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To protect the Dutch polders against flooding, more than 2500 km of dikes have
been constructed+ Due to settlement, subsoil consolidation, and relative sea-level
rise, these dikes slowly sink “away into the sea” and should therefore be heightened
regularly~at present, every 50 years!+ In this respect, one is interested in safe and
cost-optimal dike heightenings for which the sum of the initial cost of investment
and the future~discounted! cost of maintenance is minimal+

For optimization purposes, a maintenance model has been developed for dikes
subject to uncertain crest-level decline+ On the basis of engineering knowledge,
crest-level decline has been modeled as a monotone stochastic process with ex-
pected decline being either linear or nonlinear~i+e+, linear after transformation! in
time+ For both models and for a particular unit time, the increments are distributed
according to mixtures of exponentials+

In a case study, the maintenance decision model has been applied to the prob-
lem of heightening the Dutch “Oostmolendijk+”
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1. INTRODUCTION

To protect the Dutch polders against flooding, a network of dikes, dams, and barriers
has been constructed+ For the largest part, this network consists of dikes at a total
length of more than 2500 km+ In order to provide for the long-term safety, these dikes
have to be maintained on the basis of 5-yearly inspections as laid down in the Dutch
Flood Protection Act+ Unfortunately, due to a combination of settlement, subsoil
consolidation, and relative sea-level rise~denoted bycrest-level decline!, the dikes
slowly sink “away into the sea” and should therefore be heightened and strengthened
regularly+ In this paper,we present a probabilistic model that enables us to determine
safe dike heightenings for which the cost of maintenance is minimal+

Given the acceptable probability of failure of a dike section, its crest height is
currently determined on the basis of the design water level plus a safety margin
~needed to cope with possible wave run-up, gust and squall oscillations, seiches, and
crest-level decline during 50 years!+ The present Dutch dike design prescribes dikes
to be heightened every 50 years, which, however, might not be economical+ For
details on the Dutch flood protection program, see, for example, Vrijling @18# +

In this paper, we present a new probabilistic model for determining safe dike
heightenings that optimally balance the initial cost of investment against the fu-
ture cost of maintenance+ The basic idea behind our model comes from van Dantzig
@13# and differs from the latter in the sense that we regard crest-level decline as a
stochastic process rather than as a deterministic number+ Moreover, we consider
condition-based preventive maintenance~carried out at times determined by 5-yearly
dike inspections! rather than time-based preventive maintenance~carried out at
predetermined repair times!+ Furthermore, in contrast with van Dantzig’s model,
our model only includes the cost of maintenance, not the cost of possible flood-
ing+ van Dantzig’s model was extended by Vrijling and van Beurden@19# , who
assumed the average rate of crest-level decline to be uncertain+

In essence, van Dantzig optimizes design water levels, whereas we optimize
dike heightenings to cope with uncertain crest-level decline when these design water
levels are given+ The advantage of determining design water levels and dike height-
enings separately is that design water levels do not solely result from economic
considerations, but also from political considerations+

By combining van Dantzig’s flood model and our maintenance model, deter-
mining an optimal dike height on the basis of economic~and0or political! consid-
erations can proceed as follows:

• First, the optimal design water level of a dike section is obtained on the basis
of an economic optimization using van Dantzig’s model and0or political con-
siderations+ This design water level is optimal in the sense that it balances the
initial cost of heightening all dike sections up to the design water level against
the future cost of flooding+ Note that settlement, subsoil consolidation, and
relative sea-level rise arenot includedin this optimal design water level+

• Second, the optimal dike heightening to cope with crest-level decline is ob-
tained on the basis of an economic optimization using the maintenance model
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proposed in this paper+ This dike heightening is optimal in the sense that it
balances the initial cost of heightening a dike section from the design water
level up to the desired dike height against the future cost of maintenance+Note
that settlement, subsoil consolidation, and relative sea-level rise areincluded
in the optimal dike heightening+

• Third, the optimal dike height equals the sum of the optimal design water
level and the optimal dike heightening+

To account for possible crest-level decline in a period of 50 years, dike heights
are nowadays designed on the basis of average rates of crest-level decline+ In order
for the stochastic process of crest-level decline to be based on its~uncertain! limiting
average rate, we consider it as a generalized gamma process+

A gamma process is a stochastic process with independent nonnegative incre-
ments having gamma distributions with given scale parameters and shape param-
eters proportional to the length of the time interval over which the increments are
taken+ A generalized gamma process is then defined as a scale mixture of gamma
processes, where the scale parameter can be interpreted as the unknown limiting
average rate of crest-level decline+ Note that the Brownian motion with drift~a
stochastic process with stationary independent decrements and increments having a
Normal distribution! is not applicable in this context, since we must require that the
increments are nonnegative+

A great advantage of modeling deterioration as a generalized gamma process is
that we can always find units of time of equal length for which the increments are
distributed according to a mixture of exponential probability densities~which facil-
itates the algebraic manipulations considerably!+On the basis of generalized gamma
processes, tailor-made decision models have been built and implemented to opti-
mize maintenance of the seabed protection of the Eastern Scheldt barrier, beaches,
and berm breakwaters~see van Noortwijk and colleagues@14–17#!+

