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We simulate numerically the full dynamics of Faraday waves in three dimensions
for two incompressible and immiscible viscous fluids. The Navier–Stokes equations
are solved using a finite-difference projection method coupled with a front-tracking
method for the interface between the two fluids. The critical accelerations and
wavenumbers, as well as the temporal behaviour at onset are compared with the
results of the linear Floquet analysis of Kumar & Tuckerman (J. Fluid Mech., vol. 279,
1994, p. 49). The finite-amplitude results are compared with the experiments of Kityk
et al. (Phys. Rev. E, vol. 72, 2005, p. 036209). In particular, we reproduce the detailed
spatio-temporal spectrum of both square and hexagonal patterns within experimental
uncertainty. We present the first calculations of a three-dimensional velocity field
arising from the Faraday instability for a hexagonal pattern as it varies over its
oscillation period.

1. Historical introduction
The Faraday experiment consists of shaking vertically a container holding two

immiscible fluids (the lighter of which can be air) thereby inducing oscillations of
the fluids and the interface between them. Beyond a certain threshold, the interface
can form many kinds of standing wave patterns, including crystalline patterns and
others which are more complex. This phenomenon was first studied by Faraday
(1831) who noticed that the vibration frequency of the interface was half that of the
forcing. The results of Faraday were confirmed by Rayleigh (1883a , b). Benjamin &
Ursell (1954) carried out the first theoretical linear analysis of the Faraday waves,
restricted to inviscid fluids. They decomposed the fluid motion into normal modes
of the container and showed that the evolution equation of each mode reduced to a
Mathieu equation whose stability diagram is well known.

In the 1990s, new behaviours of the interface were discovered, such as quasi-
crystalline eight-fold patterns seen by Christiansen, Alstrøm & Levinsen (1992). By
introducing a forcing which is the sum of two periodic functions with commensurable
frequencies, Edwards & Fauve (1994) were able to produce twelve-fold quasi-patterns.
Triangular patterns were observed by Müller (1993) and superlattice patterns by
Kudrolli, Pier & Gollub (1998), also using two-frequency forcing. Spatio-temporal
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chaos was studied by Kudrolli & Gollub (1996), who also surveyed the occurrence
of lattice patterns – stripes, squares or hexagons – as a function of viscosity and
frequency. Binks, Westra & van de Water (1997) demonstrated the dependence of
the pattern on the depth of the layer. In addition to patterns or quasi-patterns, very
localized circular waves called oscillons may occur, as seen by Lioubashevski, Arbell &
Fineberg (1996). The Faraday instability is the first macroscopic system in which such
structures have been observed. These discoveries endow the Faraday instability with a
very great fundamental interest for understanding the natural formation of patterns.

A number of theoretical or semi-numerical analyses were inspired by these experi-
ments. Kumar & Tuckerman (1994) extended the linear stability analysis of Benjamin
& Ursell (1954) to viscous fluids. This analysis was experimentally confirmed by
Bechhoefer et al. (1995) and used by Kumar (1996) to predict cases in which the
response would be harmonic rather than subharmonic. The method was extended by
Besson, Edwards & Tuckerman (1996) to calculate the stability tongues in the case of
two-frequency forcing. Integral equation formulations of the viscous linear stability
problem were derived by Beyer & Friedrich (1995) and Müller et al. (1997), who also
studied the harmonic response case. Cerda & Tirapegui (1998) used the lubrication
approximation and the Wentzel–Kramers–Brillouin (WKB) method to study shallow
viscous layers, obtaining a Mathieu equation that was later used by Huepe et al.
(2006) to derive analytic results about the response to multifrequency forcing.

Linear analysis provides no information about the shape of the patterns which
appear; other means are necessary to understand the occurrence of a given pattern or
the amplitude of stabilization. Weakly nonlinear approximations have been derived
from the Navier–Stokes equations by Viñals and co-workers, e.g. Zhang & Viñals
(1997), Chen & Viñals (1999) and by Skeldon & Guidoboni (2007), focusing on the
competition between different patterns. Vega, Knobloch & Martel (2001) derived
equations governing the interaction between Faraday waves and the mean flow.
There has been a great deal of analysis of lattices, superlattices and quasi-patterns
using equivariant dynamical systems theory, as well as model equations designed to
produce specific patterns, e.g. Porter, Topaz & Silber (2004). The approximation of
quasi-patterns in spatially periodic domains has also been addressed in Rucklidge &
Silber (2009).

Investigation of the full nonlinear viscous problem, however, requires numerical sim-
ulations, of which there have been very few up to now, specifically those of Chen & Wu
(2000), Chen (2002), Murakami & Chikano (2001), Valha, Lewis & Kubie (2002), Ubal,
Giavedoni & Saita (2003) and O’Connor (2008). With the exception of O’Connor
(2008), all previous simulations have been two-dimensional. The most extensive simu-
lation thus far has been that of Chen & Wu (2000) and Chen (2002), who used a finite-
difference method applied to a boundary-fitted time-dependent coordinate system. At
each time step, the surface is advected and a new two-dimensional grid, adapted to the
surface, is recomputed. The amplitude of their numerically computed Faraday waves
confirmed the weakly nonlinear analysis of Chen & Viñals (1999), including their pre-
diction of a range of subcriticality. Their calculations also predicted qualitatively new
phenomena, such as disconnected solution branches and slow modulated dynamics.

Murakami & Chikano (2001) used a method similar to that of Chen & Wu (2000)
and Chen (2002). Although they reproduced some features of the experiments by
Lioubashevski et al. (1996), their calculations were limited to accelerations only 0.5 %
above critical. The investigation by Ubal et al. (2003) focused on the influence of
liquid depth in two-dimensional simulations using a Galerkin finite-element method
in transformed coordinates. In addition to comparing their linear stability predictions
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Numerical simulation of Faraday waves 3

with those of Benjamin & Ursell (1954) and Kumar & Tuckerman (1994), they
calculated instantaneous surface profiles and velocity fields, as well as the temporal
evolution and spectrum. Valha et al. (2002) examined the response of a liquid layer in
a vertical cylindrical vessel using the Marker-and-Cell (MAC) method of Harlow &
Welch (1965). Surface tension was treated by the continuum surface force model of
Brackbill, Kothe & Zemach (1992). O’Connor (2008) conducted numerical simulations
using an Arbitrary Lagrangian–Eulerian (ALE) spectral-element code in both two
and three dimensions; a visualization of a square pattern was presented.

