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The extent or existence of similarities between fully developed turbulent pipes and
channels, and in zero-pressure-gradient turbulent boundary layers has come into
question in recent years. This is in contrast to the traditionally accepted view that,
upon appropriate normalization, all three flows can be regarded as the same in the
near-wall region. In this paper, the authors aim to provide clarification of this issue
through streamwise velocity measurements in these three flows with carefully matched
Reynolds number and measurement resolution. Results show that mean statistics in
the near-wall region collapse well. However, the premultiplied energy spectra of
streamwise velocity fluctuations show marked structural differences that cannot be
explained by scaling arguments. It is concluded that, while similarities exist at these
Reynolds numbers, one should exercise caution when drawing comparisons between
the three shear flows, even near the wall.

1. Introduction
A review of literature concerning canonical wall-bounded shear flows (pipes,

channels and turbulent boundary layers) reveals inconsistencies in regard to the
effect of geometry on the structure of turbulence. Most articles implicitly convey the
view that pipes, channels and boundary layers are similar in the near-wall region, often
with vague caveats. Others are explicit; e.g. Rotta (1962) claims that ‘the flow near the
wall in pipe and channel flow are the same as in boundary layers’. Alternatively, some
suggest that even the mean velocity profiles should be different in pipes/channels as
compared to boundary layers (e.g. Wosnik, Castillo & George 2000). Nevertheless,
most agree on the similarity of pipe and channel flows, ‘because the curvature of
the [pipe] wall is nearly zero if seen from points close enough to the surface. . . ’
(Tennekes & Lumley 1972). Hereafter, pipes/channels are referred to as ‘internal’
geometries, while boundary layers are termed ‘external’.

The classical logarithmic formulation for the mean velocity profile (3.1) in a
pipe flow is perhaps the most commonly accepted of the concepts extended to
boundary layers, notwithstanding the objections by Wosnik et al. (2000). Within the
scatter of the data, this extension appears to be valid, although there are ongoing
disagreements about the ‘universal’ constants in the formulation (see Zagarola &
Smits 1998; Nagib & Chauhan 2008). Further, del Álamo et al. (2004), Jiménez &
Hoyas (2008), Mochizuki & Nieuwstadt (1996) and Metzger & Klewicki (2001) show
some similarities in higher order streamwise statistics for internal and external flows
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(note that Jiménez & Hoyas 2008 observed differences in the wall-normal intensities
of the flows). It is also interesting to note that accepting similarity between the
flows was important in the first efforts towards understanding the structure of the
near-wall flow (Theodorsen 1952; Townsend 1961; Perry & Chong 1982), due to
the lack of reliable turbulent boundary layer data. More recently, new measurement
techniques and computational advancement have permitted detailed interrogation of
the structure of wall turbulence. For example, using particle image velocimetry, Wu &
Christensen (2006) searched for hairpin heads (spanwise vortical motions) in channels
and boundary layers. Based on eddy population figures, they concluded that the flows
were structurally similar when z < 0.45δ (z is distance from the wall and δ is the outer
length scale). Contrarily, Monty et al. (2007) and Hutchins & Marusic (2007b) found
significant structural differences between pipes/channels and boundary layers even in
the logarithmic region, based on spanwise structure.

Characterization of the longest energetic modes in wall-turbulence has featured
prominently in recent investigations. From single-point hot-wire measurements in pipe
flow, Kim & Adrian (1999) identified a peak or shoulder in the premultiplied energy
spectra (kxφuu) at streamwise length scales of more than 14 pipe radii, which they
termed Very Large-Scale Motions (VLSM). Here kx is the streamwise wavenumber,
and φuu is the spectral density of streamwise velocity fluctuations. From a spanwise
array of hot-wire measurements, Hutchins & Marusic (2007a) demonstrated elongated
regions of very long positive and negative momentum deficits in the log region of
turbulent boundary layers, which they termed ‘superstructures’. However, an outer
peak in the energy spectra was observed at λx ≈ 6δ (λx is the streamwise wavelength =
2π/kx), which they attributed to these superstructures. Through similar hot-wire
array measurements, Monty et al. (2007) found qualitatively similar events in internal
flows, despite the differences in energy spectra evident when comparing results of
Kim & Adrian (1999) and Hutchins & Marusic (2007a). In a recent, pertinent
investigation, Balakumar & Adrian (2007) investigate the difference in power spectral
density between channels and boundary layers. Though differences were noted, they
ultimately concluded that the ‘large-scale eddies are similar’ in internal and external
flows.