In addition to the generalized gamma process, with expected decline being lin-
ear in time, we study a monotone stochastic process with expected decline being
nonlinear in time+ The latter process has been derived from a physical law which is
well accepted by engineers in soil mechanics: the law of settlement and subsoil
consolidation of Terzaghi and Koppejan@7# + In doing so, we base our probabilistic
model on well-known engineering knowledge, an approach which has recently been
proposed by Barlow@1# and Mendel@10# +

For the purpose of finding an optimum balance between the initial cost and the
future cost,which is the area of life-cycle costing,we can best use the criterion of the
expected discounted costs over an unbounded time horizon~for a discussion, see van
Noortwijk and Peerbolte@16# !+ These costs can be determined by applying the dis-
crete renewal theorem,where the renewals are the events at which a dike is heightened+

The paper is organized as follows+ The cost of one dike heightening, propor-
tional to the increase in dike volume, is presented in Section 2+ In Sections 3 and 4,
analytic expressions are derived for the expected discounted costs over an un-
bounded horizon under linear and nonlinear crest-level decline, respectively+ The

OPTIMAL MAINTENANCE DECISIONS FOR DIKES 103

https://doi.org/10.1017/S0269964800141087 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964800141087


maintenance model is applied to the Dutch “Oostmolendijk” in Section 5+ Section 6
ends with some conclusions+ Necessary theorems can be found in the Appendix+

2. THE COST OF ONE DIKE HEIGHTENING

In modeling the maintenance of dikes,we make a distinction between the initial dike
heightening and the future dike heightenings due to crest-level decline+ The initial
dike heightening entails heightening the crest levelandbroadening the base,whereas
the future dike heightenings leave the base unchanged~see Fig+ 1!+ Determining the
cost of heightening dikes is the subject of study in this section+

For each dike heightening, the cost can be subdivided into the fixed costcf ~cost
of mobilization and road reconstruction! and the variable costcv ~cost per cubic
meter of dike volume!+ By using the schematized cross section in Figure 1, the dike
volume is a quadratic function of the dike heighth ~in meters! in the following way:

v~h! 5 wlh 1
l

2S 1

tan~w!
1

1

tan~v!
Dh2 5 v1h 1 v2h2 (1)

in cubic meters~m3!,whereh is the crest level,w is the crest width, l is the length of
the dike section, andw andv are the angles of the inner slope and the outer slope,
respectively+

The costs of initially heightening the dike fromh0 up toh m and changing the
base width accordingly, whereh0 , h, are simply

c0~h! 5 cf 1 cv @v~h! 2 v~h0!# + (2)

van Dantzig@13# approximated Eq+ ~1! by a linear function ofh, although he ac-
knowledged that his approximation is not valid for largeh: Indeed, the higher the
dike, the broader the base that is required+

Similarly, the costs of future heightenings to annul a crest-level decline ofx m,
while keeping the base width unchanged, can be written as a linear function ofx ~see
Fig+ 1!:

cf 1 cv Iv~h, x! 5 cf 1 cvFwl 1
hl

2 S 1

tan~w!
1

1

tan~v!
DGx 5 cf 1 cv Iv1~h!x, (3)

whereh, w, l, w, andv are defined as in Eq+ ~1!+

3. LINEAR CREST-LEVEL DECLINE

3.1. The Stochastic Process of Crest-Level Decline

In this subsection, a probabilistic model for the process of crest-level decline is
derived based on the unknown limiting average rate+ The nondecreasing stochas-
tic process is denoted by$X~t! : t $ 0%, whereX~t! represents the cumulative max-
imum amount of crest-level decline at timet andX~0! 5 0 with probability 1+ For
every uniform time partition in time intervals of lengtht . 0, Di ~t! 5 X~it! 2
X~ @i 2 1#t! $ 0, i [ N+
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Furthermore, due to the lack of data, we judge the infinite sequence of incre-
ments$Di ~t! : i [ N% to beexchangeable~i+e+, the order in which the increments
occur is irrelevant!+ In mathematical terms, exchangeability means that the proba-
bility density function of the random vector~D1~t!, + + + ,Dn~t!! is invariant under all
n! permutations of the coordinates; that is,

pD1~t!, + + + ,Dn~t!~d1, + + + ,dn! 5 pD1~t!, + + + ,Dn~t!~dp~1! , + + + ,dp~n! !, (4)

wherep is any permutation of 1, + + + ,n, for all n [ N and t . 0+ The notion of
exchangeability is weaker than the notion of independence+

In order for a stochastic deterioration process with nonnegative exchangeable
increments to be based on the unknown limiting average rate, van Noortwijk et al+
@15# have argued that it can best be regarded as ageneralized gamma process+ In
fact, the generalized gamma process can be characterized by conditioning on sums
of increments,while achieving consistency in the sense that probability distributions
of increments and sums of increments belong to the same family of distributions,
and by assuming the probability model to be independent of the scale of measure-
ment~i+e+, to be a scale mixture!+

For the generalized gamma process, the joint probability density function of the
incrementsD1~t!, + + + ,Dn~t! is given by a mixture of conditionally independent
gamma densities:

pD1~t!, + + + ,Dn~t!~d1, + + + ,dn! 5E
0

`

)
i51

n di
at21

G~at!
Sat

u
Dat

expS2
atdi

u
D dPQ~t!~u! (5)

for some constanta . 0 with

E~X~nt!! 5 E~nQ~t!!,

Var~X~nt!! 5 S11
1

nat
DE~ @nQ~t!# 2 ! 2 @E~nQ~t!!# 2 (6)

