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Abstract

We study the integrated telegraph process Xt under the assumption of general distri-
bution for the random times between consecutive reversals of direction. Specifically, Xt

represents the position, at time t, of a particle moving U time units upwards with veloc-
ity c and D time units downwards with velocity −c. The latter motions are repeated
cyclically, according to independent alternating renewals. Explicit expressions for the
probability law of Xt are given in the following cases: (i) (U, D) gamma-distributed; (ii)
U exponentially distributed and D gamma-distributed. For certain values of the param-
eters involved, the probability law of Xt is provided in a closed form. Some expressions
for the moment generating function of Xt and its Laplace transform are also obtained.
The latter allows us to prove the existence of a Kac-type condition under which the prob-
ability density function of the integrated telegraph process, with identically distributed
gamma intertimes, converges to that of the standard Brownian motion.

Finally, we consider the square of Xt and disclose its distribution function, specifying
the expression for some choices of the distribution of (U, D).

Keywords: Random motions with finite velocity; telegraph process; gamma distribution;
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1. Introduction

Random evolutions with finite velocity have drawn the attention of many scientists in the
last decades. Indeed, they provide a good alternative to diffusion processes, which often appear
unsuitable for describing natural phenomena in life sciences. For instance, the integrated tele-
graph random process, which is one of the basic models for the description of finite-velocity
random motions, can be regarded as a finite-velocity counterpart of the one-dimensional
Brownian motion, thanks to the relationship between the corresponding probability density
functions. This explains the growing interest in this topic and also the numerous papers pub-
lished in the literature in recent years. Indeed, starting from the seminal papers [23] and [28],
many scientists have devoted their research to this theme by proposing generalizations of the
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integrated telegraph random process (see e.g. [34, 7, 10, 13, 16, 37, 21]) and also applications
in many fields (see e.g. [52, 17, 48, 51]). An in-depth analysis of the one-dimensional telegraph
process can be found in the books of Kolesnik and Ratanov [33] and Zacks [54]. The present
paper is part of the aforementioned research and can be regarded as a further step in the path
of investigation of random motions.

The standard integrated telegraph process Xt, t> 0, describes the position of a particle trav-
eling at constant speed on the real line. The direction of the motion is reversed according to
the arrival epochs of a homogeneous Poisson process. This results in exponentially distributed
random times between consecutive reversals of direction of motion.

The process Xt is also called a piecewise linear Markov process or Markovian fluid [2, 46,
49]. Piecewise linear processes were first studied in [22] and represent a subclass of the family
of piecewise deterministic processes [11]. A piecewise deterministic process � is defined as
�(t) = φε(τn)(t), τn ≤ t< τn+1, where (1) ε = (ε(t))t≥0 is an arbitrary measurable and adapted
process with values in a finite space {1, . . . ,N}, (2) φ1, . . . , φN are N deterministic flows, and
(3) {τn}n≥1 is the sequence of switching times of ε. Given a fixed starting point, a piecewise
deterministic Markov process evolves according to the flow φi for an exponentially distributed
random time; then a switch occurs, and the evolution is governed by another flow φj, j �= i,
for another exponential time; then it switches again. The standard integrated telegraph process
Xt represents the simplest example of a piecewise linear process based on a two-state Markov
process ε(t) ∈ {0, 1}. Its sample paths are composed of straight lines whose slopes alternate
between two values. The process Xt alone is not Markovian, whereas if we supply Xt with
a second stochastic process keeping track of the driving flow, we obtain a two-dimensional
Markov process.

Piecewise linear processes based on the distribution of inter-switching times different from
the exponential ones are much less studied. Some examples can be found in [18] and [47].
Generally, for the integrated telegraph process, there have been many papers in the litera-
ture considering a more general setting, but most of them are Markovian. Unfortunately, the
assumption of exponentially distributed intertimes is not suitable for many important appli-
cations in physics, biology, and engineering, since it gives higher probability to very short
intervals. Hence, special attention should be reserved for non-Markovian cases. For instance,
in [12], the author analyses the case when the random times separating consecutive veloc-
ity reversals of the particle have Erlang distribution with possibly unequal parameters. This
hypothesis, if we recall that the sum of independent and identically distributed exponential ran-
dom variables has Erlang distribution, can be interpreted as stating that the particle undergoes
a fixed number of collisions arriving according to a Poisson process before reversing its motion
direction. Some connections of the model with queueing, reliability theory, and mathematical
finance are also presented in the same paper. The study of a one-dimensional random motion
with Erlang distribution for the sojourn times is also performed in [40], where the authors apply
the methodology of random evolutions to find the partial differential equations governing the
particle motion and obtain a factorization of these equations. Moreover, motivated by applica-
tions in mathematical biology concerning randomly alternating motion of micro-organisms, in
[14] the authors consider gamma-distributed random intertimes and obtain the probability law
of the process, expressed in terms of series of incomplete gamma functions. Similarly, the case
of exponentially distributed random intertimes with linearly increasing parameters has been
treated in [15], thus modeling a damping behavior sometimes appearing in particle systems.
We recall also the papers [41] and [42], where isotropic random motions in higher dimensions
with, respectively, Erlang- and gamma-distributed steps are studied.
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In the present paper, along the lines of [19] and [54], we provide a general expression for
the probability law of Xt in terms of the distributions of the n-fold convolutions of the random
times between motion reversals. The key idea is to relate the probability law of Xt to that of
the occupation time, which gives the fraction of time that the motion moved with positive
velocity in [0, t]. Starting from this result, Section 3 is devoted to the explicit derivations of the
probability law of the integrated telegraph process in some special cases, when the upward U
and downward D random intertimes are distributed as follows: (i) both are gamma-distributed;
(ii) both are Erlang-distributed; (iii) U is exponentially distributed and D gamma-distributed;
(iv) U is exponentially distributed and D Erlang-distributed. In Cases (i) and (ii), for some
values of the parameters involved, we obtain closed-form results for the probability law of the
process, which, to the best of our knowledge, is a new result in the field of finite-time random
evolutions. This shows the great advantage of this novel expression for the probability law
compared to previously existing results: it has good mathematical tractability. Hence, Section 3
offers a collection of explicit expressions for the probability law of the generalized telegraph
process, which could be useful for all scholars interested in non-Markovian generalizations of
the telegraph process.

In Section 4 we obtain the Laplace transform of the moment generating function Ms
X(t) of

the generalized telegraph process. This result allows us to do the following:

(a) Prove the existence of a Kac-type condition for the integrated telegraph process with
identically distributed gamma intertimes. Under such a condition, the probability density
function of Xt converges to the probability density function of the standard Brownian
motion, thus generalizing the well-known result for the standard integrated telegraph
process.

(b) Provide an explicit expression for Ms
X(t) in the case of gamma- and Erlang-distributed

random times between consecutive velocity reversals.

As further validation, we also derive the moment generating function for exponentially dis-
tributed intertimes, finding a well-known result. The first and second moment of Xt under the
assumptions of gamma-distributed intertimes are also given.

Finally, Section 5 is devoted to the study of certain functionals of the generalized telegraph
process. In particular, we provide an explicit expression for the distribution function of the
square of Xt, under the assumption of exponential distribution for the upward intertimes U and
gamma distribution for the downward intertimes D. We recall that the square of the standard
integrated telegraph process has been studied in [35], where its relationship with the square
of the Brownian motion is also stressed. See also [33, Chapter 7] and [32] for other relevant
functionals of the telegraph processes.

2. The generalized telegraph process

Let
{
Xt; t ≥ 0

}
be a generalized integrated telegraph process. Such a process describes the

position of a particle moving on the real axis with velocity c or −c(c> 0), according to an
independent alternating counting process

{
Nt; t ≥ 0

}
. The latter is governed by sequences

of positive independent random times
{
U1,U2, · · ·

}
and {D1,D2, · · · }, which in turn are

assumed to be mutually independent. The random variable Ui (resp. Di), i = 1, 2, . . ., describes
the ith random period during which the motion proceeds with positive (resp. negative) velocity.
A sample path of Xt with initial velocity V0 = c is shown in Figure 1.
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FIGURE 1. A sample path of Xt.

Let us denote by Vt the particle velocity at time t ≥ 0. Assuming that X0 = 0, and V0 ∈
{−c, c}, with V0 independent of Nt, we have

Xt =
∫ t

0
Vs ds, Vt = sgn(V0) c(−1)Nt ,

where

Nt =
+∞∑
n=1

1{Tn≤t}, N0 = 0,

with

T2n = U(n) + D(n), T2n+1 = T2n +
⎧⎨
⎩

Un+1 if V0 = c,

Dn+1 if V0 = −c,
n = 0, 1, . . . ,

and U(0) = D(0) = 0, U(n) := U1 + · · · + Un, D(n) := D1 + · · · + Dn.
Hence, if the motion does not change velocity in [0, t], we have Xt = V0 t. Otherwise, if

there is at least one velocity change in [0, t], then −ct< Xt < ct with probability 1.
Hereafter, according to the assumptions of the standard symmetric telegraph process [28],

we assume that the initial velocity is random, i.e.

P(V0 = c) = P(V0 = −c) = 1

2
.

Let FUi (·) and GDi (·) be the absolutely continuous distribution functions of Ui and Di

(i = 1, 2, . . .) respectively, with densities fUi(·) and gDi (·), and denote by FUi(·) and GDi (·) their
complementary distribution functions. In the sequel, we shall denote the distribution functions
of U(n) and D(n) by F(n)

U (·) and G(n)
D (·), and their densities by f (n)

U (·) and g(n)
D (·), respectively.

If the random variables Ui are independent and identically distributed for i = 1, 2, . . . , n,
then F(n)

U (·) is the n-fold convolution of FU1 (·), and similarly for G(n)
D (·). Moreover, we set

F(0)U (x)= G(0)D (x)= 1 for x ≥ 0.
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In order to provide the probability law of Xt, we refer to the general method proposed by
Zacks in [53]. The key idea is to relate the probability law of Xt to that of the occupation time

Wt =
∫ t

0
1{Vs=c}(s)ds, t> 0,

which gives the fraction of time that the motion moved with positive velocity in [0, t]. Indeed,
for all t ≥ 0, Xt and Wt are linked by the following relationship:

Xt = 2c Wt − ct.

Hence, denoting by

ψ(x, t) := ∂

∂x
P
(
Wt ≤ x

)
, 0< x< t, t> 0,

the absolutely continuous component of the probability law of Wt over (0, t), we can express
the probability law of Xt in terms of that of Wt, according to the following theorem.

Proposition 2.1. For all t> 0 we have

P(Xt = −ct) = P(Wt = 0), P(Xt = ct) = P(Wt = t),

and

f (x, t) := ∂

∂x
P
(
Xt ≤ x

)= 1

2c
ψ

(
x + ct

2c
, t

)
, −ct< x< ct. (1)

The distribution of Wt was derived by Perry et al. (see [38], [39]) in terms of the distribution
of the first time at which a compound process crosses a linear boundary. Proceeding along the
lines of Lemmas 5.1 and 5.2 of [54], in the following theorem we provide the probability law
of Wt.

Theorem 2.1. For all t> 0 it holds that

P(Wt = 0) = 1

2
GD1 (t), P(Wt = t) = 1

2
FU1 (t),

and, for 0< x< t,

ψ(x, t) = 1

2

[
ψ−c(x; t; c) +ψc(x; t; c) +ψ−c(x; t; − c) +ψc(x; t; − c)

]
,

where

ψc(x, t; c) := ∂

∂x
P(Wt ≤ x, Vt = c | V0 = c) =

+∞∑
n=1

[
F(n)

U (x) − F(n+1)
U (x)

]
g(n)

D (t − x),

ψ−c(x, t; c) := ∂

∂x
P(Wt ≤ x, Vt = c | V0 = −c) =

+∞∑
n=0

[
F(n)

U (x) − F(n+1)
U (x)

]
g(n+1)

D (t − x),

ψc(x, t; − c) := ∂

∂x
P(Wt ≤ x, Vt = −c | V0 = c) =

+∞∑
n=0

[
G(n)

D (t − x) − G(n+1)
D (t − x)

]
f (n+1)
U (x),

ψ−c(x, t; − c) := ∂

∂x
P(Wt ≤ x, Vt = −c | V0 = −c) =

+∞∑
n=1

[
G(n)

D (t − x) − G(n+1)
D (t − x)

]
f (n)
U (x).

