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Consider the random graph process where we start with an empty graph on n vertices

and, at time t, are given an edge et chosen uniformly at random among the edges which

have not appeared so far. A classical result in random graph theory asserts that w.h.p. the

graph becomes Hamiltonian at time (1/2 + o(1))n log n. On the contrary, if all the edges

were directed randomly, then the graph would have a directed Hamilton cycle w.h.p. only

at time (1 + o(1))n log n. In this paper we further study the directed case, and ask whether

it is essential to have twice as many edges compared to the undirected case. More precisely,

we ask if, at time t, instead of a random direction one is allowed to choose the orientation

of et, then whether or not it is possible to make the resulting directed graph Hamiltonian at

time earlier than n log n. The main result of our paper answers this question in the strongest

possible way, by asserting that one can orient the edges on-line so that w.h.p. the resulting

graph has a directed Hamilton cycle exactly at the time at which the underlying graph is

Hamiltonian.

AMS 2010 Mathematics subject classification: Primary 05C20, 05C45, 05C80

1. Introduction

The celebrated random graph process, introduced by Erdős and Rényi [12] in the 1960s,

begins with an empty graph on n vertices, and at every round t = 1, . . . , m adds to the

current graph a single new edge chosen uniformly at random out of all missing edges.

This distribution is commonly denoted as Gn,m. An equivalent ‘static’ way of defining

Gn,m would be to choose m edges uniformly at random out of all
(
n
2

)
possible ones. One

advantage in studying the random graph process, rather than the static model, is that it

allows for a higher-resolution analysis of the appearance of monotone graph properties

(a graph property is monotone if it is closed under edge addition).
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A Hamilton cycle of a graph is a simple cycle that passes through every vertex of the

graph, and a graph containing a Hamilton cycle is called Hamiltonian. Hamiltonicity is

one of the most fundamental notions in graph theory, and has been extensively studied

in various contexts, including random graphs. The earlier results on Hamiltonicity of

random graphs were obtained by Pósa [21], and Korshunov [18]. Improving on these

results, Komlós and Szemerédi [17] proved that if m′ = 1
2
n log n + 1

2
n log log n + cnn, then

lim
n→∞

P(Gn,m′ is Hamiltonian) =

⎧⎪⎪⎨
⎪⎪⎩

0 if cn → −∞,

e−e−2c
if cn → c,

1 if cn → ∞.

One obvious necessary condition for the graph to be Hamiltonian is for the minimum

degree to be at least 2, and surprisingly, the probability of Gn,m′ having minimum

degree two at time m′ has the same asymptotic behaviour as the probability of it

being Hamiltonian. Bollobás [7] strengthened this observation by proving that w.h.p. the

random graph process becomes Hamiltonian when the last vertex of degree one disappears.

Moreover, Bollobás, Fenner and Frieze [8] described a polynomial time algorithm which

w.h.p. finds a Hamilton cycle in random graphs.

Hamiltonicity has been studied for directed graphs as well. Consider a random directed

graph process where, at time t, a random directed edge is chosen uniformly at random

among all missing edges, and let Dn,m be the graph consisting of the first m edges. Frieze

[15] proved that for m′′ = n log n + cnn, the probability of Dn,m′′ containing a (directed)

Hamilton cycle is

lim
n→∞

P(Dn,m′′ is Hamiltonian) =

⎧⎪⎪⎨
⎪⎪⎩

0 if cn → −∞,

e−2e−c

if cn → c,

1 if cn → ∞.

As for the undirected case, this probability has the same asymptotic behaviour as the

probability of the directed graph having minimum in-degree and out-degree 1. In fact,

Frieze proved [15] that when the last vertex to have in- or out-degree less than one

disappears, the graph has a Hamilton cycle w.h.p.

Hamiltonicity of various other random graph models has also been studied [22, 3].

One model which will be of particular interest to us is the k-in k-out model, in which

every vertex chooses k in-neighbours and k out-neighbours uniformly at random and

independently of the others. Improving on several previous results, Cooper and Frieze

[10] proved that a random graph in this model is Hamiltonian w.h.p. when k = 2 (which

is best possible since it is easy to see that a 1-in 1-out random graph is w.h.p. not

Hamiltonian).

1.1. Our contribution

The results of Bollobás [7] and Frieze [15] introduced above suggest that the main obstacle

to Hamiltonicity of random graphs lies in ‘reaching’ certain minimum degree conditions.

It is therefore natural to ask how the thresholds change if we modify the random graph

process so that we can somehow bypass this obstacle.
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We consider the following process suggested by Frieze [16], which was designed for

this purpose. Starting from the empty graph, at time t, an undirected edge (u, v) is given

uniformly at random out of all missing edges, and a choice of its orientation (u → v or

v → u) is to be made at the time of its arrival. In this process, we can attempt to accelerate

the appearance of monotone directed graph properties, or delay them, by applying an

appropriate on-line algorithm. It is important to stress that the process is on-line in

nature, namely, we cannot see any future edges at the current round and are forced to

make the choice based only on the edges seen so far. In this paper, we investigate the

property of containing a directed Hamilton cycle by asking the question: Can one speed

up the appearance of a directed Hamilton cycle? The best we can hope for is to obtain

a directed Hamilton cycle at the time when the underlying graph has minimum degree

2. The following result asserts that directed Hamiltonicity is in fact achievable exactly at

that time, and this answers the above question positively in the strongest possible way.

