ0 + 1, so that at time n > τ0 there are exactly n balls in the urn (and
the number of additions is n − τ0). Let Xn ∈Z

d denote the label of the nth ball in the urn.
When d > 1, write Xn(i) for the ith coordinate. Thus, the urn at time n is given by the set
Un = U0 ∪ {Xτ0+1, . . . , Xn}.

The letter Zn is used to denote a random draw from the urn, that is Zn ∼ μn, where μn is the
empirical distribution

μn = 1

n

( ∑
x∈U0

δx +
n∑

i=τ0+1

δXi

)
, n ≥ τ0.

Then Xn+1 is generated by Xn+1 = Z1
n + Z2

n , where Z1
n

d= Z2
n

d= Zn are two independent draws
from the urn at step n. For convenience, assign an arbitrary indexing to the initial balls x ∈ U0,
writing them X1, X2, . . . , Xτ0 . Let Sn =∑n

i=1 Xi be the sum of the labels of balls in the urn at
time n. When studying Zn and Xn we focus on the quenched values. That is, there is an implicit
underlying urn process, and expectations are calculated conditional on the appropriate step of
the urn. For instance, the mean of Zn is E [Zn | μn] = Sn

n .
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Theorem 1. Let {μn}n≥0 be a sequence of empirical measures defined by the Z-urn with
any initial configuration. Suppose Zn ∼ μn is a random draw from the urn. Let A = limn→∞
E [Zn|μn]

n+1 . Then A exists almost surely, P (A 	= 0) > 0, and

lim
n→∞ L

(
Zn

n

∣∣∣μn

)
=L(Z),

where Z ∼ A · Exp(1).

In particular, this result implies that if the urn is started with {−1, 1}, the limiting distri-
bution defined by the urn will be supported either on (0, ∞) or ( − ∞, 0), depending on the
result for A. As remarked before, Theorem 1 is a statement about the quenched version of the
problem. This means a realization of the urn process {μn} is fixed and the random variable Zn

is sampled from the urn process at stage n. In contrast, let Z∗
n denote the annealed model. That

is, Z∗
n is the random variable generated by first generating a new urn μn, and then sampling

from μn. In other words, Z∗
n is the mixture of Zn over all realizations of μn. The limiting dis-

tribution of Z∗
n

n is the mixture distribution of exponential multiplied by the random variable A.
At the moment, there is not an explicit form for the distribution of A, though we can observe
how the expected value of A depends on the initial configuration of the urn.

All results are the same for urns with labels taking values in the real numbers. The moti-
vation for introducing the process for integer-value labels comes from (a) the original desire
to extend the model from [19] to a finitely generated group, and (b) to somewhat simplify the
possible starting configurations that can be investigated. In addition, the methods can easily
be extended to urns with vector labels. The exponential limit law for Zn, a draw from the urn,
follows from a limit law for Xn, the nth ball added to the urn. The key is that the limit of an
appropriately scaled version of Xn satisfies the distributional identity

X
d= U1 · X1 + U2 · X2, (1)

where U1, U2 are independent and identically distributed (i.i.d.) Uniform([0, 1]) random
variables and X1, X2 are i.i.d. copies of X. The unique random variable that satisfies this
distributional identity is a Gamma with shape 2 and mean E [X]. If X ∈R

d is a vector, then
it is interesting to observe that solutions to (1) are of the form G ·E [X], where G is a
one-dimensional Gamma random variable. That is, each scaled coordinate of Xn marginally
converges to a Gamma distribution, but as a joint process every coordinate converges to a mul-
tiple of the same Gamma random variable. The precise statement for urns with vector labels is
given in the following theorem.

Theorem 2. Let {μd
n}n≥0 be a sequence of empirical measures defined by the addition urn

model on Z
d. Suppose Xn ∈Z

d is the nth ball added to the urn. Let A = limn→∞ E [Xn+1|μn]
2(n+1) .

Then A = (A(1), . . . , A(d)) ∈R
d exists almost surely, P (A(i) 	= 0) > 0 for all i = 1, . . . , d, and

lim
n→∞ L

(
Xn

n

∣∣∣μd
n−1

)
=L(X),

where X ∼ G · A, and G ∼ Gamma(2, 1).