Using Theorem 2.1 and Proposition 2.1, we finally obtain the expression for the probability
law of Xt.
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Theorem 2.2. For all t> 0 it holds that

P(Xt = −ct) = 1

2
GD1 (t), P(Xt = ct) = 1

2
FU1 (t), (2)

and, for −ct< x< ct,

f (x, t) := ∂

∂x
P
(
Xt ≤ x

)= 1

2

[
fc(x, t)+ f−c(x, t)

]
, (3)

where

fc(x, t) := ∂

∂x
P
(
Xt ≤ x | V0 = c

)= 1

2c

{+∞∑
n=0

[
G(n)D

(
t − ct + x

2c

)
− G(n+1)

D

(
t − ct + x

2c

)]

× f (n+1)
U

(
ct + x

2c

)
+

+∞∑
n=1

[
F(n)U

(
ct + x

2c

)
− F(n+1)

U

(
ct + x

2c

)]
g(n)D

(
t − ct + x

2c

)}
,

(4)

and

f−c(x, t) := ∂

∂x
P
(
Xt ≤ x | V0 = −c

)= 1

2c

{+∞∑
n=0

[
F(n)U

(
ct + x

2c

)
− F(n+1)

U

(
ct + x

2c

)]

× g(n+1)
D

(
t − ct + x

2c

)
+

+∞∑
n=1

[
G(n)D

(
t − ct + x

2c

)

−G(n+1)
D

(
t − ct + x

2c

)]
f (n)U

(
ct + x

2c

)}
. (5)

An alternative approach to disclosing the probability law of the generalized integrated tele-
graph process is based on the resolution of the hyperbolic system of partial differential
equations related to the probability density of (Xt, Vt). For instance, in [15], for t> 0, −ct<
x< ct, j = 1, 2, and n = 1, 2, . . ., the authors define the conditional densities of (Xt, Vt), joint
with

{
T2n−j ≤ t< T2n−j+1

}
, and provide the relative system of partial differential equations.

Unfortunately, the resolution of such a system is so hard a task that the authors are forced to
follow a different approach.

3. Special cases of the probability law of Xt

In this section we make use of Theorem 2.2 to obtain an explicit expression for the prob-
ability law of the motion under suitable choices of FUi(·) and GDi(·), i = 1, 2, . . .. First of
all, in Theorem 3.1 we assume that the random intertimes Ui and Di are identically gamma-
distributed. Figure 2 provides some simulated sample paths of the related integrated telegraph
process for two different values of the coefficient of variation. We recall that the joint proba-
bility law of {(Xt, Vt), t ≥ 0}, under the assumption of gamma-distributed intertimes, has been
expressed in [14] in terms of a series of the incomplete gamma function. In the next theo-
rem, we provide an expression for the probability law of Xt in terms of the generalized Wright
function. The latter is a very simple and mathematically tractable expression, and, as shown in
Propositions (3.2) and (3.3), it allows us to obtain closed-form results for the probability law
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FIGURE 2. Simulated sample paths of Xt under the assumptions of gamma intertimes with coefficient of
variation less than 1 (left-hand side) or greater than 1 (right-hand side).

of the generalized integrated telegraph process in the case of fixed values of the parameters
involved. These results appear to be of great interest owing to the absence of similar outcomes
in the literature for the one-dimensional case.

Theorem 3.1. For all i = 1, 2, . . . , let Ui and Di be gamma-distributed with shape parameter
α > 0 and rate parameter β > 0, and set

Ak
l (x, t) := 1
2

[
(1, 1)

(α, α) (k + 1 + lα, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]
, (6)

where, for z ∈C, ai, bj ∈C, αi, βj ∈R, αi, βj �= 0,

p
q

[
(al, αl)1,p

(bl, βl)1,q

∣∣∣∣∣ z

]
= p
q

[
(a1, α1) · · ·

(
ap, αp

)
(b1, β1) · · ·

(
bq, βq

)
∣∣∣∣∣ z

]
:=

+∞∑
k=0

p∏
l=1

�
(
al + αlk

)
q∏

j=1

�
(
bj + βjk

)
zk

k! (7)

is the generalized Wright function. Then, for t> 0, we have

P
(
Xt = −ct | X0 = 0

)= P
(
Xt = ct | X0 = 0

)= 1

2

[
1 − γ (α, βt)

�(α)

]
,

with γ (s, x) denoting the lower incomplete gamma function, and, for −ct< x< ct,

f (x, t)= βαe−βt

4c

{+∞∑
k=0

βkAk
0(x, t)

[(
ct + x

2c

)α−1 (ct − x

2c

)k

+
(

ct − x

2c

)α−1 (ct + x

2c

)k
]

−
+∞∑
k=0

βk+2αAk
2(x, t)

[(
ct + x

2c

)α−1(ct − x

2c

)k+2α

+
(

ct − x

2c

)α−1(ct + x

2c

)k+2α
]}

.

(8)

Proof. The first result is due to Equation (2). Under the given assumptions, recalling that

f (n)
U (x) = g(n)

D (x) = βnαxnα−1e−βx

�(nα)
, F(n)

U (x) = G(n)
D (x) = γ (nα, βx)

�(nα)
, (9)
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and by setting

γ 
(α, x)= x−α

�(α)
γ (α, x) (10)

(cf. Equation 6.5.4 of [1]), from Equation (4) we get

fc(x, t)= 1

2c

{+∞∑
n=0

[
γ
(
nα, β

( ct−x
2c

))
�(nα)

− γ
(
(n + 1) α, β

( ct−x
2c

))
�((n + 1) α)

]

× β(n+1)α
( ct+x

2c

)nα+α−1 e−β( ct+x
2c )

�((n + 1) α)

+
+∞∑
n=1

[
γ
(
nα, β

( ct+x
2c

))
�(nα)

− γ
(
(n + 1) α, β

( ct+x
2c

))
�((n + 1) α)

]
βnα

( ct−x
2c

)nα−1 e−β( ct−x
2c )

�(nα)

}

= 1

2c

{+∞∑
n=0

[
β

(
ct − x

2c

)]nα

γ 

(

nα, β

(
ct − x

2c

))
βnα+α( ct+x

2c

)nα+α−1 e−β( ct+x
2c )

�((n + 1) α)

−
+∞∑
n=0

[
β

(
ct − x

2c

)]nα+α
γ 

(
(n + 1) α, β

(
ct − x

2c

))
βnα+α( ct+x

2c

)nα+α−1 e−β( ct+x
2c )

�((n + 1) α)

+
+∞∑
n=1

[
β

(
ct + x

2c

)]nα

γ 

(

nα, β

(
ct + x

2c

))
βnα

( ct−x
2c

)nα−1 e−β( ct−x
2c )

�(nα)

−
+∞∑
n=1

[
β

(
ct + x

2c

)]nα+α
γ 

(
(n + 1) α, β

(
ct + x

2c

))
βnα

( ct−x
2c

)nα−1 e−β( ct−x
2c )

�(nα)

}
.

(11)

Let us focus on the first term on the right-hand side of (11). Recalling that

γ 
(a, z)= e−z
+∞∑
n=0

zn

�(a + n + 1)
, (12)

and using Equation (7), we obtain

+∞∑
n=0

[
β

(
ct − x

2c

)]nα

γ 

(

nα, β

(
ct − x

2c

))
βnα+α( ct+x

2c

)nα+α−1 e−β( ct+x
2c )

�((n + 1) α)

= βα
(

ct + x

2c

)α−1

e−β( ct+x
2c )

+∞∑
n=0

[
β2
(

c2t2−x2

4c2

)]nα

�((n + 1) α)
e−β( ct−x

2c )
+∞∑
k=0

[
β
( ct−x

2c

)]k
�(nα + k + 1)

= βα
(

ct + x

2c

)α−1

e−βt
+∞∑
k=0

[
β

(
ct − x

2c

)]k +∞∑
n=0

[
β2
(

c2t2−x2

4c2

)]nα

�((n + 1) α) �(nα + k + 1)

= βα
(

ct + x

2c

)α−1

e−βt
+∞∑
k=0

[
β

(
ct − x

2c

)]k

1
2

[
(1, 1)

(α, α)(k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]
.
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By applying similar reasoning for each term in the right-hand side of (11), we finally get

fc(x, t)=e−βt

2c

{
βα
(

ct + x

2c

)α−1 +∞∑
k=0

[
β

(
ct − x

2c

)]k

×1
2

[
(1, 1)

(α, α) (k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]

−
[
β2
(

c2t2 − x2

4c2

)]α(
ct + x

2c

)−1 +∞∑
k=0

[
β

(
ct − x

2c

)]k

× 1
2

[
(1, 1)

(α, α) (α+ k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]

+
[
β2
(

c2t2 − x2

4c2

)]α(
ct − x

2c

)−1 +∞∑
k=0

[
β

(
ct + x

2c

)]k

× 1
2

[
(1, 1)

(α, α) (α+ k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]

−βα
[
β2
(

c2t2 − x2

4c2

)]α(
ct + x

2c

)α(ct − x

2c

)−1

×
+∞∑
k=0

[
β

(
ct + x

2c

)]k

1
2

[
(1, 1)

(α, α) (2α + k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]}
.

(13)

Similarly, in the case of negative initial velocity, we have

f−c(x, t)=e−βt

2c

{
βα
(

ct − x

2c

)α−1 +∞∑
k=0

[
β

(
ct + x

2c

)]k

× 1
2

[
(1, 1)

(α, α) (k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]

−
[
β2
(

c2t2 − x2

4c2

)]α(
ct − x

2c

)−1 +∞∑
k=0

[
β

(
ct + x

2c

)]k

× 1
2

[
(1, 1)

(α, α) (α+ k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]
.

+
[
β2
(

c2t2 − x2

4c2

)]α(
ct + x

2c

)−1 +∞∑
k=0

[
β

(
ct − x

2c

)]k

× 1
2

[
(1, 1)

(α, α) (α+ k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]
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−βα
[
β2
(

c2t2 − x2

4c2

)]α(
ct − x

2c

)α(ct + x

2c

)−1

×
+∞∑
k=0

[
β

(
ct − x

2c

)]k

1
2

[
(1, 1)

(α, α) (2α + k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]}
.

(14)

The proof finally follows from recalling the assumption of random initial velocity. �
Hereafter we analyze the behavior of the density f (x, t) given in Equation (8) at the extreme

points of the interval (−ct, ct), for any fixed t.

Proposition 3.1. For t, α, β > 0, it holds that

lim
x→(ct)−

f (x, t)= lim
x→(−ct)+

f (x, t)=
{

1
4c

e−βtβα tα−1

�(α)
, if α ≥ 1,

+∞, if α < 1.

Proof. Because of the symmetry properties of Xt, it is enough to analyze the behavior of
f (x, t) as x → (ct)−.

Let us fix t, α, β > 0 and assume −ct< x< ct. By Corollary 1.1 of [30], the generalized
Wright functions appearing in the density (8) are entire functions for all nonnegative integers
k. Hence they are continuous, and, recalling their analytical expression (7), we obtain

lim
x→(ct)−

1
2

[
(1, 1)

(α, α)(k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]
= 1

�(α) �(k + 1)
,

lim
x→(ct)−

1
2

[
(1, 1)

(α, α)(2α + k + 1, α)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]α]
= 1

�(α) �(2α + k + 1)
,

so that, by Equation (12), after simple calculations we get

lim
x→(ct)−

f (x, t)= βα

4c
e−βt

{
tα−1

�(α)
− (βt)2α

�(α)(2c)α−1

+∞∑
k=0

(βt)k

�(2α + k + 1)
lim

x→(ct)−
(ct − x)α−1

+ 1

�(α)

(
1

2c

)α−1 +∞∑
k=0

(βt)k

�(k + 1)
lim

x→(ct)−
(ct − x)α−1

}

= e−βt(βt)α

4ct �(α)
+ 1

2�(α)

(
β

2c

)α(
1 − γ (2α, βt)

�(2α)

)
lim

x→(ct)−
(ct − x)α−1 . �

In the following proposition we provide a closed-form expression for the probability density
function (8) in the case α = 1/2.