Figure 1. The cross section of a dike before and after heightening: the initial dike
heightening fromh0 up toh m ~left! and a future dike heightening ofx m ~right!+
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for all t . 0, provided the first and the second moment of the probability distribution
of Q~t! exist+ By the strong law of large numbers for exchangeable random quan-
tities, the probability distributionPQ~t! of the random quantityQ~t! represents the
uncertainty in the unknown limiting average amount of crest-level decline per time
interval of lengtht: limnr` @~(i51

n Di ~t!!0n#+
Auseful property of the generalized gamma process is that the mixture of gamma

densities in Eq+ ~5! transforms into a mixture of exponential densities ift 5 a21:

pD1~a21 !, + + + ,Dn~a21 !~d1, + + + ,dn! 5E
0

`

)
i51

n 1

u
expS2

di

u D dPQ~u! 5 fnS(
i51

n

diD, (7)

where~d1, + + + ,dn! [ R1
n and zero otherwise, for R1 5 @0,`!+ The infinite sequence

of random quantities$Di ~a
21! : i [ N% is said to bel1-isotropic~or l1-norm sym-

metric!, since its distribution can be written as a function of thel1-norm ~see Mis-
iewicz and Cooke@11# !+Given the value of thel1-norm~or the average deterioration!,
this means that the decision-maker is indifferent to the way this norm is obtained+ In
other words, all combinations leading to the samel1-norm have the same degree of
belief for our decision-maker~for details, see Barlow and Mendel@2# and van
Noortwijk et al+ @14# !+

The unit time for which the increments of crest-level decline arel1-isotropic can
be obtained, for example, by specifying the variance of the generalized gamma pro-
cess in Eq+ ~6!+ For fixed t . 0, the smaller the unit-time length for which the
increments arel1-isotropic; that is, the smallerD 5 a21, the more deterministic the
deterioration process+ As we shall see in Section 3+2, for this unit-time length, de-
noted byD 5 a21,many probabilistic properties of the stochastic deterioration pro-
cess, like the probability of exceedence of a failure level, can be expressed in explicit
form conditional on the limiting average+

In conclusion, we advocate regarding the stochastic process of crest-level de-
cline as a generalized gamma process with probability distribution on the limiting
average rate of crest-level decline+ To keep the mathematics of the decision model
tractable, we impose the property ofposterior linearityintroduced by Diaconis and
Ylvisaker@4# @i+e+, E~X~2t!6D1~t! 5 d1! 5 c1d1 1 c2 for some constantsc1,c2 . 0
andt . 0# +Note that, due to exchangeability, before observingD1, E~D2! 5 E~D1!+
If posterior linearity holds, then the mixing distribution in Eq+ ~5! is an inverted
gamma distribution~see Diaconis and Ylvisaker@4# !+ The mathematical tractability
is especially useful if one wants to update the prior distribution of the limiting av-
erage rate of crest-level decline with actual observations+ In fact, using Bayes’ theo-
rem, the posterior distribution is also an inverted gamma distribution+

From now on,we consider increments of crest-level decline that arel1-isotropic
with respect to the units of time$~ @i 21#D, iD# : i [ N%+ For notational convenience,
let Di 5 Di ~D! andXn 5 (i51

n Di for all n [ N, and letQ represent the uncertainty in
the limiting average rate of crest-level decline, limnr` @~(i51

n Di !0n# , with proba-
bility density function

Ig~u6n,µ! 5 @µn0G~n!#u2~n11!exp~2µ0u! I~0,`!~u!+
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The statistic@n,(i51
n Di # is sufficient forQ+ The mean and the variance ofXn are

E~Xn! 5 nE~Q! and Var~Xn! 5 E~nQ2! 1 Var~nQ!, respectively+

3.2. The Expected Discounted Cost of Dike Heightening

The 1995 Dutch Flood Protection Act prescribes the dikes be inspected every 5
years+ For this reason, we assume the dike section to be periodically inspected at
times$ jkD : j [ N% for fixedk [ N,wherekD55 years+Each heightening brings the
dike section back into its “as good as new state+” Therefore, we may consider the
maintenance process as a renewal process, where each renewal cycle ends at an
inspection timejkD when the inspection reveals that the dike section should be
heightened~for somej [ N!+We assume that inspection of the dike takes negligible
time and does not degrade the dike+

In this paper, the failure levels is defined as the design water level plus a small
safety margin needed to cope with wave run-up, oscillations, seiches, and crest-level
decline during an inspection interval of 5 years~not 50 years as in the present dike
design!+ Failure is then defined as the event in which a dike height drops below the
failure levels; it can only be noted through inspection+When inspection reveals that
the crest level of a dike section is lower than the failure levels, it should be height-
ened+ Note that a failure need not imply a collapse: A failed dike section only col-
lapses when the applied water level exceeds the actual dike height+

Let y 5 h 2 s represent the decision to choose the dike to bey m higher than
its failure levels and let the times at which the failure level is first crossed be
conditionally independent random quantities having a discrete probability func-
tion pi ~u, y! and associated repair costci ~u, y!, with respect to the units of time
$~ @i 2 1#D, iD# : i [ N%, when the limiting average rate of crest-level decline isu
and the decision-maker chooses the dike to bey m higher than its failure levels+

To obtain optimal maintenance decisions in uncertainty, we use statistical de-
cision theory~see DeGroot@3, Chap+ 8# !+ Let La~u, y! be the~monetary! loss when
the decision-maker chooses the dike to bey m higher than its failure levelsand the
limiting average rate of crest-level decline is given byu+ The decision-maker can
best choose decisiony* for which the expected loss is minimal+ A decisiony* is
called anoptimal decisionor aBayes optimal decisionwhen

E~La~Q, y* !! 5 min
y[~h02s,`!