Remark 1. A simple generalization of the model would be to draw k balls (with replacement)
and add a new ball with label the sum of the k drawn balls. For any integer k ≥ 2, the same
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techniques used in this paper prove that the nth labeled added Xn has limiting distribution X

satisfying the identity X
d=∑k

i=1 Ui · Xi, where Ui are i.i.d. Uniform([0, 1]) and Xi are i.i.d.
copies of X, for 1 ≤ i ≤ k. Note that when k > 2, a Gamma distribution does not satisfy this
distributional identity.

1.2. Related work

Random processes defined using urns can arise is many different settings. For a plethora
of example models and applications, see [6] and [16]. ‘Pólya-type’ urn models refer to an urn
containing different types of balls with some sort of replacement scheme. That is, balls are
drawn randomly from the urn and replaced with some number and type of balls that depends
on the type of the drawn balls [13].

Urn models are well studied for a finite number of colors (i.e. types of balls); an extended
scheme allowing a continuum of colors was proposed in the classic paper by Blackwell and
MacQueen [4]. More work in this setting has been done in the past few years, and a general
infinite-color model was introduced in [21]. In [2], the model on urns containing countably
infinite number of colors is proposed, and when the replacement schemes are balanced and
associated with bounded increment random walks on the color space (e.g. Zd), central and
local limit theorems for the random color of the nth selected ball can be proven. This has been
extended to almost sure convergence, with assumptions on the replacement scheme [5]. In all
of these works, the urns are updated after drawing a single ball. The replacement rule is a
function of a single variable of the color space.

Much less work has been done for models in which multiple balls are drawn at each stage.
Several specific cases have been analyzed, for example in Chapter 10 of [13]. The first general
results for two-color urns were contained in [9,10]. The results were extended to arbitrary (but
finite) d-color urns, with an additional assumption removed, in [11]. The method used in [11]
is stochastic approximation, which is useful for a broad class of urn models. Though stochastic
approximation processes can be defined for infinite-dimensional random processes, it is chal-
lenging to apply to the Z-urn because new types are introduced as the process progresses. To
the best of the author’s knowledge, the Z-urn is the first model to be analyzed that involves
both multiple drawings and an infinite type of balls.

Motivation for such an urn model comes from philosophy: a reinforcement learning process
for a signaling game which models the evolution of a simple language [20]. The reinforce-
ment learning can be viewed as an interacting Pólya-type urn system, and each step involves
multiple drawings. In [12], the reinforcement procedure is extended to include the feature of
invention, in which new strategies are introduced as time progresses, and so the urn model con-
tains an infinite type of balls. Mathematical analysis of the convergence of this process remains
incomplete.

1.3. Outline

In Section 2, a martingale is used to prove that the rescaled mean converges. Though the
rescaled mean is not bounded, the second moment can be bounded, thus applying Doob’s
L2 martingale convergence theorem. In addition, recursive arguments prove that all moments
of the limiting random variable exist. In Section 3, the contraction method is outlined and a
recursive distributional equation is used to prove Theorems 1 and 2. The final section contains
conclusions, future questions, and acknowledgments.
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2. A martingale for the mean

In this section, a scaled version of the mean of the empirical distribution determined by the
urn is studied. Specifically, recall that Sn =∑n

i=0 Xi is the sum of the labels of the first n balls
in the urn, and let An := Sn

n(n+1) ∈R
d.

Lemma 1. The process {An}n≥τ0 is a martingale and 0 < lim infn≥τ0 E [An(i)2] ≤
lim supn≥τ0

E [An(i)2] < ∞ for 1 ≤ i ≤ d. Hence, An converges almost surely and in
L2(Rd).

Proof. Conditional on the current configuration of the urn, the expectation of the (n + 1)th
ball added is E [Xn+1 | μn] = 2 ·E [Zn | μn] = 2Sn

n , n ≥ τ0. Then,

E [An+1 | μn] = 1

(n + 1) · (n + 2)
·E [Sn + Xn+1 | μn]

= 1

(n + 1) · (n + 2)

(
(n + 2)Sn

n

)
= Sn

n · (n + 1)
= An,

and thus {An}n≥τ0 is a martingale. Now, the annealed expectation of the sum Sn is

E [Sn] = n · (n + 1) E [An] = n · (n + 1) E [Aτ0 ] = n(n + 1)

τ0(τ0 + 1)
· Sτ0 ,

for n > τ0. Note that, for a fixed n, each coordinate Sn(i) is almost surely bounded. However,
the size of the largest possible ball in the urn is growing exponentially. To prove convergence
of the martingale An, we can prove that each coordinate An(i) is L2 bounded. For the following,
omit writing the index so that each quantity is one dimensional. Define Rn := S2

n =∑n
i,j=1 XiXj,

and also define Qn :=∑n
i=1 X2

i , for the purpose of writing

E

[
X2

n+1 | μn

]
= 1

n2

n∑
i,j=1

(
Xi + Xj

)2 = 2Qn

n
+ 2Rn

n2
.

