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To protect the Dutch polders against floodimgore than 2500 km of dikes have
been constructedue to settlementsubsoil consolidationand relative sea-level
rise these dikes slowly sink “away into the sea” and should therefore be heightened
regularly(at presentevery 50 years In this respegtone is interested in safe and
cost-optimal dike heightenings for which the sum of the initial cost of investment
and the futurddiscounted cost of maintenance is minimal

For optimization purposea maintenance model has been developed for dikes
subject to uncertain crest-level declir@n the basis of engineering knowledge
crest-level decline has been modeled as a monotone stochastic process with ex-
pected decline being either linear or nonlinéae., linear after transformatiorin
time. For both models and for a particular unit tintee increments are distributed
according to mixtures of exponentials

In a case studyhe maintenance decision model has been applied to the prob-
lem of heightening the Dutch “Oostmolendijk
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1. INTRODUCTION

To protect the Dutch polders against floodiaghetwork of dikesdams and barriers

has been constructeBor the largest parthis network consists of dikes at a total
length of more than 2500 krin order to provide for the long-term safetiyese dikes

have to be maintained on the basis of 5-yearly inspections as laid down in the Dutch
Flood Protection ActUnfortunately due to a combination of settlemesubsoil
consolidationand relative sea-level rigdenoted bycrest-level decling the dikes
slowly sink “away into the sea” and should therefore be heightened and strengthened
regularly In this paperwe present a probabilistic model that enables us to determine
safe dike heightenings for which the cost of maintenance is minimal

Given the acceptable probability of failure of a dike sectitgcrest height is
currently determined on the basis of the design water level plus a safety margin
(needed to cope with possible wave run-gpst and squall oscillationseichesand
crest-level decline during 50 year$ he present Dutch dike design prescribes dikes
to be heightened every 50 yeawshich, however might not be economicakFor
details on the Dutch flood protection prograsee for example Vrijling [18].

In this paperwe present a new probabilistic model for determining safe dike
heightenings that optimally balance the initial cost of investment against the fu-
ture cost of maintenanc@he basic idea behind our model comes from van Dantzig
[13] and differs from the latter in the sense that we regard crest-level decline as a
stochastic process rather than as a deterministic nurivimeover we consider
condition-based preventive maintenaricarried out at times determined by 5-yearly
dike inspectionsrather than time-based preventive maintenafuzeried out at
predetermined repair timgsFurthermorein contrast with van Dantzig’s model
our model only includes the cost of maintenaneget the cost of possible flood-
ing. van Dantzig’s model was extended by Vrijling and van Beurflesi, who
assumed the average rate of crest-level decline to be uncertain

In essencevan Dantzig optimizes design water levelghereas we optimize
dike heightenings to cope with uncertain crest-level decline when these design water
levels are givenThe advantage of determining design water levels and dike height-
enings separately is that design water levels do not solely result from economic
considerationsbut also from political considerations

By combining van Dantzig's flood model and our maintenance matkger-
mining an optimal dike height on the basis of econofied/or political) consid-
erations can proceed as follows

« First, the optimal design water level of a dike section is obtained on the basis
of an economic optimization using van Dantzig’s model aaolitical con-
siderationsThis design water level is optimal in the sense that it balances the
initial cost of heightening all dike sections up to the design water level against
the future cost of floodingNote that settlemensubsoil consolidatiogrand
relative sea-level rise areot includedn this optimal design water level

e Secondthe optimal dike heightening to cope with crest-level decline is ob-
tained on the basis of an economic optimization using the maintenance model
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proposed in this paperhis dike heightening is optimal in the sense that it
balances the initial cost of heightening a dike section from the design water
level up to the desired dike height against the future cost of maintenidote
that settlemensubsoil consolidatiorand relative sea-level rise areluded
in the optimal dike heightening

 Third, the optimal dike height equals the sum of the optimal design water
level and the optimal dike heightening

To account for possible crest-level decline in a period of 50 yelike heights
are nowadays designed on the basis of average rates of crest-level deabirter
for the stochastic process of crest-level decline to be based(@misrtain limiting
average ratewe consider it as a generalized gamma process

A gamma process is a stochastic process with independent nonnegative incre-
ments having gamma distributions with given scale parameters and shape param-
eters proportional to the length of the time interval over which the increments are
taken A generalized gamma process is then defined as a scale mixture of gamma
processeswhere the scale parameter can be interpreted as the unknown limiting
average rate of crest-level declindote that the Brownian motion with drifta
stochastic process with stationary independent decrements and increments having a
Normal distribution is not applicable in this contexdince we must require that the
increments are nonnegative

A great advantage of modeling deterioration as a generalized gamma process is
that we can always find units of time of equal length for which the increments are
distributed according to a mixture of exponential probability densitidsch facil-
itates the algebraic manipulations consideralibn the basis of generalized gamma
processedailor-made decision models have been built and implemented to opti-
mize maintenance of the seabed protection of the Eastern Scheldt Hagdehes
and berm breakwatefsee van Noortwijk and colleagugk4—-17).