E~La~Q, y!!+ (8)

Such optimal maintenance decisions are also known as Bayes adaptive maintenance
policies~see, e+g+,McCall @8# !: They can be revised in the light of new observations
by replacing the prior distribution of the limiting average rate of crest-level decline
with the posterior distribution+

Because determining optimal dike heightenings actually means balancing the
initial cost against the future cost, the criterion of discounted costs can best serve as
a loss function~for a discussion, see van Noortwijk and Peerbolte@16# !+ The ex-
pecteddiscounted costs over an unbounded horizoncan be determined by summing
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the expected discounted values of the costs over an unbounded horizon, where the
discounted value of the costcn in unit time n is defined to beancn with discount
factora 5 @11 ~r0100!#21 and discount rater % ~r . 0!:

La~u, y! 5 c0~s1 y! 1

(
j51

`

a jk (
i5~ j21!k11

jk

ci ~u, y!pi ~u, y!

12 (
j51

`

a jk (
i5~ j21!k11

jk

pi ~u, y!

, (9)

where the initial costc0~s1 y! stems from Eq+ ~2!+ Equation~9! follows from the
discrete renewal theorem~see van Noortwijk and Peerbolte@16# !+ Note that we
cannot use the criterion of the expected average costs per unit time, because the
contribution of the initial cost to the average costs would be completely ignored@i+e+,
limnr`c0~s1 y!0n5 0# + The expected nondiscounted costs over a bounded horizon
~0,n# cannot be applied either, because the dike-heightening decisions would then
depend on the length of the time horizonn+ The criterion of the expected discounted
costs over an unbounded horizon has also been used successfully by van Dantzig
@13# +

The mixture of exponential densities of Eq+ ~7! enables us to express various
probabilistic properties in explicit form whenu is given+ For the purpose of optimal
dike heightening, two probabilistic properties are needed: ~i! the probability of ex-
ceedence of the failure level in unit timei and~ii ! the expected cost of dike height-
ening due to exceedence of the failure level in unit timei+ These two properties are
derived in Theorem 1~see the Appendix!+

First, the conditional probability of exceedence of the failure level in unit time
i, when the limiting average crest-level decline isu and when the decision-maker
chooses the dike to bey m higher than its failure levels, can be written as

pi ~u, y! 5 Pr$Xi21 # y, Xi . y6u% 5
1

~i 2 1!! S y

u
Di21

expS2
y

u
D (10)

for i 51,2, + + + , andu, y . 0+ This discrete probability function can be recognized as
the Poisson distribution with mean lifetime 11 ~ y0u! and variancey0u+

Second, the expected costs of dike heightening due to exceedence of the failure
level in unit timei, when the limiting average crest-level decline isu and when the
decision-maker chooses the dike to bey m higher than its failure levels, can be
written @using Eq+ ~3!# as

E~ @cf 1 cv Iv1~s1 y!Xjk# I@0, y#~Xi21! I~ y,`!~Xi !6u!

5 $cf 1 cv Iv1~s1 y!@ y 1 ~ jk 2 i 1 1!u#%pi ~u, y! 5 ci ~u, y!pi ~u, y! (11)

for i 5 ~ j 2 1!k 1 1, + + + , jk, wherej,k 5 1,2, + + + , andu, y . 0+
In conclusion, the expected discounted costs over an unbounded horizon can be

obtained by substituting Eqs+ ~10! and~11! into Eq+ ~9! and by taking the expectation
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with respect to the probability distribution ofQ+ The optimal dike heightening fol-
lows from Eq+ ~8! ~for an example, see Section 5!+

4. NONLINEAR CREST-LEVEL DECLINE

4.1. The Stochastic Process of Crest-Level Decline

Although the assumption of expected crest-level decline being linear in time is quite
reasonable when data are lacking, the question arises of how to proceed when data
give evidence of an expected decline being nonlinear in time+ In order to investigate
the sensitivity of the optimal dike heightening to different rates of crest-level de-
cline, we also consider stochastic processes with nonnegative, but nonexchange-
able, increments+

Engineering knowledge suggests the expected crest-level decline to be a loga-
rithmic function of time+ Recall that the process of crest-level decline is a combina-
tion of settlement, subsoil consolidation, and relative sea-level rise+

Settlement and subsoil consolidation has thoroughly been studied by Koppejan
@7# +With empirical experiments, he showed that a large timet after increasing the
stress fromp1

' to p2
' , the thickness of a compressed layer of sand or clay behaves

according to the so-called formula of Terzaghi and Koppejan:

z~t! 5 z0S 1

Cp

1
1

Cs

ln~t!

ln~10!D lnS p2
'

p1
' D, (12)

where

z0 5 the initial thickness of the layer~m!,

z~t! 5 the thickness of the compressed layer at timet ~m!,

Cp 5 primary compression constant,

Cs 5 secondary compression constant,

t 5 time ~s!,

p1
' 5 initial stress~N0m2!,

p2
' 5 increased stress~N0m2!+

Relative sea-level rise has probably the following causes: melting of glaciers,
changes in the Greenland and theAntarctic ice caps, thermal expansion of the oceans,
and, for The Netherlands, readjustment of the earth crust due to the melting away of
the Fennoscandian ice cap about 10,000 years ago+ The estimates of the relative
sea-level rise for the next century vary between 20 and 120 cm, with a best estimate
of 60 cm~see Houghton et al+ @5# , van Dantzig@13# , and Vrijling and van Beurden
@19# !+