Using this, calculate the conditional expectation

E
[
Rn+1 | μn

]=E

[
(Sn + Xn+1)2 | μn

]
= S2

n + 2Sn E [Xn+1 | μn] +E [X2
n+1 | μn]

= Rn

(
1 + 4

n
+ 2

n2

)
+ 2Qn

n
.

Similarly, we can compute

E
[
Qn+1 | μn

]=E

[
Qn + X2

n+1 | μn

]

= Qn

(
1 + 2

n

)
+ 2Rn

n2
.

After taking expectations, for n > τ0 we get the system of recursions(
E [Rn+1]
E [Qn+1]

)
=
(

1 + 4
n + 2

n2
2
n

2
n2 1 + 2

n

)
·
(
E [Rn]
E [Qn]

)
.
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This recursion works to prove that E [Rn] ≤ Cn4 and E [Qn] ≤ 2Cn3, for some constant C.
Indeed, assume for induction the statement is true for n. Then,

E [Rn+1] ≤
(

1 + 4

n
+ 2

n2

)
Cn4 + 2

n
2Cn3

= C
(

n4 + 4n3 + 6n2
)

≤ C(n + 1)4,

and also

E [Qn+1] ≤ 2

n2
Cn4 +

(
1 + 2

n

)
2Cn3

= 2C
(
n3 + 3n2)≤ 2C(n + 1)3.

The induction can be initialized for C = Rτ0 .
Note that A2

n = Rn/
(
n2(n + 1)2

)
, thus lim supn≥0 E [A2

n] ≤ C, and so by the L2 martingale
convergence theorem (e.g. [22, p. 111]) An converges almost surely and in L2. To prove that
infn≥τ0 E [A2

n] > 0, observe that

E [A2
n] ≥

n−1∏
k=τ0

1

(k + 2)2

(
k2 + 4k + 2

)
· Aτ0

=
n−1∏
k=τ0

(
1 − 2

k2 + 4k + 4

)
· Aτ0

≥
∞∏

k=τ0

(
1 − 2

k2 + 4k + 4

)
· Aτ0 .

Since
∑∞

k=0 2/(k2 + 4k + 4) < ∞, the infinite product converges to a positive value. �
The previous result states that the limit limn→∞ An =: A exists almost surely for each real-

ization of the urn process, and furthermore since E [A2] > 0 the limit is non-trivial. Note that
this result holds for any initial configuration of the urn. The exact distribution of the random
variable A is undetermined.

3. Recursive distributional equations

The contraction method is a tool in the probabilistic analysis of algorithms for which a
recursive distributional equation exists. It was developed in [18] to analyze the number of
comparisons required by the Quicksort sorting algorithm. A more generalized development
was presented in [17]. More limit theorems, along with numerous applications to recursive
algorithms and random trees, were discussed in [15]. The contraction method has been used to
prove convergence in distribution of general Pólya-type urns [7] with a finite number of colors,
using recursive distributions for the number of balls of each color, started from some initial
configuration.

The idea of the contraction method is to find a fixed-point equation from the recursive dis-
tributional equations. Just as in a deterministic recursion, one expects the sequence to converge
to the fixed point of the transformation. However, in the setting of random variables care must
be taken in choosing a metric in which the recursive equation is a contraction. The correct
metric is introduced in Section 3.1, which also contains the necessary distributional identities.
The main contraction method proof is in Section 3.2, and it is applied in Section 3.3 with the
correct scaling for the Z-urn.
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3.1. Setup

Let MR
d

denote the space of all probability distributions on R
d with the Borel σ -field. For

a vector x ∈R
d, let ‖x‖ denote the usual Euclidean norm. Let μ ∈R

d, and define the following
subspaces:

MR
d

s :=
{
L(X) ∈MR

d
: E [‖X‖s] < ∞

}
,

MR
d

s (μ) :=
{
L(X) ∈MR

d

s : E [X] = μ
}

.

