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We consider convection in an internally heated (IH) layer of fluid that is bounded
below by a perfect insulator and above by a poor conductor. The poorly conducting
boundary is modelled by a fixed heat flux. Using solely analytical methods, we find
linear and energy stability thresholds for the static state, and we construct a lower
bound on the mean temperature that applies to all flows. The linear stability analysis
yields a Rayleigh number above which the static state is linearly unstable (RL), and the
energy analysis yields a Rayleigh number below which it is globally stable (RE). For
various boundary conditions on the velocity, exact expressions for RL and RE are found
using long-wavelength asymptotics. Each RE is strictly smaller than the corresponding
RL but is within 1 %. The lower bound on the mean temperature is proven for no-slip
velocity boundary conditions using the background method. The bound guarantees that
the mean temperature of the fluid, relative to that of the top boundary, grows with the
heating rate (H) no slower than H2/3.
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1. Introduction
Mathematical models of thermal convection in horizontal fluid layers are studied

both as examples of complexity in nonlinear systems and as idealizations of
convention in astrophysical, geophysical, and engineering applications. Convection in a
layer can be driven by internal heating or cooling, by the boundary conditions, or both.
Rayleigh–Bénard (RB) convection (Siggia 1994; Getling 1998; Ahlers, Grossmann
& Lohse 2009), which has enjoyed the most attention, is driven solely by the
boundary conditions. Internally heated (IH) convection, which is no less fundamental,
is driven in its simplest models by constant and uniform volumetric heating. The IH
configuration most commonly studied is a fluid layer bounded below by a perfect
insulator and above by a perfect conductor. Here, we study a model of IH convection
that also is bounded below by a perfect insulator but is bounded above by a poor
conductor: a configuration considered in very few previous works (Hewitt, McKenzie
& Weiss 1980; Ishiwatari, Takehiro & Hayashi 1994). This model also describes
the dynamics of internally cooled convection with the top and bottom boundary
conditions exchanged, though here we speak only in terms of internal heating.

† Email address for correspondence: goluskin@umich.edu
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The model studied is of interest for several reasons. First, convection that is
wholly or partly driven by internal heating or cooling occurs in the Earth’s mantle
(Schubert, Turcotte & Olson 2001) and atmosphere (Berlengiero et al. 2012), other
planetary atmospheres (Ingersoll & Porco 1978; Kaspi, Flierl & Showman 2009),
the cores of large main-sequence stars (Kippenhahn & Weigert 1994) and engineered
systems involving exothermic chemical or nuclear reactions, including nuclear accident
scenarios (Asfia & Dhir 1996; Nourgaliev, Dinh & Sehgal 1997; Grötzbach & Wörner
1999). In particular, in the mantle and certain nuclear accidents, the upper boundary
may be closer to a poor conductor than to the perfect conductor adopted in many
models. Second, the convective configuration studied here is among the simplest
possible in the sense that, when it is modelled using the Boussinesq equations,
only two dimensionless parameters enter the dynamics (aside from any parameters
used in describing the geometry). There are six configurations with this property
(Goluskin 2015), three instances of RB convection and three of IH convection, and
the present model is by far the least studied of the six. Finally, the model makes for
an unusually tractable ‘textbook example’ of fluid stability analysis; the linear and
nonlinear stability thresholds are close but not identical, and both can be computed
analytically for any boundary conditions on the velocity.

We are aware of only two studies of the present configuration (Hewitt et al.
1980; Ishiwatari et al. 1994). Both examined scale selection using two-dimensional
simulations, and for free-slip boundaries Ishiwatari et al. (1994) used long-wavelength
asymptotics to find the linear instability threshold of the static state and derive an
asymptotic equation for the dynamics near onset. Beyond those studies, our results
can be compared with work on RB convection between poorly conducting boundaries
(e.g. Sparrow, Goldstein & Jonsson 1963; Hurle, Jakeman & Pike 1967; Otero
et al. 2002; Johnston & Doering 2009) and work on IH convection with a top that
conducts perfectly, rather than poorly. The latter configuration was studied early on
by Roberts (1967), Tritton & Zarraga (1967) and Thirlby (1970), in many subsequent
works reviewed by Kulacki & Richards (1985), and more recently in simulations
both at finite Prandtl numbers (Ichikawa et al. 2006; Cartland Glover & Generalis
2009; Takahashi et al. 2010; Cartland Glover, Fujimura & Generalis 2013) and in
the infinite limit (Houseman 1988; Schubert, Glatzmaier & Travis 1993; Parmentier,
Sotin & Travis 1994).

Our mathematical model and its basic features are laid out in § 2. For various
boundary conditions on the velocity, linear and nonlinear stability thresholds of
the static state are found in § 3. Integral quantities important to heat transport are
addressed in § 4, much of which is devoted to proving a lower bound on the mean
temperature, and § 5 gives concluding remarks.

2. The model

In dimensional terms, we are considering a fluid of thermal diffusivity κ in a layer
of height d, heated internally at rate H. The quantity H has units of temperature per
time and is equal to the specific rate of heating, normalized by density and specific
heat. Figure 1 shows a schematic of this configuration. The perfectly insulating bottom
boundary is enforced by a vanishing temperature flux, and the poorly conducting top
boundary is modelled by a fixed heat flux, enforced by fixing the vertical temperature
gradient to −Γ there. The better the fluid transports heat, relative to the top boundary,
the more accurate it is to model that boundary with a fixed heat flux (Hurle et al.
1967). Our model thus describes a situation where the fluid transports heat much better
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Hd g

FIGURE 1. Schematic of the convective configuration studied in the present work.
Quantities shown are dimensional. The internal heat source (H) and gravitational
acceleration (g) are constant and uniform.

than the top boundary, which in turn transports heat much better than the bottom
boundary. Any layer whose top boundary is much more conductive than its bottom
one should be well described by our model whenever convection is sufficiently strong.

Statistically steady convection is possible only when the heat flux across the top
boundary balances the internal heat production, hence we require

κΓ = dH. (2.1)

The natural temperature scale in this system is

∆ := d2H/κ = dΓ. (2.2)

The quantity d2H/κ is the usual temperature scale of IH convection, and it agrees
in this configuration with dΓ , the temperature scale of fixed-flux RB convection.
Modelling the dynamics using the Boussinesq equations (Spiegel & Veronis 1960;
Chandrasekhar 1981), we non-dimensionalize lengths by d, temperatures by ∆ and
times by the characteristic timescale of thermal diffusion, d2/κ . The dimensionless
dynamics are then governed by

∇ · u= 0, (2.3)
∂tu+ u · ∇u=−∇p+ Pr∇2u+ PrR T ẑ, (2.4)

∂tT + u · ∇T =∇2T + 1, (2.5)

where u = (u, v, w) is the velocity of the fluid, T is its temperature and p is its
pressure. The heat source has been scaled to unit strength. The dimensionless control
parameters are called the Rayleigh and Prandtl numbers, respectively, and are defined
as

R := gαd3∆

κν
, Pr := ν

κ
, (2.6a,b)

where g is the constant gravitational acceleration acting in the −ẑ direction, α is the
linear coefficient of thermal expansion, ∆ is the temperature scale defined by (2.2) and
ν is the kinematic viscosity. The above definition of R agrees with the usual definitions
of Rayleigh numbers as control parameters in IH convection (Kulacki & Richards
1985) and fixed-flux RB convection (Sparrow et al. 1963). As in RB convection, this
R is roughly the ratio of inertial forces to viscous forces and can be thought of as the
strength with which the flow is driven.