Theorem 1.1. Let G be a random (undirected ) graph process that terminates when the last

vertex of degree one disappears. There exists an on-line algorithm Orient that orients the

edges of G so that with high probability the resulting directed graph is Hamiltonian.

Let us note that G w.h.p. contains (1 + o(1))n log n/2 edges, in contrast with (1 +

o(1))n log n edges in the random directed graph model. Thus the required number of

random edges is reduced by half.

Our model is similar in spirit to the so-called Achlioptas process. It is well known that

a giant connected component (i.e., a component of linear size) appears in the random

graph Gn,m when m = (1 + o(1))n/2. Inspired by the celebrated ‘power of two choices’

result [2], Achlioptas posed the following question. Suppose that edges arrive in pairs,

that is, at round t the pair of edges (et, e
′
t) chosen uniformly at random is given, and one

is allowed to pick an edge out of it for the graph (the other edge will be discarded). Can

one delay the appearance of the giant component? Bohman and Frieze answered this

question positively [4] by describing an algorithm whose choice rule allows for the ratio

m/n � 0.53, and this ratio has since been improved [5]. Quite a few papers have thereafter

studied various related problems that arise in the above model [6, 14, 19, 23, 24]. As

an example, Krivelevich, Loh and Sudakov [19] studied the question: How long can one

delay the appearance of a certain fixed subgraph?

One such paper, closely related to our work, is the recent paper by Krivelevich,

Lubetzky and Sudakov [20]. They studied the Achlioptas process for Hamiltonicity, and

proved that by exploiting the ‘power of two choices’, one can construct a Hamilton cycle

at time (1 + o(1))n log n/4, which is twice as fast as in the random case. Both our result

and their result suggest that the ‘bottleneck’ to Hamiltonicity of random graphs indeed

lies in the minimum degree, and thus these results can be understood in the context of

complementing the results of Bollobás [7] and Frieze [15].

1.2. Preliminaries

The paper is rather involved technically. One factor that contributes to this is that we

are establishing the ‘hitting time’ version of the problem. That is, we determine the exact
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threshold for the appearance of a Hamilton cycle. The analysis can be simplified if one

only wishes to estimate this threshold asymptotically (see Section 7). To make the current

analysis more approachable without risking any significant change to the random model,

we consider the following variant of the graph process, which we call the random edge

process: at time t, an edge is given as an ordered pair of vertices et = (vt, wt) chosen

uniformly at random, with repetition, from the set of all possible n2 ordered pairs (note

that this model allows loops and repeated edges). In what follows, we use Gt to denote

the graph induced by the first t edges, and given the orientation of each edge, use Dt to

denote the directed graph induced by the first t edges. By m∗ we denote the time t when

the last vertex of degree one in Gt becomes a degree two vertex.

We will first prove that there exists an on-line algorithm Orient which w.h.p. orients the

edges of the graph Gm∗ so that the resulting directed graph Dm∗ is Hamiltonian, and then

in Section 6 we show how Theorem 1.1 can be recovered from this result.

1.3. Organization of the paper

In the next section we describe the algorithm Orient that is used to prove Theorem 1.1

(in the modified model). Then in Section 3 we outline the proof of Theorem 1.1. Section 4

describes several properties that a typical random edge process possesses. Using these

properties we prove Theorem 1.1 in Section 5. Then in Section 6, we show how to modify

the algorithm Orient, in order to make it work for the original random graph process.

Notation. A directed 1-factor is a directed graph in which every vertex has in-degree and

out-degree exactly 1, and a 1-factor of a directed graph is a spanning subgraph which is

a directed 1-factor. The function exp(x) := ex is the exponential function. Throughout the

paper log(·) denotes the natural logarithm. For the sake of clarity, we often omit floor

and ceiling signs whenever these are not crucial, and we make no attempt to optimize our

absolute constants. We also assume that the order n of all graphs tends to infinity and is

therefore sufficiently large whenever necessary.

2. The orientation rule

Here we describe the algorithm Orient. Its input is the edge process e = (e1, e2, . . . , em∗ ),

and output is an on-line orientation of each edge et. The algorithm proceeds in two steps.

In the first step, which consists of the first 2n log log n edges, the algorithm builds a ‘core’

which contains almost all the vertices, and whose edges are distributed (almost) like a

6-in 6-out random graph. In the second step, which contains all edges that follow, the

remaining o(n) non-core vertices are taken care of, by being connected to the core in a

way that will guarantee w.h.p. the existence of a directed Hamilton cycle.

2.1. Step I

Recall that each edge is given as an ordered pair (v, w). For every vertex v we keep a

count of the number of times v appears as the first vertex. We update the set of saturated

vertices, which consists of the vertices that have appeared at least 12 times as the first

vertex. Given the edge (v, w) at time t, if v is still not saturated, direct the edge (v, w)
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alternatingly with respect to v starting from an out-edge. (By ‘alternatingly’ we mean that

if the last edge having v as the first vertex was directed as an out-edge of v, then we

direct the current one as an in-edge of v, and vice versa. For the first edge we choose

the out direction.) Otherwise, if v is saturated, then count the number of times w has

appeared as a second vertex when the first vertex is already saturated, and direct the

edges alternatingly according to this count with respect to w starting from an in-edge. This

alternation process is independent of the previous one. That is, even if w has previously

appeared somewhere as a first vertex, the count should be kept track of separately

from it.