The hexagonal patterns, quasi-patterns and oscillons which motivate our investi-
gation are intrinsically three-dimensional, and have never been calculated numerically
from the fluid-dynamical equations. Here we report on the results of fully nonlinear,
three-dimensional simulations of Faraday waves using a finite-difference front-
tracking method. In the classic Faraday problem the lighter fluid is usually taken
to be air whose effects can be neglected. However, in contrast to the previously
cited investigations, the numerical method described here solves the Navier–Stokes
equations for the general case of two distinct superposed fluids. The capability of
the method to simulate the motion of both fluids is important in that it permits
comparison of numerical results with those of certain experimental configurations,
namely those of Kityk et al. (2005) where the lighter fluid cannot be ignored. These
experiments were the first to provide quantitative measurements of the complete
spatio-temporal Fourier spectrum of Faraday waves and thus form an excellent
basis for quantitative comparison with our numerical results in the nonlinear finite
amplitude regime, i.e. interfaces with steep slopes.

In the next two sections of this article, we present the hydrodynamic equations
that govern the Faraday instability and then describe the computational method.
The two sections following these are dedicated to the comparison of our results with
the linear theory of Kumar & Tuckerman (1994) and with the experiments of Kityk
et al. (2005, 2009). After comparing numerical and experimental spatio-temporal
spectra for squares and hexagons, we present the three-dimensional velocity field for
the hexagonal pattern.

2. Equations of motion
The mathematical model of the Faraday experiment consists of two incompressible

and immiscible viscous fluids in a three-dimensional domain x = (x, y, z) ∈ �2 ×[0, h],
bounded at z = 0 and z =h by flat walls. The two fluids, each uniform and of
densities ρ1, ρ2 and viscosities μ1 and μ2, initially form two superposed horizontal
layers with an interface between them. This two-dimensional interface is defined by
x ′ = (x, y, ζ (x, y, t)). Within the parameter range we wish to simulate, the height ζ

remains a single-valued function of (x, y, t).
The container is shaken vertically in z. In the reference frame of the container the

boundary conditions for the fluid velocities u = (u, v, w) are

u(x, y, 0, t) = 0, (2.1a)

u(x, y, h, t) = 0. (2.1b)

The gravitational acceleration g is augmented by a temporally periodic inertial
acceleration

G = (a cos(ωt) − g)ez, (2.2)

where a is the amplitude of the forcing and ω is its frequency.
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4 N. Périnet, D. Juric and L. S. Tuckerman

The Navier–Stokes equations for incompressible, Newtonian fluids are

ρ
Du
Dt

= −∇p + ρG+∇ · μ(∇u + ∇uT) + s, (2.3a)

∇ · u = 0. (2.3b)

Here p is the pressure and s is the capillary force (per unit volume) and is defined
below. Equations (2.3a) and (2.3b) are valid for the entire domain, including the
interface, in spite of the fact that the density and viscosity change discontinuously
and the surface tension acts only at the interface. In this single-fluid formulation, the
density and viscosity fields are defined in terms of the densities and viscosities of the
two fluids

ρ = ρ1 + (ρ2 − ρ1)H, (2.4a)

μ = μ1 + (μ2 − μ1)H, (2.4b)

with the aid of a Heaviside function,

H (x − x ′) =

{
0 if z < ζ (x, y, t)
1 if z � ζ (x, y, t)

, (2.5)

where we recall that x = (x, y, z) is a point anywhere in the three-dimensional volume
and x ′ = (x, y, ζ (x, y, t)) is the vertical projection of x onto the interface. The capillary
force is

s =

∫
S′(t)

σκ n δ(x − x ′) dS, (2.6)

where σ is the surface tension coefficient, assumed to be constant, n is the unit
normal to the interface (directed into the upper fluid) and κ its curvature. δ (x − x ′)
is a three-dimensional Dirac distribution that is non-zero only where x = x ′. S ′(t) is
the surface defined by the instantaneous position of the interface.

To complete the system of equations we need an expression for the motion of the
interface. One such expression can be easily derived by noting that mass conservation
in an incompressible flow requires Dρ/Dt = 0, which in view of the discontinuous
density field (2.4a), is equivalent to

DH/Dt = 0. (2.7)

Thus the interface is represented implicitly by H and advected by material motion of
the fluid.

3. Computational methods
The computational domain is a rectangular parallelepiped, horizontally periodic

in x and y and bounded in z by flat walls for which we impose no-slip boundary
conditions. The entire domain is discretized by a uniform fixed three-dimensional
finite-difference mesh. This mesh has a standard staggered MAC cell arrangement
(Harlow & Welch 1965) where the u, v and w velocity nodes are located on the
corresponding cell faces and scalar variables are located at the cell centres. Each cell
is of dimension �x × �y × �z.

Within the domain, the two distinct immiscible fluids are separated by a two-
dimensional interface which is discretized by a second mesh as sketched in figure 1.
This moving and deformable mesh is composed of triangular elements whose motion
is treated by a front-tracking/immersed-boundary method (Peskin 1977; Tryggvason
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Cubic fixed
three-dimensional 
mesh

Triangular deformable
two-dimensional

mesh

Interface: ζ(x,y,t)

yx

z

Figure 1. Spatial discretization of the domain.

et al. 2001). Because we have assumed that ζ (x, y, t) is single valued, the nodes of
the mesh can be fixed in x and y and only their vertical displacements need to be
calculated, which is a considerable simplification to the general front-tracking method.

After setting appropriate initial and boundary conditions, the computational
solution algorithm for each time step is composed of three main phases. First,
the interface is advected and the density and viscosity fields updated according to the
new interface position. The capillary force s is then calculated. Finally, the velocity
and pressure are found by means of a standard projection method. Each of these
steps is described below.

3.1. Advection of the interface

Purely Eulerian interface methods such as Volume of Fluid (Hirt & Nichols 1981) or
Level Set (Osher & Sethian 1988) use a form of (2.7) to advect a scalar field such
as H , or a level-set function that implicitly represents the interface. However, in the
front-tracking approach that we use here, the interface markers themselves (the nodes
of the triangular mesh) are advected. H is then constructed from the position and
geometry of the interface. Taking (2.7) as a starting point, we develop an equivalent
expression for the vertical displacement of the triangular interface mesh.