The spatial domain of our model has a dimensionless vertical extent of 0 6 z 6 1
and is infinite or periodic in its one or two horizontal directions. The dimensionless
thermal boundary conditions are

∂zT|z=0 = 0, ∂zT|z=1 =−1. (2.7a,b)
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z
T

(a) (b)

FIGURE 2. Schematics of mean vertical temperature profiles (a) in the static state and
(b) as expected in strong convection. The dimensionless thermal boundary conditions are
shown.

FIGURE 3. Instantaneous temperature field from a two-dimensional simulation of our
model with R= 1.44× 108, Pr= 1, a horizontal period of 6 and no-slip boundaries. The
hottest fluid (white) is 0.06 dimensionless degrees warmer than the coldest fluid (black).

For the velocity conditions at the top and bottom, we consider all four permutations
of no-slip and free-slip boundaries, which are enforced by

no-slip: u, v,w= 0, (2.8)
free-slip: ∂zu, ∂zv,w= 0. (2.9)

When the fluid is static, the unique steady temperature field is horizontally uniform
and has the parabolic vertical profile

Tst(z)= 1
2(1− z2), (2.10)

as shown in figure 2(a). By contrast, figure 2(b) shows the sort of temperature profile
that we expect at large R, where experience with similar systems suggests that strong
convective mixing will render the fluid roughly isothermal outside of an upper thermal
boundary layer. Integral quantities related to mean temperature profiles are discussed
in § 4.

To provide a concrete example of strong convection in our model, we carried
out a two-dimensional simulation using nek5000 (Fisher, Lottes & Kerkemeier
2013). Figure 3 shows a typical temperature field from that simulation. As expected,
cold plumes descend from an upper thermal boundary layer. We have not collected
quantitative data on heat transport in this model, nor to the best of the author’s
knowledge has anyone else.

3. Stability of the static state
To determine the stability of the static state, wherein u = 0 and T = Tst, we

decompose the temperature field as T(x, t) = Tst(z) + θ(x, t), where θ is called the
temperature fluctuation. Under the Boussinesq equations (2.3)–(2.5), fluctuations
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40 D. Goluskin

evolve according to

∇ · u= 0, (3.1)
∂tu+ u · ∇u=−∇p+ Pr∇2u+ PrR θ ẑ, (3.2)

∂tθ + u · ∇θ =∇2θ + zw, (3.3)

where pressure has been redefined to absorbed the Tst term. The stability of the
static state is equivalent to the stability of the zero solution of the above fluctuation
equations, and the latter is more convenient to analyse. Linear and nonlinear stability
analyses will yield Rayleigh number thresholds for the static state, RL and RE,
respectively, such that R < RE suffices for global stability, and R > RL suffices for
linear instability. Both the linear and nonlinear analyses lead to linear eigenproblems
whose spectra must be determined. The derivations of these eigenproblems follow
standard methods and are outlined in §§ 3.1 and 3.2. Both eigenproblems are solved
exactly by asymptotic expansion in § 3.3, which is possible here because the heat
fluxes are fixed at both boundaries.

3.1. Linear stability eigenproblem
To find a threshold for the linear instability of infinitesimal perturbations, we
neglect the nonlinear terms in the fluctuation equations (3.1)–(3.3). The first half
of the procedure for finding RL closely follows the classic calculation for RB
convection (Lord Rayleigh 1916; Chandrasekhar 1981). The linearizations of (3.3)
and ẑ · ∇ × ∇ × (3.2) form a closed pair of evolution equations for w and θ that
have the same linear stability threshold as the full equations:

1
Pr
∂t∇2w=∇4w+ R∇2

Hθ, (3.4)

∂tθ =∇2θ + zw, (3.5)

where ∇2
H := ∂2

x + ∂2
y is the horizontal Laplacian operator. Regardless of whether the

velocity boundary conditions are no-slip or free-slip,

w, ∂zθ = 0 at z= 0, 1. (3.6)

The final two conditions on w depend on whether the boundaries are no-slip or
free-slip and are derived from the definitions (2.8)–(2.9) with the help of the
incompressibility condition (2.3). We consider all four combinations here:

no-slip: w′|z=0, w′|z=1 = 0, (3.7)
free-slip top: w′|z=0, w′′|z=1 = 0, (3.8)

free-slip bottom: w′′|z=0, w′|z=1 = 0, (3.9)
free-slip: w′′|z=0, w′′|z=1 = 0, (3.10)

where primes denote ∂z. To apply our results to the dynamically equivalent system
of internally cooled fluid with an insulating top and poorly conducting bottom, we
need only remember that condition (3.8) would correspond to a free-slip bottom and
condition (3.9) to a free-slip top.

The right-hand side of (3.4)–(3.5) can be regarded as a linear operator acting on
[∇2w θ ]T . At the stability threshold we seek, the spectrum of the operator is marginally
stable, meaning at least one eigenvalue has a vanishing real part. Here we look only
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Internally heated convection beneath a poor conductor 41

for marginally stable states that are stationary, as opposed to time-dependent. Such
time-independent states obey the linear eigenproblem

∇4w=−R∇2
Hθ, (3.11)

∇2θ =−zw. (3.12)

We define RL as the smallest R at which a stationary, marginally stable state exists:

RL := inf
{

R
∣∣ (3.11)–(3.12) has a non-zero solution

}
. (3.13)

The R for which non-zero solutions exist are generalized eigenvalues; at such an R
there is a zero in the spectrum of an operator taking the form A − RB, where A
and B are linear differential operators.

The condition R > RL is sufficient for linear instability, but, because we have
assumed stationarity, it may not be necessary. Showing that it is necessary would
require proving that all marginal states are indeed stationary. This is fairly easy in RB
convection (Pellew & Southwell 1940), but the analogous proof fails here because of
the non-constant coefficient in (3.5). A functional analytical approach has been used
to prove stationarity in certain IH configurations (Herron 2001, 2003) but apparently
not for fixed-flux thermal boundary conditions.

Because the eigenproblem (3.11)–(3.12) is linear and lacks horizontal boundaries,
we can Fourier transform it in x and y (or, equivalently, apply a normal mode
substitution). This yields a separate eigenproblem for each magnitude, k, of the
horizontal wavevector:

ŵ(4) − 2k2ŵ′′ + k4ŵ= Rk2θ̂ , (3.14)
θ̂ ′′ − k2θ̂ =−zŵ, (3.15)

where ŵ(z) and θ̂ (z) can be complex but obey the same boundary conditions as w
and θ . These ordinary differential eigenproblems have discrete spectra, but the union
of their spectra over all possible k is the same as the spectrum of the original partial
differential eigenproblem (3.11)–(3.12). Expression (3.13) for RL thus becomes

RL = inf
k2>0

min
{

R
∣∣ (3.14)–(3.15) has a nonzero solution

}
, (3.16)

where k2 cannot be zero because horizontally uniform w would violate
incompressibility.

In similar models of IH convection, the value of RL must be found by solving the
eigenproblem (3.14)–(3.15) numerically for various fixed k (Roberts 1967; Kulacki
& Goldstein 1975). In the present case, we have carried out such numerics only to
confirm that, for all four pairs of velocity conditions, the generalized eigenvalue R
decreases monotonically as k2 → 0. The infimum of expression (3.16) can thus be
replaced by the long-wavelength limit,

RL = lim
k2→0

min
{

R
∣∣ (3.14)–(3.15) has a non-zero solution

}
, (3.17)

and an exact analytical expression for RL can be found by asymptotically expanding
the eigenproblem in k2. This has been done for free-slip boundaries by Ishiwatari et al.
(1994) and is carried out for other velocity conditions in § 3.3.