For a vertex v ∈ V , let the first vertex degree of v be the number of times v has appeared

as a first vertex in Step I, and denote it by d1(v). Let the second vertex degree of v be the

number of times v has appeared in Step I as a second vertex of an edge whose first vertex

is already saturated, and denote it by d2(v). Note that the sum of the first vertex degree

and second vertex degree of v is not necessarily equal to the degree of v in Step I, as v

might appear as a second vertex of an edge whose first vertex is not yet saturated. We

will call such an edge a neglected edge of v.

2.2. Step II

Let A be the set of saturated vertices at the end of Step I, and B = V \ A. Call an edge

an A–B edge if one end-point lies in A and the other end-point lies in B, and define A–A

edges and B–B edges similarly. Given an edge e = (v, w) at time t, if e is an A–B edge,

and without loss of generality assume that v ∈ B and w ∈ A, then direct e alternatingly

with respect to v, where the alternation process of Step II continues the one from Step I

as follows.

(1) If v has appeared as a first vertex in Step I at least once, then pick up where the

alternation process of v as a first vertex in Step I stopped, and continue the alternation.

(2) If v did not appear as a first vertex in Step I but did appear as a second vertex of an

already saturated vertex, then pick up where the alternation process of v as a second

vertex of a saturated vertex stopped in Step I, and continue the alternation.

(3) If v appeared in Step I but does not belong to the above two cases, then consider the

first neglected edge connected to v, and start the alternation process from the opposite

direction of this edge.

(4) If none of the above, then start from an out-edge.

Otherwise, if e is an A–A edge or a B–B edge, orient it uniformly at random. Note that

unlike Step I, the order of vertices of the given edge does not affect the orientation of the

edge in Step II.

For a vertex v ∈ B, let the A–B degree of v be the number of A–B edges incident to v

in Step II, and denote it by dAB(v). For v ∈ A, let dAB(v) = 0.

3. Proof outline

Our approach builds on Frieze’s proof of Hamiltonicity of the random directed graph

process [15] with some additional ideas. His proof consists of two phases (the original
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proof consists of three phases, but for simplicity we describe it as two phases). We shall

first describe these two phases of Frieze’s proof, and then point out the modifications that

are necessary to accommodate our different setting. Let m = (1 + o(1))n log n be the time

at which the random directed graph process has minimum in-degree and out-degree 1,

and let Dn,m be the directed graph at time m (throughout this section we say that random

directed graph has certain property if the property holds w.h.p.).

3.1. Phase 1: Find a small 1-factor

In Phase 1, a 1-factor of Dn,m consisting of at most O(log n) cycles is constructed. To

this end, a subgraph D5-in, 5-out of Dn,m is constructed which uses only a small number

of the edges. Roughly speaking, for each vertex, use its first 5 out-neighbours and 5

in-neighbours (if possible) to construct D5-in, 5-out. Note that the resulting graph will be

similar to a random 5-in 5-out directed graph, but still different, as some vertices will

only have 1 in-neighbour and 1 out-neighbour even at time m. Finally, viewing D5-in, 5-out

as a bipartite graph G′(V ∪ V ∗, E ′), where V ∗ is a copy of V , and {u, v∗} ∈ E ′ if and only

if u → v belongs to D5-in, 5-out, one proves that G′ has a perfect matching. It turns out that

this matching can be viewed as a uniform random permutation of the set of vertices V .

A well-known fact about such permutations is that w.h.p. they consist of at most O(log n)

cycles.

3.2. Phase 2: Combining the cycles into a Hamilton cycle

In Phase 2, the cycles of the 1-factor are combined into a Hamilton cycle. The technical

issue to overcome in this step is the fact that in order to construct D5-in, 5-out all of the

edges were scanned, and now supposedly we have no remaining random edges in the

process to combine the cycles of the 1-factor. However, note that since D5-in, 5-out consists

of at most 10n edges, the majority of edges need not be exposed. More rigorously, let

LARGE be the vertices whose degree is Ω(log n/ log log n) at time t0 = 2n log n/3 in the

directed graph process. For the LARGE vertices, its 5 neighbours in D5-in, 5-out will be

determined solely by the edges up to time t0, leaving the remaining edges (edges after

time t0) of the process unexposed. Two key properties used in Phase 2 are that w.h.p.

(a) |LARGE| = n − o(n1/2), and (b) every cycle of the 1-factor contains many LARGE

vertices. Note that by (a), out of the remaining n log n/3 edges, all but o(1)-fraction will

connect two LARGE vertices. Phase 2 can now be summarized by the following theorem,

which can be read out from the proof in [15].

Theorem 3.1. Let V be a set of n vertices and let L ⊂ V be a subset of size at least

n − o(n1/2). Assume that D is a directed 1-factor over V consisting of at most O(log n)

cycles, and the vertices V \ L are at distance at least 10 away from each other in this graph.

If (1/3 − o(1))n log n L–L edges are given uniformly at random, then w.h.p. the union of

these edges and the graph D contains a directed Hamilton cycle.