For 1 ≤ p < ∞ and two probability distributions ν, ρ ∈MR
d

p , the minimal Lp (or Wasserstein
Lp) metric, �p, is defined as

�p(ν, ρ) := inf
{‖V − W‖p : L(V) = ν,L(W) = ρ

}
, (2)

where ‖V − W‖p := ( E [‖V − W‖p])1/p is the usual Lp-distance. For random variables X,
Y , we will write �p(X, Y) to mean �p(L(X),L(Y)). The infimum in (2) is obtained for all
ν, ρ ∈MR

1 , and the random variables V ∼ ν, W ∼ ρ which achieve the infimum are called
the optimal coupling. For proofs of this fact and the following lemma, see [3, Section 8].

Lemma 2. Suppose {Xn} is a sequence of random variables in MR
d

p and X ∈MR
d

p . Then
�p(Xn, X) → 0 if and only if Xn → X weakly and E [‖Xn‖p] →E [‖X‖p].

The contraction method gives a distributional identity that the limiting random variable
must satisfy. For the purpose of characterizing the limiting random variable, note the following
distributional identity that exponential distributions satisfy. This can easily be calculated, or
see [8].

Lemma 3. Let Y be a random variable satisfying Y ≥ 0 with probability 1 and Y
d= U ·

(Y1 + Y2), where U is uniformly distributed on [0, 1] and Y1 d= Y2 d= Y, and the three random
variables U, Y1, Y2 are independent. Then Y has an exponential distribution.

In addition, we need the following characterization of a random vector in which each
coordinate is a multiple of the same one-dimensional gamma random variable.

Lemma 4. Let X ∈R
d be a random vector satisfying X(i) ≥ 0 with probability 1 for all 1 ≤

i ≤ d and X d= U1 · X1 + U2 · X2, where U1, U2 are Uniform([0, 1]) random variables and

X1 d= X2 d= X, and U1, U2, X1, and X2 are independent. Suppose m =E [X] ∈R
d. Then

X ∼ G · m, where G ∼ Gamma(2, 1).

Proof. To determine the distribution of X, we can calculate the joint characteristic function.
For t = (t1, . . . , td) ∈R

d, the result is

ϕX(t) =E

[
exp

(
i

d∑
j=1

tjX(j)

)]
=E

[
exp

(
i

d∑
j=1

tj
(

U1X(j)1 + U2X(j)2
))]

=E

[
exp

(
iU1

d∑
j=1

tjX(j)1
)]

·E
[

exp

(
iU2

d∑
j=1

tjX(j)2
)]

=
( ∫ 1

0
E

[
exp

(
iu

d∑
j=1

tjX(j)

)]
du

)2

=
( ∫ 1

0
ϕX(u · t) du

)2

.
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The function ϕX also satisfies⎧⎨
⎩

ϕx(0) = 1,

∂
∂tj

ϕx(0) =E [i · X(j)] = 2i · A(j), 1 ≤ j ≤ d.

The unique solution to this integral equation is

ϕX(t) =
(

1 − i ·
d∑

j=1

tjA(j)

)−2

. (3)

Equation (3) is exactly the characteristic function for the random vector G · A, where G is a
Gamma(2, 1) random variable. �

3.2. Contraction method result

To write down the defining recursive distributional equation for the Z-urn, recall that the
time index is started at τ0. If the initial configuration is U = {x1, . . . , xτ0}, define X1 = x1,
X2 = x2, . . ., Xτ0 = xτ0 . The newly added ball Xn is the sum of two randomly chosen balls that
were added in the past. This gives the distributional identity

Xn
d= X1

I1
n
+ X2

I2
n
, n > τ0, (4)

where, for i = 1, 2, {Xi
n} are i.i.d. copies of {Xn} and Ii

n are indices drawn uniformly from
{1, . . . , n − 1}. To prove convergence, it is necessary to scale Xn appropriately. Define X̃n = Xn

n .
Then (4) becomes

X̃n
d= BI1

n
· X̃1

I1
n
+ BI2

n
· X̃2

I2
n
, (5)

where BIi
n
= Ii

n
n . The correct fixed-point equation from this recursion arises from the fact that

Ii
n
n converges to a Uniform([0, 1]) random variable in the �2 metric. This can be proven by
constructing the variables as follows. Let U be Uniform([0, 1]) and define

In =
n−1∑
i=0

i · 1
{

i

n
≤ U <

i + 1

n

}
.