Monotonic decrease of the generalized eigenvalue R as k2 → 0 has been found
in various other convective systems where heat fluxes are fixed on both boundaries
(Sparrow et al. 1963; Chapman, Childress & Proctor 1980; Depassier & Spiegel 1982).
We do not know of any analytical proofs of this feature, although it seems to be a
fairly general consequence of such boundary conditions.
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3.2. Energy stability eigenproblem
Returning to the nonlinear fluctuation equations (3.1)–(3.3), we now seek a Rayleigh
number, RE, below which the static state is globally stable. As in most studies of
fluid stability, we prove such a threshold using the energy method (Serrin 1959;
Joseph 1976; Straughan 2004). In particular, we follow Joseph (1965) in considering
(generalized) energies of the form

Eγ [u, θ ](t) := 1
2

 (
1

Pr R
|u|2 + γ θ 2

)
dx, (3.18)

where γ > 0 is a coupling parameter to be chosen later, and where
ffl

denotes an
average over the volume. The stability of the static state follows if the energy is a
Lyapunov functional; that is, if

Eγ [u, θ ]> 0, (3.19)
d
dt

Eγ [u, θ ]6 0 (3.20)

for all possible u and θ , with equality holding only when both arguments are zero.
The first condition always holds here since all parameters in definition (3.18) are
positive. The second condition cannot hold when R > RL since nonlinear stability
would be inconsistent with linear instability. The most we hope for is finding a
threshold REγ , where REγ 6 RL, such that R < REγ is a sufficient condition for the
second Lyapunov condition (3.20) to hold.

We prove stability up to the largest threshold we can by choosing the value of
γ that maximizes REγ . An even larger threshold might be proven by optimizing
over a broader family of Lyapunov functions than the ansatz (3.18). However, the
condition (3.20) is generally very hard to check for a candidate functional. Like most
authors, with a few exceptions (Kaiser, Tilgner & Von Wahl 2005; Chernyshenko
et al. 2014), we have avoided this difficulty by the energy method, which entails
restricting ourselves to Lyapunov functions that (i) are quadratic in the fluctuation
variables, and (ii) are conserved by the nonlinear terms of the evolution equations
(3.1)–(3.3). For such energies, a condition on the spectrum of a linear eigenproblem,
introduced below, suffices to guarantee that (d/dt)Eγ 6 0.

The spectral condition that is sufficient for Lyapunov stability has been derived and
solved numerically in similar IH configurations (Kulacki & Goldstein 1975; Straughan
1990). We can see how the eigenproblem arises by adding the volume averages of
(1/(Pr R))u · (3.2) and γ θ × (3.3), and then integrating by parts to find

d
dt

Eγ =−
 [

1
R
|∇u|2 + γ |∇θ |2 − (1+ γ z)wθ

]
dx. (3.21)

Relaxing the dynamical constraints on u and θ in the above expression gives

d
dt

Eγ 6− inf
u,θ∈H2

∇·u=0
BCs

{ [
1
R
|∇u|2 + γ |∇θ |2 − (1+ γ z)wθ

]
dx
}
, (3.22)

where the infimum of the functional is over sufficiently smooth u and θ that
are subject only to incompressibility and the dynamical boundary conditions. The
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Euler–Lagrange equations of this functional, like the linear stability equations, can be
reduced to a closed system for w and θ ,

∇4w=− 1
2 R(1+ γ z)∇2

Hθ, (3.23)

γ∇2θ =− 1
2(1+ γ z)w, (3.24)

where w and θ in the Euler–Lagrange equations obey the same boundary conditions
as the dynamical variables of the same name. If R lies below the spectrum of this
eigenproblem, then (d/dt)Eγ 6 0. (This is demonstrated by Straughan 1990, for
example, using a rescaling of θ that simplifies the argument.) The condition R< REγ
thus suffices for Lyapunov stability, where

REγ := inf
{

R
∣∣ (3.23)–(3.24) has a non-zero solution

}
. (3.25)

As in the linear stability analysis of § 3.1, we can Fourier transform in the horizontal
directions to get an ordinary differential equation eigenproblem for each horizontal
wavevector magnitude, k:

ŵ(4) − 2k2ŵ′′ + k4ŵ= 1
2 Rk2(1+ γ z)θ̂ , (3.26)

γ (θ̂ ′′ − k2θ̂ )=− 1
2(1+ γ z)ŵ. (3.27)

Expression (3.25) then becomes

REγ = inf
k2>0

min
{

R
∣∣ (3.26)–(3.27) has a non-zero solution

}
. (3.28)

Since Eγ is only certain to be a valid Lyapunov functional when R<REγ , we get the
strongest result by choosing γ to maximize REγ . This optimized threshold is what we
call RE. That is,

RE :=max
γ>0

inf
k2>0

min
{

R
∣∣ (3.26)–(3.27) has a non-zero solution

}
. (3.29)

As in the linear stability analysis, the infimum in the above expression occurs as
k2→ 0. We have confirmed this statement, at least for the optimal values of γ that
we eventually choose, by numerically solving the eigenproblem (3.26)–(3.27) for
various k. Again we can replace the infimum with the k2→ 0 limit,

RE =max
γ>0

lim
k2→0

min
{

R
∣∣ (3.26)–(3.27) has a non-zero solution

}
, (3.30)

and we can solve the energy stability eigenproblem by expanding asymptotically in k2.

3.3. Analytical solution of the stability eigenproblems
To evaluate expression (3.17) for RL and expression (3.30) for RE, we expand the
eigenproblems (3.14)–(3.15) and (3.26)–(3.27), respectively, in the small quantity k2.
Long-wavelength expansions have been applied previously to convective models with
fixed-flux thermal boundary conditions, both to find RL and to capture the nonlinear
dynamics near onset (Chapman et al. 1980; Chapman & Proctor 1980; Ishiwatari et al.
1994; Childress & Spiegel 2004), although we are not aware of their use in finding RE.
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44 D. Goluskin

Anticipating that O(ŵ)= k2O(θ̂) in the asymptotic solutions of both eigenproblems,
we apply the expansions

ŵ(z)= k2W0(z)+ k4W2(z)+ · · · , (3.31)
θ̂ (z)= θ0(z)+ k2θ2(z)+ · · · , (3.32)

R= R0 + k2R2 + · · · , (3.33)

where R0 = RL in the linear analysis, and R0 = REγ in the energy analysis. From the
eigenproblems (3.14)–(3.15) and (3.26)–(3.27), we need the θ̂ equations only at O(1)
and O(k2) and the ŵ equations only at O(1):

linear analysis: θ ′′0 = 0, W (4)
0 = RLθ0, θ ′′2 = θ0 − zW0, (3.34)

energy analysis: θ ′′0 = 0, W (4)
0 = 1

2 REγ (1+ γ z)θ0, θ ′′2 = θ0 − 1
2(1/γ + z)W0, (3.35)

where all Wn and θn satisfy the same boundary conditions as w and θ .
In both the linear and energy analyses, the θ0 equations and their boundary

conditions require that θ0 be constant. The non-zero constants arbitrarily fix the
magnitudes of the eigenfunctions, so we take θ0 ≡ 1 for convenience. The W0
equations give

W0(z)=
{

RLP(z) linear analysis,
REγ Qγ (z) energy analysis,

(3.36)

where P(z) and Qγ (z) are the unique polynomials of orders 4 and 5, respectively, that
satisfy the w boundary conditions and

P(4)(z)= 1, (3.37)
Q(4)
γ (z)= 1

2(1+ γ z). (3.38)

The appendix A gives P(z) and Qγ (z) for all four pairs of velocity conditions.
Finally, the θ2 equations provide consistency conditions that can be solved for RL and
REγ . Since the fixed-flux boundary conditions require that

´ 1
0 θ
′′
2 (z) dz vanish, the θ2

equations can be integrated and rearranged to find

RL = 1ˆ 1

0
zP(z) dz

, (3.39)