Proposition 3.2. In the case α = 1/2 the probability density function (8) has the following
expression:

f (x, t)= 1

4c

√
β

π
e
β
c

(√
c2t2−x2−ct

) {(
ct + x

2c

)− 1
2 +

(
ct − x

2c

)− 1
2
}
, −ct< x< ct.
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Proof. For α= 1/2 and recalling that, for n ∈N,

�

(
n + 1

2

)
= (2n)!

4nn!
√
π, (15)

one can easily prove that Ak
2(x, t)= Ak+1

0 (x, t), where the function Ak
l (x, t) has been defined in

(6). Hence we obtain

f (x, t) =
√
βe−βt

4c
A0

0(x, t)

{(
ct + x

2c

)− 1
2 +

(
ct − x

2c

)− 1
2
}

. (16)

Moreover, by setting

z :=
[
β2
(

c2t2 − x2

4c2

)]α
,

and using Equation (15), we get

A0
0(z, t)=

+∞∑
n=0

z2n

�
(

n + 1
2

)
�(n + 1)

+
+∞∑
n=0

z2n+1

�(n + 1) �
(

1 + 1
2 + n

)

= 1√
π

+∞∑
n=0

(2z)2n

(2n)! + 2√
π

+∞∑
n=0

(2z)2n+1(n + 1)!
n! (2n + 2)!

= 1√
π

cosh (2z)+ 1√
π

sinh(2z)= 1√
π

e2z.

Finally, the proof follows from substituting the previous expression in (16) and recalling the
definition of z. �

Starting from Theorem 3.1, in the next proposition we provide the expression for the prob-
ability law of Xt under the assumption of identically Erlang-distributed random intertimes Ui

and Di, i = 1, 2, . . . . Such results are in agreement with those obtained in [19].

Corollary 3.1. If Ui and Di, i = 1, 2, . . . , both have Erlang distribution with parameters m ∈
N and β > 0, then for t> 0, we have

P(Xt = −ct | X0 = 0) = P(Xt = ct | X0 = 0) = 1

2

[
1 − γ (m, βt)

(m − 1)!
]
,

and for −ct< x< ct, we have

f (x, t)= β

4c
e−βt

⎧⎨
⎩

2m−1∑
j=0

S(m,m)(
m−1,j

)[β(ct + x

2c

)
, β

(
ct − x

2c

)]

+
2m−1∑
j=0

S(m,m)( j,m−1)

[
β

(
ct + x

2c

)
, β

(
ct − x

2c

)]⎫⎬
⎭ ,

where

S(k,r)i,j (x, y)=
+∞∑
l=0

xkl+iyrl+j

(kl + i)! (rl + j)! , k, r ≥ 1, i, j ≥ 0, (17)

is a two-index pseudo-Bessel function.
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Proof. The result follows from Theorem 3.1 by letting α = m ∈N. For instance, for the first
term in (8), by (7), and recalling Equation (17), we have

βm

4c
e−βt

(
ct + x

2c

)m−1 +∞∑
k=0

[
β

(
ct − x

2c

)]k

1
2

[
(1, 1)

(m,m)(k + 1,m)

∣∣∣∣∣
[
β2
(

c2t2 − x2

4c2

)]m
]

= βm

4c
e−βt

(
ct + x

2c

)m−1 +∞∑
k=0

[
β

(
ct − x

2c

)]k +∞∑
h=0

�(1 + h)

�(m + mh) �(k + 1 + mh)

[
β2
(

c2t2−x2

4c2

)]mh

h!

= β

4c
e−βt

+∞∑
k=0

S(m,m)(m−1,k)

[
β

(
ct + x

2c

)
, β

(
ct − x

2c

)]
.

Using similar reasoning, we obtain

f (x, t)= β

4c
e−βt

{+∞∑
k=0

S(m,m)(m−1,k)

[
β

(
ct + x

2c

)
, β

(
ct − x

2c

)]

−
+∞∑
k=0

S(m,m)(m−1,2m+k)

[
β

(
ct − x

2c

)
, β

(
ct + x

2c

)]

+
+∞∑
k=0

S(m,m)(m−1,k)

[
β

(
ct − x

2c

)
, β

(
ct + x

2c

)]

−
+∞∑
k=0

S(m,m)(m−1,2m+k)

[
β

(
ct + x

2c

)
, β

(
ct − x

2c

)]}
.

Hence, straightforward calculations and the identities (10) and (12) give

f (x, t)= β

4c
e−βt

{
eβ(

ct−x
2c )

+∞∑
h=0

[
β
( ct+x

2c

)]mh+m−1

(mh + m − 1)!

[
γ
(
mh, β

( ct−x
2c

))
�(mh)

− γ
(
m(h + 2) , β

( ct−x
2c

))
�(m(h + 2))

]

+ eβ(
ct+x

2c )
+∞∑
h=0

[
β
( ct−x

2c

)]mh+m−1

(mh + m − 1)!

[
γ
(
mh, β

( ct+x
2c

))
�(mh)

− γ
(
m(h + 2) , β

( ct+x
2c

))
�(m(h + 2))

]}
.

By setting

en(x) :=
n∑

j=0

x j

j! (18)

(cf. Equation 6.5.11 of [1]) and recalling that

γ (n, x)

�(n)
= 1 − en−1(x) e−x (19)
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(cf. Equations 6.5.2 and 6.5.13 of [1]), we have

f (x, t)= β

4c
e−βt

{+∞∑
h=0

[
β
( ct+x

2c

)]mh+m−1

(mh + m − 1)!
[

emh+2m−1

(
β

(
ct − x

2c

))
− emh−1

(
β

(
ct − x

2c

))]

+
+∞∑
h=0

[
β
( ct−x

2c

)]mh+m−1

(mh + m − 1)!
[

emh+2m−1

(
β

(
ct + x

2c

))
− emh−1

(
β

(
ct + x

2c

))]}
= β

4c
e−βt

×
⎧⎨
⎩

+∞∑
h=0

2m−1∑
j=0

[
β
( ct+x

2c

)]mh+m−1

(mh + m − 1)!
[
β
( ct−x

2c

)]j+mh

( j + mh)!

+
+∞∑
h=0

2m−1∑
j=0

[
β
( ct−x

2c

)]mh+m−1

(mh + m − 1)!
[
β
( ct+x

2c

)]j+mh

( j + mh)!

⎫⎬
⎭

= β

4c
e−βt

⎧⎨
⎩

2m−1∑
j=0

S(m,m)(m−1,j)

[
β

(
ct + x

2c

)
, β

(
ct − x

2c

)]

+
2m−1∑
j=0

S(m,m)(m−1,j)

[
β

(
ct − x

2c

)
, β

(
ct + x

2c

)]⎫⎬
⎭

= β

4c
e−βt

⎧⎨
⎩

2m−1∑
j=0

S(m,m)(m−1,j)

[
β

(
ct + x

2c

)
, β

(
ct − x

2c

)]

+
2m−1∑
j=0

S(m,m)( j,m−1)

[
β

(
ct + x

2c

)
, β

(
ct − x

2c

)]⎫⎬
⎭ ,

where the last equality comes from the symmetry property S(k,r)(i,j) (x, y)= S(r,k)( j,i) (y, x) of the
pseudo-Bessel function. �

Some properties of the two-index pseudo-Bessel function (17) can be found in Remark 3.2
of [12].

In the following proposition we provide a closed-form expression for the probability density
function (8) in the case α = 2.

Proposition 3.3. In the case α = 2 the probability density function (8), for −ct< x< ct, has
the following expression:

f (x, t)= λ

8c
e−λt

3∑
j=0

⎡
⎣(ct − x

ct + x

) j−1
2 +

(
ct − x

ct + x

)− j−1
2

⎤
⎦ [Ij−1

(
λ

c

√
c2t2 − x2

)

−Jj−1

(
λ

c

√
c2t2 − x2

)]
,

where, for ν ∈R,

Jν(z)=
+∞∑
l=0

(−1)l

l!�(l + ν + 1)

( z

2

)2l+ν
, (20)
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is the Bessel function of the first kind, and

Iν(z)=
+∞∑
k=0

1

k!�(ν + k + 1)

( z

2

)2k+ν
(21)

is the modified Bessel function of the first kind.

Proof. Note that, by (20) and (21),

I1
(
2λ

√
xy
)+ J1

(
2λ

√
xy
)= +∞∑

m=0

(
λ
√

xy
)2m+1

m!�(m + 2)
+

+∞∑
m=0

(−1)m
(
λ
√

xy
)2m+1

m!�(m + 2)

= 2λ
√

xy
+∞∑
n=0

(
λ2xy

)2n

(2n)! (2n + 1)! .

Hence, setting x̃ := ct+x
2c and y := ct−x

2c , we can write the two-index pseudo-Bessel function
(17) as

S(2,2)(1,0)

[
λx̃, λy

]= +∞∑
l=0

(λx̃)2l+1 (λy)2l

(2l + 1)! (2l)!

= (λx̃)
+∞∑
l=0

(
λ2x̃y

)2l

(2l + 1)! (2l)! = 1

2

(y

x̃

)− 1
2
[
I1

(
2λ
√

x̃y
)

+ J1

(
2λ
√

x̃y
)]

= 1

2

(y

x̃

)− 1
2
[
I−1

(
2λ
√

x̃y
)

− J−1

(
2λ
√

x̃y
)]
,

where the last equality follows from recalling that I−n(x)= In(x) and J−n(x)= (−1)n Jn(x).
Moreover, for j ≥ 1,

Ij−1

(
2λ
√

x̃y
)

− Jj−1

(
2λ
√

x̃y
)

=
(
λ
√

x̃y
)j−1

(+∞∑
m=0

(
λ2x̃y

)m
m!�(m + j)

−
+∞∑
m=0

(−λ2x̃y
)m

m!�(m + j)

)

= 2
(
λ
√

x̃y
)j−1 +∞∑

n=0

(
λ2x̃y

)2n+1

(2n + 1)!�(2n + 1 + j)

= 2
(
λ2x̃y

) j+1
2

+∞∑
n=0

(
λ2x̃y

)2n

(2n + 1)! (2n + j)! .

Hence,

S(2,2)(1,j)

[
λx̃, λy

]= λj+1x̃y j
+∞∑
l=0

(
λ2x̃y

)2l

(2l + 1)! (2l + j)!

= λj+1x̃y j
(
λ2x̃y

)− j+1
2

2

[
Ij−1

(
2λ
√

x̃y
)

− Jj−1

(
2λ
√

x̃y
)]

= 1

2

(y

x̃

) j−1
2
[
Ij−1

(
2λ
√

x̃y
)

− Jj−1

(
2λ
√

x̃y
)]

.
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FIGURE 3. Probability density function of Xt under the assumption of gamma-distributed intertimes for
t = 1, c = 1, β = 0.5 (dotted line), β = 1 (dashed line), β = 1.5 (solid line), with α= 1/2 (left-hand side)
and α= 2 (right-hand side).

Similarly, we have

S(2,2)(0,1)

[
λx̃, λy

]= 1

2

(y

x̃

) 1
2
[
I−1

(
2λ
√

x̃y
)

− J−1

(
2λ
√

x̃y
)]
,

and for j ≥ 1,

S(2,2)( j,1)

[
λx̃, λy

]= 1

2

(y

x̃

)− j−1
2
[
Ij−1

(
2λ
√

x̃y
)

− Jj−1

(
2λ
√

x̃y
)]

.

The proof finally follows from Corollary (3.1) and the definition of x̃ and y. �
Some plots of the probability density function (8) are shown in Figure 3 for different values

of the parameters involved.
The following proposition deals with the case in which the random times Ui are exponen-

tially distributed, whereas the random variables Di are gamma-distributed, i = 1, 2, . . ..

Corollary 3.2. For i = 1, 2, . . ., let us assume that the random times Ui are exponentially dis-
tributed with parameter λ> 0 and that the random variables Di have gamma distribution with
shape parameter α > 0 and rate parameter β > 0. For t> 0, it holds that

P(Xt = −ct | X0 = 0) = 1

2

[
1 − γ (α, βt)

�(α)

]
, P(Xt = ct | X0 = 0) = 1

2
e−λt,

and, for −ct< x< ct,

f (x, t)= λ

4c
e− t

2 (β+λ)+ x
2c (β−λ)

+∞∑
k=0

[
β

(
ct − x

2c

)]k {
Wα,k+1

[
λβα

(
ct + x

2c

)(
ct − x

2c

)α]

−
[
β

(
ct − x

2c

)]2α

Wα,2α+k+1

[
λβα

(
ct + x

2c

)(
ct − x

2c

)α]}

+ β

4c
e− t

2 (β+λ)+ x
2c (β−λ)

[
β

(
ct − x

2c

)]−1 {
Wα,0

[
λβα

(
ct + x

2c

)(
ct − x

2c

)α]

+
[
β

(
ct − x

2c

)]α−1

Wα,α

[
λβα

(
ct + x

2c

)(
ct − x

2c

)α]}
, (22)
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where

Wρ,θ (z) =
+∞∑
k=0

zk

k!�(ρk + θ )
, ρ >−1, θ ∈C, (23)

is the Wright function.