In order to preserve the mathematical tractability in determining the expected
discounted costs, when transforming linear decline into nonlinear decline, we link
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up with a stochastic process havingl1-isotropic increments in the following way+ Let
us consider an infinite sequence of random quantities$Di : i [ N% that is transformed
l1-isotropic in the sense that the probability density function of the random vector
~D1, + + + ,Dn! can be written as a function of the statistic(i51

n Di 0bi for all n [ N:

pD1, + + + ,Dn
~d1, + + + ,dn! 5E

0

`

)
i51

n 1

bi u
expS2

di

bi u
D dPQ~u! 5 fnS(

i51

n

di 0biD (13)

for ~d1, + + + ,dn! [ R1
n and zero otherwise, wherebi . 0 for i 5 1, + + + ,n andbi Þ bj

unlessi 5 j+ The conditional cumulative distribution function of the sumXn 5

(i51
n Di , when u is given, is called the general Erlang or general gamma

distribution:

Pr$Xn # x6u% 5 1 2 (
i51

n 1

)
j51, jÞi

n

@12 bj 0bi #

expS2
x

bi u
D+ (14)

This probability distribution has been used in theories of radioactive decay, queue-
ing, reliability, and psychology~see, e+g+, Jensen@6# and McGill and Gibbon@9# !+

In order that the expected deterioration be a logarithmic function of time~for
large values of time!,we setbi 5a0~b1 i 21! for all i [ N,wherea,b. 0+ For large
n @viz+ for large timet in Eq+ ~12!# , the expected crest-level decline conditional onu
can then be written as

E~Xn6u! 5 F(
i51

n

a0~b 1 i 2 1!Gu ' a@ ln~n! 2 c~b!#u (15)

as n r `+ The so-calleddigamma functionor Euler’s psi functionc~b! can be
negative1 ~see Nielsen@12, Sect+ 5# !+ In specifying the parametersa andb, settle-
ment, subsoil consolidation, and relative sea-level rise must be incorporated+

The mixture of conditionally independent exponentials with different means,
Eq+ ~13!, converges to the mixture of conditionally independent exponentials with
equal means,Eq+ ~7!, asbi r 1 for all i 51, + + + ,n+ Therefore, it is convenient that the
incrementsDi , i [ N, are defined with respect to the same units of time~of lengthD!
as for thel1-isotropic increments in Section 3+1+The mean and the variance ofXn are
E~Xn! 5 (i51

n bi E~Q! and Var~Xn! 5 E~Var~Xn6Q!! 1 Var~E~Xn6Q!!, respectively+

4.2. The Expected Discounted Costs of Dike Heightening

In a similar way as was done for linear expected crest-level decline~Section 3!, we
can determine two important probabilistic properties for nonlinear expected crest-
level decline: ~i! the probability of exceedence of the failure level in unit timei and
~ii ! the expected costs of dike heightening due to exceedence of the failure level in

1 For the digamma function,which is defined byc~x! 5 G'~x!0G~x!,we havec~x! # 0 for 0, x# x0 and
c~x! . 0 for x . x0, wherex0 ' 1+462+
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unit timei+Conditional on the limiting weighted averageQ, these two properties are
derived in Theorem 3~see the Appendix!+

First, the conditional probability of exceedence of the failure level in unit time
i,when the limiting weighted average isu and when the decision-maker chooses the
dike to bey m higher than its failure levels, can be written as

pi ~u, y! 5 (
m51

i bi 0bm

)
h51,hÞm

i

@12 bh0bm#

expS2
y

bmuD (16)

for i 5 1,2, + + + , andu, y . 0+ Whenbi 5 a0~b 1 i 2 1! for all i [ N, this discrete
probability function simplifies to the negative binomial distribution with parameters
12 exp@2y0~au!# andb ~see Jensen@6# !:

pi ~u, y! 5 Sb 1 i 2 1 2 1

i 2 1 DF12 expS2
y

auDG i21FexpS2
y

auDGb

, (17)

for i 51,2, + + + , andu, y. 0,with mean lifetime 11b$exp@ y0~au!#21% and variance
b exp@ y0~au!#$exp@ y0~au!# 2 1%+

Second, the expected costs of dike heightening due to exceedence of the failure
level in unit timei, when the limiting weighted average isu and when the decision-
maker chooses the dike to bey m higher than its failure levels, can be written as@by
using Eq+ ~3!, and Theorems 3 and 2 in the Appendix#

E~ @cf 1 cv Iv1~s1 y!Xjk# I@0, y#~Xi21! I~ y,`!~Xi !6u!