REγ =
2ˆ 1

0
(1/γ + z)Qγ (z) dz

. (3.40)

Values of RL for various boundary conditions on the velocity are given in table 1.
These result from evaluating the integral (3.39) with the P(z) given in the appendix A.
Since no-slip boundaries exert stresses that slow the fluid, it is unsurprising that the
Rayleigh number needed to induce convection is smallest when the velocity conditions
are both free-slip, larger when the conditions are mixed, and larger still when the
conditions are both no-slip. When the velocity boundary conditions are mixed, RL is
smaller when the top boundary is the free-slip one. This is reasonable because it is
the unstable temperature gradient near the top boundary that drives the flow, and we

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.140


Internally heated convection beneath a poor conductor 45

RL RE Gap (%)

No-slip 1440 1429.860 0.704
Free-slip top 576 573.391 0.453
Free-slip bottom 720 714.929 0.704
Free-slip 240 239.055 0.394

TABLE 1. Rayleigh numbers above which the static state is linearly unstable (RL) and
below which the static state is Lyapunov stable (RE), along with the percentage of RL by
which RE falls short of RL. Exact expressions for RE are given in table 2. The finding
RL = 240 for free-slip boundaries agrees with Ishiwatari et al. (1994).

REγ γ ∗ RE

No-slip
100 800 γ

9γ 2 + 35γ + 35

√
35
3

2880(6
√

35− 35)

Free-slip top
403 200 γ

99γ 2 + 350γ + 315

√
35√
11

360(9
√

385− 175)

Free-slip bottom
403 200 γ

64γ 2 + 280γ + 315
3
√

35
8

1440(6
√

35− 35)

Free-slip
30 240 γ

16γ 2 + 63γ + 63
3
√

7
4

1440(8
√

7− 21)

TABLE 2. The threshold (REγ ) below which the energy Eγ is proven to be a Lyapunov
functional for the static state, the optimal coupling parameter (γ ∗) that maximizes this
threshold, and the maximized threshold (RE). Numerical approximations of RE are given
in table 1.

expect from related studies of IH convection (Kulacki & Richards 1985) that mean
velocities will be larger in the top half of the layer. A free-slip top thus encourages
motion more than a free-slip bottom does.

Table 2 gives the expressions for REγ that are found by evaluating the integral
(3.40) with the Qγ (z) given in the appendix A. Also shown are the optimal coupling
parameters, γ ∗, that maximize these REγ , as well as the maximized values, RE.

The approximate numerical value of each RE is given alongside the corresponding
RL in table 1. For each pair of velocity conditions, RE falls short of RL by less than
1 %. It is unknown whether subcritical convection can occur in the small gap between
RE and RL, although it can indeed occur when the top boundary is a perfect conductor,
rather than a poor one (Tveitereid & Palm 1976; Busse 2014).

4. Heat transport
The stability analysis of the static state in § 3 determines whether convection occurs

at a given R, except in the narrow range between RE and RL. At R large enough
for convection to occur, we would like to predict quantitative features of the flow,
especially quantities related to vertical heat transport.

Net heat transport is fixed in our model, being equal to both the flux at the top
boundary and the rate of internal heating. The relative contributions of convection and
conduction to the net transport, on the other hand, are dynamically determined. Several
integral quantities are useful in characterizing these contributions. One such quantity,
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46 D. Goluskin

the mean fluid temperature, we bound from below in § 4.1. Other useful quantities are
discussed in § 4.2.

For our notation, we let an overline denote an average over the horizontal directions
and infinite time, while angle brackets denote an average over volume and infinite
time. Assuming periodicity on a horizontal domain of [0, Lx] × [0, Ly],

f (z) := lim inf
τ→∞

1
τ

1
LxLy

ˆ τ

0
dt
ˆ Ly

0
dy

ˆ Lx

0
dx f (x, t), (4.1)

〈f 〉 := lim inf
τ→∞

1
τ

1
LxLy

ˆ τ

0
dt
ˆ 1

0
dz
ˆ Ly

0
dy

ˆ Lx

0
dx f (x, t). (4.2)

If the domain is infinite, averages over x and y can instead be defined as limits.
Defining time averages using lim inf, as opposed to lim sup, gives us a stronger result
since the lower bound we find would be the same in either case.

4.1. Lower bound on mean temperature

We now prove a lower bound on 〈T − TT〉: the mean temperature of the fluid, relative
to the mean temperature of the top boundary, TT . The comparison with TT is crucial;
the volume average of T alone cannot change from its initial value and so says
nothing about the flow. The quantity 〈T − TT〉 satisfies the uniform bounds

0<
〈
T − TT

〉
6 1

3 . (4.3)

The lower bound follows from expression (4.7) below. To derive the upper bound,
we integrate z2 against the T (2.5) to find 1/3− 〈T − TT〉 = 〈zwT〉. Incompressibility
then gives 〈zwT〉= 〈zwθ〉, multiplying θ against the temperature fluctuation (3.3) gives
〈zwθ〉 = 〈|∇θ |2〉> 0, and combining these relations gives 〈T − TT〉6 1/3.

The upper bound on 〈T − TT〉 is saturated only by the static state, in which heat is
transported up and out of the layer by conduction alone. When R is raised, and some
of the net heat transport is taken over by convection, 〈T − TT〉 must fall. Since R is
proportional to the dimensional heating rate, H, this decrease in 〈T − TT〉 might seem
counterintuitive until we recall that temperature has essentially been normalized by its
value in the static state. If 〈T − TT〉 decreases as R is raised, this means only that the
dimensional mean temperature, ∆〈T − TT〉, grows sublinearly with H.

Experience with other convective systems strongly suggests that the flow will
become ever more energetic and complicated as R→∞, and meanwhile 〈T−TT〉→ 0.
The belief that 〈T − TT〉 vanishes is analogous to the belief that the Nusselt number
grows unboundedly in RB convection, and we are not aware of any method for
proving such claims. What we can prove, beyond the uniform bounds (4.3), is a
lower bound on how quickly 〈T − TT〉 decreases toward zero. The proof occupies the
remainder of this subsection, but its result at leading order in R is simply〈

T − TT
〉
& 1.28 R−1/3. (4.4)

In dimensional terms, the above bound says that the mean temperature, relative to
that of the top boundary, grows with the heating rate no slower than H2/3. We cannot
judge the tightness of this bound since we are unaware of any experimental studies
of 〈T − TT〉.
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4.1.1. Background decomposition
We derive a lower bound on 〈T − TT〉 using the background method (Doering &

Constantin 1992; Constantin & Doering 1996). The result is proven only for no-slip
boundaries, much like the related bound that has been proven for fixed-flux RB
convection (Otero et al. 2002). The background method entails decomposing the
temperature field into a chosen background profile, τ(z), and remaining part, Θ(x, t):

T(x, t)= τ(z)+Θ(x, t). (4.5)

The bound we obtain depends on our choice of τ . This τ does not generally solve
the governing equations, in which case Θ does not obey the fluctuation equations
(3.1)–(3.3).

The background profile τ must satisfy three conditions. First, it must be continuous.
Second, it must obey the same fixed-flux boundary conditions (2.7) as T , so that Θ
satisfies the homogenous conditions

∂zΘ = 0 at z= 0, 1. (4.6)

As explained shortly, the boundary conditions on τ do not actually constrain our
choice of background profile since they can be met by vanishingly thin boundary
layers that do not affect the resulting bound. Finally, we must choose a τ for which
we can show that a particular functional Q, introduced below, is non-negative.

