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Abstract

Given a unital C∗-algebra and a faithful trace, we prove that the topology on the associated density space
induced by the C∗-norm is finer than the Bures metric topology. We also provide an example when this
containment is strict. Next, we provide a metric on the density space induced by a quantum metric in the
sense of Rieffel and prove that the induced topology is the same as the topology induced by the Bures
metric and C∗-norm when the C∗-algebra is assumed to be finite dimensional. Finally, we provide an
example where the Bures metric and induced quantum metric are not metric equivalent. Thus, we provide
a bridge between these aspects of quantum information theory and noncommutative metric geometry.
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1. Introduction and background

The Bures metric, which was introduced by Bures in [2], is a vital tool in quantum
information theory (for example, the Bures metric is the quantum version of the
Hellinger distance; see [6, Section 3.1.2]). Recently, the Bures metric has been
adapted to von Neumann algebras and C∗-algebras by Farenick and Rahaman [4].
The quantum metric, which was introduced by Rieffel in [11], allows one to prove
powerful results about convergence of quantum spaces including those arising from
high energy physics (see [10], where Rieffel proved that matrix algebras converge
to the sphere and continuity of quantum tori) and many more continuity results
related to the C∗-algebraic structure and noncommutative geometric structure (see
[1, 5, 7–9]). This paper brings these two important metrics together in a natural way to
make comparisons between their topological and geometric properties in the hope of
introducing these methods of measurement to the other field.

In Section 2, we provide comparisons of the topological structure of the Bures
metric and a third metric, the one induced by the C∗-norm on the density space. The
purpose of bringing this third metric into the picture is not just to provide another
interesting comparison, but also to provide a method of comparing the Bures metric
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and the quantum metric. In Section 3, we show how one can place a metric on
the density space using quantum metrics, and then show that this induced quantum
metric is topologically equivalent to the Bures metric. Our approach uses the results in
Section 2. Finally, in Section 4, we provide a case when the Bures metric and induced
quantum metric are not metric equivalent, which is of interest since contractivity of
quantum channels is a main aspect of quantum information theory [4]. The quantum
metric approach offers a truly new avenue to study contractivity of quantum channels
and fixed points while still agreeing with the Bures metric topology. For the remainder
of this section, we provide some necessary background for the rest of the paper.

CONVENTION 1.1. Given a unital C∗-algebraA, we denote its unit by 1A, its norm by
‖ · ‖A, its self-adjoint elements by sa(A) and positive elements by A+. We denote its
state space by S(A). We also denote the metric induced by ‖ · ‖A by dA.

However, given a compact Hausdorff space X, we denote the C∗-norm on C(X) by
‖ · ‖X and the unit (the constant 1 function) by 1.

DEFINITION 1.2 [11]. Let A be a unital C∗-algebra. If L : A → [0,∞] is a seminorm
onA such that:

(1) dom(L) = {a ∈ A : L(a) < ∞} is dense inA;
(2) L(a) = 0 if and only if a ∈ C1A;
(3) L(a) = L(a∗) for every a ∈ A; and
(4) the Monge–Kantorovich metric, defined for any two states ϕ,ψ ∈ S(A) by

mkL(ϕ,ψ) = sup{|ϕ(a) − ψ(a)| : a ∈ A, L(a) � 1},

metrises the weak* topology on S(A),

then (A, L) is a compact quantum metric space, and we call L an L-seminorm.

THEOREM-DEFINITION 1.3 [4, Theorem 2.6]. LetA be a unital C∗-algebra. Let τ be
a faithful trace. Define the density space with respect to τ to be

Dτ(A) = {a ∈ A+ : τ(a) = 1}.

Define the Bures metric with respect to τ for every x, y ∈ Dτ(A) by

dτB(x, y) =
√

1 − τ(|
√

x
√

y|).