Proof. Under the assumptions concerning the distribution of Ui and Di, i = 1, 2, . . ., for
x> 0 it holds that

f (n)U (x)= λnxn−1e−λx

(n − 1)! , F(n)U (x)− F(n+1)
U (x)= p(n, λx) , (24)

where p( j, η) denotes the Poisson probability mass function with mean η evaluated at j, and

g(n)D (x)= βnαxnα−1e−βx

�(nα)
, G(n)D (x)= γ (nα, βx)

�(nα)
. (25)

Substituting Equations (24) and (25) in Equation (4), we get

fc(x, t)= 1

2c

{
e−λ( ct+x

2c )
+∞∑
n=0

[
G(n)D

(
ct − x

2c

)
− G(n+1)

D

(
ct − x

2c

)]
λn+1

( ct+x
2c

)n
n!

+
+∞∑
n=1

p

(
n, λ

(
ct + x

2c

))
g(n)D

(
ct − x

2c

)}
= 1

2c

{
λ

+∞∑
n=0

p

(
n, λ

(
ct + x

2c

))

×
[

G(n)D

(
ct − x

2c

)
− G(n+1)

D

(
ct − x

2c

)]
+

+∞∑
n=1

p

(
n, λ

(
ct + x

2c

))
g(n)D

(
ct − x

2c

)}

= λ

2c

+∞∑
n=0

p

(
n, λ

(
ct + x

2c

)){
γ
(
nα, β

( ct−x
2c

))
�(nα)

− γ
(
(n + 1) α, β

( ct−x
2c

))
�((n + 1) α)

}

+ 1

2c
e−β

(
ct−x

2c

) +∞∑
n=1

p

(
n, λ

(
ct + x

2c

))
βnα

( ct−x
2c

)nα−1

�(nα)
.

Hence, recalling Equation (10), we obtain

fc(x, t)= λ

2c

+∞∑
n=0

p

(
n, λ

(
ct + x

2c

)) [
β

(
ct − x

2c

)]nα {
γ 

(

nα, β

(
ct − x

2c

))

−
[
β

(
ct − x

2c

)]α
γ 

(
(n + 1) α, β

(
ct − x

2c

))}
+ 1

2c
e−β( ct−x

2c )
[

ct − x

2c

]−1

×
+∞∑
n=1

p

(
n, λ

(
ct + x

2c

)) [
βα
( ct−x

2c

)α]n
�(nα)

= λ

2c

+∞∑
n=0

p

(
n, λ

(
ct + x

2c

))

×
[
β

(
ct − x

2c

)]nα

e−β( ct−x
2c )

{+∞∑
k=0

[
β
( ct−x

2c

)]k
�(nα + k + 1)

−
+∞∑
k=0

[
β
( ct−x

2c

)]k+α
�(nα + α+ k + 1)

}
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+ 1

2c
e−β( ct−x

2c )e−λ( ct+x
2c )

[
ct − x

2c

]−1 +∞∑
n=1

[
λ
( ct+x

2c

)
βα
( ct−x

2c

)α]n
n!�(nα)

= λ

2c
e−λ( ct+x

2c )e−β( ct−x
2c )

{+∞∑
k=0

[
β

(
ct − x

2c

)]k +∞∑
n=0

[
λ
( ct+x

2c

)
βα
( ct−x

2c

)α]n
n!�(nα + k + 1)

−
+∞∑
k=0

[
β

(
ct − x

2c

)]k+α +∞∑
n=0

[
λ
( ct+x

2c

)
βα
( ct−x

2c

)α]n
n!�((n + 1) α+ k + 1)

}

+ 1

2c

[
ct − x

2c

]−1

e−β( ct−x
2c )e−λ( ct+x

2c )
+∞∑
n=1

[
λ
( ct+x

2c

)
βα
( ct−x

2c

)α]n
n!�(nα) .

From the definition (23), it finally results that

fc(x, t)= λ

2c
e− t

2 (β+λ)+ x
2c(β−λ)

+∞∑
k=0

{[
β

(
ct − x

2c

)]k

Wα,k+1

[
λβα

(
ct + x

2c

)(
ct − x

2c

)α]

−
[
β

(
ct − x

2c

)]k+α
Wα,k+α+1

[
λβα

(
ct + x

2c

)(
ct − x

2c

)α]}

+ 1

2c

[
ct − x

2c

]−1

e− t
2 (β+λ)+ x

2c (β−λ)Wα,0

[
λβα

(
ct + x

2c

)(
ct − x

2c

)α]
.

Substituting Equations (24) and (25) in Equation (5), and proceeding in a similar way, we
easily obtain the expression for f−c(x, t), so that the thesis immediately follows from recalling
the assumption of random initial velocity. �

As an immediate consequence of Proposition 3.2, we obtain the following result.

Proposition 3.4. If the random times Ui are exponentially distributed with parameter λ> 0
and the Di are Erlang-distributed with parameters m ∈N and β > 0, it holds that

P
(
Xt = −ct | X0 = 0

)= 1

2

[
1 − γ (m, βt)

(m − 1)!
]
, P(Xt = ct | X0 = 0) = 1

2
e−λt,

and

f (x, t)= λ

4c
e− t

2 (β+λ)+ x
2c (β−λ)

2m−1∑
k=0

[
β

(
ct − x

2c

)]k

Wm,k+1

[
λβm

(
ct + x

2c

)(
ct − x

2c

)m]

+ β

4c
e− t

2 (β+λ)+ x
2c (β−λ)

[
β

(
ct − x

2c

)]−1 {
Wm,0

[
λβm

(
ct + x

2c

)(
ct − x

2c

)m]

+
[
β

(
ct − x

2c

)]m−1

Wm,m

[
λβm

(
ct + x

2c

)(
ct − x

2c

)m]}
.

Figure 4 shows some plots of the probability density function given in Proposition 3.4 for
different values of the parameters involved.
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FIGURE 4. Density f (x, t) given in Proposition 3.4 for t = 1, c = 1, λ= 1, β = 0.5 (dotted line), β = 2
(dashed line), β = 4 (solid line), with m = 2 (left-hand side) and m = 3 (right-hand side).

4. The moment generating function

Let us consider the moment generating function of the generalized telegraph process,

Ms
X(t) := E

[
esXt |X0 = 0

]
, s ∈R, t> 0. (26)

Denoting by

Lp[w] =
∫ +∞

0
e−ptw(t)dt, p ≥ 0, (27)

the Laplace transform of an arbitrary function w(t), in this section we provide some results
on the Laplace transform Lp

[
Ms

X

]
of the moment generating function. Note that Lp

[
Ms

X

]=
1
pE

[
esXep

]
, where ep is an exponential random variable with parameter p, independent of Xt.

The following theorem, providing an explicit expression for Lp
[
Ms

X

]
, represents a use-

ful tool for further analysis. For instance, it allows us to prove the existence of a Kac-type
condition under which the probability density function of the generalized integrated tele-
graph process, with identically distributed gamma intertimes, converges to that of the standard
Brownian motion. We point out the novelty of such a result in the field of finite-velocity random
evolutions, since it generalizes the one holding in the case of the standard telegraph process.

Theorem 4.1. If the random variables Ui (Di), i ≥ 1, are independent copies of an abso-
lutely continuous random variable U (D), for t> 0 and under the assumption Lp−sc[fU] ·
Lp+sc[gD]< 1, the Laplace transform of the moment generating function of the generalized
telegraph process is given by

Lp
[
Ms

X

]=1

2
Lp−sc

[
FU
]+ 1

2
Lp+sc

[
GD
]

+ 1

2 (p + sc)
Lp−sc[fU] + 1

2 (p − sc)
Lp+sc[gD] + sc

(p + sc)(p − sc)

×
{

1

1 −Lp−sc[fU] ·Lp+sc[gD]
− 1

} {Lp+sc[gD] −Lp−sc[fU]
}

. (28)

Proof. Let us denote by Ms
c(t) and Ms−c(t) the conditional moment generating functions of

the integrated telegraph process under fixed initial velocity V0 = ±c, i.e.

Ms
v0

(t) =E

[
esXt |V0 = v0

]
.
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In the case v0 = c, by Equations (2) and (4), we get

Ms
c(t) := E

[
esXt |V(0) = c

]= esctFU(t) +
∫ ct

−ct
esxfc(x, t)dx = esctFU(t)

+ 1

2c

{+∞∑
n=0

∫ ct

−ct
esx × G(n)

D

(
t − ct + x

2c

)
f (n+1)
U

(
ct + x

2c

)
dx

−
+∞∑
n=0

∫ ct

−ct
esxG(n+1)

D

(
t − ct + x

2c

)
f (n+1)
U

(
ct + x

2c

)
dx

+
+∞∑
n=1

∫ ct

−ct
esxF(n)

U

(
ct + x

2c

)
g(n)

D

(
t − ct + x

2c

)
dx

−
+∞∑
n=1

∫ ct

−ct
esxF(n+1)

U

(
ct + x

2c

)
g(n)

D

(
t − ct + x

2c

)
dx

}

= esctFU(t) + e−sct

{+∞∑
n=1

∫ t

0
e2scyf (n+1)

U (y)
[
G(n)

D (t − y) − G(n+1)
D (t − y)

]
dy

+
∫ t

0
e2scyfU(y)

[
1 − GD(t − y)

]
dy +

+∞∑
n=1

∫ t

0
e2scyg(n)

D (t − y)
[
F(n)

U (y) − F(n+1)
U (y)

]
dy

}
.

We now consider the Laplace transform of the moment generating function

Lp
[
Ms

c

] =Lp
[
esctFU(t)

]+ +∞∑
n=1

Lp

[
e−sct

∫ t

0
e2scyf (n+1)

U (y)
[
G(n)

D (t − y) − G(n+1)
D (t − y)

]
dy

]

+ Lp

[
e−sct

∫ t

0
e2scyfU(y)[1 − GD(t − y)]dy

]

+
+∞∑
n=1

Lp

[
e−sct

∫ t

0
e2scyg(n)

D (t − y)
[
F(n)

U (y) − F(n+1)
U (y)

]
dy

]
.

Denoting by w 
 h(t) the convolution between two functions w and h, and exploiting the
properties of the Laplace transform, we obtain

Lp
[
Ms

c

]=Lp−sc
[
FU
]+ +∞∑

n=1

Lp+sc

[(
G(n)

D − G(n+1)
D

)


(

e2sctf (n+1)
U (t)

)]

+Lp+sc

[∫ t

0
e2scyfU(y)dy

]
−Lp+sc

[
GD 
 e2sctfU(t)

]

+
+∞∑
n=1

Lp+sc

[
g(n)

D 
 e2sct
(

F(n)
U (t) − F(n+1)

U (t)
)]
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=Lp−sc
[
FU
]+ +∞∑

n=1

Lp−sc

[
f (n+1)
U

]
·
[
Lp+sc

(
G(n)

D

)
−Lp+sc

(
G(n+1)

D

)]

+ 1

p + sc
Lp+sc

[
e2sctfU(t)

]
−Lp+sc

[
e2sctfU(t)

]
·Lp+sc [GD]

+
+∞∑
n=1

Lp+sc

[
g(n)

D

]
·
[
Lp−sc

(
F(n)

U

)
−Lp−sc

(
F(n+1)

U

)]
.