The material derivative of (2.5) gives:

DH

Dt
= ∇H · Dx

Dt
+ ∇′H · Dx ′

Dt
, (3.1)

where ∇′ = ∂x′ and

∇H = −∇′H =

∫
S′(t)

nδ(x − x ′) dS. (3.2)

(For a derivation of (3.2) see Tryggvason et al. 2001.) Factoring (3.1) by ∇H

DH

Dt
= ∇H ·

(
u − Dx ′

Dt

)
. (3.3)

The right-hand side of (3.3) can only be zero everywhere, including on the surface,
x = x ′, if

Dx ′

Dt
= u(x ′, t), (3.4)
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6 N. Périnet, D. Juric and L. S. Tuckerman

which establishes the material motion of the explicit interface representation x ′.
Furthermore

∂x ′

∂t
=

(
I − ∇x ′) · u(x ′, t), (3.5)

where I is the identity tensor. The specific choice of x ′ =(x, y, ζ (x, y, t)) made here
gives for ∇x ′ ⎡

⎢⎢⎣
1 0 0

0 1 0

∂ζ

∂x

∂ζ

∂y
0

⎤
⎥⎥⎦ . (3.6)

With this, (3.5) leads to the specific displacement relations:

∂x/∂t = 0, (3.7a)

∂y/∂t = 0, (3.7b)

∂ζ

∂t
= w − u

∂ζ

∂x
− v

∂ζ

∂y
. (3.7c)

The application of this advection to the triangular mesh we use for tracking the
interface is straightforward. At each vertex the horizontal displacement is zero and
for the vertical displacement we compute a first-order approximation to (3.7c):

ζ n+1 − ζ n

�t
= wn(x ′

e) − ∂ζ n

∂x
un(x ′

e) − ∂ζ n

∂y
vn(x ′

e). (3.8)

The superscripts n and n + 1 denote, respectively, the old and new time levels. The
derivatives on the right-hand side are evaluated using a simple upwind scheme which
requires the usual Courant–Friedrichs–Lewy (CFL) time step restriction. The vertical
displacement of the interface mesh requires knowledge of the velocities at the element
nodes x ′

e. These in general do not coincide with the Eulerian grid nodes xijk , whose
indices correspond to discretized coordinates along the respective directions x, y and
z. The problem of communicating Eulerian grid velocities to the element nodes is
overcome by interpolation between the two grids as is typically done in front-tracking
and immersed-boundary methods. Here we use the particular interpolation

u(x ′
e) =

∑
ijk

u(xijk)δh(xijk − x ′
e)�x�y�z. (3.9)

The kernel δh is a smoothed version of the three-dimensional Dirac delta function
with compact support of four grid nodes in each direction (for details of the front-
tracking method, see Tryggvason et al. 2001, and for the immersed-boundary method,
see Peskin 1977). In (3.9) the weighted information collected from nearby Eulerian
grid nodes is interpolated to a given element node.

We now seek to update the density and viscosity fields needed in (2.4), which require
H . The equation for H , based on the updated values of x ′ and n, is formulated by
taking the divergence of (3.2):

∇2H = ∇ ·
∫

S′(t)

n δ(x − x ′) dS, (3.10a)

H (x, y, 0, t) = 0, (3.10b)

H (x, y, h, t) = 1. (3.10c)
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t3

t2

ne

t1

Figure 2. A triangular element of the interface mesh illustrating the action of the capillary
forces according to (3.13). For the shaded triangle the forces act perpendicular to the triangle’s
edges (unlabelled solid arrows), the dashed arrows are the corresponding forces on the edges
of neighbouring triangles. The net capillary force at the shared edge between any two triangles
(the sum of the solid and dashed vectors) is directed into the fluid on the concave side of the
interface.

The discretized version of the Poisson problem (3.10a) is

∇2Hijk = ∇ ·
∑

e

neδh(xijk − x ′
e)�Se, (3.11)

where standard central differencing is used for the gradient and divergence operators.
This numerically calculated Heaviside function is a smoothed transition from 0 to 1
across a distance of 4 grid cells in the direction normal to the interface. In contrast to
(3.9), the summation above serves to distribute weighted information from an element
node to nearby Eulerian grid nodes. Since an element is triangular, its vertices lie in
the same plane, its normal vector is unique and the three tangent vectors are simple
to calculate:

ne =
t2 × t1

‖t2 × t1‖ (3.12)

where t1 and t2 are the tangents on two distinct edges of the triangle (see the sketch
in figure 2). We solve (3.11) by fast Fourier transform. Finally, ρn+1 and μn+1 are
updated using (2.4a) and (2.4b).

3.2. Capillary force

From (2.6), the capillary force involves the curvature of the interface and its normal
vector. However, from a computational point of view, curvature is a difficult quantity
to compute accurately. It is more accurate and physically appealing to calculate the
force pulling on the edge of each individual triangular surface element and then sum
the contributions for all the elements over the surface. For a given surface element e

of surface area δA and perimeter δl, we can write:

se = σ

∫
δA

κn dA,

= σ

∫
δA

(n × ∇) × n dA, (3.13)

= σ

∮
δl

t × n dl,
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8 N. Périnet, D. Juric and L. S. Tuckerman

where the last integral represents the sum of the capillary forces exerted around the
element perimeter. As sketched in figure 2, the directions of these forces are oriented
along the surface and normal to the element’s edges. The net force at the shared edge
between any two triangles (the sum of the solid and dashed vectors) is directed into
the fluid on the concave side of the interface. Following Peskin’s immersed boundary
method (Peskin 1977), the discrete version of (2.6) becomes

sijk =
∑

e

seδh(xijk − x ′
e), (3.14)

where we use the same smoothed δh as in (3.9) and (3.11). Thereby, several interfacial
elements contribute to the calculation of the force applied to a single Eulerian node,
and a single element influences more than one Eulerian node.

3.3. Solution of the Navier–Stokes equations

The Navier–Stokes equations are solved by a projection method (Chorin 1968; Temam
1968) with incremental pressure correction (Goda 1979) applied to a finite-difference
scheme which is first order in time and second order in space. In addition a semi-
implicit scheme is chosen for the velocities to relax the stability restriction on the
time step due to viscous diffusion. All spatial derivative operators are evaluated using
standard centred differences, except in the nonlinear term where we use a second-
order Essentially-Non-Oscillatory (ENO) scheme (Shu & Osher 1989; Sussman et al.
1998). (For an overview of projection methods for the incompressible Navier–Stokes
equations, see Guermond, Minev & Shen 2006.) The time stepping algorithm is thus

un+1 − un

�t
= −un · ∇un +

1

ρn+1
∇ · μn+1(∇u + ∇uT)n+1

− 1

ρn+1
∇pn+1 +

sn+1

ρn+1
+ G n+1,

(3.15)

with the boundary conditions on the top and bottom walls

un+1
∣∣
Γ

= 0. (3.16)

In (3.15), ρ, μ and s depend on x via (2.4–2.6) and have already been updated by (3.8).
We decompose the solution of (3.15) in three steps. The first step is a semi-implicit
calculation of an intermediate unprojected velocity ũ, involving only velocities and
their gradients:

ũ − un

�t
= −un · ∇un+

1

ρn+1
∇ · μn+1(∇ũ + ∇ũT) (3.17a)

ũ|Γ = 0 (3.17b)

In the second step, we include the capillary, acceleration and old pressure gradient
terms to calculate the unprojected velocity u∗:

u∗ − ũ
�t

= Gn+1 +
sn+1

ρn+1
− 1

ρn+1
∇pn. (3.18)

Finally we perform a projection step to find the divergence free velocity un+1:

un+1 − u∗

�t
= − 1

ρn+1
∇(pn+1 − pn), (3.19a)

∇ · un+1 = 0, (3.19b)

un+1 · n|Γ = 0. (3.19c)
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Numerical simulation of Faraday waves 9

Equations (3.19) imply the following elliptic problem for the pressure increment

∇ · u∗

�t
= ∇ · 1

ρn+1
∇(pn+1 − pn), (3.20a)

∂(pn+1 − pn)

∂n

∣∣∣∣
Γ

= 0, (3.20b)

which we solve with an iterative biconjugate gradient stabilized algorithm (Saad
1996). In the horizontal directions, periodic boundary conditions are imposed on
the velocity and pressure, thus excluding a net horizontal pressure gradient. For the
simulations we will present here, this choice is consistent with the requirement of no
mean horizontal flux in a large but bounded container.

We note that in the implicit solution of (3.17), we apply the same biconjugate
gradient stabilized solver used for the pressure to each component of ũ =(ũ, ṽ, w̃)
separately. Thus only the diagonal terms of the diffusion operator are treated fully
implicitly. The off-diagonal terms are treated quasi-implicitly in that the newest
available values of (ũ, ṽ, w̃) are used in the evaluation of the cross derivatives. To
ensure symmetry, we permute the order of solution for each component.

4. Results: linear analysis
4.1. Floquet analysis

In the absence of lateral boundaries, the equations are homogeneous in the horizontal
coordinates and the solutions can be represented by a spatial Fourier transform:

ζ (x, y, t) =
∑

k

ζ̂ (k, t)eik·x (4.1)

The linear instability of the interface between two fluids is described by (2.2)–(2.7)
linearized about a zero velocity field and flat interface ζ = 〈ζ 〉. The linearized equations
depend only on the wavenumber k ≡ ‖k‖ of each wave and not on its orientation

and hence the coefficient of eik·x can be written as ζ̂ (k, t); additionally the dynamics
of each ζ̂ (k, t) is decoupled from the others. Linear partial differential equations with
constant coefficients have solutions which are exponential or trigonometric in time.
For the Faraday instability, ζ̂ (k, t) is instead governed by a system of linear partial
differential equations with time-periodic coefficients, i.e. a Floquet problem, whose
solutions are of the form

ζ̂ (k, t) = e(γ+iαω)tf (k, t mod T ), (4.2)

where T = 2π/ω, γ is real and α ∈ [0, 1[. The Floquet modes,

f (k, t mod T ) =

∞∑
n=−∞

fn(k)einωt , (4.3)

are not trigonometric, but remain periodic with fundamental frequency ω. Thus, the
linearized behaviour for a single mode is

ζ (x, y, t) = eik·xe(γ+iαω)t

∞∑
n=−∞

fn(k)einωt . (4.4)

Analogous expressions hold for the velocity u.
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Figure 3. Critical acceleration ac/g as a function of the wavenumber k. The solid curves
represent the neutral curves obtained by Kumar & Tuckerman (1994). The ac found with the
simulation are indicated by the circles.

Equation (4.2) shows that if γ is non-zero or α is irrational, the evolution of the
interface motion is not periodic. A non-zero γ indicates that the motion grows or
decays according to the sign of γ . An irrational α yields a quasi-periodic evolution
function. For the Faraday instability, it can be shown that α can only take two
values: 0 and 1/2. As the imposed acceleration a is increased, one encounters regions
in the (k, a) plane in which γ > 0 for one dominant temporal frequency, jω/2, where
j = 1, 2, 3 . . . is an integer (see figure 3). Within each instability tongue, the amplitude
of the mode grows exponentially. These tongues are called harmonic if α = 0 and
subharmonic if α = 1/2. As k is increased, one encounters an alternating sequence of
subharmonic and harmonic tongues, which are bounded by neutral curves (k, ac(k))
on which γ = 0. On the neutral curves, the solutions are periodic:

ζ̂ (k, t) =

∞∑
n=−∞

fn(k)ei(n+ 1
2 )ωt , subharmonic case, (4.5a)

ζ̂ (k, t) =

∞∑
n=−∞

fn(k)einωt , harmonic case. (4.5b)

4.2. Computation of the neutral curves

We first compare our numerically calculated instability thresholds with those found
by Kumar & Tuckerman (1994) for the same parameter values. The physical
parameters are ρ1 = 519.933 kg m−3 and μ1 = 3.908 × 10−5 Pa s for the lower fluid
and ρ2 = 415.667 kg m−3 and μ2 = 3.124 × 10−5 Pa s for the upper fluid. The other
parameters are σ = 2.181 × 10−6 Nm−1 and g = 9.8066 m s−2. The frequency of the
forcing is ω/2π = 100 Hz and thus its period is T = 0.01s. The capillary length is
defined as lc =

√
σ/(|ρ1 − ρ2|g). The container height is taken to be 5lc = 0.231 mm,

and the interface, when unperturbed, is equidistant from the top and bottom
boundaries. We consider several wavenumbers k and set the x dimension of the
box in each case to one expected wavelength λ=2π/k, i.e. to between 0.074 and
0.224 mm, as listed in table 1. We can estimate the importance of various physical
effects for these parameters by defining dimensionless quantities with length k−1 and
forcing period T . The Bond number Bo = (klc)

−2 = |ρ1 − ρ2| g/(σk2) measures the
relative importance of gravitational to capillary effects and ranges between 0.0649
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Numerical simulation of Faraday waves 11

k( mm−1) λ( mm) No. of gridpoints in x/z ac/g (Theor.) ac/g (Comp.) Error(%)

28 0.224 124/128 4.375 4.407 0.7
32.5 0.193 96/128 3.777 3.800 0.6
35 0.180 100/128 3.960 3.954 −0.1
48 0.131 72/126 12.506 12.207 −2.4
60.9 0.103 56/126 19.760 19.922 0.8
85 0.074 48/144 41.953 42.358 1.0

Table 1. Comparison of the computed ac with Floquet theory for various wavenumbers k.

and 0.598. The Reynolds number Re = ρ/(μk2T ) is a non-dimensional measure of
viscous damping and ranges between 0.184 and 1.70 for both fluids.