3.3. Comparing with our setting

The main technical issue in this paper is to re-prove Phase 1, namely, the existence of

a 1-factor with small number of cycles. In [15], the fact that all vertices have the same
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degree distribution in D5-in, 5-out, led to an argument showing the existence of a matching

that translates into a uniform random permutation. Our case is different because of the

orientation rule. We have different types of vertices, each being oriented in a different

way, breaking the nice symmetry. The bulk of our technical work is spent in resolving

this technical issue.

Once this is done, that is, after achieving the 1-factor, we come up with an analogue of

LARGE, which we call ‘saturated’. As in Phase 2 described above, we prove that w.h.p.

(a′) most of the vertices are saturated, and (b′) every cycle in the 1-factor contains many

saturated vertices. However, the naive approach results in a situation where one cannot

apply Theorem 3.1 ((a′) and (b′) are quantitatively weaker than (a) and (b)). Thus we

develop the argument of ‘compressing’ vertices of a given cycle. This idea allows us to get

rid of all the non-saturated vertices, leading to another graph which only has saturated

vertices. Details will be given in Section 5.2. Once we apply the compression argument, we

can use Theorem 3.1 to finish the proof. Let us mention that the compression argument

can be applied after Phase 1 in [15] as well to simplify the proof.

4. A typical random process

The following well-known concentration result (see, e.g., [1, Corollary A.1.14]) will be

used several times in the proof. We denote by Bi(n, p) the binomial random variable with

parameters n and p.

Theorem 4.1 (Chernoff’s inequality). If X ∼ Bi(n, p) and ε > 0, then

P
(
|X − E[X]| � εE[X]

)
� e−Ωε(E[X]).

4.1. Classifying vertices

To analyse the algorithm it will be convenient to work with three sets of vertices. The

first is the set of saturated vertices at Step I. Throughout we will use A to denote this set.

Let us now consider the non-saturated vertices B = V \ A. Here we distinguish between

two types. We say that v ∈ B blossoms if there are at least 12 edges of the form {v, A}
in Step II (by A we mean an arbitrary vertex from A), and let B1 be the collection of

vertices which blossom. All the remaining vertices are restricted, and are denoted by B2.

Thus every vertex is either saturated (A), blossoms (B1), or restricted (B2).

Furthermore, the set of restricted vertices has two important subclasses which are

determined by the first vertex degree d1(v), second vertex degree d2(v), and A–B degree

dAB(v) defined in the previous section. We say that a restricted vertex v partially blossoms

if the sum of its first vertex degree, second vertex degree, and A–B degree is at least 2.

Note that since we stopped the process when the graph has minimum degree 2, every

vertex v has degree at least 2. Thus, if the above mentioned sum is at most 1, then v has

either a neglected edge or a B–B edge connected to it. A useful fact that we prove in

Lemma 4.5 says that w.h.p. all such vertices v have one A–B edge (thus dAB(v) = 1), and

at least one neglected edge. Thus, a restricted vertex v that is not partially blossomed, and

has one A–B edge and at least one neglected edge, is called a bud.
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4.2. Properties of a typical random process

In this section we list several properties that hold w.h.p. for random edge processes. We

will call an edge process typical if the properties indeed hold. Let

m1 =
1

2
n log n +

1

2
n log log n − n log log log n,

m2 =
1

2
n log n +

1

2
n log log n + n log log log n.

Note that for a fixed vertex v, the probability of an edge being incident to v is 2n−1
n2 = 2

n
− 1

n2

(this is because, in our process, each edge is given by an ordered pair of vertices). However,

as it turns out, the 1
n2 term is always negligible for our purpose, so we will use the

probability 2
n

for this event, and remind the reader that the term 1
n2 is omitted. Recall that

the stopping time m∗ is the time at which the last vertex of degree one becomes a degree

two vertex and the process stops.

Claim 4.2. Let m∗ be the stopping time of the random process. Then w.h.p.

m1 � m∗ � m2.

Proof. For a fixed vertex v, the probability of an edge being incident to v is about 2
n
.

Hence the probability of v having degree at most 1 at time m2 is

(
1 − 2

n

)m2

+

(
m2

1

)
2

n
·
(

1 − 2

n

)m2−1

� 3 log n · e− log n−log log n−2 log log log n

= O

(
1

n(log log n)2

)
.

Thus, by Markov’s inequality, w.h.p. there is no vertex of degree at most 1 after m2 edges.

This shows that m∗ � m2. Similarly, the expected number of vertices having degree at

most 1 after seeing m1 edges is Ω((log log n)2), and by computing the second moment of

the number of vertices having degree at most 1, we can show that after m1 edges w.h.p.

at least one such vertex exists. This shows that m∗ � m1. The rest of the details are fairly

standard, and are omitted.

Next we are going to list some properties of the different types of vertices.

Claim 4.3. The number of saturated vertices satisfies w.h.p.

|A| � n

(
1 − (log log n)12

log2 n

)
.
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Proof. For a fixed vertex v, the probability of v occurring as the first vertex of an edge

is (exactly) 1
n
, and thus the probability of v ending up non-saturated at Step I is at most

11∑
k=0

(
2n log log n

k

)(
1

n

)k

·
(

1 − 1

n

)2n log log n−k

�
11∑
k=0

(2 log log n)k
1

log2 n

= O

(
(log log n)11

log2 n

)
.

The claim follows from Markov’s inequality.

Our next goal is to prove that the restricted vertices consist only of partially blossomed

and bud vertices. For that we need the following auxiliary lemma.