Hence, rearranging the terms, we have

Lp
[
Ms

c

]=Lp−sc
[
FU
]+ +∞∑

n=1

Lp−sc

[
f (n+1)
U

]
·
⎡
⎣Lp+sc

(
g(n)

D

)
p + sc

−
Lp+sc

(
g(n+1)

D

)
p + sc

⎤
⎦

+ Lp−sc[fU]

p + sc
− Lp−sc[fU]Lp+sc[gD]

p + sc
+

+∞∑
n=1

Lp+sc

[
g(n)

D

]

×
⎡
⎣Lp−sc

(
f (n)
U

)
p − sc

−
Lp−sc

(
f (n+1)
U

)
p − sc

⎤
⎦=Lp−sc

[
FU
]+ 1

p + sc
Lp−sc[fU]

− 2sc

(p + sc) (p − sc)
Lp−sc[fU]

+∞∑
n=1

[Lp−sc[fU]
]n [Lp+sc[gD]

]n

+ 2sc

(p + sc) (p − sc)

+∞∑
n=1

[Lp−sc[fU]
]n [Lp+sc[gD]

]n .

Under the assumption Lp−sc[fU] ·Lp+sc[gD]< 1, we can express the Laplace transform of the
conditional moment generating function in terms of the Laplace transform of the densities of
the random times Ui and Di:

Lp
[
Ms

c

]=Lp−sc
[
FU
]+ 1

p + sc
Lp−sc[fU]

+ 2sc

(p + sc) (p − sc)

[
1 −Lp−sc[fU]

] · [ 1

1 −Lp−sc[fU] ·Lp+sc[gD]
− 1

]
. (29)

In the case v0 = −c, through similar reasoning we obtain

Lp
[
Ms−c

]=Lp+sc
[
GD
]+ 1

p − sc
Lp+sc[gD]

+ 2sc

(p + sc) (p − sc)

[Lp+sc[gD] − 1
] · [ 1

1 −Lp−sc[fU] ·Lp+sc[gD]
− 1

]
, (30)

so that the claimed result immediately follows under the assumption of random initial
velocity. �

Starting from the previous theorem, the following proposition provides the Laplace trans-
form of the moment generating function of the integrated telegraph process, under the
assumption of identically distributed gamma intertimes Ui and Di.
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Proposition 4.1. Let us assume that both the random variables Ui and Di (i ≥ 1) have gamma
distribution with shape parameter α > 0 and rate parameter β > 0. Then, recalling Equations
(26) and (27), for p>−β +√β2 + c2s2, we have

Lp
[
Ms

X

]= 1

2(p + sc)

(
β

β + p − sc

)α
+ 1

2(p − sc)

(
β

β + p + sc

)α

+ sc

(p + sc)(p − sc)

{(
β

β + p + sc

)α
−
(

β

β + p − sc

)α}(
β2

(β + p − sc)(β + p + sc)

)α

×
[

1 −
(

β2

(β + p − sc)(β + p + sc)

)α]−1

.

Proof. The proof can be immediately obtained from Equation (28) and by recalling the
following expression for the Laplace transform of the gamma density function with shape
parameter α > 0 and rate parameter β > 0:

Lp {fU} =Lp{gD} =
(

β

p + β

)α
, p> 0. �

It is well known (see, for instance, [33, Section 2.6]) that under Kac scaling conditions the
symmetric telegraph process weakly converges to the Brownian motion. The following theo-
rem allows us to obtain a similar result for the symmetric telegraph process driven by gamma
components.

Theorem 4.2. Let us consider the integrated telegraph process Xt under the assumption of
gamma-distributed intertimes Ui and Di (i ≥ 1) with shape parameter α > 0 and rate parame-
ter β > 0. Under a Kac-type scaling condition, the probability density function of Xt converges
to that of the standard Brownian motion, i.e., recalling Equation (1),

lim
c,β→+∞
c2/β→1

f (x, t) = 1√
2π t

e−x2/2t, t> 0.

Proof. By Proposition (4.1), and recalling that

lim
c,β→+∞
c2/β→1

(
−β +

√
β2 + c2s2

)
= s2

2
,

for p> s2/2, we have

lim
c,β→+∞,

c2/β→1

Lp
[
Ms

X

]= lim
c→+∞

cs
(
−
(

c2

c2+p−cs

)α +
(

c2

c2+p+cs

)α)
(p − cs) (p + cs)

×
⎛
⎜⎝−1 + 1

1 −
(

c4

(c2+p−cs)(c2+p+cs)

)α
⎞
⎟⎠
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= lim
c→+∞

cs
(
−
(

1 + p
c2 + s

c

)α +
(

1 + p
c2 − s

c

)α)
(

1 + p
c2 + s

c

)α (
1 + p

c2 − s
c

)α
(p − cs) (p + cs)

[(
1 + p−sc

c2

)α (
1 + p+sc

c2

)α − 1
]

= lim
c→+∞

cs
(
−
(

1 + p
c2 + s

c

)α +
(

1 + p
c2 − s

c

)α)
α
(

1 + p
c2 − s

c

)α (
1 + p

c2 + s
c

)α ( p
c − s

) ( p
c + s

) (
2p + p2

c2 − s2
) .

Hence, by making use of the binomial series, we obtain

lim
c,β→+∞,

c2/β→1

Lp
[
Ms

X

]= 2

2p − s2
, p>

s2

2
. (31)

The proof finally follows from recalling that the inverse Laplace transform of 2
2p−s2 , p> s2/2,

is given by es2t/2. �
The following proposition provides the explicit expression for the moment generating

function of the integrated telegraph process under the same assumptions as in Proposition
(4.1).

Proposition 4.2. If the random variables U and D both have gamma distribution with shape
parameter α > 0 and rate parameter β > 0, for t> 0 and s ∈R we have

Ms
X(t) = 1

2

{
e−sct

(
1 − γ (α, βt)

� (α)

)
+ esct

(
1 − γ (α, βt)

� (α)

)

+ (βt)α

� (α+ 1)

[
e(sc−β)t

1F1(1; α+ 1; (β − 2sc) t)+ e−(sc+β)t
1F1(1; α + 1; (β + 2sc) t)

]

+ (βt)α e−(sc+β)t
+∞∑
n=1

(βt)2nα

�(2nα + α + 1)

[
�2 (nα, 1; 2nα + α + 1; 2sct, 2sct + βt)

−�2 (nα, 1; 2nα + α + 1; 2sct, βt)+�2 (nα + α, 1; 2nα + α + 1; 2sct, βt)

−�2 (nα + α, 1; 2nα + α+ 1; 2sct, 2sct + βt)
] }
, (32)

where

1F1(a, b, z) =
+∞∑
n=0

(a)n

(b)n

zn

n! (33)

is the confluent hypergeometric function and

�2
(
b1, b2, c,w, z

)= +∞∑
m,n=0

(b1)m(b2)n

(c)n+m

wm

m!
zn

n! , w, z ∈C, (34)

denotes the Humbert series (cf. [26]).
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Proof. The proof follows from Proposition 4.1. Let us set

A1 := 1

2 (p + sc)
Lp−sc[fU], (35a)

A2 := 1

2 (p − sc)
Lp+sc[gD], (35b)

A3 := sc

(p + sc) (p − sc)
, (35c)

A4 := 1

1 −Lp−sc[fU]Lp+sc[gD]
, (35d)

A5 := Lp+sc[gD] −Lp−sc[fU], (35e)

so that Equation (28) can be expressed as

Lp
[
Ms

X

]= 1

2
Lp−sc

[
FU
]+ 1

2
Lp+sc

[
GD
]+ A1 + A2 + A3 · (A4 − 1) · A5. (36)

From the properties of the Laplace transform, Equation (35a) reads

A1 = 1

2 (p + sc)

(
β

p − sc + β

)α

= 1

2
Lp
{
e−sct}Lp

{
e(sc−β)ttα−1βα

� (α)

}

= 1

2
Lp

[
βα

� (α)
e(sc−β)t

∫ t

0
e(β−2sc)τ (t − τ)α−1 dτ

]

= 1

2
Lp

[
(βt)α

� (α)
e(sc−β)tB (α, 1) 1F1(1; α+ 1; (β − 2sc) t)

]
,

where the last equality follows from the integral representation of the Kummer hypergeometric
function (cf. 13.2.1 of [1]). Analogously, Equation (35b) can be written as

A2 = 1

2
Lp

[
(βt)α

� (α)
e−(sc+β)tB (α, 1) 1F1(1; α+ 1; (β + 2sc) t)

]
.

Moreover, we have

A3 = sc Lp

[
esct

∫ t

0
e−2scτdτ

]
= 1

2
Lp
[
esct − e−sct] , (37)

whereas

A4 =
+∞∑
n=0

(Lp−sc[fU]Lp+sc[gD]
)n

=
+∞∑
n=0

(
Lp

[
e−(β−sc)tβnαtnα−1

� (nα)

]) (
Lp

[
e−(β+sc)tβnαtnα−1

� (nα)

])

=
+∞∑
n=0

β2nα

[� (nα)]2
Lp

{
e−(β+sc)t

∫ t

0
e2scτ τ nα−1 (t − τ)nα−1 dτ

}
.
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By Equation 3.383.2 of [27], the previous formula becomes

A4 =Lp

{
√
πe−βt

+∞∑
n=0

β2nα

� (nα)

( t

2sc

)nα− 1
2

Inα− 1
2
(sct)

}
, (38)

where Iν (z) has been defined in Equation (21). It is worth noting that the term A4 can be also
expressed in terms of the moment generating function χ (s) := E(esY ) of a random variable Y
characterized by a beta distribution with equal parameters given by nα. Indeed,

A4 =Lp

{
e−(β+sc)t χ (2sct)

t
· E2α,0

[
(βt)2α

]}
,

where

Ea,b(z)=
+∞∑
k=0

zk

� (ak + b)
(39)

is the two-parametric Mittag-Leffler function (see, for instance, Equation 4.1.1 of [24]).
From Equations (37), (38), and (35e), we have

A3 · (A4 − 1) · A5 = 1

2
Lp
{
esct − e−sct} [Lp

{
√
πe−βt

+∞∑
n=0

β2nα

� (nα)

( t

2sc

)nα− 1
2

Inα− 1
2
(sct)

}
−1

]

× [Lp+sc[gD] −Lp−sc[fU]
]

. (40)

Aiming to evaluate the previous equation, we set

B1 := Lp
{
esct}Lp

{
√
πe−βt

+∞∑
n=0

β2nα

� (nα)

( t

2sc

)nα− 1
2

Inα− 1
2
(sct)

}
, (41)

B11 := B1 ·Lp+sc[gD], (42)

B12 := B1 ·Lp−sc[fU], (43)

C1 := Lp
{
e−sct}Lp

{
√
πe−βt

+∞∑
n=0

β2nα

� (nα)

( t

2sc

)nα− 1
2

Inα− 1
2
(sct)

}
, (44)

C11 := C1 ·Lp+sc[gD], (45)

C12 := C1 ·Lp−sc[fU], (46)

so that Equation (40) becomes

1

2

(
B11 − B12 − C11 + C12 −Lp

{
esct}Lp+sc[gD] +Lp

{
esct}Lp−sc[fU]

+Lp
{
e−sct}Lp+sc[gD] −Lp

{
e−sct}Lp−sc[fU]

)
.

Note that

B1 =Lp

{
√
πesct

+∞∑
n=0

β2nα

� (nα)

(
1

2sc

)nα− 1
2
∫ t

0
e−(sc+β)τ τ nα− 1

2 Inα− 1
2
(scτ) dτ

}
.
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The inner integral can be evaluated by making use of the formula 7.11.1.5 in [44], so that

∫ t

0
e−(sc+β)τ τ nα− 1

2 Inα− 1
2
(scτ) dτ

= 1

�
(

nα + 1
2

) ∫ t

0
e−(2sc+β)τ τ nα− 1

2

( scτ

2

)nα− 1
2

1F1(nα; 2nα; 2scτ) dτ

= t2nα

�
(

nα + 1
2

) ( sc

2

)nα− 1
2
∫ 1

0
e−t(2sc+β)yy2nα−1

1F1(nα; 2nα; 2scty) dy

= t2nα

�
(

nα + 1
2

) ( sc

2

)nα− 1
2 1

2nα
e−t(2sc+β)�2 (nα, 1; 2nα + 1; 2sct, 2sct + βt) ,

where we have exploited the integral representation for the Humbert function�2 (cf. Equation
(4.6) of [4]). From this relationship, and recalling Equation 6.1.18 of [1], we finally get

B1 =Lp

{
e−(sc+β)t

+∞∑
n=0

(
β2t2

)nα
� (2nα + 1)

�2 (nα, 1; 2nα + 1; 2sct, 2sct + βt)

}
. (47)

Hence, by Equation (47), from Equation (42) it follows that

B11 =Lp

{
e−(sc+β)t

+∞∑
n=0

(
β2t2

)nα
� (2nα + 1)

�2 (nα, 1; 2nα

+1; 2sct, 2sct + βt)}Lp

{
e−(β+sc)ttα−1βα

� (α)

}

=Lp

{
e−(β+sc)tβα

� (α)

+∞∑
n=0

β2nα

� (2nα + 1)

∫ t

0
(t − τ)α−1 τ 2nα�2 (nα, 1; 2nα

+1; 2scτ, 2scτ + βτ) dτ } .