We have computed the critical acceleration from our fluid-dynamical simulation
for the wavenumbers listed in table 1. Initially, the interface is sinusoidal with
wavevector k parallel to the x-axis and the velocity is zero. Moreover, to ensure that
the solution corresponds initially to the linear solution, we require the amplitude of
the interface displacement to be small compared to λ. In order to maintain a roughly
cubic mesh and a minimum x-resolution of about 50 grid cells per wavelength, we
vary the resolution in the z direction between 126 and 144 points. Since k points
along the x direction, ζ does not depend on y (neither do the velocity nor the
pressure) and so the size of the domain and resolution in y are arbitrary. The
acceleration a is taken near ac(k), the expected critical acceleration corresponding to
each wavenumber. At the threshold, the flow undergoes a pitchfork bifurcation. Since
the growth rate is proportional to a − ac close to the neutral curve, it is sufficient to
find the growth rates for two values of a and to interpolate linearly between these
points.

In figure 3, we plot the values of ac obtained from our fluid-dynamical simulation
for several values of k, along with the curves (k, ac(k)) obtained from the method
of Kumar & Tuckerman (1994). Figure 3 shows that these thresholds are in good
agreement, despite whatever inaccuracies in ac are introduced by spatial discretization
and linear interpolation. The relative error in the critical acceleration at the conditions
previously stated is of the order of a few per cent as shown in table 1.

The results suggest that there is a k below which calculation of the growth rates is
not possible. Some zones of the diagram are not accessible because a domain of width
2π/k necessarily accommodates all wavenumbers which are integer multiples of k up
to the resolution limit π/k�x. The coefficients of the Fourier expansion of the initial
condition differ slightly from zero due to finite-difference spatial approximations and
if the growth rate of one of these is greater than that of k itself, then it will quickly
come to dominate k. This difficulty is exacerbated by the fact that several forcing
periods are required for γ to stabilize. Then the amplitude, whose evolution was
expected to be almost periodic, starts to rise before the precise determination of γ is
possible, for example, in the range of k between 0 and roughly 15 mm−1. As we see
in figure 3, the critical forcing is substantially lower for one of its multiples closer
to 32.5 mm−1. The amplitude corresponding to this wavelength, although initially
negligible, increases and rapidly dominates the mode we wish to study, making the
calculation of γ unfeasible. In contrast, for k = 48 mm−1, the growth rate did not vary
significantly after having reached a value near zero (relative fluctuations of about
0.1 % of the growth rate’s limit value were recorded after the stabilization).
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Figure 4. Linear evolution of the surface height deviation ζ (t) − 〈ζ 〉 for k = 48 mm−1, in the
first instability tongue. Our simulation results are plotted with symbols and those derived from
a Floquet analysis with the solid line. The height and time are non-dimensionalized by the
wavelength λ= 2π/k and forcing period T , respectively.
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Figure 5. Linear evolution of the surface height deviation ζ (t) − 〈ζ 〉 for k =60.9 mm−1,
in the second instability tongue. Same conventions used as figure 4.
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Figure 6. Linear evolution of the surface height deviation ζ (t) − 〈ζ 〉 for k = 85 mm−1,
in the third instability tongue. Same conventions used as figure 4.

4.3. Temporal profile of a mode

We recall from § 4.1 that the time dependence of a Floquet mode is not sinusoidal. As
a further validation, we can compare the results of our fluid-dynamical simulations
to the entire temporal behaviour over a period. This is a stronger validation than
merely predicting the threshold since it provides a comparison at every time instead
of once per period.

In figures 4–6, we plot the deviation ζ − 〈ζ 〉 from the flat interface as a function of
time at a fixed spatial location from our fluid-dynamical simulation, for values k = 48,
60.9 and 85 mm belonging to the first three tongues. On the same figures, we plot the
behaviour of (4.5), where the temporal coefficients fn(k) of the Floquet modes have
been calculated by the method in Kumar & Tuckerman (1994). The value of a is set
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Numerical simulation of Faraday waves 13

to the interpolated critical acceleration ac(k), so the oscillations approximately retain
their initial amplitude as long as they remain small. The comparisons in figures 4–6
show a nearly perfect agreement. The differences observed initially, due to the phase
difference between the initial conditions and acceleration, vanish remarkably quickly,
in well under one period of oscillation of the container.

Figures 4–6 correspond to tongues jω/2, with j = 1, 2, 3, respectively, which show j

zero crossings per forcing period T . Odd (even) values of j correspond to subharmonic
(harmonic) oscillations, with period 2T (T ). The temporal spectrum fn(k) becomes
richer as k increases, leading to increasingly more complex modes, as can be observed
by comparing figures 4–6. This strong anharmonicity of the curves is due to the
increasing contribution of higher frequency trigonometric functions to the Floquet
modes as a increases. The Floquet mode corresponding to kc = 32.5 mm−1, with
the smallest value of a = ac, should be closer to trigonometric, with a fundamental
frequency of ω/2.

5. Results: nonlinear analysis
In the full nonlinear evolution of the interface for a >ac, the amplitude of the

interface height grows in time until nonlinear terms in (2.2)–(2.7) become important.
After that, the mode whose linear growth rate is maximal gives rise, via nonlinear
resonances, to a series of other discrete modes, selected according to the magnitudes
and orientations of their wavevector k. This selection is responsible for the formation
of patterns that will be the object of our further validations. We seek to compare
our calculations with the experimental results of Kityk et al. (2005, 2009) where
quantitative data concerning the Fourier spectrum ζ̂ (k, t) are available for squares
and hexagons.

We run our numerical simulations with the same experimental parameters as
Kityk et al. (2005): ω/2π = 12 Hz (T =0.0833 s), ρ1 = 1346 kg m−3, μ1 = 7.2 mPa s for
the lower fluid and ρ2 = 949 kg m−3, μ2 = 20 mPa s for the upper fluid. The surface
tension at the interface is σ = 35 mN m−1, the total height of the vessel is 1.0 cm and the
mean height of the interface, the initial fill height of the heavy fluid, is 〈ζ 〉 =1.6 mm
(with some uncertainty; see below). The Floquet analysis for these parameters
yields a critical wavelength of λc = 2π/kc = 13.2 mm and a critical acceleration
of ac = 25.8 m s−2. Here, the Bond number defined in § 4.2 is Bo = |ρ1 − ρ2| g/

(σk2
c ) = 0.49. The Reynolds number Re = ρ/(μk2

c T ) is Re1 = 9.9 and Re2 = 2.52 for
the lower and upper fluid, respectively.