Hence, from the literature alone, the researcher is left to conclude that internal and
external flows have strong similarities near the wall, yet there are clearly important
differences. Unfortunately, the nature of the important differences is unclear. It should
also be noted that understanding these differences is of great significance at this
time as channel flow direct numerical simulations with Reτ � 1000 are now readily
available; the results of which have been referred to in arguments pertaining to
general wall-bounded turbulent flows (e.g. del Álamo et al. 2006; Hutchins & Marusic
2007a). Furthermore, the aforementioned recent interest in very long flow features
(which have been shown in the literature to be geometry dependent) also makes this
study especially timely. This investigation aims to clearly illustrate the differences in
the three wall-bounded flows through a comparison of carefully matched streamwise
velocity measurements.

2. Facilities
All facilities are located at Melbourne and have been used in previous investigations.

The fully developed pipe and channel flow facilities are detailed in Monty et al. (2007)
and the boundary layer wind-tunnel, with 27 m long working-section, is described in
Nickels et al. (2005). The channel and boundary layer are blow-down non-recirculating
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Flow conditions Hot-wire details Acquisition details

x U∞ δ ν/Uτ l d fs T U∞/δ

Facility Reτ (m) (m s−1) (m) (μm) (mm) (μm) l+ �t+
s (kHz) ×104 Symbol

TBL 3020 5.0 12.5 0.1003 33.2 1 5.0 30 0.57 24 2.25 ✩ —
Channel 3015 17.6 23.1 0.0500 16.7 0.5 2.5 30 0.55 100 2.77 � – –
Pipe 3005 17.3 24.3 0.0494 16.4 0.5 2.5 30 0.56 100 2.95 © – ·

Table 1. Parameters for the pipe, channel and turbulent boundary layer (TBL) experiments.

wind-tunnels, while the pipe is a suction facility. Inlet flow to all facilities is conditioned
to provide uniform negligibly turbulent conditions at the inlet. This inlet flow is
tripped with sandpaper strips. The aspect ratio of the channel is 11.7:1 ensuring
minimal sidewall influence. The boundary layer tunnel has a cross-section of 1 m × 2 m,
giving a boundary layer height to tunnel width ratio of approximately 16:1 at the
measurement station (5 m downstream of the trip). Further experimental details are
given in table 1.

Experiments in all three facilities were performed at matched friction Reynolds
number or Kármán number Reτ , defined as the ratio of the outer to the viscous
length scales (= δUτ/ν or δ+). The outer length scale δ is either the channel half-
height, pipe radius or boundary layer thickness as determined from a modified Coles
fit (see Perry, Marusic & Jones 2002). Uτ is the friction velocity (=

√
τw/ρ, where τw is

the wall shear stress and ρ is the density of the fluid) and ν is the kinematic viscosity.
Throughout the paper, capitalized velocities or overbars indicate time-averaged values.
Lowercase velocities indicate the fluctuating component. The superscript + is used
to denote viscous scaling of length (e.g. z+ = zUτ/ν), velocity (U+ = U/Uτ ) and
time (t+ = tU 2