In addition to the generalized gamma procegth expected decline being lin-
ear in time we study a monotone stochastic process with expected decline being
nonlinear in timeThe latter process has been derived from a physical law which is
well accepted by engineers in soil mechanit® law of settlement and subsoil
consolidation of Terzaghi and Koppejfr]. In doing sq we base our probabilistic
model on well-known engineering knowledge approach which has recently been
proposed by Barlowl] and Mende[10].

For the purpose of finding an optimum balance between the initial cost and the
future costwhich is the area of life-cycle costinge can best use the criterion of the
expected discounted costs over an unbounded time haffiaoadiscussioysee van
Noortwijk and Peerboltgl6]). These costs can be determined by applying the dis-
crete renewal theoremwhere the renewals are the events at which a dike is heightened

The paper is organized as followBhe cost of one dike heighteningropor-
tional to the increase in dike volumis presented in Section th Sections 3 and,4
analytic expressions are derived for the expected discounted costs over an un-
bounded horizon under linear and nonlinear crest-level deal@spectively The
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maintenance model is applied to the Dutch “Oostmolendijk” in Secti@estion 6
ends with some conclusiondecessary theorems can be found in the Appendix

2. THE COST OF ONE DIKE HEIGHTENING

In modeling the maintenance of dikege make a distinction between the initial dike
heightening and the future dike heightenings due to crest-level deThmeinitial
dike heightening entails heightening the crest lewelbroadening the basehereas
the future dike heightenings leave the base unchatggsiFig 1). Determining the
cost of heightening dikes is the subject of study in this section

For each dike heighteninthe cost can be subdivided into the fixed oggtost
of mobilization and road reconstructipand the variable cost, (cost per cubic
meter of dike volumg By using the schematized cross section in Figyitaé dike
volume is a quadratic function of the dike heigHin meters in the following way

(h) Ih+|( L + ! )hz h+ v,h? 1
=W — =
v 2\tan(e) tan(w) . v2 (2)
in cubic meterg§m?), wherehis the crest levelw is the crest widthl is the length of
the dike sectionande andw are the angles of the inner slope and the outer slope
respectively

The costs of initially heightening the dike frohg up toh m and changing the
base width accordinglywherehy < h, are simply

Co(h) = ¢ + ¢,[v(h) — v(ho)]. 2)

van Dantzig[13] approximated Eqg(1) by a linear function oh, although he ac-
knowledged that his approximation is not valid for latydndeed the higher the
dike, the broader the base that is required

Similarly, the costs of future heightenings to annul a crest-level declinergf
while keeping the base width unchangean be written as a linear functionxfsee
Fig. 1):

1
+
tan(¢) tan(w)
whereh, w, |, ¢, andw are defined as in Eq1).

¢ +c,o(hx)=c + cl,[wl + g( ﬂx: ¢ +¢,0.(h)x, (3)

3. LINEAR CREST-LEVEL DECLINE
3.1. The Stochastic Process of Crest-Level Decline

In this subsectiona probabilistic model for the process of crest-level decline is
derived based on the unknown limiting average .r@tee nondecreasing stochas-
tic process is denoted B (t):t = 0}, whereX(t) represents the cumulative max-
imum amount of crest-level decline at timand X(0) = 0 with probability 1 For
every uniform time partition in time intervals of length> 0, D;(7) = X(it) —
X([i —1]r) =0,i €N.
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FiGure 1. The cross section of a dike before and after heighterrginitial dike
heightening fromhy up toh m (left) and a future dike heightening &fm (right).

Furthermoredue to the lack of datave judge the infinite sequence of incre-
ments{D;(7):i € N} to beexchangeabléi.e.,, the order in which the increments
occur is irrelevant In mathematical termexchangeability means that the proba-
bility density function of the random vectoD,(7),..., D,(7)) is invariant under all
n! permutations of the coordinatethat is

Po,(5).....0n() (815 +++50n) = Po,(r).....0n() Sz (@)s -+ -5 0m(m)s (4)

wheresr is any permutation of,1..,n, for all n € N andr > 0. The notion of
exchangeability is weaker than the notion of independence

In order for a stochastic deterioration process with nonnegative exchangeable
increments to be based on the unknown limiting average vateNoortwijk et al
[15] have argued that it can best be regarded gsreeralized gamma proceds
fact, the generalized gamma process can be characterized by conditioning on sums
of incrementswhile achieving consistency in the sense that probability distributions
of increments and sums of increments belong to the same family of distributions
and by assuming the probability model to be independent of the scale of measure-
ment(i.e, to be a scale mixtupe

For the generalized gamma procahg joint probability density function of the
incrementsD,(7),...,D,(7) is given by a mixture of conditionally independent
gamma densities

© n 5ia-rfl ar \ar a7-5i
Po,(r),....Du(r) (815 -, 8n) = . izl_lll“(ar) ? exp _T dPe((0)  (5)

for some constard > 0 with

E(X(n7)) = E(n6(7)),

1
Var(X(nr)) = <1 + E) E([nO(7)]?) — [E(nO(7))]? (6)
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forall > 0, provided the first and the second moment of the probability distribution
of ®(r) exist By the strong law of large numbers for exchangeable random quan-
tities, the probability distributiorPg ., of the random quantitp () represents the
uncertainty in the unknown limiting average amount of crest-level decline per time
interval of lengthr: lim,_,..[(Z; D;(7))/n].