Rather than starting from a sinusoidal interface, we chose to add two-dimensional
white noise of small amplitude to 〈ζ 〉 to define the initial interface height ζ (x, y, t = 0)
in order to excite every mode allowed by the box’s horizontal dimensions and number
of cells. It is thus possible to check that the correct critical mode (that whose
growth rate is maximal) emerges from the linear dynamics. In order to reproduce the
experimental results in a computational domain of a minimal size, the dimensions in
x and y of the box must correspond to the periodicity and symmetries of the expected
pattern. The minimal required resolution along these directions has been found to be
between 40 and 50 cells per wavelength. The number of triangles used to represent
the interface is 16 times the total number of horizontal gridpoints. The number of
cells in the z direction is taken so that min

S′
ζ (x, y, t) is greater than about the height

of 3–5 cells. The required vertical resolution thus varies with the forcing amplitude.
The initial velocity is taken to be zero.
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Figure 7. Example of square pattern. Height of interface as a function of the horizontal
coordinates, at the instant corresponding to first arrow of figure 10, when height is maximal.
Resolution in x, y, z directions: 80 × 80 × 160. Note that the vertical scale is stretched with
respect to the horizontal scale. Each horizontal direction in the figure is twice that of the
calculation domain.
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Figure 8. Example of square pattern, at the instant corresponding to second arrow of
figure 10, time 0.24 × 2T after figure 7.

5.1. Square patterns

To compare with the experiment of Kityk et al. (2005) for their square patterns,
we choose the same forcing acceleration, a =30.0 m s−2. Our box has horizontal
dimensions which we take both equal to 2π/kc. The time step is �t = 2.78 × 10−4 s.
Figures 7 and 8 represent examples of the patterns obtained at saturation under these
conditions and are taken from the same simulation at the two instants shown by the
two arrows in figure 10. The symmetries characterizing the squares (reflections and π/2
rotation invariance) are clear, showing a first qualitative agreement with Kityk et al.
(2005) where both structures were observed. The pattern oscillates subharmonically,
at 2T , where T is the forcing period. Figure 7 is taken when the interface attains its
maximum height, while figure 8 is taken at a time 0.24 × 2T later. At this later time,
we observe the dominance of a higher wavenumber, which will be discussed below.

Further quantitative investigations of the patterns involve the spatial Fourier
transform of the interface height. In the case of square patterns, the distribution
of the spatial modes is shown in figure 9. The modes with non-negligible amplitude
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Figure 9. Lattice formed by the spatial modes comprising a square pattern. The principal

modes, with wavenumbers kc , 2kc and
√

2 kc , whose evolution will be studied in figures 10 and
11 are indicated by hollow black circles.

are ±kcex and ±kcey , with |k| = kc and amplitude A(kc); ±2kcex and ±2kcey , with

|k| = 2kc and amplitude A(2kc); and kc(±ex ± ey), with |k| =
√

2kc and amplitude

A(
√

2kc). (For a square pattern, the amplitude of each mode is identical to that of
each of its images through rotation by any integer multiple of π/2). The interface
height is written as:

ζ (x, t) = 〈ζ 〉 + A(kc, t)

4∑
j=1

eikcej ·x + A(2kc, t)

4∑
j=1

ei2kcej ·x

+ A(
√

2kc, t)

4∑
j=1

ei
√

2kce′
j ·x + higher order terms, (5.1)

where ej ≡ ex cos(πj/2)+ey sin(πj/2) and e′
j ≡ ex cos(π/4+πj/2)+ey sin(π/4+πj/2)

for j = 1, . . . , 4. We have chosen this notation, rather than ζ̂ (k, t) as used in (4.1), to
facilitate comparison with Kityk et al. (2005, 2009).

We have compared the evolution of the three principal spatial modes (figure 10)
and their temporal Fourier transform (figure 11) with the experimental results (Kityk
et al. 2005). Here we turn the reader’s attention to the recent erratum by Kityk et al.
(2009) for correct quantitative comparisons of the spectra.

Figure 10 compares the experimental evolution of each spatial wavenumber to
numerical calculations for two different mean heights 〈ζ 〉 =1.6 mm and 〈ζ 〉 = 1.7 mm.
Our calculations show that the results depend strongly on 〈ζ 〉, which is the initial
fill height of the heavy fluid. Our discussions with Kityk and Wagner (A. Kityk &
C. Wagner, private communication, 2008) indicate that this is true as well in the
experiments, and also that 0.1 mm is within the experimental uncertainty for their
mean height. Thus we chose to vary 〈ζ 〉, in preference to other parameters, in order to
check whether the range of amplitudes caused by experimental uncertainties includes
those obtained numerically.

The main features found in Kityk et al. (2009) are recognized in figure 10. In
particular, both the fundamental periodicity of each mode (harmonic or subharmonic)
and the form of each numerical curve in figure 10 are very similar to the experimental
data. The amplitudes and the phases are also quite close. Most of the experimental
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Figure 10. Temporal evolution of the amplitudes of the spatial modes with wavenumbers kc ,

2kc and
√

2kc . Solid curves represent the experimental results of Kityk et al. (2009), dashed
curves and crosses represent numerical results for 〈ζ 〉 = 1.6 mm and 〈ζ 〉 = 1.7 mm, respectively.
Resolution in x, y, z directions: 80 × 80 × 160. Arrows, from left to right, show the time at
which figures 7 and 8 have been plotted.
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Figure 11. Temporal Fourier transform of the amplitudes in figure 10. Circles indicate
experimental results of Kityk et al. (2009), while crosses and plus signs indicate numerical data
with 〈ζ 〉 = 1.6 mm and 〈ζ 〉 = 1.7 mm, respectively.

amplitudes are bracketed by the numerical ones. Thus, they lie in the interval of
amplitudes allowed by the range of uncertainties which is surely underestimated since
only the uncertainty in 〈ζ 〉 has been taken into account. A(kc) crosses zero at times

different from the two higher wavenumbers, A(2kc) and A(
√

2kc). At these instants,
the higher wavenumbers dominate the pattern. In particular, the pattern of figure 8,
taken near the second arrow in figure 10, when A(kc) is low, contains more peaks
than that of figure 7, taken when A(kc) is high. The large ratio between the amplitude
of kc and the others makes this phenomenon very short-lived.