τ /ν). In order to accurately compare velocity fluctuation statistics, it
is necessary to maintain a constant non-dimensional wire length, l+ = lUτ/ν, where l

is the length of the etched or active portion of the hot-wire sensor. For all experiments
l+ = 30 ± 1. For pipe and channel measurements, the same hot-wire circuit (custom
made) and Dantec 55P15 hot-wire probe (Wollaston wire, 2.5 μm diameter, l =0.5 mm)
were employed. Since the pipe and channel are roughly of the same dimensions, while
the boundary layer is much thicker, at matched Reτ a longer wire (5 μm diameter
Wollaston wire, l = 1 mm) was required for the boundary layer measurements to
maintain a constant non-dimensional wire length. An AA Labs AN-1003 hot-wire
circuit and a Dantec 55P05 probe were used in the boundary layer. In all cases,
hot-wires were heated with an overheat ratio of 1.8 and the systems had a frequency
response of at least 50 kHz, determined by injecting a square wave into the circuit.
Hot-wire voltage was sampled for a minimum of 20 000δ/U∞ s, where U∞ is the mean
centreline or free stream velocity. Sampling rate was always greater than U 2

τ /ν Hz
(sample interval �t+ < 1) to ensure all significant energy containing motions were
temporally resolved.

3. Mean statistics
The mean velocity profile scaled with inner variables (Uτ and ν) for all three flows is

presented in figure 1(a). Excellent collapse of the data is observed up to the edge of the
logarithmic region (z < 0.15δ) and arguably up to z ≈ 0.25δ. Note that Uτ is calculated
from pressure drop for the internal geometries, allowing unambiguous comparison of
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Figure 1. (a) Mean velocity profiles and (b) associated broadband turbulence intensity for (�)
channel, (�) pipe and (✩) turbulent boundary layer at matched Reτ . Solid line in (a) shows
U+ = z+. Dashed line shows U+ = (1/κ) ln(z+) + A (where κ = 0.41 and A = 5.0). Shading in
(b) shows ±4 % variation from boundary layer data.

the profiles of pipe and channel flows. For the boundary layer, the Clauser method was
employed due to the absence of a more reliable alternative. Log law (3.1) constants
were chosen to be κ = 0.41 and A= 5.0 (oil-film interferometry measurements have
been performed in this tunnel, giving similar Uτ values – within ±1 % of Clauser; it
is noted, however, that this technique has its own inaccuracies that are beyond the
scope of this study). Well beyond the log region, the profiles are clearly different, as
previously discussed by Monty et al. (2007). In one of the first detailed comparisons
of internal and external flows, Schubauer (1954) also highlights the differences in
mean velocity profiles in the outer-flow region (although he rightly points out that
the general trends are strikingly similar for such different flow geometries).

The traditional logarithmic law, valid in the range 100 <z+ < 0.15Reτ ,

U+ =
1

κ
ln z+ + A, (3.1)
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Figure 2. (a) Velocity deficit plots for the three test geometries. (b) Skewness (lower profiles)
and kurtosis (upper) profiles. Symbols as in figure 1.

is also shown in figure 1(a), where κ and A are supposedly universal constants. Given
the limited Reynolds number of the present experiments (meaning limited logarithmic
region), it is not possible to draw conclusions about the values of these universal
constants, other than to say κ and A appear nominally the same for all three flows,
within experimental error. The mean velocity deficit should also have a logarithmic
nature,

U∞ − U

Uτ

= − 1

κ
ln

(z

δ

)
+ B, (3.2)

where B is non-universal, depending only on flow geometry. In fact, B is simply
proportional to the wake strength. The data in figure 2(a) confirm this as the profiles
are clearly shifted upwards in order of wake strength, having similar slopes in the log
region.

Moving to higher order statistics, the viscous scaled variance of streamwise velocity
fluctuations is shown in figure 1(b). Within experimental error the three flows are
in agreement up to z ≈ 0.5δ. The grey shaded region in figure 1(b) represents the
boundary layer variance ±4 %, which may be considered an approximate error
bound, based on the hot-wire measurement error (≈ ±1 % in U ) and the error in
determining Uτ from the mean velocity profile (at least ±1 %). The largest differences,
occurring at z+ ≈ 15, are within this approximate bound and perhaps should not be
concluded significant at this stage. Certainly, the peak turbulence intensities are all
within the scatter seen in the literature (e.g. Metzger & Klewicki 2001; Hutchins
et al. 2009). Comparing pipe and channel data, close similarity is observed right
across the flows, even in the core region, where one would expect to see effects
owing to the radically different geometries. Also interesting is the extent of agreement
between the boundary layer and internal flows, up to z ≈ 0.5δ, well beyond the collapse
of mean velocity (see figure 1a). Klebanoff (1954) and Schubauer (1954) point out
that the intermittent region of the boundary layer (z > 0.4δ) contains distinct regions
of turbulent flow and potential flow. Dividing the turbulent kinetic energy by the
intermittency factor, Schubauer illustrates that the boundary layer kinetic energy
follows the same distribution as the internal geometry right to the edge of the layer
(Klebanoff 1954 also discusses the similarity between rescaled kinetic energy of pipes
and boundary layers). From this he inferred that the outer-flow structure must be
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the same for internal and external geometries, with the only difference being the
intermittent periods of irrotational flow in the boundary layer.