We will bound 〈T − TT〉 subject not to its full dynamical constraints but only to
incompressibility, boundary conditions, and three integral relations found by taking
〈T × (2.5)〉, 〈τ × (2.5)〉 and 〈u · (2.4)〉. After integration by parts, these relations are〈

T − TT
〉= 〈|∇T|2〉, (4.7)

〈τ ′Θ ′〉 = 〈τ − τT〉 −
〈
τ ′2
〉+ 〈τ ′wΘ〉, (4.8)

R 〈wT〉 = 〈|∇u|2〉, (4.9)

where primes denote ordinary or partial z-derivatives. Time derivatives have vanished
from (4.7)–(4.9) because the volume integrals of |u| and |T| are bounded uniformly in
time, a fact that follows from the present analysis (cf. Doering & Constantin 1992).
Relations (4.7) and (4.9) are the IH convection analogues of the power integrals of
RB convection (Malkus 1954; Howard 1963).

The quantity we seek to bound appears in relation (4.7), which can be expanded as〈
T − TT

〉= 〈τ ′2〉+ 〈|∇Θ|2〉+ 2
〈
τ ′Θ ′

〉
. (4.10)

As done by Lu, Doering & Busse (2004), we apply relations (4.8)–(4.9) to (4.10) and
find 〈

T − TT
〉= 2 〈τ − τT〉 −

〈
τ ′2
〉+Q, (4.11)

where
Q := a

R

〈|∇u|2〉+ 〈|∇Θ|2〉+ 〈(2τ ′ − a)wΘ
〉
, (4.12)

and a > 0 is to be fixed later. We must choose an admissible τ for which we can
show that Q > 0, where Q is treated as a functional of any Θ and incompressible
u that are sufficiently smooth and satisfy the dynamical boundary conditions. When
Q > 0, expression (4.11) gives the bound〈

T − TT
〉
> 2 〈τ − τT〉 −

〈
τ ′2
〉
. (4.13)
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z

1

0 b

FIGURE 4. Schematic of the background profile, τ(z), that we consider. The parameters
δ, a and b are optimized to maximize the lower bound (4.13) while maintaining the non-
negativity of Q. We can neglect the two layers of thickness ε in our analysis (see the
text).

Having already relaxed the full dynamical constraints, we further limit our scope to
τ profiles that are piecewise linear. These simplifications lead to a suboptimal bound
but let us reach it analytically, which is necessary for the bound to apply at arbitrarily
large R.

4.1.2. Piecewise linear background profile
Figure 4 shows the family of τ that we consider here. In principle, the boundary

layers of thickness ε are needed to satisfy the fixed-flux thermal boundary conditions,
so that Θ obeys the corresponding homogenous conditions. In practice, however,
carrying ε through the analysis and then taking ε → 0 yields the same bound as
setting ε ≡ 0 at the start, so we simply do the latter. Our calculation thus excludes
the O(ε) terms that would make it fully rigorous but arrives at the same result. The
fact that the thermal boundary conditions on τ effectively can be ignored relies on
the fixed-flux conditions. When a boundary layer is used to meet a fixed-temperature
condition, its effect on the resulting bound does not generally vanish as its thickness
goes to zero because its slope approaches infinity.

With ε ≡ 0, our ansatz for τ consists of only two linear pieces:

τ(z)=


[

b
δ
+ a

2

(
1
δ
− 1
)]

(1− z) 1− δ 6 z 6 1

b+ a
2

z 0 6 z 6 1− δ,
(4.14)

where figure 4 shows the geometric meanings of δ, a and b. The top temperature
is fixed as τT = 0 for convenience since adding a constant to τ does not affect the
bound (4.13). The upper piece of τ turns out to be a boundary layer because we must
choose an expression for its thickness, δ, that vanishes as R→∞. The lower piece
of τ is chosen to have a slope of a/2, whatever the value of a we fix later: a known
trick for making the sign-indefinite term of Q vanish outside the boundary layer
(Constantin & Doering 1996; Lu et al. 2004). With the ansatz (4.14) chosen for τ ,
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the lower bound (4.13) becomes

〈
T − TT

〉
> b(2− δ)+ a

2
(1− δ)−

(
a2

4
+ ab

)(
1
δ
− 1
)
− b2

δ
. (4.15)

4.1.3. Optimal parameter choices
We seek the optimal parameters, δ∗, a∗ and b∗, that maximize the lower bound

(4.13) while still letting us show Q > 0. There is one optimality condition that is
unaffected by the requirement that Q> 0; the lower bound (4.15) is maximized when
its partial derivative with respect to a vanishes, and this requires that

b∗ = 1
2(δ − a). (4.16)

Making this optimal choice, we eliminate b from the bound to find〈
T − TT

〉
> 3

4δ − 1
2 a− 1

2δ
2 + 1

2 aδ − 1
4 a2. (4.17)

It remains to choose δ and a optimally, but first we must find conditions on these
parameters that ensure Q > 0.

Determining conditions sufficient for Q > 0 requires some functional analysis to
bound the magnitude of the sign-indefinite term, 〈(2τ ′−a)wΘ〉. Following Otero et al.
(2002), we can proceed in spectral space, noting that Q is bounded below by an
integral over horizontal wavevectors:

Q >
ˆ

k
Qk dk, (4.18)

where

Qk := a
R

〈
1
k2
|ŵ′′k|2 + 2|ŵ′k|2 + k2|ŵk|2

〉
+
〈
|Θ̂ ′k|2 + k2|Θ̂k|2

〉
+ Re

〈
(2τ ′ − a)w̃kΘ̂k

〉
,

(4.19)
and where ŵk(z) and Θ̂k(z) are the horizontal Fourier transforms of w and Θ , w̃k
is the complex conjugate of ŵk, and Re denotes the real part of a complex quantity.
Incompressibility has been used to eliminate horizontal velocity components from
Qk. The sign-indefinite term of Qk is nonzero only in the boundary layer, and its
magnitude there is bounded by (Otero et al. 2002)∣∣∣Re

〈
(2τ ′ − a)w̃kΘ̂k

〉∣∣∣6 δ2

4
√

2

(
α

k2

〈|ŵ′′k|2〉+ β 〈|ŵ′k|2〉+ 1
β

〈
|Θ̂ ′k|2

〉
+ k2

α

〈
|Θ̂k|2

〉)
,

(4.20)
where we have made use of the fact that 2τ ′ − a=−1 in the boundary layer for the
optimal choice b∗ = (δ − a)/2. The above estimate, and no other part of our proof,
relies on the assumption of no-slip boundaries. The two previous expressions give

Qk >
1
k2

(
a
R
− αδ2

4
√

2

) 〈|ŵ′′k|2〉+(2a
R
− βδ2

4
√

2

) 〈|ŵ′k|2〉
+
(

1− δ2

4
√

2β

)〈
|Θ̂ ′k|2

〉
+ k2

(
1− δ2

4
√

2α

)〈
|Θ̂k|2

〉
. (4.21)
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The non-negativity of all four coefficients in the above inequality suffices for the non-
negativity of each Qk and, in turn, of Q. We choose α = β = δ2/4

√
2, which is as

large as the latter two coefficients allow. The non-negativity of the first coefficient,
which also implies that of the second, then requires a> (1/32)Rδ4. Our lower bound
will be maximized by letting δ be as large as possible while guaranteeing Q > 0, so
we choose

a∗ = 1
32 Rδ4, (4.22)

after which the bound (4.17) becomes〈
T − TT

〉
> 3

4δ − 1
64 Rδ4 − 1

2δ
2 + 1

64 Rδ5 − 1
4096 R2δ8. (4.23)

To avoid both positive terms in the lower bound being subdominant when R→∞,
we must choose δ no larger than O(R−1/3). For such δ, the last three terms are
subdominant, so 〈

T − TT
〉
& 3

4δ − 1
64 Rδ4 (4.24)

at large R. The optimal δ∗ that maximizes this leading-order expression is proportional
to R−1/3. Finding this δ∗ and using it to put expressions (4.22) and (4.16) for a∗ and
b∗ in terms of R gives

δ∗ = 121/3R−1/3, a∗ = 3×121/3

8 R−1/3, b∗ = 5×121/3

16 R−1/3. (4.25a−c)

With these parameter choices, τ ′ = −1/2 + O(R−1/3) in the boundary layer. This is
roughly half of what ∂T/∂z would be in the thermal boundary layer of an actual
flow. In fixed-flux RB convection, on the other hand, the boundary layers of a
similarly optimized τ profile have the same z-derivative as the dynamical T field at
the boundaries.