Figure 11 shows the temporal Fourier decomposition of the curves in figure 10.
These spectra for the experiment Kityk et al. (2009) and for the computation are
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Figure 12. Temporal evolution of the amplitudes of the spatial modes with wavenumbers

kc , 2kc and
√

2kc for square patterns. Study of the convergence with three different spatial
resolutions. Circles indicate a resolution (in x, y, z directions) of 20 × 20 × 40, dashed curves
40×40×80 and continuous curves 80×80×160. The time step is the same, �t =2.78×10−4 s,
for all curves shown.

quite similar too. All of the square patterns that we have observed, once saturation is
attained, remain so for the entire duration of the calculation.

We present a brief numerical grid convergence study in figure 12. All qualitative
features, such as the square symmetry, were observed with each of the three resolutions
chosen, despite the coarseness of the 20×20×40 and 40×40×80 grids. With increasing
resolution, the principal spatial modes converge to the experimental curves shown
in figure 10, with only a small difference between the curves with the two highest
resolutions. The order of numerical convergence of the maximum and minimum of
the amplitudes of each of the three modes in figure 12 shows that the convergence is
between first and second order, which is expected to be the case with the immersed-
boundary method. In particular, we would expect that a further doubling of the
resolution would change the results by at most 4% for the principal kc mode.

5.2. Hexagonal patterns

When the amplitude of the forcing acceleration a is further increased, the modes can
reorganize. The symmetries change and, in the experiments of Kityk et al. (2005), the
initial square pattern becomes hexagonal. Though kc remains constant, the horizontal
dimensions of the minimal computational box necessary to support the periodic
pattern must change too. These dimensions become 4π/kc in y and 4π/(

√
3kc) in x, as

shown in figure 13. The wavevector lattice for hexagonal patterns is shown in figure
14. The principal modes are again of three amplitudes: kc, 2kc and

√
3kc. When a

pattern is hexagonal, a mode will have the same amplitude and temporal behaviour
as each of its images through rotations by any integer multiple of π/3. The interface
height is thus

ζ (x, t) = 〈ζ 〉 + A(kc, t)

6∑
j=1

eikcej ·x + A(2kc, t)

6∑
j=1

ei2kcej ·x

+ A(
√

3kc, t)

6∑
j=1

ei
√

3kce′
j ·x + higher order terms, (5.2)
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Figure 13. Boxes supporting the periodic patterns in the square and hexagonal cases. In
black, the borders of the box. Light lines, pattern contained by each box; λ= 2π/kc .
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Figure 14. Lattice formed by the spatial modes comprising a hexagonal pattern. The principal

modes, with wavenumbers kc , 2kc and
√

3 kc , involved in later quantitative investigations are
indicated by hollow black circles. The labelled triangles illustrate resonance mechanisms leading
to harmonic contributions to higher wavenumbers.

where ej ≡ ex cos(πj/3)+ey sin(πj/3) and e′
j ≡ ex cos(π/6+πj/3)+ey sin(π/6+πj/3).

for j = 1, . . . , 6.
Our simulations are carried out at acceleration a =38.0 m s−2 and mean height

〈ζ 〉 =1.6 mm. We have used two different initial conditions: a rectangular pattern,
and also white noise, as in our previous simulations of the square patterns. In both
cases, hexagons emerge and saturate. The results shown below are those that emerge
from the white noise. The time step varies during the calculation, depending on the
viscous diffusion limit and the CFL. The spatial resolution is 58 × 100 × 180 in the
x, y, z, directions, respectively.

In figures 15–18, we show visualizations of the patterns at four instances
in time. A movie of the temporal evolution of the hexagon pattern over one
subharmonic oscillation is available in the online version of this article. The π/3
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Figure 15. Snapshot of hexagonal pattern, taken when height of the interface peaks is max-
imal. Each horizontal direction is twice that of the calculation domain. A movie of the temporal
evolution is available in the online version.
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Figure 16. Snapshot of hexagonal pattern taken t =0.3 × 2T after instant of maximal
interface height.

y (mm)
x (m

m)

50

30

10
0

20

40

30

20

10

0

5

10

0.10

ζ (mm)

1.33 2.55 3.77 5.00

z 
(m

m
)

Figure 17. Snapshot of hexagonal pattern taken t = 0.48 × 2T after instant of maximal
interface height.

rotational symmetry confirms that the rectangular numerical grid does not forbid the
formation of hexagonal patterns, which are not aligned with this grid. The patterns
reproduce several prominent features from the visual observations of hexagons in
the experiments. For example, one can observe in figures 15 and 17 the up and
down hexagons shown in the experimental snapshots (figure 10 of Kityk et al. 2005).
The pattern in figure 18, when the surface elevation is minimal, is dominated by
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Figure 18. Snapshot of hexagonal pattern taken t = 0.68 × 2T after instant of maximal
interface height.
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Figure 19. Temporal evolution of the amplitudes of the spatial modes with wavenumbers

kc , 2kc and
√

3kc . Solid curves represent experimental results (A. Kityk & C. Wagner,
private communication, 2008) at a ≈ 38.5m s−2. Dashed curves represent the simulation for
a = 38.0m s−2 at resolution (in x, y, z directions) of 58 × 100 × 180. Arrows indicate times
corresponding to figures 15–18.

wavenumbers higher than kc, as is also the case in figure 10 of Kityk et al. (2005).
This is reflected by the disappearance of A(kc) and the resulting dominance of A(2kc)
and A(

√
3kc) at the corresponding instant in the spectral timeseries of figure 19. This

apparent wavenumber increase is analogous to that which occurs for the squares,
shown in figures 8 and 10.

The spectra from experiments and simulations are represented in figures 19 and 20.
Given that experimental uncertainties concerning the hexagons are greater than for
the squares (A. Kityk & C. Wagner, private communication, 2008), the agreement is
remarkable. The principal mode is well reproduced while the other two modes show
rough agreement. It is striking that, in contrast to square patterns, every wavevector
is a superposition of harmonic and subharmonic temporal modes, so that each
has temporal period 2T . This phenomenon was explained by Kityk et al. (2005)
as a spatio-temporal resonance as follows. In the case of the square lattice, two
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Figure 20. Temporal Fourier transform of the amplitudes in figure 19. Circles represent
experimental results (A. Kityk & C. Wagner, private communication, 2008) for a ≈ 38.5 m s−2.
Crosses represent numerical results for a = 38.0m s−2 at resolution 58 × 100 × 180.

critical subharmonic modes (e.g. kcex and kcey) interact to yield a higher wavenumber
harmonic mode (e.g. kc(ex + ey)). In the hexagonal case, two critical subharmonic

modes (e.g. −kcey and kc(
√

3ex − ey)/2) interact to yield a higher wavenumber

harmonic mode (kc(
√

3ex − 3ey)/2), as in triangle I of figure 14. Further interaction

of this mode with a critical subharmonic mode (kc(
√

3ex + ey)/2) yields subharmonic

contributions to the higher spatial wavenumber mode (kc(
√

3ex − ey)), as shown in
triangle II. Other quadratic interactions between critical subharmonic modes can
contribute to a third harmonic mode of wavenumber kc (triangle III).