Figure 2(b) displays the skewness and kurtosis plotted against scaled distance from
the wall. The trends are similar to the turbulence intensity data: both internal and
external flows have very similar skewness and kurtosis up to z ≈ 0.5δ, while these
statistics for the pipe and channel flows are almost identical throughout the flow
(it could be argued that the boundary layer skewness exhibits a slightly different
trajectory for z+ � 200). Beyond z ≈ 0.5δ, the boundary layer data deviate rapidly due
to increasing intermittency.

4. Energy spectra
From a comparison of the prominent recent work on the largest-scale motions of

turbulent pipe, channel and boundary layer flows (Kim & Adrian 1999; del Álamo
et al. 2006; Guala, Hommema & Adrian 2006; Hutchins & Marusic 2007a), one point
is clear: the large-scale peak in energy spectra of internal flows occurs at significantly
longer wavelengths than that in boundary layers. Precisely in which part of the flow
this difference occurs is not clear; nor is it obvious whether pipes and channels share
similar energy spectra. In an attempt to provide an overall picture of the energy
distribution, contour maps of energy contribution are plotted against wall distance
and wavelength in figure 3(a–f). In all the figures, the contour and colour levels are
the same (colour indicates the magnitude of the premultiplied spectra kxφ

+
uu as given

by the scale on the right of the figure). This style of spectra presentation was used
by Hutchins & Marusic (2007a, b), the latter providing a detailed description of how
these plots are constructed. Figures 3(a), 3(c) and 3(e) are shown with logarithmic axes.
Clearly, the qualitative, overall view of the three flows is similar, in agreement with
Balakumar & Adrian (2007). There is a highly energetic peak near the wall (centred
at z+ ≈ 15, λ+

x ≈ 1000 and marked with a white cross). This ‘inner peak’ is due to the
near-wall cycle of streaks and quasi-streamwise vortices. The peak energy shifts to
larger wavelengths as we move away from the wall. As noted by Hutchins & Marusic
(2007b), there is a secondary peak in the boundary layer spectra map at z ≈ 0.06δ,
corresponding to superstructures of wavelength, λx ≈ 6δ (Hutchins & Marusic 2007a
observed from flow visualization that superstructures can be considerably longer
than 6δ, but meander in the spanwise direction so that their signature in the energy
spectrum is found at shorter length scales). This peak is marked with a black cross in
all spectra maps (figure 3a–f ). While the energy peak of the boundary layer moves to
smaller wavelengths for z > 0.06δ, this is not the case for pipes and channels. Firstly,
in comparison with the boundary layer, higher energy is observed in the longer
wavelength modes of pipe/channel flows from the beginning of the log region (notice
the contours cut through the top of the figure for internal flows, but not for the
boundary layer). On closer inspection, there appears to be an increasing difference in
length between the longest energetic structures in the internal and external flows as we
move away from the wall. Well into the outer-flow region (z � 0.3δ), the pipe/channel
plots show a ‘double-hump’ in the contours, indicating two dominant modes, whereas
the boundary layer has only one as noted by Balakumar & Adrian (2007). The single
dominant mode in the boundary layer spectra for z > 0.3δ coincides with the shorter
energetic mode in the internal flows. This mode was identified by Adrian, Meinhart &
Tomkins (2000) as the large-scale motion (LSM), having length ∼2 − 3δ. Guala et al.
(2006) also commented on the observed similarity of these large-scale motions in the
outer-flow regions of pipes, channels and boundary layers. The second peak in the
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energy spectra of pipes/channels, however, occurs at much longer wavelengths than
the first (14 < λx < 20, as highlighted in figure 4d) and much longer than any energetic
mode in the boundary layer. Note that it is difficult to quantify the wavelength of
these motions beyond z ≈ 0.33δ, since they grow with wall distance while decaying in
energy. Eventually, the ‘peak’ in energy formed by these motions closer to the wall
(z ≈ 0.1 − 0.33δ) becomes little more than the shoulder of a plateau (e.g. compare
figures 4c and 4d).