Auseful property of the generalized gamma process is that the mixture of gamma
densities in Eq(5) transforms into a mixture of exponential densities i a™*:

6 n
Pp,a1),...,0 a1 (015-..,0 J H 5 ex ) dPy(0) = fn<2 5i>,
0 i-1 i-1

where(d,,...,8,) € R and zero otherwisdor R, = [0,00). The infinite sequence
of random quantitie$D;(a"1):i € N} is said to bd;-isotropic(or |;-norm sym-
metric), since its distribution can be written as a function of th&orm (see Mis-
iewicz and Cookgl11]). Given the value of thi -norm(or the average deterioratign
this means that the decision-maker is indifferent to the way this norm is obtéamed
other wordsall combinations leading to the sahenorm have the same degree of
belief for our decision-makeffor details see Barlow and MendgR] and van
Noortwijk et al [14]).

The unittime for which the increments of crest-level declind giisotropic can
be obtainedfor exampleg by specifying the variance of the generalized gamma pro-
cess in Eq(6). For fixed r > 0, the smaller the unit-time length for which the
increments aré; -isotropig that is the smallers = a~%, the more deterministic the
deterioration proces#és we shall see in SectionZ for this unit-time lengthde-
noted byA = a~%, many probabilistic properties of the stochastic deterioration pro-
cesslike the probability of exceedence of a failure lexadn be expressed in explicit
form conditional on the limiting average

In conclusionwe advocate regarding the stochastic process of crest-level de-
cline as a generalized gamma process with probability distribution on the limiting
average rate of crest-level declifi® keep the mathematics of the decision model
tractable we impose the property giosterior linearityintroduced by Diaconis and
Ylvisaker[4][i.e.,, E(X(27)|Ds(7) = 6,) = ¢;8;1 + ¢, for some constants;,c, > 0
andr > 0]. Note thafdue to exchangeabilitpefore observin®,, E(D,) = E(D,).
If posterior linearity holdsthen the mixing distribution in Eq5) is an inverted
gamma distributiorisee Diaconis and Ylvisaké4]). The mathematical tractability
is especially useful if one wants to update the prior distribution of the limiting av-
erage rate of crest-level decline with actual observatibrfgct using Bayes’theo-
rem the posterior distribution is also an inverted gamma distribution

From now onwe consider increments of crest-level decline that aisotropic
with respect to the units of timg[i — 1]A,iA]: i € N}. For notational convenience
letD; = D;(A) andX, = >, D; for all n € N, and let® represent the uncertainty in
the limiting average rate of crest-level declitien,_,..[(Z{-, D;)/n], with proba-
bility density function

lg (6] v, ) = [W/T(¥)]60~ " Yexp(—p/0)1 0. (6).
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The statistidn, >, ; D;] is sufficient for®. The mean and the variance Xf are
E(X,) = nE(®) and ValX,) = E(n®?) + Var(n®), respectively

3.2. The Expected Discounted Cost of Dike Heightening

The 1995 Dutch Flood Protection Act prescribes the dikes be inspected every 5
years For this reasonwe assume the dike section to be periodically inspected at
times{ jkA :j € N} for fixed k € N, wherekA = 5 yearsEach heightening brings the
dike section back into its “as good as new staldnerefore we may consider the
maintenance process as a renewal prqogbgre each renewal cycle ends at an
inspection timeglkA when the inspection reveals that the dike section should be
heightenedfor somgj € N). We assume that inspection of the dike takes negligible
time and does not degrade the dike

In this paperthe failure levekis defined as the design water level plus a small
safety margin needed to cope with wave runasgzillations seichesand crest-level
decline during an inspection interval of 5 yeé@nst 50 years as in the present dike
design. Failure is then defined as the event in which a dike height drops below the
failure levels; it can only be noted through inspectidihen inspection reveals that
the crest level of a dike section is lower than the failure leyélshould be height-
ened Note that a failure need not imply a collapgefailed dike section only col-
lapses when the applied water level exceeds the actual dike height

Lety = h — srepresent the decision to choose the dike ty be higher than
its failure levels and let the times at which the failure level is first crossed be
conditionally independent random quantities having a discrete probability func-
tion p;(#,y) and associated repair cost6,y), with respect to the units of time
{([i —1]4A,iA]:i € N}, when the limiting average rate of crest-level declind is
and the decision-maker chooses the dike tg/loe higher than its failure leved.