Applying the optimal δ∗ to the exact expression (4.23), we at last obtain our lower
bound on the mean temperature,〈

T − TT
〉
> 9

8

(
3
2

)1/3
R−1/3 − 89

64

(
3
2

)2/3
R−2/3. (4.26)

At large R, this bound scales like R−1/3 and reduces to expression (4.4). The
lower bound on mean temperature proven by Lu et al. (2004) for a different IH
configuration also scales like R−1/3.

4.2. Other quantities important to heat transport

We turn now to other integral quantities that, like 〈T − TT〉, bear on the relative
contributions of conduction and convection. The vertical heat flux, J, at a point is
the sum of the fluxes due to conduction, Jcond, and convection, Jconv. In our non-
dimensionalization,

J = Jcond + Jconv (4.27)
= −∂zT +wT. (4.28)

The components of mean heat flux across a horizontal surface, −T ′(z) and wT(z),
are not known a priori, but their sum is; integrating the temperature (2.5) over the
horizontal directions, time, and [0, z] gives

J(z)=−T ′(z)+wT(z)= z. (4.29)
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This balance expresses the fact that, because the bottom boundary is insulating, the
mean upward flux at height z is equal to the rate, also z, at which heat is produced
below that height. Integrating expression (4.29) over the vertical extent gives another
useful balance,

〈J〉 = δT + 〈wT〉 = 1
2 , (4.30)

where δT := TB − TT is the difference between the mean temperatures at the bottom
and top boundaries. That is, the mean heat flux over the layer is 1/2 and is the sum
of the conductive and convective parts, δT and 〈wT〉.
4.2.1. Mean temperature difference

The relative contributions of conduction and convection can be characterized in
similar but not identical ways by two quantities: the relative mean temperature of
the fluid, 〈T − TT〉, and the mean temperature difference between the boundaries, δT ,
which is also the mean conductive transport across the layer. (We could equally well
speak of 〈wT〉 instead of δT since we know they sum to 1/2.) For δT we have the
uniform upper bound

δT 6 1
2 . (4.31)

A lower bound of zero seems likely, but we have not proven it. The upper bound
follows from expressions (4.9) and (4.30). Much like 〈T − TT〉, the quantity δT
saturates its upper bound of 1/2 only in the static state, and we expect but do not
know how to prove that δT→ 0 as R→∞. In this limit, the net heat transport would
be accomplished solely by convection, rather than conduction.

At large R, we expect δT and 〈T − TT〉 to be even more similar. Strong convection
typically renders T(z) profiles roughly isothermal outside of boundary layers, as in
the schematic of figure 2(b), and here this would mean δT ∼ 〈T − TT

〉
. Even with

boundary conditions for which large-scale shear might keep the interior far from
isothermal (Goluskin et al. 2014; van der Poel et al. 2014), we still expect δT and
〈T − TT〉 to scale similarly at large R. Thus, since we have proven in § 4.1 that
〈T − TT〉 can decay no faster than R−1/3, it seems likely that the same is true of δT .

Proving a parameter-dependent lower bound on δT remains an open challenge.
The challenge is novel because δT is related to 〈|∇u|2〉, via expressions (4.9) and
(4.30), but not to 〈|∇T|2〉. The background method would thus require decomposing
u, whereas past applications of the method to convection have decomposed T and
bounded quantities related to 〈|∇T|2〉.
4.2.2. Nusselt numbers and diagnostic Rayleigh numbers

In convective systems, the relative contributions of conduction and convection to
net heat transport are often expressed using dimensionless Nusselt numbers, N. One
particular definition of N, together with a diagnostic Rayleigh number, Ra, works well
to reveal the parallels between RB configurations with different thermal boundary
conditions (Otero et al. 2002; Verzicco & Sreenivasan 2008; Johnston & Doering
2009; Wittenberg 2010). We define N and Ra in a way that agrees with these RB
studies and extends to IH convection:

N := 〈J〉
〈Jcond〉 , Ra := R

〈Jcond〉
〈Jcond〉st

, (4.32a,b)

where 〈J〉 and 〈Jcond〉 refer to the developed flow, while 〈Jcond〉st refers to the static
state. In our present model,

N = 1
2δT
= 1

1− 2 〈wT〉 , Ra= R/N. (4.33a,b)
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The definition (2.6a) of the control parameter R uses the dimensional temperature
scale ∆, given in expression (2.2), that is proportional to the temperature difference
between the boundaries in the static state. The diagnostic parameter Ra essentially
replaces this static temperature difference with that in the developed flow. The two
parameters agree in the static state, but Ra< R in sustained convection.

Restated in terms of the N we have defined, the basic features of δT described in
§ 4.2.1 are: N = 1 in the static state, N > 1 in sustained flows and we expect N to
grow without bound as R→∞. These same statements apply to the usual Nusselt
number of RB convection. We have further argued (without proof) in § 4.2.1 that δT
can decay no faster than R−1/3. This would be equivalent to N growing no faster than
Ra1/2.

Since we have proven an R-dependent bound on 〈T − TT〉, it is natural to ask
whether the Nusselt number and diagnostic Rayleigh number could instead be
generalized to IH convection in a way that invokes 〈T − TT〉, rather than δT . This
leads us to define quantities that are like N and Ra but with averages weighted
proportionally to height,

Ñ := 〈zJ〉
〈zJcond〉 , R̃a := R

〈zJcond〉
〈zJcond〉st

. (4.34a,b)

Because J(z) = z here, weighting by height is equivalent to weighting by the mean
vertical heat flux at each height. For our present boundary conditions,

Ñ = 1
3
〈
T − TT

〉 , R̃a= R/Ñ. (4.35a,b)

Expressed in these terms, our lower bound (4.4) on 〈T−TT〉 becomes an upper bound
on Ñ,

Ñ . 0.132 R̃a
1/2
. (4.36)

The above bound has the same scaling as bounds that have been proven in a variety of
RB configurations, so long as the RB bounds are expressed using definition (4.32a,b)
for N and Ra (Constantin & Doering 1996; Otero et al. 2002; Plasting & Kerswell
2003; Wittenberg 2010).

5. Conclusions
This work has addressed IH convection beneath a poor conductor, a basic but

largely overlooked configuration. We have found differing linear and nonlinear
stability thresholds for the static state. Simple exact expressions exist for both
thresholds, which is rare in studies of fluid stability, and they have been found
here using long-wavelength asymptotics. Beyond the static state, we have bounded
the mean temperature of the convecting fluid, relative to that of the top boundary,
assuming no-slip velocity conditions on both boundaries. As the heating rate (H) is
raised, this dimensional mean temperature can grow no slower than H2/3. In terms of
a dimensionless Nusselt number (Ñ) and diagnostic Rayleigh number (R̃a) that we
have defined using the mean temperature, our bound takes the same form as upper
bounds on Nusselt numbers in various other convective models.