Claim 4.4. Let EBB be the collection of all B–B edges (in Step II ). The graph Gm∗ \ EBB

has w.h.p. minimum degree 2.

Proof. If the graph Gm∗ \ EBB has minimum degree less than 2 for some edge process

e, then there exists a vertex v which gets at most one edge other than a B–B edge, and

at least one B–B edge. By Claim 4.2, it suffices to prove that the graph w.h.p. does not

contain a vertex which has at most one edge other than a B–B edge at time m1, and at

least one B–B edge at time m2. Let Av be the event that v is such a vertex. Let BS be the

event that

|B| � (log log n)12

log2 n
n (B is small),

and note that P(BS) = 1 − o(1) by Claim 4.3. Then we have

P(Gm∗ \ EBB has minimum degree less than 2) = P

(⋃
v∈V

Av

)
� n · P

(
Av ∩ BS

)
+ o(1).

(4.1)

The event Av is equivalent to the vertex v receiving k B–B edges, for some k > 0, and at

most one edge other than a B–B edge at appropriate times. This event is contained in the

event Cv ∩ Dv,k , where Cv is the event ‘v appears at most once in Step I’, and Dv,k is the

event ‘dAB(v) � 1 by time m1 and v receives k B–B edges by time m2’. Therefore our next

goal is to bound

P(Cv ∩ Dv,k ∩ BS) = P(Cv ∩ BS) · P(Dv,k|Cv ∩ BS) � P(Cv) · P(Dv,k|Cv ∩ BS). (4.2)

We can bound the probability of the event Cv by(
1 − 2

n

)2n log log n

+

(
2n log log n

1

)(
2

n

)
·
(

1 − 2

n

)2n log log n−1

= O

(
log log n

log4 n

)
. (4.3)

To bound the event Dv,k which is ‘dAB(v) � 1 at time m1 and v receives k B–B edges by

time m2’, note that Cv and BS are events which depend only on the first 2 log log n edges

(Step I edges). Therefore conditioning on this event does not affect the distribution of

edges in Step II (each edge is chosen uniformly at random among all possible n2 pairs).
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We only consider the case dAB(v) = 1 (the case dAB(v) = 0 can be handled similarly, and

turns out to be dominated by the case dAB(v) = 1). Thus, to bound the probability, we

choose k + 1 edges among the m2 − 2n log log n edges, let one of them be an A–B edge,

and let k of them be B–B edges incident to v. Moreover, since dAB(v) � 1 at time m1, we

know that at least m1 − 2n log log n − k − 1 edges are not incident to v. Thus,

P(Dv,k | Cv ∩ BS)

�
(
m2 − 2n log log n

k + 1

)(
2

n

)k+1(
k + 1

1

)
|A|
n

(
|B|
n

)k(
1 − 2

n

)m1−2n log log n−k−1

.

By using the inequalities 1 − x � e−x, |A| � n, and
(
m2−2n log log n

k+1

)
� mk+1

2 , the probability

above is bounded by

(k + 1)mk+1
2

(
2

n

)k+1( |B|
n

)k

exp

(
−2

n
(m1 − 2n log log n − k − 1)

)
. (4.4)

Therefore, by (4.2), (4.3), and (4.4),

P(Cv ∩ Dv,k ∩ BS)

� O

(
log log n

log4 n

)
(k + 1)mk+1

2

(
2

n

)k+1( |B|
n

)k

exp

(
−2

n
(m1 − 2n log log n − k − 1)

)
.

Plugging the bound |B| � n log log12 n

log2 n
and m2 � n log n in the latter, we obtain

O(k)

(
log log n

log3 n

)(
2(log log n)12

log n

)k

exp

(
−2

n
(m1 − 2n log log n − k − 1)

)
.

By the definition m1 = 1
2
n log n + 1

2
n log log n − n log log log n, this simplifies further to

O(k)

(
(log log n)3

n

)(
2e2/n(log log n)12

log n

)k

.

Summing over all possible values of k,

∞∑
k=1

P(Cv ∩ Dv,k ∩ BS) �
∞∑
k=1

O(k)(log log n)3

n

(
4(log log n)12

log n

)k

= o(n−1).

Going back to (4.1), we get that

P(Gm∗ \ EBB has minimum degree less than 2) = n · o(n−1) + o(1) = o(1).

Note that, as mentioned at the beginning of this section, we used 2
n

to estimate the

probability of an edge being incident to a fixed vertex. This probability is in fact 2
n

− 1
n2 ,

but the term 1
n2 will only affect the lower-order estimates.

Claim 4.5. Every restricted vertex is w.h.p. either partially blossomed or a bud.

Proof. Assume there exists a restricted vertex v which is not partially blossomed or a bud.

Then, by definition, the sum d1(v) + d2(v) + dAB(v) � 1. The possible values of the degrees

(d1(v), d2(v), dAB(v)) are (1, 0, 0), (0, 1, 0), (0, 0, 1), or (0, 0, 0). Vertices which correspond to
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(0, 0, 1) will all be bud vertices w.h.p. by Claim 4.4. It suffices to show then that w.h.p. there

do not exist vertices corresponding to (1, 0, 0), (0, 1, 0), or (0, 0, 0). Let T be the collection

of vertices which have d1(v) + d2(v) � 1 and dAB(v) = 0 at time m1. By Claim 4.2 it suffices

to prove that T is empty. Let BS be the event

|B| � (log log n)12

log2 n
n,

and note that by Claim 4.3, P(BS) = 1 − o(1). The event {T �= ∅} is the same as ∪v∈V {v ∈
T }, and thus by the union bound

P(T �= ∅) � o(1) +
∑
v∈V

P({v ∈ T } ∩ BS)

= o(1) +
∑
v∈V

P
(
{d1(v) + d2(v) � 1} ∩ {dAB(v) = 0} ∩ BS

)
.