5 Fcf 1 cv Iv1~s1 y!Sy 1 (
h5i

jk

bhuDGpi ~u, y! 5 ci ~u, y!pi ~u, y! (18)

for i 5 ~ j 2 1!k 1 1, + + + , jk, wherej,k 5 1,2, + + + , andu, y . 0+
In conclusion, the expected discounted costs over an unbounded horizon can be

obtained by substituting Eqs+ ~17! and~18! into Eq+ ~9! and by taking the expectation
with respect to Ig~u6n,µ!, the inverted gamma distribution+ The optimal dike height-
ening follows from Eq+ ~8!+

5. CASE STUDY: THE DUTCH “OOSTMOLENDIJK”

The above decision model for optimal dike heightening has been applied to the
“Oostmolendijk,” a dike section with a length of 1000 m in the west of The Neth-
erlands+ The “Oostmolendijk” is located between the towns of Ridderkerk and
Hendrik-Ido-Ambacht, along the river Noord, and belongs to the dike ring IJssel-
monde+ In the last decades, the “Oostmolendijk” has been subject to extreme settle-
ment and subsoil consolidation: about 0+60 m in the period 1969–1981 and about
0+15 m in the period 1981–1989~unfortunately, only these two data points are avail-
able!+ In 1969, its crest-level height was about 5+20 m 1nap ~normal Amsterdam
level!, whereas the last dike heightening, in 1991, resulted in a crest-level height of
4+90 m 1nap ~the difference is due to reduction of the design water level by the
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Maeslant storm-surge barrier in the “Nieuwe Waterweg”!+With respect to the ground
level being 1 m1nap, the dike heighth was 3+90 m ~see Fig+ 1!+

For obtaining an optimal dike heightening for the “Oostmolendijk,” we use the
parameters in Table 1+ The unit time for which the increments of crest-level decline
are distributed as mixtures of exponentials~D 5 503 year! has been determined by
specifying the variance of the generalized gamma process in Eq+ ~6!+The probability
density function ofQ, the limiting average rate of crest-level decline per unit time,
has been obtained by assessing its 5th and 95th percentiles~i+e+, u0+05 and u0+95,
respectively, in Table 1!+ The expected crest-level decline in a period of 50 years is
1+30 m: 1+00 m is due to settlement and subsoil consolidation and 0+30 m is due to
relative sea-level rise+

Table 1. Parameters of the Dike Heightening Model
for the Dutch “Oostmolendijk”

Parameter Description Value Dimension

D Unit time 503 Year
k Inspection-interval length 3 Unit time
kD Inspection-interval length 5 Year
r Discount rate per year 5 %
a Discount factor per unit time 0+9219
cf Fixed cost 1+8 3 106 Dfl
cv Variable cost 30 Dfl0m3

Q Limiting average crest-level decline ~0,`! m0unit time
u0+05 5th percentile average crest-level decline 0+033 m0unit time
u0+50 50th percentile average crest-level decline 0+043 m0unit time
u0+95 95th percentile average crest-level decline 0+057 m0unit time
n Shape parameter of Ig~u6n,µ! 35+86
m Scale parameter of Ig~u6n,µ! 1+511
E~Q! Mean of average crest-level decline 0+043 m0unit time
E~Q0D! Mean of average crest-level decline 0+026 m0year
Var~Q! Variance of average crest-level decline 5+5 3 1025 ~m0unit time!2

a Parameter nonlinear crest-level decline 8+95
b Parameter nonlinear crest-level decline 3
h0 Crest-level height before heightening 3+44 m
h Crest-level height of the dike section ~h0,`! m
l Length of the dike section 1000 m
w Crest width of the dike section 7 m
s Failure level of the dike section 3+44 m
y h2 s ~0,`! m
— Ground level~or terrain level! 1 m 1nap
w Angle of the inner slope~1:3! 0+32 radians
v Angle of the outer slope~1:3! 0+32 radians
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The present Dutch dike design results in a design water level of 3+30 m and a
dike heightening to cope with crest-level decline of 1+30 m+ Using the formulas in
van Noortwijk et al+ @14# , we choose the failure level such that the probability of
exceeding the design water level during an inspection interval of 5 years, when the
failure level has not been crossed at the previous inspection, to be at most 0+1 per
year; that is, we chooses5 3+301 0+145 3+44 m+ Note that the value of the failure
level s does not affect the overall result of the optimization+

The expected crest-level decline with sums of increments being linear or non-
linear in time under a condition-based maintenance strategy are displayed in Fig-
ure 2; when a 5-yearly inspection reveals that the dike section has failed, it is
heightened up to 4+30 m+ When a larger dike heightening is chosen, the expected
deterioration curves in Figure 2 are shifted upward accordingly+

For economic reasons, the decision-maker can best choose a dike heighteningy
whose expected discounted costs over an unbounded horizon, E~La~Q, y!!, are min-
imal+ In Figure 3, the expected discounted costs over an unbounded horizon are
shown as a function ofy, for expected crest-level decline being linear and nonlinear
in time+ The optimal decision, satisfying Eq+ ~8! underlinear crest-level decline, is
y*5 0+86 m or, equivalently, h*5 4+30 m, with expected discounted costs over an
unbounded horizon of 3+093106 Dutch guilders; the corresponding mean lifetime

Figure 2. The expected dike height in the event of expected crest-level decline
being linear~o! and nonlinear~1! in time; each dike heightening brings the crest
level back toh 5 4+30 m+
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is 36 years+ The optimal decision, satisfying Eq+ ~8! undernonlinear crest-level
decline, is y*51+08 m or, equivalently, h*54+52 m,with expected discounted costs
over an unbounded horizon of 3+053 106 Dutch guilders; the corresponding mean
lifetime is 96 years+ The main reason the optimal dike heightening is larger for
nonlinear decline than for linear decline is that the variable cost of dike heightening
depends on the rate of crest-level decline~which is smaller in the event of nonlinear
decline after exceeding the failure level: see Fig+ 2!+ In Figure 3, it can be seen that
the larger the dike heighteningy, the higher the initial cost of investment, but the
lower the future discounted cost of dike heightening+