It is now evident that the most distinguishing features of the three spectra contour
maps are found in the outer region. Plotting these figures with logarithmic absiccsae,
however, focuses attention on the near-wall region. Therefore, figures 3(b), 3(d) and
3(f) are provided, displaying the same information as figures 3(a), 3(c) and 3(e), only
with linear abscissae, focusing attention on the outer region of the flow. For visual
guidance, lines showing the dominant large-scale mode in the outer region of the
boundary layer, λx = 3δ, and the second dominant mode in the pipe and channel are
shown (broken white line). This second, longer mode is that identified by Kim &
Adrian (1999) as the VLSM. The VLSM growth appears to roughly follow a power
law,

λx

δ
= 23

(z

δ

)3/7

, (4.1)
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which approximately agrees with the peak wavelength data given in figure 5 of
Kim & Adrian (1999). Regardless of the growth rate, there are obvious and important
differences between boundary layer superstructures and internal flow VLSMs. The
superstructures do not persist beyond the log region of the boundary layer, rather
a rapid shortening of the most energetic structures occurs, leading quickly to the
domination of λx ≈ 3δ structures throughout most of the outer region. Conversely,
the wavelength of VLSMs continues to increase, arguably as far as z ≈ 0.7δ, while
their energy magnitudes decrease as we move further into the core region.

There are no obvious or significant differences between the energy spectra for pipes
and channels in the spectral representations of figure 3, even in the core. This is
consistent with the agreement discussed previously for the mean statistical analysis of
§ 3. Although it should be noted that Balakumar & Adrian (2007) show differences
between the Reynolds shear stress associated with VLSMs of pipes and channels.
While the mean statistics of the internal and external flows are also similar up to
z ≈ 0.5δ, the energy spectra are clearly very different, even near the wall. This is more
easily observed from figure 4, where premultiplied spectra are compared at a selection
of z-coordinates; coordinates are marked with arrows on top of figure 3(a). Firstly,
figure 4(a) shows the energy spectra at the near-wall peak in turbulence intensity –
the most energetic region of the flow. The insignificance of pipe curvature very close
to the wall (as suggested by Tennekes & Lumley 1972) is strongly supported by the
similarities in energy spectra exhibited by both internal flows at this wall distance.
However, the external flow case is not so similar; although the overall intensity
is slightly higher for the boundary layer, it is clear that the shape of the spectra
is different for internal and external flows. The discrepancy is in the largest scales,
where the internal flows exhibit more energy than the boundary layer for λx � 7δ. This
difference is expected, since this very large-scale energy near the wall is effectively the
footprint (Hutchins & Marusic 2007a) of the largest modes that inhabit the outer-flow
regions, which figure 3 has clearly shown are longer for internal flows.