From the relation (3.19) of [6], i.e.

∫ w

0
xc−1 (w − x)s−c−1 �2

(
b, b′; c; ux; vx

)
dx = B (c, s − c)ws−1�2

(
b, b′; s; uw, vw

)
, (48)

we have

B11 =Lp

{
(βt)α e−(β+sc)t

+∞∑
n=0

(
β2t2

)nα
� (2nα + 1 + α)

�2 (nα, 1; α + 2nα + 1; 2sct, 2sct + βt)

}
.
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A similar argument can be applied to Equation (43), yielding

B12 =Lp

{
e−(sc+β)t

+∞∑
n=0

(
β2t2

)nα
� (2nα + 1)

�2 (nα, 1; 2nα

+1; 2sct, 2sct + βt)

}
Lp

{
e(sc−β)ttα−1βα

� (α)

}

=Lp

{
e(sc−β)tβα

� (α)

+∞∑
n=0

β2nα

� (2nα + 1)

∫ t

0
e−2scτ (t − τ)α−1 τ 2nα�2 (nα, 1; 2nα

+1; 2scτ, 2scτ + βτ) dτ

}

=Lp

{
e−(sc+β)tβα

� (α)

+∞∑
n=0

+∞∑
m=0

β2nα

� (2nα + 1)

(2sc)m

m!

×
∫ t

0
(t − τ )α+m−1τ 2nα�2 (nα, 1; 2nα + 1; 2scτ, (2sc + β) τ) dτ

}
.

=Lp

{
e−(sc+β)t (βt)α

+∞∑
n=0

(βt)2nα

� (2nα + 1 + α)

×
+∞∑
m=0

(α)m

(2nα + 1 + α)m

(2sct)m

m! �2 (nα, 1; 2nα + α + 1 + m; 2sct, 2sct + βt)

}
.

Finally, the application of the decomposition formula for the Humbert function �2 (cf. (2.45)
of [9]),

�2
(
β1, β2; γ ; x, y

)= +∞∑
i=0

(β1 − ε1)i

(γ )i

xi

i!�2
(
ε1, β2; γ + i; x, y

)
,

yields

B12 =Lp

{
e−(sc+β)t (βt)α

+∞∑
n=0

(βt)2nα

� (2nα + α + 1)
�2 (nα + α, 1; 2nα + α + 1; 2sct, 2sct + βt)

}
.

Hence, the initial velocity being random, Equation (36) becomes

Lp
[
Ms

X

]= 1

2
Lp

{
e−sct + esct + (βt)α

� (α)
e(sc−β)tB (α, 1) 1F1(1; α + 1; (β − 2sc) t)

+ (βt)α

� (α)
e−(sc+β)tB (α, 1) 1F1(1; α+ 1; (β + 2sc) t)

+ (βt)α e−(β+sc)t
+∞∑
n=0

(βt)2nα

� (2nα + α + 1)
�2 (nα, 1; 2nα + α+ 1; 2sct, 2sct + βt)
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− (βt)α e−(β+sc)t
+∞∑
n=0

(βt)2nα

� (2nα + α + 1)
�2 (nα + α, 1; 2nα + α + 1; 2sct, 2sct + βt)

− (βt)α e−(β+sc)t
+∞∑
n=0

(βt)2nα

� (2nα + α + 1)
�2 (nα, 1; 2nα + α+ 1; 2sct, βt)

+ (βt)α e−(β+sc)t
+∞∑
n=0

(βt)2nα

� (2nα + α + 1)
�2 (nα + α, 1; 2nα + α + 1; 2sct, βt)

−
(

β

β + 2sc

)α
esct γ (α, (β + 2sc) t)

� (α)
−
(

β

β − 2sc

)α
e−sct γ (α, (β − 2sc) t)

� (α)

}
.

The previous expression can be simplified by taking into account that, by (10) and (12),

�2 (0, 1; α + 1; 2sct, βt)=
+∞∑
k=0

+∞∑
r=0

(0)k (1)r
(α+ 1)k+r

(2sct)k (βt)r

k!r! =
+∞∑
r=0

(βt)r

(α+ 1)r
= αeβt γ (α, βt)

(βt)α

�2 (0, 1; α + 1; 2sct, 2sct + βt)=
+∞∑
r=0

(2sct + βt)r

(α+ 1)r
= αe(2sc+β)t γ (α, 2sct + βt)

(2sct + βt)α
,

and that, by making use of the integral representation for the Humbert function �2 (cf.
Equation (4.5) of [4]), we have

�2 (α, 1; α + 1; 2sct, βt)= eβt

B (1, α)

∫ 1

0
xα−1e−βtx

1F1(α; α; 2sctx) dx

= αeβt γ (α, βt − 2sct)

(βt − 2sct)α

and

�2 (α, 1; α+ 1; 2sct, 2sct + βt)= αe2sct+βt γ (α, βt)

(βt)α
.

The final part of the proof is devoted to the investigation of the convergence of the series of
Humbert functions appearing in the right-hand side of Equation (32). We start from the integral
representation of the Humbert function �2 (cf. Equation (4.5) of [4]),

�2 (nα, 1; 2nα + α + 1; 2sct, 2sct + βt)= e2sct+βt

B (1, 2nα + α)

×
∫ 1

0
y2nα+α−1e−(2sct+βt)y

1F1(nα; 2nα + α; 2scty) dy,

and recall the following bound for the confluent hypergeometric function 1F1 (cf. Equation 3.5
of [8]):

1F1(nα; 2nα + α; 2scty) < 1 + n

2n + 1

(
e2scty − 1

)
.
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Hence, it follows that

�2 (nα, 1; 2nα + α+ 1; 2sct, 2sct + βt) <
nαe2sct+βt

(βt)2nα+α γ (2nα + α, βt)

+ (n + 1) αe2sct+βt

(βt + 2sct)2nα+α γ (2nα + α, βt + 2sct) .

Using Equation (4.1) of [36], we finally obtain

�2 (nα, 1; 2nα + α+ 1; 2sct, 2sct + βt) <
e2sct+βt

2nα + α+ 1
+ nαe2sct

2nα + α + 1
+ (n + 1)α

2nα + α+ 1
,

so that
+∞∑
n=1

(βt)2nα

� (2nα + α + 1)
�2 (nα, 1; 2nα + α + 1; 2sct, 2sct + βt)

< e2sct+βt
+∞∑
n=1

(βt)2nα

� (2nα + α+ 2)
+ e2sct

+∞∑
n=1

(nα) (βt)2nα

� (2nα + α + 2)
+

+∞∑
n=1

[(n + 1) α] (βt)2nα

� (2nα + α + 2)
.

= e2sct+βt
1
1

[
(1, 1) (α + 2, 2α)

∣∣∣∣∣ (βt)2α
]

+ e2sct (βt)2α 1
1

[
(2, 1) (3α + 2, 2α)

∣∣∣∣∣ (βt)2α
]

+1
1

[
(2, 1) (α+ 2, 2α)

∣∣∣∣∣ (βt)2α
]

− 1

� (α + 2)
(e2sct+βt + 1).

The other series in (32) involving the Humbert functions can be treated in a similar way. �
As an immediate consequence of Theorem 4.2, we obtain the following result.

Proposition 4.3. If the random variables U and D both have Erlang distribution with shape
parameter m ∈N and rate parameter β > 0, for t> 0 and s ∈R we have

Ms
X(t) = 1

2

⎧⎨
⎩(e−sct + esct) e−βt

m−1∑
j=0

(βt) j

j! + (βt)m

m! esct−βt
1F1(1; m + 1; βt − 2sct)

+ (βt)m

m! e−sct−βt
1F1(1; m + 1; 2sct + βt)+ esct−βt

⎡
⎣βt

+∞∑
n=1

nm+m−1∑
j=0

1F1(1; j + 2; βt − 2sct)

×
((

nm + m − 1

j

)
−
(

nm − 1

j

))
(2sct) j

( j + 1)! −
+∞∑
n=1

(βt)2mn+m (2sct + βt)1−m−2mn

×
nm+m−1∑

j=0

((
nm + m − 1

j

)
−
(

nm − 1

j

))
(2sct) j

( j + 1)! 1F1(1; j + 2; βt)+ e−2sct
+∞∑
n=1

(βt)m+2mn

×
2mn+m−2∑

j=0

[
(βt)j+1−m−2mn − (2sct + βt)j+1−m−2mn]

( j + 1)!

× [1F1(nm; j + 2; 2sct)− 1F1(nm + m; j + 2; 2sct)
] ]}

.
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Proof. Let α= m ∈N in Equation (32). The discrete component can be obtained from
Equations (18) and (19). Aiming to evaluate the continuous component, let us recall that (cf.
Equation (3.8) of [5])

�2 (b, n + 1; c; w, z)= (c − 1) ez
n∑

k=0

(−1)k

k! zkLk
n−k (−z)

∫ 1

0
tc+k−2e−tz

1F1(b; c − 1; wt) dt,

where Lαn is the generalized Laguerre polynomial of degree n, and that (cf. Equation (7.11.1.13)
of [44])

1F1(1; m; z)= (m − 1)!z1−m

[
ez −

m−2∑
k=0

zk

k!

]
, m = 1, 2, . . . .

Hence

�2 (1, nm; 2nm + m + 1; 2sct + βt, 2sct)= −e2sct� (2nm + m + 1) (2sct + βt)1−2nm−m

×
⎧⎨
⎩ 1

βt

nm−1∑
k=0

(
2sc

β

)k

Lk
nm−k−1 (−2sct)

[
1 − eβt

k∑
l=0

(−βt)l

l!

]
+ 1

2sct

nm−1∑
k=0

2nm+m−2∑
j=0

(−1)k

k!

×Lk
nm−k−1 (−2sct)

(
2sc+β

2sc

) j

j! γ (k + j + 1, 2sct)

⎫⎪⎬
⎪⎭ .

Similar reasoning can be applied for the other functions involved in Equation (32). After some
cumbersome calculations, and by Equations 5.3.10.20 of [3] and 2.19.3.6 of [43], the moment
generating function (32) reads

Ms
X(t) =1

2

⎧⎨
⎩(e−sct + esct) e−βt

m−1∑
j=0

(βt) j

j! + (βt)m

m! esct−βt
1F1(1; m + 1; βt − 2sct)

+ (βt)m

m! e−sct−βt
1F1(1; m + 1; 2sct + βt)+ esct

+∞∑
n=1

(βt)2nm+m
nm+m−1∑

k=0

(−2sct)k

×
[
Lk

nm−k−1 (−2sct)− Lk
nm+m−k−1 (−2sct)

]
(2sct + βt)1−m−2mn 1F1(1; k + 2; − βt)

(k + 1)! − e−sct

×
+∞∑
n=1

nm+m−1∑
k=0

(−2sct)k
[
Lk

nm−k−1 (−2sct)

−Lk
nm+m−k−1 (−2sct)

]
(βt)

1F1(1; k + 2; 2sct − βt)

(k + 1)!

−e3sct−βt
+∞∑
n=1

(βt)2nm+m
nm+m−1∑

k=0

(−2sct)k
[
Lk

nm−k−1 (−2sct)− Lk
nm+m−k−1 (−2sct)

]

× (2sct + βt)1−m−2mn
2nm+m−2∑

j=0

(2sct + βt) j
(

k + j

k

)
1F1(1; k + j + 2; 2sct)

(k + j + 1)!
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+ e−sct−βt (βt)
+∞∑
n=1

nm+m−1∑
k=0

(−2sct)k
[
Lk

nm−k−1 (−2sct)− Lk
nm+m−k−1 (−2sct)

]

×
2nm+m−2∑

j=0

(βt) j
(

k + j

k

)
1F1(1; k + j + 2; 2sct)

(k + j + 1)!

⎫⎬
⎭ .