Many fundamental features of the model studied here are yet to be explored. At
Rayleigh numbers between our thresholds for global stability and linear instability, it
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is not known whether subcritical convection can be sustained, although the answer is
affirmative when the upper boundary conducts perfectly instead of poorly (Tveitereid
& Palm 1976). While we have proved a parameter-dependent lower bound on the
mean temperature of sustained flow, only uniform bounds are known for the mean
temperature difference between the top and bottom boundaries. The latter quantity
is useful in characterizing heat transport in the fluid, and it is much easier to
measure experimentally than the mean fluid temperature. A bound on this temperature
difference would amount to a bound on viscous dissipation, rather than on thermal
dissipation, and a method for constructing it would likely yield novel results in
other IH configurations as well (Goluskin 2015). Beyond analytical results, it seems
the only studies of our configuration have been two-dimensional simulations at
small-to-moderate Rayleigh numbers (Hewitt et al. 1980; Ishiwatari et al. 1994). The
parameter regimes in which convection is strong and complicated are wide open for
numerical simulations and laboratory experiments.
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Appendix A. Polynomial eigenfunctions
The asymptotic solution of the linear stability eigenproblem in § 3.3 makes use of

the unique fourth-order polynomials that satisfy P(4)(z)= 1 and the velocity boundary
conditions (3.7)–(3.10). These polynomials are

P(z)=


1
24

(
z4 − 2z3 + z2

)
no-slip

1
24

(
z4 − 5

2 z3 + 3
2 z2
)

free-slip top
1
24

(
z4 − 3

2 z3 + 1
2 z
)

free-slip bottom
1
24

(
z4 − 2z3 + z

)
free-slip.

(A 1)

The same P(z) are given by Chapman & Proctor (1980), scaled for their domain of
−16 z6 1 rather than our domain of 06 z6 1. The asymptotic solution of the energy
stability eigenproblem requires the unique fifth-order polynomials that satisfy Q(4)

γ (z)=
1/2(1+ γ z) and the velocity boundary conditions. These polynomials are

Qγ (z)=


1

240

[
γ z5 + 5z4 − (3γ + 10) z3 + (2γ + 5) z2

]
no-slip

1
240

[
γ z5 + 5z4 − ( 9

2γ + 25
2

)
z3 + ( 7

2γ + 15
2

)
z2
]

free-slip top
1

240

[
γ z5 + 5z4 − (2γ + 15

2

)
z3 + (γ + 5

2

)
z
]

free-slip bottom
1

240

[
γ z5 + 5z4 − ( 10

3 γ + 10
)

z3 + ( 7
3γ + 5

)
z
]

free-slip.

(A 2)

Figure 5 shows that when the energy (3.18) is defined using the optimal
coupling parameter γ ∗ (cf. table 2), each fifth-order Qγ (z) closely approximates the
corresponding fourth-order P(z). In the k2 → 0 limit, the linear stability eigenmode
has vertical velocity proportional to P(z), the energy stability eigenmode has vertical
velocity proportional to Qγ (z), and both eigenmodes have constant temperature. Thus,
the closeness of the optimal Qγ (z) to P(z) means that the long-wavelength solutions to
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FIGURE 5. The polynomials P(z) (——) and Qγ (z) (- - - - -), where the latter are evaluated
for the optimal coupling parameter γ ∗. Top and bottom boundary conditions on the
velocity are (a) both no-slip, (b) free-slip only at the top, (c) free-slip only at the bottom
and (d) both free-slip.

the linear and energy stability eigenproblems are similar not only in their generalized
eigenvalues, RL and RE, but also in their eigenfunctions.

REFERENCES

AHLERS, G., GROSSMANN, S. & LOHSE, D. 2009 Heat transfer and large scale dynamics in turbulent
Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503–537.

ASFIA, F. J. & DHIR, V. K. 1996 An experimental study of natural convection in a volumetrically
heated spherical pool bounded on top with a rigid wall. Nucl. Engng Des. 163 (3), 333–348.

BERLENGIERO, M., EMANUEL, K. A., VON HARDENBERG, J., PROVENZALE, A. & SPIEGEL, E. A.
2012 Internally cooled convection: a fillip for Philip. Commun. Nonlinear Sci. Numer. Simul.
17 (5), 1998–2007.

BUSSE, F. H. 2014 Remarks on the critical value Pc = 0.25 of the Prandtl number for internally
heated convection found by Tveitereid and Palm. Eur. J. Mech. (B/Fluids) 47, 32–34.

CARTLAND GLOVER, G., FUJIMURA, K. & GENERALIS, S. 2013 Pattern formation in volumetrically
heated fluids. Chaotic Model. Simul. 1, 19–30.

CARTLAND GLOVER, G. M. & GENERALIS, S. C. 2009 Pattern competition in homogeneously
heated fluid layers. Engng Appl. Comput. Fluid Mech. 3 (2), 164–174.

CHANDRASEKHAR, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover Publications.
CHAPMAN, C. J., CHILDRESS, S. & PROCTOR, M. R. E. 1980 Long wavelength thermal convection

between non-conducting boundaries. Earth Planet. Sci. Lett. 51, 362–369.
CHAPMAN, C. J. & PROCTOR, M. R. E. 1980 Nonlinear Rayleigh–Bénard convection between poorly

conducting boundaries. J. Fluid Mech. 101 (04), 759–782.
CHERNYSHENKO, S. I., GOULART, P., HUANG, D. & PAPACHRISTODOULOU, A. 2014 Polynomial

sum of squares in fluid dynamics: a review with a look ahead. Phil. Trans. R. Soc. Lond. A
372 (2020), doi:10.1098/rsta.2013.0350.

CHILDRESS, S. & SPIEGEL, E. A. 2004 Pattern formation in a suspension of swimming
microorganisms: nonlinear aspects. In A Celebr. Math. Model. (ed. D. Givoli, M. J. Grote &
G. C. Papanicolaou). Kluwer Academic Publishers.

CONSTANTIN, P. & DOERING, C. R. 1996 Variational bounds on energy dissipation in incompressible
flows. III. Convection. Phys. Rev. E 53 (6), 5957–5981.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://dx.doi.org/10.1098/rsta.2013.0350
https://doi.org/10.1017/jfm.2015.140


Internally heated convection beneath a poor conductor 55

DEPASSIER, M. C. & SPIEGEL, E. A. 1982 Convection with heat flux prescribed on the boundaries of
the system. I. The effect of temperature dependence of material properties. Geophys. Astrophys.
Fluid Dyn. 21, 167–188.

DOERING, C. R. & CONSTANTIN, P. 1992 Energy dissipation in shear driven turbulence. Phys. Rev.
Lett. 69 (11), 1648–1651.

FISHER, P. F., LOTTES, J. W. & KERKEMEIER, S. G. 2013 nek5000 Web page,
http://nek5000.mcs.anl.gov.

GETLING, A. V. 1998 Rayleigh–Bénard Convection: Structures and Dynamics. World Scientific
Publishing Co.

GOLUSKIN, D. 2015 Internally heated convection and Rayleigh–Bénard convection. In Springer Briefs
in Thermal Engineering and Applied Science. Springer (in press).

GOLUSKIN, D., JOHNSTON, H., FLIERL, G. R. & SPIEGEL, E. A. 2014 Convectively driven shear
and decreased heat flux. J. Fluid Mech. 759, 360–385.

GRÖTZBACH, G. & WÖRNER, M. 1999 Direct numerical and large eddy simulations in nuclear
applications. Intl J. Heat Fluid Flow 20 (3), 222–240.

HERRON, I. H. 2001 On the principle of exchange of stabilities in Rayleigh–Bénard convection.
SIAM J. Appl. Maths 61 (4), 1362–1368.