To obtain optimal maintenance decisions in uncertaiwty use statistical de-
cision theory(see DeGroof3, Chap 8]). LetL (6, y) be the(monetary loss when
the decision-maker chooses the dike to/lme higher than its failure levedand the
limiting average rate of crest-level decline is givenéyThe decision-maker can
best choose decisioyi for which the expected loss is minima& decisiony* is
called anoptimal decisioror aBayes optimal decisiowhen

E(L.(6,y")) = _min E(L.(6,y)). (8)

in
y&(hg—s.0
Such optimal maintenance decisions are also known as Bayes adaptive maintenance
policies(seee.g., McCall[8]): They can be revised in the light of new observations
by replacing the prior distribution of the limiting average rate of crest-level decline
with the posterior distributian
Because determining optimal dike heightenings actually means balancing the
initial cost against the future cqshe criterion of discounted costs can best serve as
a loss function(for a discussionsee van Noortwijk and Peerbolf&6]). The ex-
pecteddiscounted costs over an unbounded horizan be determined by summing
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the expected discounted values of the costs over an unbounded hovizene the
discounted value of the cosf in unit timen is defined to bex"c, with discount
factora =[1+ (r/100)]* and discount rate% (r > 0):

jk

>ak X c(0,y)po,y)

=1 i=(j—Dk+1

i
La(a’ Y) = CO(S+ Y) + o ik ’ (9)
1-Xak > pl6,y)
j=1 i=(j—Dk+1

where the initial costy(s + y) stems from Eq(2). Equation(9) follows from the
discrete renewal theorefisee van Noortwijk and Peerbolf&6]). Note that we
cannot use the criterion of the expected average costs per unjthignause the
contribution of the initial cost to the average costs would be completely igiibesd
lim,_..Co(s+y)/n=0]. The expected nondiscounted costs over a bounded horizon
(0,n] cannot be applied eithdnecause the dike-heightening decisions would then
depend on the length of the time horizanThe criterion of the expected discounted
costs over an unbounded horizon has also been used successfully by van Dantzig
[13].

The mixture of exponential densities of HJ) enables us to express various
probabilistic properties in explicit form whehis given For the purpose of optimal
dike heighteningtwo probabilistic properties are needé¢id the probability of ex-
ceedence of the failure level in unit timeand(ii) the expected cost of dike height-
ening due to exceedence of the failure level in unit timEhese two properties are
derived in Theorem Isee the Appendix

First, the conditional probability of exceedence of the failure level in unit time
i, when the limiting average crest-level declin@iand when the decision-maker
chooses the dike to bem higher than its failure leved can be written as

1 i—1
(i — D) <g> exp<_g) (10)

fori=12,...,and6,y > 0. This discrete probability function can be recognized as
the Poisson distribution with mean lifetimetl(y/6) and variancey/6.

Secondthe expected costs of dike heightening due to exceedence of the failure
level in unit timei, when the limiting average crest-level declin@iand when the
decision-maker chooses the dike toype higher than its failure leved, can be
written[using Eq (3)] as

E([ci + ¢, 01(s+ Y) X0, y1(Xi— 1) Ly, (Xi)16)
={c +ci(s+yly+ (jk—i+1D0]ip(6,y) =c(6,y)p(6,y) (11)

fori=(j—1k+1...,jk, wherej,k=12,...,and6,y > 0.
In conclusionthe expected discounted costs over an unbounded horizon can be
obtained by substituting EgL0) and(11) into Eq (9) and by taking the expectation

pi(6,y) = Pr{Xi_1 =y, X; >yl|0} =
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with respect to the probability distribution 6. The optimal dike heightening fol-
lows from Eq (8) (for an examplgsee Section 6

4. NONLINEAR CREST-LEVEL DECLINE
4.1. The Stochastic Process of Crest-Level Decline

Although the assumption of expected crest-level decline being linear in time is quite
reasonable when data are lackittte question arises of how to proceed when data
give evidence of an expected decline being nonlinear in.timerder to investigate
the sensitivity of the optimal dike heightening to different rates of crest-level de-
cline, we also consider stochastic processes with nonnegdtitenonexchange-
able increments

Engineering knowledge suggests the expected crest-level decline to be a loga-
rithmic function of time Recall that the process of crest-level decline is a combina-
tion of settlementsubsoil consolidatiorand relative sea-level rise

Settlement and subsoil consolidation has thoroughly been studied by Koppejan
[7]. with empirical experimenthe showed that a large tint@fter increasing the
stress fronp; to p5, the thickness of a compressed layer of sand or clay behaves
according to the so-called formula of Terzaghi and Koppejan

z(t) =z i+im In P (12)
°\Cc, C.In(10 p; )’

Z, = the initial thickness of the layégm),

where

z(t) = the thickness of the compressed layer at tinfra),
C, = primary compression constant

Cs = secondary compression constant

t =time(s),
p; = initial stress(N/m?),
p, = increased stregiN/m?).