Figures 4(b) and 4(c) display energy spectra at two locations in the outer-flow
region and it is reminded that the area under the curves is proportional to the
scaled turbulence intensity. Figure 4(c) clearly shows that the structure of the internal
and external flows is fundamentally different, most notably in the largest scales.
Throughout this paper, the outer length scale has been presumed as is generally
accepted in the literature. Modification to δ without physical basis would permit
collapse of the spectra for a certain range of wavelengths (although there will
be an adverse effect on outer-scaling collapse of statistics profiles shown in § 3).
However, it is not possible to collapse the entire large wavelength regime (i.e. λx > 3δ,
where δ is the traditional boundary layer thickness) of the energy spectra in all
three flows. This is because there is no location in the boundary layer flow where
the structure is bimodal with dominant modes of 3δ and ∼15δ. No outer-scaling
argument, therefore, can explain the noted differences in these flows. According to
figure 1(b), the turbulence intensity is essentially equal for all flows at the wall distances
pertaining to figures 4(b) and 4(c). This implies that the different shapes of the spectra
result from a redistribution of energy from the smaller scales dominant in boundary
layers to longer wavelengths in the pipe/channel. Although it is difficult to comment
on mechanisms for this behaviour, it is clear that the conditions in pipes/channels
must permit the very large modes to persist further from the wall than in boundary
layers (in which they are largely constrained to the log region).

Finally, since we are most interested in the difference between flows, a plot of
the difference in energy between pipes/channels and boundary layers is warranted.
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Figure 5. Contours of |kxφ
+
uu(z, λx)|bl − |kxφ

+
uu(z, λx)|pipe . The difference between the energy

spectra of the pipe and boundary layer as a function of z and λx .

For this purpose, we may assume that pipes and channels have the same energy
distribution throughout the flow. Hence, figure 3(f), the energy map for pipe flow,
was subtracted from 3(b), the map for boundary layers, with the result displayed in
figure 5. Contours now represent the scaled energy difference between pipes/channels
and boundary layers; regions of blue shading correspond to higher energy in the
pipe/channel and red to higher energy in the boundary layer. A linear abscissa
is again used to highlight differences in the log region and beyond. Two obvious
demarcations are observed. For very long wavelengths, λx > 10δ, there is significantly
more energy for internal flows than that of the boundary layers; the opposite is
true for λx < 10δ. Also, far from the wall (z � 0.6), the geometrical freedom of the
boundary layer is highlighted as energy ultimately decays to zero at the edge of the
boundary layer, while the internal flows remain turbulent through the core.

5. Conclusions
Through a simple comparison of mean statistics and energy spectra for pipe, channel

and boundary layer flows at matched Kármán number (δ+), the similarities and
differences between these flows have been clearly documented. Within experimental
error, the inner-scaled mean velocity is identical for all three flows in the region
z < 0.25δ as expected. The agreement extends much further for the higher order
statistics, which display collapse up to z = 0.5δ (at least).

After performing Fourier analyses of the data, surprising agreement was observed
between the structure of pipe and channel flow throughout the flow. However, there
are obvious important modal differences between channels/pipes and boundary layers,
not only in the outer/core region, but right down to the wall. The difference is in
the largest energetic scales, which are much longer in pipes/channels. Although the
large-scale phenomena have been shown to be qualitatively similar (Hutchins &
Marusic 2007a; Monty et al. 2007), their contributions to the energy continues to
move to longer wavelengths with distance from the wall in internal flows. The opposite
occurs in boundary layers, where outer-flow structures shorten very rapidly beyond
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the log region. To re-word this conclusion using terminology of recent literature:
VLSMs in internal flows should not be confused with superstructures in boundary
layers; qualitatively the structures are similar, however, the VLSM energy in internal
flows resides in larger wavelengths and at greater distances from the wall than
superstructures in boundary layers. Furthermore, for z < 0.5δ the different energy
distributions in internal and external flows occur in regions where the turbulence
intensity (streamwise kinetic energy) is equal. This result suggests that all three flows
might be of a similar type structure, with energy simply redistributed from shorter to
longer scales for the pipe and channel flow cases. Whether the quantitative differences
are due to the interaction of the opposite wall in internal flows, or the intermittency
of the outer region in boundary layers remains uncertain.

Finally, it is expected that the observed large-scale differences between
pipes/channels and boundary layers will be more obvious at higher Reynolds numbers
as Hutchins & Marusic (2007a) have shown that the magnitude of the energy
contribution of superstructures increases with Reynolds number.

The authors are grateful for the financial support of the Australian Research
Council through projects DP0556629, FFD0668703 and DP0663499.
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