Here, by a faithful trace, we mean a positive linear functional (not necessarily of
norm one) such that, for every a, b ∈ A, we have τ(ab) = τ(ba) and τ(a∗a) = 0 implies
that a = 0. We call the statement above a ‘Theorem-Definition’ since the proof that the
Bures metric is indeed a metric in this general setting of unital C∗-algebras equipped
with a faithful trace is a nontrivial result of [4].

We also formally state what we mean by topological equivalence and metric
equivalence so that there is no confusion.
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[3] The Bures metric and quantum metric 3

DEFINITION 1.4. Let X be a nonempty set and let d and d′ be two metrics on X.

(1) We say that d and d′ are topologically equivalent if they induce the same
topologies.

(2) We say that d and d′ are metric equivalent if there exist α, β > 0 such that

αd(x, y) � d′(x, y) � βd(x, y) for every x, y ∈ X,

or, equivalently,

α �
d′(x, y)
d(x, y)

� β for every x, y ∈ X such that x � y.

2. Comparison of the C∗-metric and Bures metric topologies

In this section, we show that the C∗-metric topology is finer than the topology
induced by the Bures metric. We also show that this containment can be strict
by providing an explicit example in the C∗-algebra of complex-valued continuous
functions on [0, 1] with the trace given by Lebesgue integration. First, we prove two
lemmas that are likely to be well known, but we provide their proofs for convenience.

LEMMA 2.1. Let A be a unital C∗-algebra. Let (xn)n∈N be a sequence in A+
that converges in the C∗-norm to x ∈ A+. Let r � 0 be such that, for any n ∈ N,
‖xn‖A, ‖x‖A � r. If f : [0, r]→ R is continuous, then ( f (xn))n∈N converges to f (x) in
the C∗-norm.

PROOF. By the Weierstrass approximation theorem, there exist polynomials (pn)n∈N
that converge uniformly to f on [0, r].

Let ε > 0. By uniform convergence of (pn)n∈N to f, there exists N ∈ N such that, for
any n � N, we have ‖pn − f ‖[0,r] < ε/3, and, in particular, ‖pN − f ‖[0,r] < ε/3. Since
pN is a polynomial, there exists N′ � N such that, for any n � N′,

‖pN(xn) − PN(x)‖A <
ε

3
.

Let n � N′. By functional calculus,

‖ f (xn) − pN(xn)‖A = ‖ f − pN‖σ(xn) � ‖ f − pN‖[0,r] <
ε

3
since σ(xn) ⊆ [0, r]. Similarly,

‖ f (x) − pN(x)‖A <
ε

3
since σ(x) ⊆ [0, r]. By the triangle inequality for the norm,

‖ f (xn) − f (x)‖A � ‖ f (xn) − pN(xn)‖A + ‖pN(xn) − p(x)‖A + ‖pN(x) − f (x)‖A
<
ε

3
+
ε

3
+
ε

3
= ε.

Thus, for any ε > 0, we can find N′ such that ‖ f (xn) − f (x)‖A � ε for any n � N′. Thus,
( f (xn))n∈N converges to f (x) in the C∗-norm. �
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LEMMA 2.2. LetA be a unital C∗-algebra. If (xn)n∈N is a sequence inA that converges
in the C∗-norm to some x ∈ A, then (|xn|)n∈N converges in the C∗-norm to |x|.

PROOF. Note that |x| =
√

x∗x and |xn| =
√

x∗nxn for every n ∈ N. For any n ∈ N, let
an = x∗nxn and a = x∗x. Since multiplication and the adjoint are continuous in the
C∗-norm, (an)n∈N converges to a in the C∗-norm. For any n ∈ N, |x| =

√
a and

|xn| =
√

an. Therefore, by Lemma 2.1 and continuity of the square root, we know that
(|xn|)n∈N converges to |x| in the C∗-norm. �

We now prove our main theorem that allows us to compare the C∗-metric topology
and the Bures metric topology.

THEOREM 2.3. Let A be a unital C∗-algebra and let τ be a faithful trace. Let (xn)n∈N
be a sequence in Dτ(A) and let x ∈ Dτ(A). If (xn)n∈N converges to x in the C∗-norm,
then (xn)n∈N converges to x with respect to the Bures metric dτB.