Then In ∼ Uniform({1, . . . , n − 1}). Clearly, In
n → U weakly, and since the second moment

converges to 1/3, the convergence is in �2 by Lemma 2. The following is a general result
about random variables satisfying the distributional recursion (5). The result is a special case
of Theorem 4.1 and Corollary 4.2 from [14], though since the proof is short it is included for
completeness.

Theorem 3. Let {X̃n}n≥1 be a sequence with X̃n ∈MR
d

2 and limn→∞ E [X̃n] = μ. Let {Bn}n≥1

be a sequence with Bn ∈MR

2 and E [Bn] → 1/2, and if In ∼ Uniform({1, . . . , n − 1}), then the
sequence {BIn}n≥1 converges in �2 to a Uniform([0, 1]) variable.

For i = 1, 2, let Ii
n be independent Uniform({1, . . . , n − 1}) random variables, {Bi

n} inde-
pendent copies of {Bn}, and {X̃i

n} independent copies of {Xn}. Suppose that, for all n ≥ τ0,
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X̃n
d= B1

I1
n
· X̃1

I1
n
+ B2

I2
n
· X̃2

I2
n
. Then X̃n converges in distribution to a random variable X ∈MR

d

2 (μ)

which satisfies

X
d= U1 · X1 + U2 · X2, (6)

where U1, U2 are Uniform([0, 1]) random variables, X
d= X1 d= X2, and U1, U2, X1, and X2

are independent.

Proof. The result is proven for d = 1, the multidimensional result being analogous. Let X
be a random variable satisfying (6). Let (BI1

n
, U1) and (BI2

n
, U2) be the optimal couplings, such

that �2
2(BIi

n
, Ui) =E [(BIi

n
− Ui)2] → 0. Define dn = �2

2(X̃n, X). Then

dn ≤E

[
((BI1

n
X̃1

I1
n
+ BI2

n
X̃2

I2
n
) − (U1X1 + U2X2))2

]
= 2 E

[
(BI1

n
X̃1

I1
n
− U1X1)2

]
+ 2 E

[
(BI1

n
· X̃1

I1
n
− U1X1)(BI2

n
· X̃2

I2
n
− U2X2)

]
. (7)

Observe that the assumptions imply, for In ∼ Uniform({1, . . . , n − 1}), that

E [BIn X̃In ] =
n−1∑
j=0

1

n
E [Bj] E [X̃j] → μ

2
.

This, along with the independence of the variables involved, gives that the second term in (7)
converges to 0 as n → ∞. Now, expanding the first term, and disregarding superscripts,

E

[
(BIn X̃In − UX)2

]
=E

[(
Bn(X̃In − X) + X(BIn − U)

)2]
=E

[
(BIn )2(X̃In − X)2

]
+E

[
X2(BIn − U)2

]
+ 2 E

[
BIn X(X̃In − X)(BIn − U)

]
. (8)

Note that E
[
X2(BIn − U)2

]=E [X2] ·E [(BIn − U)2
]→ 0 by construction. Also, since

E [BIn (BIn − U)] → 0, the final term in (8) converges to 0 as n → ∞. Thus, the final term
to analyze is

E

[
(BIn )2 · (X̃In − X)2

]
=

n−1∑
j=1

E

[
(BIn )2 · (X̃In − X)2 | In = j

]
· P (In = j)

=
n−1∑
j=1

E

[
j2

n2
(X̃j − X)2

]
· 1

n − 1
=

n−1∑
j=1

j2

n2(n − 1)
· dj.

This implies that

lim sup
n→∞

dn ≤ 2 lim sup
n→∞

n−1∑
j=1

j2

n2(n − 1)
· dj ≤ 2

3
lim sup

n→∞
dn.

This gives a contradiction unless lim supn→∞ dn = 0. Since dn ≥ 0, this proves that
limn→∞ dn = 0, which is the desired convergence. �
Remark 2. Theorem 3 can also be proven by applying [17, Theorem 4.1] with the Zolotarev
metric ζ2. For ν, ρ ∈MR, the Zolotarev distance ζs, s ≥ 0, is defined as ζs(X, Y) := ζs(L(X),
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L(Y)) := supf ∈Fs
|E [f (X) − f (Y)]|, where s = m + α with 0 < α ≤ 1, m ∈N0, and Fs := {f ∈

Cm(R,R) : |f (m)(x) − f (m)(y)| ≤ |x − y|α}. The use of Zolotarev metrics in contraction methods
was developed in [17] because in some settings the recursive distributional equations do not
give a strict contraction in �p. Most important of these settings is fixed-point equations that
occur for normal distributions, which can be handled by ζs for s > 2.