By Bayes’ equation, the second term of the right-hand side splits into

∑
v∈V

P
(
{d1(v) + d2(v) � 1} ∩ BS

)
· P

(
dAB(v) = 0 | {d1(v) + d2(v) � 1} ∩ BS

)

�
∑
v∈V

P
(
d1(v) + d2(v) � 1

)
· P

(
dAB(v) = 0 | {d1(v) + d2(v) � 1} ∩ BS

)
. (4.5)

The probability P(d1(v) + d2(v) � 1) can be bounded by P({d1(v) � 1} ∩ {d2(v) � 1}), which

satisfies

P({d1(v) � 1} ∩ {d2(v) � 1}) = P(d1(v) � 1) · P(d2(v) � 1 | d1(v) � 1).

The term P(d1(v) � 1) can be easily calculated by

(
1 − 1

n

)2n log log n

+

(
2n log log n

1

)(
1

n

)
·
(

1 − 1

n

)2n log log n−1

= O

(
log log n

log2 n

)
.

To estimate P(d2(v) � 1 | d1(v) � 1), expose the edges of Step I as follows. First expose all

the first vertices. Then expose the second vertices whose first vertex is saturated (d2(v) is

now determined for every v ∈ V ). The number of second vertex spots that are considered

is at least 2n log log n − 12n, and thus P(d2(v) � 1|d1(v) � 1) is at most

(
1 − 1

n

)2n log log n−12n

+

(
2n log log n

1

)(
1

n

)
·
(

1 − 1

n

)2n log log n−12n−1

= O

(
log log n

log2 n

)
.

Thus, as a crude bound we have

P(d1(v) + d2(v) � 1) � P(d1(v) � 1) · P(d2(v) � 1 | d1(v) � 1) = O

(
(log log n)2

log4 n

)
.

Since d1(v) + d2(v) � 1 implies that v ∈ B, and dAB(v) depends only on the Step II edges

(which are independent from d1(v), d2(v), and BS), the second term of the right-hand side

of equation (4.5), the probability P
(
dAB(v) = 0 | {d1(v) + d2(v) � 1} ∩ BS

)
can be bounded
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by

(
1 − 2

1

n

|A|
n

)m1−2n log log n

� exp

(
−2(m1 − 2n log log n)|A|/n2

)

� exp

(
−(log n − 3 log log n − 2 log log log n)

(
1 − (log log n)12

log2 n

))

� exp

(
− log n + 3 log log n + 2 log log log n + o(1)

)
= O

(
(log n)3(log log n)2

n

)
.

Therefore in (4.5),

P(T �= ∅) � o(1) +
∑
v∈V

O
( (log log n)2

log4 n

)
O

(
(log n)3(log log n)2

n

)

= o(1) + O

(
(log log n)4

log n

)
= o(1).

Claim 4.6. The following properties hold w.h.p. for restricted vertices:

(i) there are at most log13 n such vertices,

(ii) every two such vertices are at distance at least 3 in Gm∗ from each other.

Proof. Since being a restricted vertex is a monotone decreasing property, by Claim 4.2

it suffices to prove (i) at time m1. Recall that B2 is the collection of restricted vertices (a

vertex is restricted if it is not saturated or blossomed).

First, condition on the whole outcome of Step I edges (first 2n log log n edges) and the

event that

|B| � (log log n)12

log2 n
n.

Then the set B is determined, and for a vertex v ∈ B we can bound the probability of the

event v ∈ B2 as follows:

P(v ∈ B2) �
11∑
�=0

(
m2

�

)(
2

n

)�(
1 − 2|A|

n2

)m1−2n log log n−�

. (4.6)

Use the inequalities m1 = 1
2
n log n + 1

2
n log log n − log log log n � n log n, m2 � n log n, 1 −

x � e−x, and

|A| = n − |B| � n

(
1 − (log log n)12

log2 n

)

to bound the above by

11∑
l=0

(2 log n)� exp

(
−

(
log n − 3 log log n − 2 log log log n − 2�

n

)(
1 − (log log n)12

log2 n

))
.
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The sum is dominated by � = 11, and this gives

O
(
log11 n

)
exp

(
− log n + 3 log log n + 2 log log log n + o(1)

)
� O

(
(log log n)2 log14 n

n

)
.

Thus the expected size of B2 given the Step I edges is

E[|B2| | Step I edges] � |B| · O
(

(log log n)2 log14 n

n

)
� O((log log n)14 log12 n).

Since the assumptions on A and B hold w.h.p. by Claim 4.3, we can use Markov’s

inequality to conclude that w.h.p. there are at most log13 n vertices in B2. Let us now

prove (ii).