PROOF. If (xn)n∈N converges to x in the C∗-norm, then, since g(x) =
√

x is continuous,
(
√

xn)n∈N converges to
√

x in the C∗-norm by Lemma 2.1.
Since x is positive and fixed, (

√
xn ·
√

x)n∈N converges to
√

x ·
√

x in the C∗-norm. By
definition,

√
x ·
√

x = x, so (
√

xn ·
√

x)n∈N converges in the C∗-norm to x. By Lemma 2.2,
this implies that (|√xn ·

√
x|)n∈N converges in the C∗-norm to |x| = x.

Since τ is C∗-norm continuous, (|√xn ·
√

x|)n∈N converging to x in the C∗-norm
implies that (τ(|√xn ·

√
x|))n∈N converges to τ(x). Since x ∈ Dτ(A), we have τ(x) = 1.

Hence, (τ(|√xn ·
√

x|))n∈N converges to 1.
Consider

(dτB(xn, x))n∈N =
(√

1 − τ(|
√

xn ·
√

x|)
)

n∈N
.

Since (τ(|√xn ·
√

x|))n∈N converges to 1, it follows that (dτB(xn, x))n∈N converges to√
1 − 1 = 0. Hence, (xn)n∈N converges to x with respect to the Bures metric dτB. �

COROLLARY 2.4. LetA be a unital C*-algebra and let τ be a faithful trace. Then the
topology induced by dA is finer than the topology induced by dτB.

This raises the question of whether these topologies are the same in general. The
answer is no, and the rest of this section is devoted to providing an example on which
these topologies disagree.

Consider, C([0, 1]), the C∗-algebra of continuous complex-valued functions on
[0, 1]. The map

ρ : f ∈ C([0, 1]) 
−→
∫ 1

0
f (x) dx,

where
∫ 1

0 · dx is the standard Lebesgue integral, is a faithful trace on C([0, 1]).

PROPOSITION 2.5. The topology induced by the metric dC([0,1]) induced by the
C∗-norm on the density space Dρ(C([0, 1])) is strictly finer than the topology induced
by the Bures metric dρB.
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FIGURE 1. f1, f2, f3 given by the formula (2.1). (Plotted in GeoGebra).

PROOF. The fact that the topology induced by dC([0,1]) is finer is provided by
Corollary 2.4. Thus, it remains to show that the topologies are not equal. To accomplish
this, we find a sequence in Dρ(C([0, 1])) that converges with respect to dρB, but does
not converge uniformly (that is, with respect to dC([0,1])).

Let n ∈ N. Consider

fn(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2nx if x ∈ [0, 1/2n],
1 if x ∈ (1/2n, 1 − 1/2n),
2nx − 2n + 2 if x ∈ [1 − 1/2n, 1],

(2.1)

defined for all x ∈ [0, 1] (see Figure 1). Note that fn ∈ C([0, 1]). Define f : [0, 1]→ R
by f (x) = 1 for all x ∈ [0, 1]. Note that f ∈ Dρ(C([0, 1])).

Next, we check that fn ∈ Dρ(C([0, 1]) for every n ∈ N. Let n ∈ N. First, fn � 0 by
construction. Second,

ρ( fn) =
∫ 1

0
fn(x) dx =

∫ 1/2n

0
2nx dx +

∫ 1−1/2n

1/2n
1 dx +

∫ 1

1−1/2n
(2nx − 2n + 2) dx

= [nx2]1/2n
0 + [x]1−1/2n

1/2n + [nx2 − 2nx + 2x]1
1−1/2n

=
1
4n
+ 1 − 1

n
+

3
4n
= 1.

Hence, fn ∈ Dρ(C([0, 1])).
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We now prove that the sequence of functions ( fn)n∈N converges to the function f in
the Bures metric, dρB, but fails to converge to f uniformly.