Relative sea-level rise has probably the following causesting of glaciers
changesinthe Greenland and the Antarctic ice gaygsmal expansion of the oceans
and for The Netherlandseadjustment of the earth crust due to the melting away of
the Fennoscandian ice cap aboutO® years agoThe estimates of the relative
sea-level rise for the next century vary between 20 and 120vitima best estimate
of 60 cm(see Houghton et al5], van Dantzig 13], and Vrijling and van Beurden
[19]).

In order to preserve the mathematical tractability in determining the expected
discounted costavhen transforming linear decline into nonlinear decliwe link
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up with a stochastic process havingsotropic increments in the following walyet

us consider an infinite sequence of random quantjfigsi € N} that is transformed

| 1-isotropic in the sense that the probability density function of the random vector
(Dy,...,Dp) can be written as a function of the statishi¢_; D, /8; for all n € N:

CERE | oV dry0) =t D ovm ) @)
yeeeyOp) = —exXpl ——— q =T, i/Pi
Pos.....0,1 01 o i=1 it P Bib © i-1 A

for (84,...,6,) € R} and zero otherwisavhereB; > 0 fori =1,...,nandg; # 3
unlessi = j. The conditional cumulative distribution function of the sufp =
>iL.D;, when 6 is given is called the general Erlang or general gamma

distribution
PH{X,=x|6} =1— En: - ! exp(—%). (14)
o [T 11-pi/] '
j=Lj=i

This probability distribution has been used in theories of radioactive dgqoayve-
ing, reliability, and psychologysee e.g., Jenseri6] and McGill and Gibbor9]).

In order that the expected deterioration be a logarithmic function of fore
large values of timgwe sei3; =a/(b+i—1)foralli €N, wherea,b > 0. For large
n[viz. for large timet in Eq. (12)], the expected crest-level decline conditionabon
can then be written as

n
E(X,0) = [2 a/(b+i— 1)] 6~ a[ln(n) — (b)]6 (15)
i=1

asn — oo. The so-calleddigamma functioror Euler’s psi functiony(b) can be
negativé (see Nielse12, Sect 5]). In specifying the parameteesandb, settle-
ment subsoil consolidatiorand relative sea-level rise must be incorporated

The mixture of conditionally independent exponentials with different means
Eg. (13), converges to the mixture of conditionally independent exponentials with
equal meansq, (7), asB; — Lforalli=1,...,n. Thereforeit is convenient that the
increment®d;, i € N, are defined with respect to the same units of t{mfdengthA)
as for thd ;-isotropic increments in Section3 The mean and the varianceXyfare
E(X,) =216 E(0) and Var( X,) = E(Var(X,|0)) + Var(E(X,|®)), respectively

4.2. The Expected Discounted Costs of Dike Heightening

In a similar way as was done for linear expected crest-level de(3eetion 3, we
can determine two important probabilistic properties for nonlinear expected crest-
level decline (i) the probability of exceedence of the failure level in unit tinaed
(ii) the expected costs of dike heightening due to exceedence of the failure level in

1 For the digamma functignvhich is defined by (x) = T'(x)/T'(x), we havay(x) = 0 for 0< x =< xpand
() > 0 for x > Xo, Wwherexg ~ 1.462
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unit timei. Conditional on the limiting weighted avera@ethese two properties are
derived in Theorem 8see the Appendjx

First, the conditional probability of exceedence of the failure level in unit time
i, when the limiting weighted averaged@nd when the decision-maker chooses the
dike to bey m higher than its failure leved, can be written as

0.y = 3, — PP e 2 (16)
" T (1 Bu/Ba] )

h=1h#m

fori =12,...,andf,y > 0. WhenB; = a/(b +i — 1) for all i € N, this discrete
probability function simplifies to the negative binomial distribution with parameters
1 - exp[—y/(af)] andb (see Jenselb]):

b+i—-1-1 A y\[°
R AT

fori=1,2,...,andd,y > 0, with mean lifetime 1 b{exp y/(af)] — 1} and variance
bexpl y/(ad){expl y/(ad)] — 1.

Secondgthe expected costs of dike heightening due to exceedence of the failure
level in unit timei, when the limiting weighted averagedsand when the decision-
maker chooses the dike to pen higher than its failure leved can be written agby
using Eq (3), and Theorems 3 and 2 in the AppenHix

E([cr + ¢,01(s+ Y) Xicd o, y1(Xi— 1) Ly, (Xi)]6)

jk
= [cf + c, 0 (s + y)<y + hg Bh0>] pi(6,y) = ci(6,y)pi(6,y) (18)

fori=(j—1k+1...,jk, wherej,k=12,...,and6,y > 0.