Finally, the result follows from straightforward calculations. �
As further validation of Equation (4.3), in the following theorem we evaluate the moment

generating function in the case of identically exponentially distributed random intertimes,
finding a well-known result (see, for instance, Section 5 of [31]).

Theorem 4.3. If the random variables U and D both have exponential distribution with
parameter β > 0, for t> 0 and s ∈R we have

Ms
X(t) = e−βt

[
cosh

(
t
√

s2c2 + β2

)
+ β√

s2c2 + β2
sinh

(
t
√

s2c2 + β2

)]
. (49)

Proof. The proof of Theorem 4.3 is provided in Appendix A. �
In the following proposition we give expressions for the first and second moment of Xt

under the assumption of gamma-distributed intertimes.

Proposition 4.4. If Ui and Di (i = 1, 2, . . . ) are gamma-distributed with shape parameter α >
0 and rate parameter β > 0, for t> 0 we have

E(Xt) = 0,

E(X2
t ) = c2t2

[
1 − γ (α, βt)

�(α)

]
+ c2t2e−βt (βt)α

�(α+ 1)

{
1F1(1, α+ 1, βt) − 4

α + 1
1F1(2, α+ 2, βt)

+ 8

(α + 1)(α + 2)
1F1(3, α + 3, βt)

}

− α(βt)αe−βt(2ct)2
+∞∑
n=1

(βt)2nα

�(2nα + α + 3)
1F1(2, 2nα + α+ 3, βt). (50)

Proof. The proof follows immediately from Equation (32). �
Figure 5 shows some plots of the moment E(X2

t ) given in Equation (50) for different values
of (α, β).

Proposition 4.5. For α= 1 and t> 0, Equation (50) reduces to the following well-known result
(see, for instance, Equation (26) of [31]):

E(X2
t ) = c2

2β2

[
2βt − (1 − e−2βt)

]
.

Proof. The proof of Proposition 4.5 is provided in Appendix B. �

5. Some results on the squared telegraph process

In this section we study the probability law of the stochastic process Qt := X2
t , t> 0, defined

as the square of the generalized telegraph process. Hence, Qt describes the square of the posi-
tion of a particle performing a telegraph motion. As just stressed in [35], the sample paths of
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FIGURE 5. E(X2
t ) for c = 1, β = 0.5 (dotted line), β = 2 (dashed line), β = 4 (solid line), with α= 1/2

(left-hand side) and α= 2 (right-hand side).

Qt show motion reversals of the particle both when an event of the alternating counting pro-
cess Nt occurs and when the underlying telegraph process Xt reaches the origin, which acts
as a reflecting boundary. The interest in the functional Qt arises in the context of establishing
a link between finite-velocity random motions and diffusion processes. For instance, since it
is well known that the standard Brownian motion is the limit, in some sense, of the telegraph
process, the sum of squared telegraph processes can be treated as the analogue, in the setting
of finite-velocity random motions, of the squared Bessel process.

Under the assumption of exponential distribution of the random variables Ui (i = 1, 2, . . . ),
the following theorem provides the distribution of Qt, for all t> 0.

Proposition 5.1. For all i = 1, 2, . . . , let us assume that the random variables Ui have expo-
nential distribution with parameter λ> 0, and let GDi (·) be the distribution function of the

random variables Di. Denote by G(n)
D (·), n ≥ 1, the distribution function of D(n) := D1 + · · · +

Dn. For t> 0 and 0 ≤ z ≤ c2t2, the distribution function of Qt is given by

FQ (z, t) := P(Qt ≤ z) = FX(
√

z, t) − FX(−√
z, t),

where

FX(x, t) = 1 − H

(
ct − x

2c
,

ct + x

2c

)
, −ct< x ≤ ct,

and

H(y, t) =
+∞∑
n=0

e−λt (λt)n

n! G(n)
D (y).

Proof. Let Nt, t ≥ 0, be a Poisson process with parameter λ, and denote by

Yt =
Nt∑

n=0

Dn

the compound Poisson process corresponding to Nt. Hence,

HY (y, t) := P(Yt ≤ y) =
+∞∑
n=0

e−λt (λt)n

n! G(n)
D (y).
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Therefore, by Theorem 5.1 of [54], for −ct ≤ x ≤ ct, we have

FX (x, t) := P(Xt ≤ x | X0 = 0) = 1 − HY

(
ct − x

2c
,

ct + x

2c

)
,

so that the theorem immediately follows. �
Theorem 5.1. If the random variables Ui (i = 1, 2, . . . ) have exponential distribution with
parameter λ> 0 and the random variables Di (i = 1, 2, . . . ) are gamma-distributed with shape
parameter α > 0 and rate parameter β > 0, for t> 0 and 0 ≤ z ≤ c2t2, we have

FQ (z, t)=e− (λ+β)t
2

{
e

(λ−β)
√

z
2c

+∞∑
k=0

[
β

(
ct + √

z

2c

)]k

Wα,k+1

(
λβα

[
ct − √

z

2c

] [
ct + √

z

2c

]α)

−e− (λ−β)
√

z
2c

+∞∑
k=0

[
β

(
ct − √

z

2c

)]k

Wα,k+1

(
λβα

[
ct + √

z

2c

] [
ct − √

z

2c

]α)}
,

(51)

where Wρ,θ (z) is the Wright function (23).

Proof. By Theorem 5.1, assuming that the random variables Di (i = 1, 2, . . . ) have gamma
distribution with shape parameter α > 0 and rate parameter β > 0, it holds that

FX (x, t)= 1 − exp

{
−λct + x

2c

}{
1 +

+∞∑
n=1

[
λ ct+x

2c

]n
n!

γ
(
nα, β ct−x

2c

)
�(nα)

}
,

so that, for 0 ≤ z ≤ c2t2, we have

FQ (z, t)= FX(
√

z, t) − FX(−√
z, t) = e− λt

2

[
2 sinh

(
λ
√

z

2c

)]
+ e− λt

2

+∞∑
n=1

λn

n!
1

� (nα)

×
{

e
λ
√

z
2c

(
ct − √

z

2c

)n

γ

(
nα,

β

2c

(
ct + √

z
))

− e− λ
√

z
2c

(
ct + √

z

2c

)n

γ

(
nα,

β

2c

(
ct − √

z
))}

. (52)

Hence, from (12), Equation (51) becomes

e− λt
2

⎧⎪⎨
⎪⎩2 sinh

(
λ
√

z

2c

)
+ e

λ
√

z
2c −β

(
ct+√

z
2c

) +∞∑
k=0

[
β

(
ct + √

z

2c

)]k +∞∑
n=1

[
λβα

(
ct−√

z
2c

) (
ct+√

z
2c

)α]n

n!�(nα + k + 1)

−e
− λ

√
z

2c −β
(

ct−√
z

2c

) +∞∑
k=0

[
β

(
ct − √

z

2c

)]k +∞∑
n=1

[
λβα

(
ct+√

z
2c

) (
ct−√

z
2c

)α]n

n!�(nα + k + 1)

⎫⎪⎬
⎪⎭

= e− λt
2

{
2 sinh

(
λ
√

z

2c

)
+ e− βt

2 + (λ−β)
√

z
2c

+∞∑
k=0

[
β

(
ct + √

z

2c

)]k
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×
[

Wα,k+1

(
λβα

[
ct − √

z

2c

] [
ct + √

z

2c

]α)
− 1

�(k + 1)

]

−e− βt
2 − (λ−β)

√
z

2c

+∞∑
k=0

[
β

(
ct − √

z

2c

)]k [
Wα,k+1

(
λβα

[
ct + √

z

2c

] [
ct − √

z

2c

]α)
− 1

�(k + 1)

]}
,

so that the proof immediately follows. �
Remark 5.1. Starting from Equation 6.5.29 of [1], the incomplete gamma function in (52)
can be expressed in terms of the two-parametric Mittag-Leffler function (39). The latter, by
Equation 4.4.6 of [24], can be written in terms of the Riemann–Liouville fractional integral of
a suitable function (63).

Hence, recalling that the generalized Prabhakar fractional integral Eω, ρ, κ
α, β; c+ f (x) (see e.g.

[50] and also Appendix C for some details) can be expressed as a series of fractional integrals
(cf. Theorem 2.1 of [20]), Equation (51) admits, for t> 0, the following alternative expression:

FQ (z, t)= e− λt
2 + λ

√
z

2c − β
2c (ct+√

z)
{

Wα,1

(
λ

2c

(
ct − √

z
) ( β

2c

(
ct + √

z
))α)

+E
λ
2c (ct−√

z), ρ, 0
α, 1; 0+ e

β
2c (ct+√

z)
}

−e− λt
2 − λ

√
z

2c − β
2c (ct−√

z)
{

Wα,1

(
λ

2c

(
ct + √

z
) ( β

2c

(
ct − √

z
))α)+ E

λ
2c (ct+√

z), ρ, 0
α, 1; 0+ e

β
2c (ct−√

z)
}

.

Appendix A. Proof of Theorem 4.3

The present section is devoted to the proof of Theorem 4.3.
Let us set m = 1 in the statement of Theorem 4.3. The discrete component simplifies to

e−βt (e−sct + esct) .

From Equations 7.11.1.13 of [44] and 13.4.4 of [1], we obtain

Ms
X(t) = 1

2

{
e−βt (e−sct + esct)

+ βte−sct−βt

4s2c2t2 − β2t2

[
2sct

(
eβt + 1

) (
e2sct − 1

)
− βt

(
eβt − 1

) (
e2sct + 1

)]

+ esct−βt

[
βt

+∞∑
n=1

n−1∑
r=0

(
n − 1

r

)
(2sct)r+1

(r + 2)! 1F1(1; r + 3; βt − 2sct)

− βt
+∞∑
n=1

[
(βt)2

(2sct + βt)2

]n n−1∑
r=0

(
n − 1

r

)
(2sct)r+1

(r + 2)! 1F1(1; r + 3; βt)

− e−2sct2sct βt
+∞∑
n=1

2n−1∑
j=0

(βt) j

( j + 2)! 1F1(n + 1; j + 3; 2sct)

+ e−2sct2sct βt
+∞∑
n=1

[
(βt)2

(2sct + βt)2

]n 2n−1∑
j=0

(2sct + βt) j

( j + 2)! 1F1(n + 1; j + 3; 2sct)

⎤
⎦
⎫⎬
⎭ .
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Let us set

A :=
+∞∑
n=1

2n−1∑
j=0

(βt) j

( j + 2)! 1F1(n + 1; j + 3; 2sct) , (53)

B :=
+∞∑
n=1

[
(βt)2

(2sct + βt)2

]n 2n−1∑
j=0

(2sct + βt) j

( j + 2)! 1F1(n + 1; j + 3; 2sct) , (54)

C :=
+∞∑
n=1

[
(βt)2

(2sct + βt)2

]n n−1∑
r=0

(
n − 1

r

)
(2sct)r+1

(r + 2)! 1F1(1; r + 3; βt) , (55)

D := βt
+∞∑
n=1

n−1∑
r=0

(
n − 1

r

)
(2sct)r+1

(r + 2)! 1F1(1; r + 3; βt − 2sct) . (56)

Note that, by Equations 13.1.27 of [1], 13.6.9 of [1], and 7.11.1.5 of [44], we have

A = e2sct
+∞∑
n=2

n−2∑
j=0

(βt) j

( j + 2)! 1F1(−n + 2 + j; j + 3; − 2sct)

+
+∞∑
n=1

2n−1∑
j=n−1

(βt) j

( j + 2)! 1F1(n + 1; j + 3; 2sct)

= e2sct
+∞∑
n=2

n−2∑
j=0

(βt) j (n − 2 − j)!
n! Lj+2

n−2−j (−2sct)

+
+∞∑
n=1

n−1∑
r=0

(βt)r+n−1

(r + n − 1)! 1F1(n + 1; r + n + 2; 2sct)

+
+∞∑
n=1

(βt)2n−1

(2n + 1)!�
(

n + 3

2

)
22n+1esct (2sct)−

1
2 −n In+ 1

2
(sct) .

By interchanging the order of summation in the previous formula, we get

A = e2sct
+∞∑
n=2

n−2∑
j=0

(βt) j (n − 2 − j)!
n! Lj+2

n−2−j (−2sct)+
+∞∑
r=0

(βt)r
+∞∑
h=0

(βt)h+r

(h + 2r + 2)!