Let n ∈ N. Then

ρ(
√

fn
√

f ) =
∫ 1/2n

0
(
√

2nx · 1) dx +
∫ 1−1/2n

1/2n
(
√

1 · 1) dx

+

∫ 1

1−1/2n
(
√

2nx − 2n + 2 · 1) dx

=

∫ 1/2n

0

√
2nx dx +

∫ 1−1/2n

1/2n
1 dx +

∫ 1

1−1/2n

√
2nx − 2n + 2 dx

=
√

2n ·
[2
3

x3/2
]1/2n

0
+ [x]1−1/2n

1/2n +
√

2 ·
[ 2
3n
· (nx − n + 1)3/2

]1
1−1/2n

=
1

3n
+ 1 − 1

n
+

2
√

2
3n
− 1

3n
= 1 − 3 − 2

√
2

3n
.

Therefore,

dρB( fn, f ) =
√

1 − ρ(
√

fn
√

f ) =

√
1 −
(
1 − 3 − 2

√
2

3n

)
=

√
3 − 2

√
2

3n

and limn→∞ dρB( fn, f ) = 0. Therefore, we have shown that ( fn)n∈N converges to f in the
ρ-Bures metric.

Finally, suppose, by way of contradiction, that ( fn)n∈N converges uniformly to f .
Then, for any δ > 0, there exists M ∈ N such that, for any n > M and any x ∈ [0, 1],
we have | fn(x) − f | < δ. Therefore, for some δ0 ∈ (0, 1), there exists M0 ∈ N such that,
for any n > M0 and any x ∈ [0, 1], we have | fn(x) − f | < δ0. However, let x = 1. Then
| fn(1) − f (1)| = |2 − 1| = 1 > δ0, which is a contradiction. Hence, our assumption is
false. �

3. Topological equivalence of Bures C∗- and quantum metrics for
finite-dimensional C∗-algebras

Although we just saw an example where the C∗-metric topology and Bures metric
topology do not agree on the density space, in this section, we will see that if the
C∗-algebra is assumed to be finite dimensional, then these topologies agree. Moreover,
we will also show that in the finite-dimensional case, the Bures metric agrees with a
metric on the density space induced by the quantum metric, which thus brings these
two important metrics together. Some of the results in this section are similar to some
of those of [4] or can be obtained from finite-dimensionality arguments without much
further effort. We include the results and proofs of this section to create a bridge
between the previous section and the next, while also introducing the third metric
that we study in this article.
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[7] The Bures metric and quantum metric 7

We first show how one can induce a metric on the density space using a quantum
metric in a natural way. Let A be a unital C∗-algebra. Let τ be a faithful trace on A.
For each a ∈ Dτ(A), define

ϕτa(b) = τ(ab) for every b ∈ A.

The next result might be well known, but we provide a proof here for convenience.

PROPOSITION 3.1. Let A be a unital C∗-algebra and let τ be a faithful trace on A.
The map

Φτ : a ∈ Dτ(A) 
−→ ϕτa ∈ S(A)

is well defined and injective.

PROOF. For a ∈ A+, there exists b ∈ A such that a = b∗b by [3, Lemma I.4.3]. Let
c ∈ A. Since τ is a trace,

ϕτa(c∗c) = τ(b∗bc∗c) = τ(cb∗bc∗) = τ(cb∗(cb∗)∗) � 0.

Thus, ϕ is a positive linear functional, and, in particular, ϕτa(1A) = ‖ϕτa‖op by [3,
Lemma I.9.5]. Since a ∈ Dτ(A),

‖ϕτa‖op = τ(a1A) = τ(a) = 1.

Thus, ϕτa is a state, and therefore, Φτ is well defined.
Next, let a, a′ ∈ A+ such that Φτ(a) = Φτ(a′). Hence, ϕτa((a − a′)∗) = ϕτa′((a − a′)∗).

Thus, τ(a(a − a′)∗) = τ(a′(a − a′)∗) and so τ((a − a′)(a − a′)∗) = 0. Therefore,
a − a′ = 0 as τ is faithful, that is, a = a′. Thus, Φτ is injective. �

This allows us to define a new metric on Dτ(A).