For three distinct vertices v1, v2 and w in V , let A(v1, v2, w) be the event that w is a

common neighbour of v1 and v2. The probability of there being edges (v1, w) (or (w, v1))

and (v2, w) (or (w, v2)) and v1, v2 ∈ B2 can be bounded by first choosing two time slots

where (v1, w) (or (w, v1)) and (v2, w) (or (w, v2)) will be placed, and then filling in the

remaining edges so that v1, v2 ∈ B2. We will only bound the event of there being edges

(v1, w) and (w, v2) in the edge process (other cases can be handled in a similar manner).

The probability we would like to bound is

P(∃v1, v2, w, ∃1 � t1, t2 � m2, et1 = (v1, w), et2 = (w, v2), v1, v2 ∈ B2).

By the union bound this probability is at most

∑
v1 ,v2 ,w∈V

m2∑
t1 ,t2=1

P(et1 = (v1, w), et2 = (w, v2), v1, v2 ∈ B2) (4.7)

=
∑

v1 ,v2 ,w∈V

m2∑
t1 ,t2=1

P(et1 = (v1, w), et2 = (w, v2))P(v1, v2 ∈ B2|et1 = (v1, w), et2 = (w, v2))

� 1

n

m2∑
t1 ,t2=1

P(v1, v2 ∈ B2|et1 = (v1, w), et2 = (w, v2)). (4.8)

To simplify the notation we abbreviate

P(v1, v2 ∈ B2|et1 = (v1, w), et2 = (w, v2))

by

P(v1, v2 ∈ B2|et1 , et2 ).

By using the independence of Step I and Step II edges, we have

P(v1, v2 ∈ B2|et1 , et2 ) = P(v1, v2 ∈ B|et1 , et2 )P(v1, v2 /∈ B1|v1, v2 ∈ B, et1 , et2 ).

For fixed t1 and t2, we can bound P(v1, v2 ∈ B|et1 , et2 ) by the probability of ‘v1 and v2

appear at most 22 times combined in Step I as a first vertex other than at time t1 and t2’,
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whose probability can be bounded as follows, regardless of the value of t1 and t2:

22∑
k=0

(
2n log log n

k

)(
2

n

)k

·
(

1 − 2

n

)2n log log n−2−k

�
22∑
k=0

(4 log log n)k
O(1)

log4 n

= O

(
(log log n)22

log4 n

)
.

To bound P(v1, v2 /∈ B1|v1, v2 ∈ B, et1 , et2 ), it suffices to bound P(v1, v2 /∈ B1|v1, v2 ∈ B, et1 , et2 ,

BS), which can be bounded by the probability of ‘v1 and v2 receive in total at most 22

A–B edges in Step II other than at time t1 and t2’. Regardless of the value of t1 and t2,

this satisfies the bound

22∑
�=0

(
m2

�

)(
4

n

)�(
1 − 4

n

|A|
n

)m1−2−2n log log n−l

.

Note that the 4
n

and 2
n

terms throughout the proof should in fact involve some terms of

order 1
n2 , but these are omitted for simplicity since they do not affect the final asymptotic

outcome. By a similar calculation to (4.6), this can eventually be bounded by O
(

log29 n
n2

)
.

Thus we have

P(v1, v2 ∈ B2|et1 , et2 ) = O

(
log26 n

n2

)
,

which by (4.8) and m2 � n log n gives

P(∃v1, v2, w, ∃1 � t1, t2 � m2, et1 = (v1, w), et2 = (w, v2), v1, v2 ∈ B2) � O

(
log28 n

n

)
.

Therefore, by Markov’s inequality, w.h.p. no such three vertices exist, which implies that

two vertices v1, v2 ∈ B2 cannot be at distance two from each other in Gm∗ . Similarly, we

can prove that w.h.p. every two vertices v1, v2 ∈ B2 are not adjacent to each other, and

hence w.h.p. every v1, v2 ∈ B2 are at a distance at least two away from each other.

4.3. Configuration of the edge process

To prove that our algorithm succeeds with high probability, we first reveal some pieces

of information on the edge process, which we call the ‘configuration’ of the process. This

information will allow us to determine whether the underlying edge process is typical.

Then, in the next section, using the remaining randomness, we will construct a Hamilton

cycle.

At the beginning, rather than thinking of edges coming one by one, we regard our edge

process e = (e1, e2, . . . , em∗ ) as a collection of edges ei for i = 1, . . . , m∗, neither of whose

end-points are known. We can decide to reveal certain information as necessary. Let us

first reveal the following.

(1) For t � 2n log log n, reveal the first vertex of the tth edge et. If this vertex has already

appeared as the first vertex at least 12 times among the edges e1, . . . , et−1, then also

reveal the second vertex.
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Given this information, we can determine the saturated vertices, and hence we know

the sets A and B. Therefore, it is possible to reveal the following information.

(2) For t > 2n log log n, reveal all the vertices that belong to B.

The information we have revealed determines the blossomed (B1), and restricted (B2)

vertices. Thus we can reveal the following information.

(3) For t � 2n log log n, further reveal all the non-revealed vertices that belong to B2.

(4) For every edge et = (vt, wt) in which we already know that either vt ∈ B2 or wt ∈ B2,

reveal the other vertex too.

We define the configuration of an edge process as the above four pieces of information.