HERRON, I. H. 2003 On the principle of exchange of stabilities in Rayleigh–Bénard convection, II –
no-slip boundary conditions. Ann. Univ. Ferrara IL, 169–182.

HEWITT, J. M., MCKENZIE, D. P. & WEISS, N. O. 1980 Large aspect ratio cells in two-dimensional
thermal convection. Earth Planet. Sci. Lett. 51, 370–380.

HOUSEMAN, G. 1988 The dependence of convection planform on mode of heating. Nature 332,
346–349.

HOWARD, L. N. 1963 Heat transport by turbulent convection. J. Fluid Mech. 17 (3), 405–432.
HURLE, D. T. J., JAKEMAN, E. & PIKE, E. R. 1967 On the solution of the Bénard problem with

boundaries of finite conductivity. Proc. R. Soc. Lond. A 296 (1447), 469–475.
ICHIKAWA, H., KURITA, K., YAMAGISHI, Y. & YANAGISAWA, T. 2006 Cell pattern of thermal

convection induced by internal heating. Phys. Fluids 18 (3), 038101.
INGERSOLL, A. P. & PORCO, C. C. 1978 Solar heating and internal heat flow on Jupiter. Icarus

35, 27–43.
ISHIWATARI, M., TAKEHIRO, S.-I. & HAYASHI, Y.-Y. 1994 The effects of thermal conditions on

the cell sizes of two-dimensional convection. J. Fluid Mech. 281, 33–50.
JOHNSTON, H. & DOERING, C. R. 2009 Comparison of turbulent thermal convection between

conditions of constant temperature and constant flux. Phys. Rev. Lett. 102 (6), 064501.
JOSEPH, D. D. 1965 On the stability of the Boussinesq equations. Arch. Rat. Mech. Anal. 20 (1),

59–71.
JOSEPH, D. D. 1976 Stability of Fluid Motions I–II. Springer.
KAISER, R., TILGNER, A. & VON WAHL, W. 2005 A generalized energy functional for plane Couette

flow. SIAM J. Math. Anal. 37 (2), 438–454.
KASPI, Y., FLIERL, G. R. & SHOWMAN, A. P. 2009 The deep wind structure of the giant planets:

results from an anelastic general circulation model. Icarus 202 (2), 525–542.
KIPPENHAHN, R. & WEIGERT, A. 1994 Stellar Structure and Evolution. Springer.
KULACKI, F. A. & GOLDSTEIN, R. J. 1975 Hydrodynamic instability in fluid layers with uniform

volumetric energy sources. Appl. Sci. Res. 31 (2), 81–109.
KULACKI, F. A. & RICHARDS, D. E. 1985 Natural convection in plane layers and cavities with

volumetric energy sources. In Nat. Convect. Fundam. Appl., pp. 179–254. Hemisphere.
LORD RAYLEIGH 1916 On convection currents in a horizontal layer of fluid, when the higher

temperature is on the under side. Phil. Mag. 32 (192), 529–546.
LU, L., DOERING, C. R. & BUSSE, F. H. 2004 Bounds on convection driven by internal heating.

J. Math. Phys. 45 (7), 2967–2986.
MALKUS, W. V. R. 1954 Discrete transitions in turbulent convection. Proc. R. Soc. Lond. A 225

(1161), 185–195.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://nek5000.mcs.anl.gov
https://doi.org/10.1017/jfm.2015.140


56 D. Goluskin

NOURGALIEV, R. R., DINH, T. N. & SEHGAL, B. R. 1997 Effect of fluid Prandtl number on heat
transfer characteristics in internally heated liquid pools with Rayleigh numbers up to 1012.
Nucl. Engng Des. 169, 165–184.

OTERO, J., WITTENBERG, R. W., WORTHING, R. A. & DOERING, C. R. 2002 Bounds on Rayleigh–
Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191–199.

PARMENTIER, E. M., SOTIN, C. & TRAVIS, B. J. 1994 Turbulent 3-D thermal convection in an
infinite Prandtl number, volumetrically heated fluid: implications for mantle dynamics. Geophys.
J. Intl 116 (2), 241–251.

PELLEW, A. & SOUTHWELL, R. V. 1940 On maintained convective motion in a fluid heated from
below. Proc. R. Soc. Lond. A 176, 312–343.

PLASTING, S. C. & KERSWELL, R. R. 2003 Improved upper bound on the energy dissipation rate
in plane Couette flow: the full solution to Busse’s problem and the Constantin–Doering–Hopf
problem with one-dimensional background field. J. Fluid Mech. 477, 363–379.

VAN DER POEL, E. P., OSTILLA-MÓNICO, R., VERZICCO, R. & LOHSE, D. 2014 Effect of velocity
boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh–Bénard
convection. Phys. Rev. E 90 (1), 013017.

ROBERTS, P. H. 1967 Convection in horizontal layers with internal heat generation. Theory. J. Fluid
Mech. 30 (1), 33–49.

SCHUBERT, G., GLATZMAIER, G. A. & TRAVIS, B. 1993 Steady, three-dimensional, internally heated
convection. Phys. Fluids A 5 (8), 1928–1932.

SCHUBERT, G., TURCOTTE, D. L. & OLSON, P. 2001 Mantle Convection in the Earth and Planets.
Cambridge University Press.

SERRIN, J. 1959 On the stability of viscous fluid motions. Arch. Rat. Mech. Anal. 3 (1), 1–13.
SIGGIA, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137–168.
SPARROW, E. M., GOLDSTEIN, R. J. & JONSSON, V. K. 1963 Thermal instability in a horizontal

fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech.
18 (04), 513–528.

SPIEGEL, E. A. & VERONIS, G. 1960 On the Boussinesq approximation for a compressible fluid.
Astrophys. J. 131, 442–447.

STRAUGHAN, B. 1990 Continuous dependence on the heat source and non-linear stability for
convection with internal heat generation. Math. Meth. Appl. Sci. 13, 373–383.

STRAUGHAN, B. 2004 The Energy Method, Stability, and Nonlinear Convection, 2nd edn. Springer.
TAKAHASHI, J., TASAKA, Y., MURAI, Y., TAKEDA, Y. & YANAGISAWA, T. 2010 Experimental study

of cell pattern formation induced by internal heat sources in a horizontal fluid layer. Intl J.
Heat Mass Transfer 53 (7–8), 1483–1490.

THIRLBY, R. 1970 Convection in an internally heated layer. J. Fluid Mech. 44 (4), 673–693.
TRITTON, D. J. & ZARRAGA, M. N. 1967 Convection in horizontal layers with internal heat

generation. Experiments. J. Fluid Mech. 30 (1), 21–31.
TVEITEREID, M. & PALM, E. 1976 Convection due to internal heat sources. J. Fluid Mech. 76, 499.
VERZICCO, R. & SREENIVASAN, K. R. 2008 A comparison of turbulent thermal convection between

conditions of constant temperature and constant heat flux. J. Fluid Mech. 595, 203–219.
WITTENBERG, R. W. 2010 Bounds on Rayleigh–Bénard convection with imperfectly conducting

plates. J. Fluid Mech. 665, 158–198.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.140

	Internally heated convection beneath  a poor conductor
	Introduction
	The model
	Stability of the static state
	Linear stability eigenproblem
	Energy stability eigenproblem
	Analytical solution of the stability eigenproblems

	Heat transport
	Lower bound on mean temperature
	Background decomposition
	Piecewise linear background profile
	Optimal parameter choices

	Other quantities important to heat transport
	Mean temperature difference
	Nusselt numbers and diagnostic Rayleigh numbers


	Conclusions
	Acknowledgements
	Appendix A. Polynomial eigenfunctions
	References