As there are only two data points available covering a period of 20 years, it is not
recommended to extrapolate the expected crest-level decline over a very large pe-
riod ~such as the mean lifetime of 96 years in the event of optimal dike heightening
under nonlinear crest-level decline!+ Therefore, we suggest choosing the optimal
dike heightening decision under linear crest-level decline~i+e+, y*5 0+86 m! rather
than to choose the present heightening decisiony5 1+302 0+1451+16 m+As soon
as more data become available, the parameters of the decision model under nonlin-
ear crest-level decline can be adjusted and the nonlinear model can be used+

The sensitivity of the optimal dike heightening under linear crest-level decline
to the choice of the unit timeD is investigated in Figure 4: y* hardly depends onD+

Figure 3. The expected discounted costs of dike heightening over an unbounded
time horizon in the event of expected crest-level decline being linear and nonlinear
in time for the Dutch “Oostmolendijk+”
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Furthermore, from Table 2, we see that the smaller the expected average rate of
linear crest-level decline, the smaller the optimal dike heighteningy* and the larger
the mean time between two dike heightenings+ Note that the average rate of crest-
level decline in The Netherlands is about 0+5–0+7 cm0year in the lower river area
and about 0+3–0+5 cm0year in the upper river area+ For the “Oostmolendijk,” this
average rate is about 2+6 cm0year+

Figure 4. The expected discounted costs of dike heightening over an unbounded
time horizon for different units of timeD in the event of expected crest-level decline
being linear in time+

Table 2. Optimal Dike Heightenings and the Corresponding Mean Times
Between Dike Heightenings for Different Expected Average Rates

of Linear Crest-Level Decline

E~Q0D! ~1022 m0year!

0+50 1+00 1+50 2+00 2+60

Optimal dike heighteningy* ~m! 0+31 0+49 0+63 0+74 0+86
Mean time to dike heightening~years! 84 71 49 42 38
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Wheny50+86 m at time 0, the expected probabilities of failure per unit time can
be determined by integrating Eqs+ ~10! and~17! overQ+ These discrete probability
functions are shown in Figure 5+The mean time between two dike heightenings is 23
units of time~38 years! for linear decline and 30 units of time~51 years! for non-
linear decline~while taking into account that dike heightenings can only take place
at times of inspection!+

6. CONCLUSIONS

In this paper,we have presented a decision model for determining dike heightenings
that optimally balance the initial cost of investment against the future cost of main-
tenance+ As decision criterion, we have used the expected discounted costs over an
unbounded time horizon+An important starting point is the probability distribution
of the rate of crest-level decline~a combination of settlement, subsoil consolidation,
and relative sea-level rise!+

We have investigated two types of monotone crest-level decline: expected de-
cline being linear in time and expected decline being nonlinear in time+ For linear
decline,we have regarded the deterioration process as a generalized gamma process+
For this process, we can always find a uniform time partition such that the joint

Figure 5. The probability of failure per unit time in the event of expected crest-
level decline being linear~o! and nonlinear~1! in time wheny5 0+86 m andh5 s1
y 5 4+30 m at time 0+
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probability density function of the increments is a mixture of conditionally indepen-
dent exponential densities with equal means+ A great advantage of exponentially
distributed increments is that the expected discounted costs over an unbounded ho-
rizon can be expressed in explicit form when the average rate of crest-level decline
is given~which facilitates the algebraic manipulations considerably!+ For nonlinear,
strictly monotone decline, we have similarly regarded the joint probability density
function of the increments as a mixture of conditionally independent exponential
densities with different means+ Which model to use depends on the deterioration
data+

With respect to the case study on the Dutch “Oostmolendijk,” we can conclude
that the value of the optimal dike heightening is sensitive to the rate of crest-level
decline~also whether being linear or nonlinear in time!, but it is insensitive to the
unit time for which the increments are distributed according to a mixture of expo-
nential densities+

The maintenance models that are presented in this paper have the following
advantages: They enable optimal dike heightening decisions to be determined under
uncertainty, they estimate how much money is needed for the future maintenance of
dikes, they do not assume that dikes may rise~as in the case of the Brownian motion
with drift model!, they are based on random quantities that can be observed~viz+
increments of crest-level decline!, and they can be expressed in explicit form when
the limiting average rate of crest-level decline is given+
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APPENDIX

Theorem 1: Suppose the infinite sequence of random quantities$Di : i [ N% is l1-isotropic
and Xn 5 (i51

n Di for all n [ N, then

E~ @Xj #
mI@0, y#~Xn21! I~ y,`!~Xn!6u!

5 H(
i50

m m!

~m2 i !! Sj 2 n 1 i

j 2 n Dym2iu i J 1

~n 2 1!! S y

uDn21

expS2
y

uD, (19)

for j,n 5 1,2, + + + , j $ n, m5 0,1,2, + + + , y [ ~0,`!, where IA~x! 5 1 if x [ A and IA~x! 5 0 if
x Ó A+

Proof: SinceXn 5 (i51
n Di for all n [ N, it follows that the integration bounds are deter-

mined byXj $ Xj21 $ {{{ $ X1 $ 0+ Moreover, Xn21 # y andXn . y, wheren # j, and the
Jacobian equals 1+ Hence, we may write

E~ @Xj #
mI@0, y#~Xn21! I~ y,`!~Xn!6u!