In addition to the interface height, our simulations also produce the entire velocity
field, which is the focus of figures 21–23. These figures show the velocity fields on
horizontal planes at three instants spanning the oscillation period of a hexagonal
pattern, as well as the vertical velocity on the interface. Figures 21, 22 and 23
correspond approximately to the visualizations of figures 15, 16 and 18, where the
structures are more visible since the interface has been repeated periodically in
the horizontal directions for clarity. The parameters are the same as those given
previously, except that the acceleration a has been decreased to 36.0 m s−2, and the
number of triangles used to represent the interface has been increased to 64 times the
total number of horizontal gridpoints.

Figure 21 is taken at t =0.07 × (2T ), just after the interface reaches its maximum
height (at t =0), when the peaks are beginning to descend. Consequently, the fluid
converges horizontally towards the interface peaks, then descends dramatically below
them. The fluid then diverges horizontally outwards near the bottom and moves
upwards in the large regions between the peaks. The motion shown in figure 22, at
t = 0.41 × (2T ), is quite different from that in figure 21. The peaks of figure 21 have
collapsed into wide flat craters. The fluid converges inwards horizontally above the
peaks, then descends into the craters and diverges outwards horizontally just below
them. Figure 23, at t = 0.73 × (2T ), shows that the rims of the wide flat craters seen
in figure 22 have in turn collapsed inwards, forming circular waves which invade the
craters, whose remnants are visible as dimples. The velocity field of figure 23 shows
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Figure 21. Velocity field at time t = 0.07×(2T ) after the instant of maximum height. Interface
is coloured according to the vertical velocity w. Arrows show velocity field at z = 0.53 mm and
z = 6.08 mm. (Total height is 10 mm, average interface height is 1.6 mm.) For clarity, velocity
vectors are plotted only at every fourth gridpoint in each direction. Note that the vertical and
horizontal scales are different. One computational domain is shown.
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Figure 22. Velocity field at time t = 0.41 × (2T ) after the instant of maximum height. Vectors
shown at z = 0.083 mm and z = 6.25 mm. Vector and colour scales differ from those of figure 21.
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Figure 23. Velocity field at time t =0.73 × (2T ) after the instant of maximum height. Arrows
show velocity field at z = 1.58 mm. Vector and colour scales differ from those of figures 21
and 22.
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fluid converging horizontally below these dimples. These are erupting at velocities
which are the largest in the cycle, and will eventually reconstitute the high peaks seen
in figure 21.

Figures 21–23, as well as figures 15–18, show that these cases pose great compu-
tational difficulties. The interface periodically forms a very thin film (approximately
0.1 mm; see wide crater in figures 17 and 22) over large portions of the lower
boundary, within which the velocity may be significant. These features make it difficult
to adequately resolve the flow in this layer. For the time being we use a uniform grid
spacing; however, in this case an adaptive grid would be more efficient and is under
development. We have also simulated hexagons with resolutions of 70 × 120 × 100
and 70×120×50. Although we do not show these, the two highest resolutions lead to
very similar spatial spectra with a maximum difference in amplitudes of the principal
modes of about 5 % between the 70 × 120 × 100 and 58 × 100 × 180 resolutions. The
case resolved by only 50 cells in the z direction shows differences mainly in the 2kc

mode where the difference between the 70 × 120 × 50 and 58 × 100 × 180 resolution is
about 25 %; for the two other modes the difference is about 10 %. Hexagonal motifs
were observed for all of the resolutions.

The calculation for the hexagon case, for the resolution of 58×100×180 takes about
7 h per subharmonic oscillation on a 2.16 GHz Intel processor. This corresponds to
42 h of calculation time for 1 s of physical time.

In contrast to the square patterns, all of the hexagonal patterns that we have
observed are transient. In our calculations, they last for several seconds, i.e. about
15–20 subharmonic oscillation periods, over which time the amplitudes and periods
of the principal modes remain constant. This is also the case for the experimental
observations (A. Kityk & C. Wagner, private communication, 2008), although the
experimental lifetimes are longer. In our simulations, hexagonal patterns alternated
with patterns with other symmetries, whose lifetimes were long (on the order of
several seconds) but irregular. This behaviour suggests that the hexagonal state may
belong to a heteroclinic orbit. A more extensive examination of the hexagonal regime
will be the subject of a future investigation.

6. Conclusion
We have carried out full nonlinear three-dimensional simulations of Faraday waves.

The incompressible Navier–Stokes equations for two fluid layers of different densities
and viscosities are solved using a finite-difference method. The interface motion and
surface tension are treated using a front-tracking/immersed-boundary technique. The
simulations are validated in several ways. First, for small oscillation amplitudes, our
computations match the solution of Kumar & Tuckerman (1994) to the Floquet
problem which results from the linearized evolution equations. The boundaries of the
instability tongues, i.e. the critical amplitude as a function of horizontal wavenumber
are calculated for several wavenumbers on several tongues and are in good agreement
with the theoretical values. The temporal dependence of the Floquet modes is also
well reproduced by our numerical results, an even more quantitatively significant
validation.

For finite oscillation amplitude, our computations reproduce the square and hexa-
gonal patterns observed by Kityk et al. (2005, 2009) at moderate and high-oscillation
amplitudes, respectively. Although the domains shown in figure 13 were chosen to
accommodate square and hexagonal patterns respectively, we consider the emergence
of these patterns at the appropriate parameter values a non-trivial test of our program,
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since these domains can also accommodate rectangles and stripes. Quantitative
comparisons were made between experiment and simulation of the spatio-temporal
spectra. Our numerical results lie well within the experimental uncertainty. The
hexagonal patterns are long-lived transients and show intriguing dynamical behaviour.
Our direct numerical simulations provide velocity fields and pressure throughout the
entire domain of calculation. Thus, we have been able to ascertain precisely the fluid
motion for the Faraday waves, both above and below the interface between the two
fluids.

Our future studies of Faraday waves will include a more detailed investigation of
the dynamics of the hexagonal patterns, and the simulation and interpretation of
oscillons.

The authors acknowledge J. Fineberg, E. Knobloch and A. Rucklidge for insights
on theoretical aspects of the Faraday phenomenon, J. Chergui, M. Firdaouss and K.
Borońska for advice regarding implementation of certain numerical algorithms and,
especially, A. Kityk and C. Wagner for extensive discussions and for sharing their
experimental data.
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