DEFINITION 3.2. Let (A, L) be a compact quantum metric space. Let τ be a faithful
trace onA. For every x, y ∈ Dτ(A), define

dτL(x, y) = mkL(Φτ(x),Φτ(y)) = mkL(ϕx,ϕy),

which defines a metric on Dτ(A) since Φτ is well defined and injective. We will still
call dτL a quantum metric.

Before moving on to the finite-dimensional setting, we prove that the topology
generated by the C∗-norm is always finer than the topology induced by a quantum
metric.

PROPOSITION 3.3. Let (A, L) be a compact quantum metric space and let τ be a
faithful trace on A. Then, on Dτ(A), the topology induced by dA is finer than the
topology induced by dτL.

PROOF. Let (an)n∈N be a sequence in Dτ(A) that converges to a ∈ Dτ(A) with respect
to dA. Then, for each b ∈ A,

lim
n→∞

ϕτan
(b) = lim

n→∞
τ(anb) = τ(ab) = ϕτa(b)
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since multiplication is continuous and τ is continuous. Since convergence in mkL is
equivalent to weak* convergence by definition, the proof is complete. �

For the remainder of this section, A will be a finite-dimensional C∗-algebra. We
will now prove that the C∗-metric topology and quantum metric topology are the same.
First, we establish that (Dτ(A), dA) is a compact metric space.

PROPOSITION 3.4. If A is a finite-dimensional C∗-algebra, then (Dτ(A), dA) is a
compact metric space.

PROOF. We only need to show that Dτ(A) is closed and bounded with respect to the
C∗-norm. First, it is closed since τ is continuous with respect to the C∗-norm.

Since A is finite dimensional, the norms ‖ · ‖A and ‖ · ‖τ are equivalent, where
‖a‖τ =

√
τ(a∗a) for a ∈ A. Now, let a ∈ Dτ(A) and let

√
a denote its unique positive

square root. By the C∗-identity,

√
‖a‖A =

√
‖(
√

a)∗
√

a‖A = ‖
√

a‖A

� α‖
√

a‖τ = α
√
τ((
√

a)∗
√

a) = α
√
τ(a) = α,

since τ(a) = 1. So ‖a‖A � α2. Hence, Dτ(A) is bounded and thus is compact by the
Heine–Borel theorem. �

THEOREM 3.5. Let (A, L) be a compact quantum metric space and let τ be a faithful
trace onA. IfA is finite dimensional, then dτL and dA are topologically equivalent.

PROOF. The proof that Φτ is continuous from (Dτ(A), dA) to (Dτ(A), dτL) is the same
as the proof of Proposition 3.3. Since (Dτ(A), dA) is compact by Proposition 3.4, Φτ
is a homeomorphism onto its image with respect to the weak* topology on S(A).

Since convergence in mkL is equivalent to weak* convergence by definition, dA and
dτL are topologically equivalent. �

Now, we establish the topological equivalence of the C∗-metric and Bures metric.

THEOREM 3.6. Let A be a unital C∗-algebra and let τ be a faithful trace on A. If A
is finite dimensional, then the C∗-metric dA and the Bures metric dτB are topologically
equivalent.

PROOF. Consider

idDτ(A) : (Dτ(A), dA) −→ (Dτ(A), dτB).

By Theorem 2.3, convergence in dA implies convergence in dτB. Hence, idDτ(A) is
continuous, and since (Dτ(A), dA) is compact, idDτ(A) is a homeomorphism. Hence,
dA and dτB are topologically equivalent. �

We conclude this section with the topological equivalence of the Bures metric and
quantum metric.
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[9] The Bures metric and quantum metric 9

COROLLARY 3.7. Let (A, L) be a compact quantum metric space and let τ be a faithful
trace on A. If A is finite dimensional, then the Bures metric dτB and quantum metric
dτL are topologically equivalent.