5E
xj5y

` E
xj215y

xj

{{{ E
xn5y

xn11E
xn2150

y

{{{ E
x250

x3 E
x150

x2 xj
m

u j
expS2

xj

u
D dx1 {{{ dxj + (20)
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This multiple integral can be solved in the following way+ The Dirichlet integral gives

E
xn2150

y

{{{ E
x250

x3 E
x150

x2

1 dx1 {{{ dxn21 5
yn21

~n 2 1!!
(21)

and

E
xj215y

xj

{{{ E
xn5y

xn11

1 dxn {{{ dxj21 5
@xj 2 y# j2n

~ j 2 n!!
+ (22)

By applying the transformationt 5 ~xj 2 y!0u and using the binomial formula and the gamma
function, we obtain

E
xj5y

`

xj
m@xj 2 y# j2n expS2

xj

u
D dxj

5 (
i50

m Sm

i Dym2iu i1j2n11G~i 1 j 2 n 1 1! expS2
y

uD+ (23)

Finally, combining Eqs+ ~20!–~23! proves the theorem+ n

Theorem 2: Let bi . 0 for i 5 1, + + + ,n andbi Þ bj unless i5 j, n [ N, then

(
i5n

j bi

)
h5n,hÞi

j

@12 bh0bi #

5 (
i5n

j

bi + (24)

Proof: Suppose thatDn, + + + ,Dj are independent random quantities and thatDi has an ex-
ponential distribution with meanbi u, i 5 n, + + + , j+ On the one hand, we have simply
(i5n

j E~Di6u! 5 (i5n
j bi u+ On the other hand, we can use Eq+ ~14! to write

ES(
i5n

j

Di 6uD 5E
x50

`

PrH(
i5n

j

Di . x6uJ dx5 (
i5n

j bi u

)
h5n,hÞi

j

@12 bh0bi #

+ n

Theorem 3: Suppose the random quantities$Di : i [ N% are exponentially distributed with
meanbi u,wherebi Þ bj unless i5 j, and conditionally independent whenu is given+ Let Xn5

(i51
n Di for all n [ N, then

E~ @Xj #
mI@0, y#~Xn21! I~ y,`!~Xn!6u!

5 (
i5n

j 1

)
h5n,hÞi

j

@12 bh0bi #
(
k50

m Sm

kDym2k~bi u!k Pr$Xn21 # y, Xn . y6u%,
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where

Pr$Xn21 # y, Xn . y6u% 5 (
i51

n bn0bi

)
h51,hÞi

n

@12 bh0bi #

expS2
y

bi u
D, (26)

for j,n 5 1,2, + + + , j $ n, m5 0,1,2, + + + , y [ ~0,`!, where IA~x! 5 1 if x [ A and IA~x! 5 0 if
x Ó A+

Proof: SinceXn 5 (i51
n Di for all n [ N, it follows that the integration bounds are deter-

mined byXj $ Xj21 $ {{{ $ X1 $ X0 5 0+Moreover, Xn21 # y andXn . y, wheren # j, and
the Jacobian equals 1+ By using

(
i51

j Di

bi

5
Xj

bj

1 (
i51

j21S 1

bi

2
1

bi11
DXi , (27)

we may write

E~ @Xj #
mI@0, y#~Xn21! I~ y,`!~Xn!6u!

5E
xj5y

` E
xj215y

xj

{{{ E
xn5y

xn11E
xn2150

y

{{{ E
x250

x3 E
x150

x2 xj
m

bj u
expS2

xj

bj u
D

3 )
i51

j21 1

bi u
expF2S 1

bi

2
1

bi11
D xi

u G dx1 {{{ dxj + (28)

This multiple integral can be solved in four steps+
First, by applying the transformationdi 5 xi 2 xi21, i 5 1, + + + ,n 2 1, and subsequently

using Eqs+ ~27! and~14!, we find

E
xn2150

y

{{{ E
x250

x3 E
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)
i51

n21 1
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expF2S 1

bi

2
1

bi11
D xi
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@12 bi 0bn#DH12 (
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n21 S12 bh0bn
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DexpF2S 1

bi

2
1
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)
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@12 bh0bi #

expF2S 1

bi

2
1

bn
D y

u G + (29)

Second, by applying the transformationzi 5 xi 2 y, i 5 n, + + + , j 2 1, and using Eq+ ~29!, we
obtain

E
xj215y

xj
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xn5y

xn11

)
i5n

j21 1

bi u
expF2S 1

bi

2
1

bi11
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j bj 0bi
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D y
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Third, by applying the transformationti 5 ~xi 2 y!0~bi u!, i 5 n, + + + , j, and using the binomial
formula and the gamma function, the one-dimensional integral overxj can be written as

(
i5n

j exp$2y0~bnu!%

)
h5n,hÞi

j

@12 bh0bi #

E
xj5y

` xj
m

bi u
expS2

xj 2 y

bi u
D dxj

5 (
i5n

j exp$2y0~bnu!%

)
h5n,hÞi

j

@12 bh0bi #
(
k50

m Sm

kD ym2k~bi u!k+ (31)

Finally, combining Eqs+ ~28!–~31! proves the theorem+ n
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