In conclusionthe expected discounted costs over an unbounded horizon can be
obtained by substituting EgEl7) and(18) into Eq (9) and by taking the expectation
with respectto Igf|», 1), the inverted gamma distributiomhe optimal dike height-
ening follows from Eq(8).

5. CASE STUDY: THE DUTCH “OOSTMOLENDIJK”

The above decision model for optimal dike heightening has been applied to the
“Oostmolendijk” a dike section with a length of 2000 m in the west of The Neth-
erlands The “Oostmolendijk” is located between the towns of Ridderkerk and
Hendrik-ldo-Ambachtalong the river Noordand belongs to the dike ring IJssel-
monde In the last decadethe “Oostmolendijk” has been subject to extreme settle-
ment and subsoil consolidatioabout 060 m in the period 1969-1981 and about
0.15 min the period 1981-1988nfortunatelyonly these two data points are avail-
able. In 1969 its crest-level height was about2® m +~ap (normal Amsterdam
level), whereas the last dike heightenjmg 1991 resulted in a crest-level height of
4.90 m +n~ap (the difference is due to reduction of the design water level by the

https://doi.org/10.1017/50269964800141087 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964800141087

112 L. J. P. Speijker et al.

Maeslant storm-surge barrier in the “Nieuwe WaterweW/ith respect to the ground
level being 1 m+n~ap, the dike heightr was 390 m(see Fig 1).

For obtaining an optimal dike heightening for the “Oostmolendijke use the
parameters in Table The unit time for which the increments of crest-level decline
are distributed as mixtures of exponentigds= 5/3 yea) has been determined by
specifying the variance of the generalized gamma process i Ed he probability
density function o, the limiting average rate of crest-level decline per unit time
has been obtained by assessing its 5th and 95th percefitde®, o5 and 6, s,
respectivelyin Table 1. The expected crest-level decline in a period of 50 years is
1.30 m 1.00 m is due to settlement and subsoil consolidation aB@ f is due to
relative sea-level rise

TaBLE 1. Parameters of the Dike Heightening Model
for the Dutch “Oostmolendijk”

Parameter Description Value Dimension
A Unit time 5/3 Year

k Inspection-interval length 3 Unit time
kA Inspection-interval length 5 Year

r Discount rate per year 5 %

a Discount factor per unit time .0219

G Fixed cost 18 x 108 Dfl

c, Variable cost 30 Dffm?3

(€] Limiting average crest-level decline (0,00) m/unit time
0o.05 5th percentile average crest-level decline .033B m/unit time
0o.50 50th percentile average crest-level decline  .0438 m/unit time
0o.95 95th percentile average crest-level decline  .057 m/unit time
v Shape parameter of (§| v, W) 35.86

o Scale parameter of [@|v, L) 1511

E(0) Mean of average crest-level decline .003 my/unit time
E(0/A) Mean of average crest-level decline .0P6 m/year
Var(®) Variance of average crest-level decline 55105 (m/unit time)?
a Parameter nonlinear crest-level decline .98

b Parameter nonlinear crest-level decline 3

ho Crest-level height before heightening 48 m

h Crest-level height of the dike section (hg,00) m

| Length of the dike section 1000 m

w Crest width of the dike section 7 m

s Failure level of the dike section B m

y h—s (0,00) m

— Ground level(or terrain level 1 m +NAP

© Angle of the inner slopé€l:3) 0.32 radians

) Angle of the outer slopél:3) 0.32 radians
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The present Dutch dike design results in a design water leveB6fid and a
dike heightening to cope with crest-level decline 3@ m Using the formulas in
van Noortwijk et al [14], we choose the failure level such that the probability of
exceeding the design water level during an inspection interval of 5 y@hen the
failure level has not been crossed at the previous inspedtidme at most (1 per
year, that is we chooses = 3.30+ 0.14 = 3.44 m Note that the value of the failure
level sdoes not affect the overall result of the optimization

The expected crest-level decline with sums of increments being linear or non-
linear in time under a condition-based maintenance strategy are displayed in Fig-
ure 2 when a 5-yearly inspection reveals that the dike section has fatlesl
heightened up t0.80 m When a larger dike heightening is choséme expected
deterioration curves in Figure 2 are shifted upward accordingly

For economic reasonthe decision-maker can best choose a dike heightgning
whose expected discounted costs over an unbounded hpEgox( @, y)), are min-
imal. In Figure 3 the expected discounted costs over an unbounded horizon are
shown as a function of, for expected crest-level decline being linear and nonlinear
in time. The optimal decisioysatisfying Eq(8) underlinear crest-level declings
y* = 0.86 m ot equivalentlyh* = 4,30 m with expected discounted costs over an
unbounded horizon of.89 X 10° Dutch guildersthe corresponding mean lifetime

4.6 T T T T T T

4.4f i
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T
+ O
o
o

Dike height [metre]
w
© »
T T
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o
+
+ o
o
1 1