PROOF. This follows immediately from Theorems 3.6 and 3.5 and since homeomor-
phism is an equivalence relation. �

4. Metric inequivalence for C2

In this last section, we see that, although the Bures metric and quantum
metric are topologically equivalent for finite-dimensional C∗-algebras, there exist
finite-dimensional C∗-algebras for which they are not equivalent as metric spaces. Our
approach also proves that the Bures metric and C∗-norm are not metrically equivalent
since we find a quantum metric that, in fact, agrees with the metric on the density
space induced by the C∗-norm.

Consider the unital C∗-algebra C2. For every x = (x1, x2) ∈ C2, define

LB(x) = |x1 − x2|.

Then LB is an L-seminorm since C2 is finite dimensional and by [11, Proposition 1.6].
So mkLB is a quantum metric.

Consider the faithful trace τ on C2 defined by

τ(x) = x1 + x2 for x = (x1, x2) ∈ C2.

The Bures metric is given explicitly by the trace, but as the quantum metric is defined
by way of a supremum, we first find a formula to explicitly calculate the quantum
metric in this case. This recovers the C∗-metric.

THEOREM 4.1. With the setting as above, for every x, y ∈ Dτ(C2),

dτLB (x, y) = |x1 − y1| = ‖x − y‖C2 = dA(x, y).

PROOF. First, let x ∈ Dτ(C2) and let x′ ∈ C2. Then

Φτ(x)(x′) = φτx(x′) = τ(xx′) = x1x′1 + x2x′2.

Now, assume that y ∈ Dτ(C2). Since τ(x) = 1 = τ(y), we have x1 + x2 = 1 = y1 + y2 and
so x1 − y1 = y2 − x2. Hence, if LB(x′) � 1,

|ϕτx(x′) − ϕτy(x′)| = |x1x′1 + x2x′2 − y1x′1 − y2x′2|
= |(x1 − y1)x′1 + (x2 − y2)x′2|
= |(x1 − y1)x′1 − (y2 − x2)x′2|
= |(x1 − y1)x′1 − (x1 − y1)x′2|
= |(x1 − y1)(x′1 − x′2)|
= |x1 − y1| · |x′1 − x′2|
� |x1 − y1|.
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Now, consider x′ = (1, 0). Then

|ϕτx(x′) − ϕτy(x′)| = |x1 − y1|.
Thus,

dτLB (x, y) = sup{|ϕτx(x′) − ϕτy(x′)| : LB(x′) � 1} = |x1 − y1|.
We also note that

‖x − y‖C2 = max{|x1 − y1|, |x2 − y2|} = max{|x1 − y1|, |x1 − y1|} = |x1 − y1|,
as desired. �

THEOREM 4.2. Let d = dτLB , the Bures metric, or d = dA. With the setting as above,
the quantum metric dτLB and d are topologically equivalent but not metric equivalent.

PROOF. Corollary 3.7 provides topological equivalence.
Consider x = (1, 0) ∈ Dτ(C2). Let y = (y1, y2) ∈ Dτ(C2). By Theorem 4.1,

dτLB (x, y) = |1 − y1|.
Also,

dτB(x, y) =
√

1 − τ(|
√

x
√

y|) =
√

1 − √y1.

Now, consider the ratio

dτB(x, y)
dτLB (x, y)

=

√
1 − √y1

|1 − y1|
.

We have limy1→1−

√
1 − √y1 = 0 and limy1→1− 1 − y1 = 0. Further,

d
dy1

(√
1 − √y1

)
=

−1

4
√

y1

√
1 − √y1

,
d

dy1
(1 − y1) = −1

and

lim
y1→1−

−1
4
√

y1
√

1−√y1

−1
= lim

y1→1−

1

4
√

y1

√
1 − √y1

= ∞.

Thus, by L’Hopital’s rule,

lim
y1→1−

dτB(x, y)
dτLB (x, y)

= ∞.

Hence, the set { dτB(x, y)
dτLB (x, y)

: x, y ∈ Dτ(C2), x � y
}

is unbounded, and so the metrics dτB and dτLB are not metric equivalent. �
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