× 1F1(h + r + 2; h + 2r + 3; 2sct)+ 2esct

βt
√

2sct

+∞∑
n=1

(
2β2t2

sct

)n

(2n + 1)!�
(

n + 3

2

)
In+ 1

2
(sct)

= e2sct
+∞∑
n=2

n−2∑
j=0

(βt) j (n − 2 − j)!
n! Lj+2

n−2−j (−2sct)+ e2sct
+∞∑
r=0

(βt)2r

� (2r + 3)

+∞∑
h=0

(1)h (βt)h

h! (2r + 3)h

× 1F1(r + 1; h + 2r + 3; − 2sct)+ esct

βt
√

2sct

+∞∑
n=1

(
2β2t2

sct

)n

(2n)! �

(
n + 1

2

)
In+ 1

2
(sct) . (57)
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From Equation 6.6.1.1 of [44], and taking into account Equation 5.8.3.4 of [43] and the first
equation in 10.2.13 of [1], we obtain

A = e2sct
+∞∑
n=2

n−2∑
j=0

(βt) j (n − 2 − j)!
n! Lj+2

n−2−j (−2sct)+ esct

2sct · βt

(
1 − β

sc

)(
1 + β2

s2c2

)− 1
2

× sinh

⎛
⎝sct

√
1 + β2

s2c2

⎞
⎠− esct

2sct · βt
cosh

⎛
⎝sct

√
1 + β2

s2c2

⎞
⎠+ e2sct

(
eβt − 1

)+ 1

2sct · βt
.

Similarly, from Equation (54), it follows that

B = e2sct
+∞∑
j=0

(βt)2j+4

( j + 2)! (2sct + βt)j+4

+∞∑
r=0

[
(βt)2

(2sct + βt)2

]r

1F1(−r; j + 3; − 2sct)

+
+∞∑
h=0

(2sct + βt)h−1

[
(βt)2

2sct + βt

]h +∞∑
s=0

[
(βt)2

2sct+βt

]s

(s + 2h + 1)! 1F1(s + h + 1; s + 2h + 2; 2sct)

− 1

2sct + βt
1F1(1; 2; 2sct) . (58)

By Equation 6.6.1.6 of [44], the first term in Equation (58) reads

e2sct

2sct βt (2sct + βt)

[
−e

(βt)2

2sct+2βt (2sct + 2βt)+ e
(βt)2

2sct+βt (2sct + βt)+ βt

]
,

whereas, by Equations 6.6.1.1 and 7.11.1.7 of [44], the second term in Equation (58) equals

−
√
π

4sct (2sct + βt)

∫ −x

0
e
−τ
[

(βt)2

2sct(2sct+βt)+1

]
e

2sct+τ
2 (2sct + τ)1/2

·
+∞∑
h=0

[
(βt)2(2sct+τ)

(2sct)2

]h

h!
[

Ih− 1
2

(
2sct + τ

2

)
− Ih+ 1

2

(
2sct + τ

2

)]
dτ .

Finally, Equations 5.8.3.4 and 5.8.3.6 of [43] and Equation 7.11.1.13 of [44] lead to

B = 1

2sct · βt

⎧⎨
⎩esct

⎡
⎣cosh

⎛
⎝sct

√
1 + β2

s2c2

⎞
⎠+ sc + β√

s2c2 + β2
sinh

⎛
⎝sct

√
1 + β2

s2c2

⎞
⎠
⎤
⎦

+ 1

2sct + βt

[
βt − (2sct + 2βt) e

(2sct+βt)2

2sct+2βt

]}
.

Equation (55) can easily be simplified with the help of Equation 6.6.1.1 of [44], so that

C = 1

βt (2sct + βt)

[
2sct + βt + βteβt − (2sct + 2βt) e

β2t2

2sct+2βt

]
.

Since

D = 2sct βt e−2sct
+∞∑
j=0

(βt) j

� ( j + 3)

+∞∑
n=1

n−1∑
r=0

(
n − 1

r

)
(2sct)r

( j + 3)r
1F1(r + 2; j + r + 3; 2sct) ,
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by Equation 5.3.5.5 of [44], we have

D = sct βte−2sct
+∞∑
n=1

+∞∑
j=0

(1)j
(3)j

(βt) j

j! 1F1(n + 1; j + 3; 2sct) . (59)

The inner series of Equation (59), by Equations 6.6.1.1 of [44] and 13.6.9 of [1], reduces to

2 (2sct)−2 eβt (n − 1)!
� (n + 1)

∫ 2sct

0
ze

−z
[
β

2sc −1
]
L1

n−1 (−z) dz.

Finally, recalling Equation 22.3.9 of [1], we get

D = 2sct βt e−2sct+βt

(βt − 2sct)2

+∞∑
n=1

n−1∑
k=0

(n−1
k

)
(k + 1)!

(
2sct

βt − 2sct

)k

γ (k + 2, βt − 2sct)

= β

2sc
eβt−2sct

+∞∑
n=2

n−1∑
k=0

(n−1
k

)
(k + 1)!

[
2sc

β − 2sc

]k+2

γ (k + 2, βt − 2sct)

+ β

2sc
eβt−2sct

[
2sc

β − 2sc

]2

γ (2, βt − 2sct) .

Hence, after some calculations, the moment generating function can be expressed as

Ms
X(t) =1

2

{
e−βt (e−sct + esct)+ β

2sc
e−sct

+∞∑
n=2

n−1∑
k=0

(n−1
k

)
(k + 1)!

(
2sct

βt − 2sct

)k+2

γ (k + 2, βt − 2sct)

−2sct βt esct−βt
+∞∑
n=2

n−2∑
j=0

(βt) j (n − 2 − j)!
n! Lj+2

n−2−j (−2sct)

⎫⎬
⎭+ e−βt

2

e−sct

(2sct − βt)2

×
[
− (2sct − βt)2

(
e2sct+βt + 1

)
+ e2sct2sct βt (2sct − βt)−

(
e2sct − eβt

)
(βt)2

]

+ e−βt cosh

⎡
⎣sct

√
1 +

(
β

sc

)2
⎤
⎦+ e−βt2βt

sinh

[
sct

√
1 +

(
β
sc

)2
]

√
(2sct)2 + 4 (βt)2

.

Let us now note that by Equation 13.6.9 of [1] and the binomial theorem,

2sct βt esct−βt
+∞∑
n=2

n−2∑
j=0

(βt) j (n − 2 − j)!
n! Lj+2

n−2−j (−2sct)

= 2sct βt e−sct
+∞∑
l=0

(2sct − βt)l

l!
+∞∑
n=2

(βt)n−2 (n + 1)l
(l + n)!

n−2∑
h=0

h!
(

1

βt

)h

Ll+n−h
h (−βt) . (60)
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Hence, from the formulas 48.19.3 of [25] and 22.7.30 of [1], Equation (60) becomes

2sct βt e−sct
+∞∑
l=0

(2sct − βt)l

l!
+∞∑
n=2

(βt)n−2 (n + 1)l
(l + n)!

⎧⎨
⎩1 +

(n − 1)!
[
Ll+2

n−2 (−βt)+ Ll+1
n−1 (−βt)

]
(βt)n−2 (l + n + 1)

− l + βt + n + 1

l + n + 1

}
= 2sct βt e−sct

+∞∑
l=0

(2sct − βt)l

l!
+∞∑
n=2

1

n (l + n + 1)
Ll+2

n−1 (−βt)

−2scte−sct
+∞∑
l=0

(2sct − βt)l

l!
+∞∑
n=2

(βt)n

n! (l + n + 1)
.

Finally, by taking into account Equations 6.5.29, 9.6.51, and 22.10.14 of [1], Equation 6.8.1.3
of [3], and the formulas 6.8.1.3 of [3], 3.38.1.1 of [45], and 5.2.3.1 of [43], after some algebraic
manipulations we get

Ms
X(t) =1

2

{
e−βt (e−sct + esct)+ βe−sct

2sc

+∞∑
n=2

n−1∑
k=0

(n−1
k

)
(k + 1)!

(
2sct

βt − 2sct

)k+2

γ (k + 2, βt − 2sct)

−2sct βt e−sct−βt
+∞∑
n=2

+∞∑
r=0

(βt − 2sct)r

(r + 2)! 1F1(n + r + 2, r + 3, 2sct)

}

+ cosh (sct)× [sinh (βt)− cosh (βt)]

+ e−βt

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosh

⎡
⎣sct

√
1 +

(
β

sc

)2
⎤
⎦+ 2βt

sinh

[
sct

√
1 +

(
β
sc

)2
]

√
(2sct)2 + 4 (βt)2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The proof follows from the formula 6.5.12 of [1], after straightforward calculations.

Appendix B. Proof of Proposition 4.5

In the present section we provide the proof of Proposition 4.5.
By Equation 7.11.2.14 of [44], and recalling Equation 6.5.2 of [1] and Equation (39), we

have

+∞∑
n=1

(βt)2nα

�(2nα + α+ 3)
1F1(2, 2nα + α + 3, βt)

= (βt)−α−1
∫ βt

0
eβt−x xα

[
− 1

�(α + 1)
+ E2α,α+1

(
x2α)] dx

− (βt)−α−2
∫ βt

0
eβt−x xα+1

[
− 1

�(α + 1)
+ E2α,α+1

(
x2α)] dx. (61)
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Hence, from Equations 4.12.1.a and 3.9.2 of [24], Equation (61) can be written as

eβt(βt)−α−2

�(α+ 1)
{α(1 + α − βt)�(α) + βt�(1 + α, βt) − �(α+ 2, βt)} + 1

2
(βt)−α−1

×
∫ βt

0
eβt−x [Eα (xα)− Eα

(−xα
)]

dx + 1

2
(βt)−α−2

∫ βt

0
eβt−x x

[
Eα
(−xα

)− Eα
(
xα
)]

dx,

(62)

where �(δ, z) denotes the upper incomplete gamma function, and

Eα (z)=
+∞∑
k=0

zk

� (αk + 1)

is the Mittag-Leffler function (see, for instance, Equation 3.1.1 of [24]).
Recalling Equation 3.2.1 of [24], the formula (62) for α = 1 becomes

e−βt

8β3t3

{
e2βt [17 + 2βt(βt − 5)] − 1 − 8eβt(2 + βt)

}
.

Hence, the proof immediately follows from Equation (50) and recalling Equations 7.11.2.20,
7.11.2.38, and 7.11.2.56 of [44].

Appendix C. Some remarks on the fractional calculus

For any sufficiently well-behaved function f , the Riemann–Liouville fractional integral Iαa+ f
of order α > 0 is defined as

Iαc+ f (x) := 1

� (α)

∫ x

c

f (t)

(x − t)1−α dt, x> c, α > 0. (63)

Note that the values of Iαc+ f (x) for α > 0 are finite if x> c, but it may happen that the limit (if
it exists) of Iαc+ f (x) is infinite as x → c+.

The fundamental property of the fractional integrals is the additive index law (semigroup
property), according to which

Iαc+ · Iβc+ = Iα+β
c+ , α, β > 0.

Among the various operators of fractional integration studied in the recent literature,
Srivastava [50] introduced the generalized Prabhakar fractional integral defined, for ρ, ω ∈C,
�(α)>max{0,�(κ) − 1}, min{�(κ),�(β)}> 0, as

Eω, ρ, κ
α, β; c+ f (x) :=

∫ x

c
(x − t)β−1 Eρ,κα,β

[
ω (x − t)α

]
f (t) dt, x> c. (64)

This operator contains in the kernel the generalized Mittag-Leffler function Eρ,κα,β , given by

Eρ,κα,β (z) :=
+∞∑
n=0

(ρ)κnzn

� (αn + β)
=

+∞∑
n=0

� (ρ + κn) zn

� (ρ) � (αn + β)
.

Note that, in the special case ω= 0, the integral operator Eω, ρ, κ
α, β; c+ f (x) reduces to the right-

handed Riemann–Liouville fractional integral operator (63).
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A series formula for the generalized Prabhakar integral defined by (64) is provided in
Theorem 2.1 of [20]. Indeed for any interval (c, d) ⊂R and any function f ∈ L1(c, d), we have

Eω, ρ, κ
α, β; c+ f (x) =

+∞∑
n=0

� (ρ + κn) ωn

� (ρ) n! Iαn+β
c+ f (x) .
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