3.3. Limit laws

Now, Theorem 3 can be applied to prove the result about the Z-urn. The one technicality is
that Theorem 3 requires that the random variables in question have the same mean. If Xn was
just defined as the nth ball added to the urn, then this would not be true. Thus, it is necessary
to rescale by the mean of Xn, and use the result from Section 2 that the mean converges.
It is important to remember the quenched setting; all variables are conditional on the same
underlying urn process.

Proof of Theorems 1 and 2. We again restrict to a one-dimensional process. Let {μn}n≥τ0

be a realization of the Z-urn process. For n > τ0, let Xn denote the nth ball added to the
urn, conditional on the urn μn−1. Recall that E [Xn | μn−1] = 2n · An−1, where An := Sn

n(n+1) .

Thus, define X̃n := Xn
n ; then limn→∞ E [Xn | μn−1] = 2 limn→∞ An = 2A exists by Lemma 1.

The recursive distributional equation satisfied by X̃n is X̃n
d= I1

n
n · X̃1

I1
n
+ I2

n
n · X̃2

I2
n

for Ii
n, i = 1, 2,

i.i.d. Uniform({1, . . . , n − 1}). As remarked before Theorem 3, the random variables Ii
n
n con-

verge in �2 to the Uniform([0, 1]) distribution. Thus, taking Bi
In

= Ii
n/n, Theorem 3 can then

be applied to get that X̃n converges in distribution to some X with E [X] = 2 · A which satis-
fies (6). Finally, Lemma 4 says that the distribution of X/A must be Gamma with shape 2.
Now, recalling that Zn denotes a draw from the urn μd

n, we have the distributional identity

Zn
d= XIn , where In is a uniformly chosen index from {1, . . . , n}. Again scaling Z̃n = Zn

n , we get

Z̃n
d= In

n · X̃In . Since X̃In/A converges in �2 to X ∼ Gamma(2, 1), this proves that Z̃n converges
in distribution to U · X, where U ∼ Uniform([0, 1]). By Lemma 3, it follows that the limit point
has exponential distribution. �

4. Conclusion and future questions

This paper has introduced a new urn model, extending the product urn model from [19]
for finite groups to the integers or real numbers. Among the vast collection of urn models, the
Z-urn is interesting because it contains two properties which are challenging to study: drawing
more than one ball, and an infinite number of types of balls. It is proven that the rescaled
empirical distribution defined by the urn converges to a multiple of an exponential distribution.
The multiple, determined by the mean of the limiting urn, is a random variable; the main
remaining question is the distribution of this random variable.

Recall the notation Sn =∑n
i=1 Xn for the sum of the labels in the urn at step n, and An =

Sn
n(n+1) . The process {An} is a martingale and converges almost surely to some limit A. The
distribution of A can be explored using simulations. From Section 2, the mean of A is

E [A] = Sτ0

τ0(τ0 + 1)
.

That is, A depends on both the sum of the initial labels in the urn, and the number τ0 of balls
started. Figure 2(a) shows a histogram for the result for A for an urn started with a ball labeled
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FIGURE 2: Results for A from simulations of the Z-urn model from two different initial configurations.
An urn realization was run for 5000 rounds and the value of An was recorded. A total of 5000 realizations

of each urn process were run to display the empirical distribution of A.

−1 and a ball labeled 1. The distribution is of course centered around 0, but it is not normal.
Figure 2(b) exhibits the results for A for urns started with two 1 labels. The mean in this case
is 2/(2 · 3) = 1/3. A χ2 test for the null hypothesis that a Gamma distribution fits the data
resulted in a p-value < 0.001, indicating that Gamma is not a good fit. It would be interesting
to explore this distribution in future work, though even proving it is continuous seems to be a
challenge.

Another interesting problem would be to study the model for different infinite groups, for
example R with the multiplication operation, or the Heisenberg group. The result of an expo-
nential limit law is very specific to the addition process, so the limits for different groups and
group operations could be curious.
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