Il
[2)
T
+

3 1 1 1 1 : A 1
0 10 20 30 40 50 60
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FIGURE 2. The expected dike height in the event of expected crest-level decline
being linear(o) and nonlineak+) in time; each dike heightening brings the crest
level back toh = 4.30 m
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FIGURE 3. The expected discounted costs of dike heightening over an unbounded
time horizon in the event of expected crest-level decline being linear and nonlinear
in time for the Dutch “Oostmolendijk

is 36 years The optimal decisionsatisfying Eq (8) undernonlinear crest-level
declingisy* = 1.08 m ot equivalentlyh* = 4.52 m with expected discounted costs
over an unbounded horizon oft® X 10° Dutch guildersthe corresponding mean
lifetime is 96 yearsThe main reason the optimal dike heightening is larger for
nonlinear decline than for linear decline is that the variable cost of dike heightening
depends on the rate of crest-level decliwdich is smaller in the event of nonlinear
decline after exceeding the failure levete Fig?2). In Figure 3 it can be seen that
the larger the dike heightening the higher the initial cost of investmeritut the
lower the future discounted cost of dike heightening

As there are only two data points available covering a period of 20 yiesrsot
recommended to extrapolate the expected crest-level decline over a very large pe-
riod (such as the mean lifetime of 96 years in the event of optimal dike heightening
under nonlinear crest-level declind herefore we suggest choosing the optimal
dike heightening decision under linear crest-level dedlireg y* = 0.86 m) rather
than to choose the present heightening decigienl.30 — 0.14 = 1.16 m As soon
as more data become availafttee parameters of the decision model under nonlin-
ear crest-level decline can be adjusted and the nonlinear model can be used

The sensitivity of the optimal dike heightening under linear crest-level decline
to the choice of the unit tima is investigated in Figure:4/* hardly depends on.
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FIGURE 4. The expected discounted costs of dike heightening over an unbounded
time horizon for different units of tima in the event of expected crest-level decline

being linear in time

Furthermorefrom Table 2 we see that the smaller the expected average rate of
linear crest-level declinghe smaller the optimal dike heighteniggand the larger

the mean time between two dike heighteningste that the average rate of crest-
level decline in The Netherlands is abou580.7 cm/year in the lower river area
and about B-05 cm/year in the upper river are&or the “OostmolendijK this
average rate is about®cm/year

TaBLE 2. Optimal Dike Heightenings and the Corresponding Mean Times
Between Dike Heightenings for Different Expected Average Rates
of Linear Crest-Level Decline

E(®/A) (1072 m/yea

0.50 100 150 200 260

Optimal dike heightening* (m) 0.31 049 063 074 086
Mean time to dike heighteningears 84 71 49 42 38
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Ficure 5. The probability of failure per unit time in the event of expected crest-
level decline being linego) and nonlineaft+) in time wheny = 0.86 manch=s+
y=430mattime 0

Wheny = 0.86 m at time Qthe expected probabilities of failure per unittime can
be determined by integrating Eq40) and(17) over®. These discrete probability
functions are shown in Figure Bhe mean time between two dike heighteningsis 23
units of time(38 years for linear decline and 30 units of tim@®1 year$ for non-
linear declingwhile taking into account that dike heightenings can only take place
at times of inspection

6. CONCLUSIONS

In this paperwe have presented a decision model for determining dike heightenings
that optimally balance the initial cost of investment against the future cost of main-
tenanceAs decision criterionwe have used the expected discounted costs over an
unbounded time horizon important starting point is the probability distribution
of the rate of crest-level declifa combination of settlemergubsoil consolidation
and relative sea-level rise

We have investigated two types of monotone crest-level deatixgected de-
cline being linear in time and expected decline being nonlinear in. tioelinear
decline we have regarded the deterioration process as a generalized gamma.process
For this processwe can always find a uniform time partition such that the joint
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probability density function of the increments is a mixture of conditionally indepen-
dent exponential densities with equal meahgreat advantage of exponentially
distributed increments is that the expected discounted costs over an unbounded ho-
rizon can be expressed in explicit form when the average rate of crest-level decline
is given(which facilitates the algebraic manipulations consideralfigr nonlineayr
strictly monotone declineve have similarly regarded the joint probability density
function of the increments as a mixture of conditionally independent exponential
densities with different meangvhich model to use depends on the deterioration
data

With respect to the case study on the Dutch “Oostmoletidijle can conclude
that the value of the optimal dike heightening is sensitive to the rate of crest-level
decline(also whether being linear or nonlinear in timbut it is insensitive to the
unit time for which the increments are distributed according to a mixture of expo-
nential densities

The maintenance models that are presented in this paper have the following
advantagesThey enable optimal dike heightening decisions to be determined under
uncertaintythey estimate how much money is needed for the future maintenance of
dikes they do not assume that dikes may riae in the case of the Brownian motion
with drift model), they are based on random quantities that can be obs¢vzd
increments of crest-level declipend they can be expressed in explicit form when
the limiting average rate of crest-level decline is given
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APPENDIX

THEOREM 1: Suppose the infinite sequence of random quantifiesi € N} is | -isotropic
and X,= >, D, foralln €N, then

E([XJ ] mI[O,y](Xn—l) I(y,oo)(xn)|0)

BEN jon+iy 1 Xn—l oy
o el () o

forj,n=212,...,j=n,m=0,12,...,y € (0,00), where h(x) = 1if x € Aand \(x) = 0O if
X & A.

Proor: SinceX, = >, D; for all n € N, it follows that the integration bounds are deter-
mined byX; = X;_; = --- = X; = 0. Moreover X,_; = y andX,, >y, wheren = j, and the
Jacobian equals. Hence we may write

E([Xi]ml[o,y](xnfl)l(y,oo)(xn) ‘9)

L[ [ )
= —exp| —— ) dx; --- dx. (20
x=yJx 1=y Xa=y Jxq 1=0 x=0Jx,=0 0’ P\7e )™ % (29

X1=
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This multiple integral can be solved in the following wa¥ye Dirichlet integral gives

[
1dx; -+ dx._, = —— 21
A A R (R 1] (21)
and
Xj Xp+1 [Xj _ y]j—n
1dx. -+ - dx_q = —————. 29
J;J 1=y J;(n:y o 5o (] - n)! ( )

By applying the transformatioin= (x; — y)/6 and using the binomial formula and the gamma
function, we obtain

f xMx —y]i " exp<—;’> dx;
Xi =y

J

m /m
=> < i >ym‘0‘+j“*11“(i +j—-n+1) exp(—%). (23)
i=0
Finally, combining Eqs(20)—(23) proves the theorem u

THEOREM 2: LetB; > Ofori=1,...,nandB; # Bj unless i=j,n € N, then

j : j
> ,# = > B (24)
H [1-Bn/B]1 "

Proor: Suppose thab,,...,D; are independent random quantities and bahas an ex-
ponential distribution with mea; 6, i = n,...,j. On the one handwe have simply
I_,E(Dj|#) = >!_,B;0. On the other handve can use Eq(14) to write

i oo i i 0
E(E Di0> :f Pr{E Di>x|0} EJB— u
i=n x=0 i=n i=n 1—[ [1 ,Bh/B ]
=n, h#i
THEOREM 3: Suppose the random quantitifi3;: i € N} are exponentially distributed with

meang; 0, whereg; # 8; unless = j, and conditionally independent wheéis given Let X, =
>, D foralln €N, then

E([Xj]ml[o,y](xnfl) I(y,oo)(Xn)|0)
1
]
IT [1-Bw/B1"
h=n, h#i

Il
-

E( ) YyR(BiO) K PH{ X1 =Y, X, > Y6},

Il
=]
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where
PrXys =y %> yih= 3 PP enp( - ), (26)
S | B E WY !
h=1 h#i
forj,n=212,...,j=n,m=0,12,...,y € (0,00), where h(x) = 1if x € Aand (x) = 0 if
XE& A

Proor: SinceX, = >, D; for all n € N, it follows that the integration bounds are deter-
mined byX; = X;_1 = --- = X; = X = 0. Moreover X, 1 = yandX, >y, wheren = j, and
the Jacobian equals By using

ﬁ__i_ﬁﬁ:l(i_— ! )xi, 27)

we may write

E([X 1M 0,y1(Xn—1) L (y,00) (Xn) [0)

S N S W e )
_eXp —
X =y Y X_1=Y Xp=Y 7 Xn-1=0 Xo=0x;= OB] B]

xH—ex[ <1 1>X]dx - dx, (28)
|1B| p BI B|+1 v Xj

This multiple integral can be solved in four steps
First, by applying the transformatiody = x; — x;_1, i = 1,...,n — 1, and subsequently
using Egs(27) and(14), we find

[ L e (5 an)s
f fy %h;is "ljllgi p[_<§i_a)%]d6"1md81

3n-1=0

= ol (1-pB, 1 1)y
(H[l B./B]){ = A <1 mw.)exp[ <B. m)e]}
O exp[ (;_é)y} 29
RIS "

Secondby applying the transformation = x; —y,i = n,...,j — 1, and using Eq(29), we
obtain

[0 L tgged (5 )y oo
e (55 )7 %(:é%y]-
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Third, by applying the transformatian= (x; —y)/(Bi6),i =n,..., |, and using the binomial
formula and the gamma functipthe one-dimensional integral overcan be written as

J e / n0 X'_y
$ el )}f - < JB_G)dx,.
H 1= Bn/Bi] 7 '
i—exp{ LD, i( > mK(Bi6) (31)
H [1-B0/B1°
Finally, combining Eqs(28)—(31) proves the theorem n
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