We want to say that all the non-revealed vertices are uniformly distributed over certain

sets. But in order for this to be true, we must make sure that the distribution of the

non-revealed vertices is not affected by the fact that we know the value of m∗ (some

vertex has degree exactly 2 at time m∗, and maybe a non-revealed vertex will make this

vertex have degree 2 earlier than m∗). This is indeed the case, since the last vertex to have

degree 2 is necessarily a restricted vertex, and all the locations of the restricted vertices

are revealed. Thus the non-revealed vertices cannot change the value of m∗. Therefore,

once we condition on the configuration of an edge process, the remaining vertices are

distributed in the following way.

(a) For t � 2n log log n, if the first vertex of the edge et has appeared at most 12 times

among e1, . . . , et−1, then its second vertex is either a known vertex in B2 or is a random

vertex in V \ B2.

(b) For t > 2n log log n, if both vertices of et are not revealed, then et consists of two

random vertices of A. If only one of the vertices of et is not revealed, then the revealed

vertex is in B, and the non-revealed vertex is a random vertex of A.

Definition 4.7. A configuration of an edge process is typical if it satisfies the following.

(i) The number of saturated and blossomed vertices satisfies

|A| � n − (log log n)12

log2 n
n, |B1| � (log log n)12

log2 n
n,

respectively.

(ii) The number of restricted vertices satisfies |B2| � log13 n.

(iii) Every vertex appears at least twice in the configuration even without considering the

B–B edges.

(iv) All the restricted vertices are either partially blossomed or buds.

(v) In the non-directed graph induced by the edges both of whose end-points are revealed,

every two restricted vertices v1, v2 are at distance at least 3 away from each other.

(vi) There are at least 1
3
n log n edges et for t > 2n log log n neither of whose end-points are

revealed.

Lemma 4.8. The random edge process has a typical configuration w.h.p.

https://doi.org/10.1017/S096354831200020X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831200020X


788 C. Lee, B. Sudakov and D. Vilenchik

Proof. The fact that the random edge process has w.h.p. a configuration satisfying

(i), (iii) and (iv) follows from Claims 4.3, 4.4, and 4.5 respectively; (ii) and (v) follow

from Claim 4.6. To verify (vi), note that by Claim 4.2 and 4.3, w.h.p. there are at least
1
2
n log n − 2n log log n edges of Step II, and |A| = (1 − o(1))n. Therefore the probability of

a Step II edge being an A–A edge is 1 − o(1), and the expected number of A–A edges is

(1/2 − o(1))n log n. Then, by Chernoff’s inequality, w.h.p. there are at least 1
3
n log n A–A

edges. These edges are the edges we are looking for in (vi).

5. Finding a Hamilton cycle

In the previous section we established several useful properties of the underlying graph

Gm∗ . In this section, we study the algorithm Orient using these properties, and prove that,

conditioned on the edge process having a typical configuration, the graph Dm∗ w.h.p.

contains a Hamilton cycle (recall that the graph Dm∗ is the set of random edges of the

edge process, oriented according to Orient). As described in Section 3, the proof is a

constructive proof, in the sense that we describe how to find such a cycle. The algorithm

is similar to that used in [15], which we described in some detail in Section 3. Let us

briefly recall that it proceeds in two stages.

(1) Find a 1-factor of G. If it contains more than O(log n) cycles, fail.

(2) Join the cycles into a Hamilton cycle.

The main challenge in our case is to prove that the first step of the algorithm does not

fail. Afterwards, we argue why we can apply Frieze’s results for the remaining step.

5.1. Almost 5-in 5-out subgraph

Let D5-in, 5-out be the following subgraph of Dm∗ . For each vertex v, assign a set of

neighbours OUT(v) and IN(v), where OUT(v) are out-neighbours of v and IN(v) are

in-neighbours of v. For saturated and blossomed vertices, OUT(v) and IN(v) will be of

size 5, and for restricted vertices, they will be of size 1 (thus D5-in, 5-out is not a 5-in 5-out

directed graph under the strict definition).

Let E1 be the edges of Step I (first 2n log log n edges), and let E2 be the edges of Step II

(remaining edges).

• If v is saturated, then consider the first 12 appearances in E1 of v as a first vertex.

Some of these edges might later be used as OUT or IN for other vertices. Hence,

among these 12 appearances, consider only those whose second vertex is not in B2.

By property (v) of Definition 4.7, there will be at least 11 such second vertices for a

typical configuration. Define OUT(v) as the first 5 vertices among them which were

directed out from v, and IN(v) as the first 5 vertices among them which were directed

in to v in Orient.

• If v blossoms, then consider the first 10 A–B edges in E2 connected to v, and look at

the other end-points. Let OUT(v) be the first 5 vertices which are an out-neighbour

of v and let IN(v) be the first 5 vertices which are an in-neighbour of v.

A partially blossomed vertex, by definition, has d1(v) + d2(v) + dAB(v) � 2, and must

fall into one of the following categories: (i) d1(v) � 2, (ii) d2(v) � 2, (iii) dAB(v) � 2,
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(iv) d1(v) = 1, d2(v) = 1, (v) d1(v) = 1, dAB(v) = 1, and (vi) d1(v) = 0, d2(v) = 1, dAB(v) = 1.

If it falls into several categories, then pick the first one among them.

• If v partially blossoms and d1(v) � 2, consider the first two appearances of v in E1 as

a first vertex. The first is an out-edge and the second is an in-edge (see Section 2.1).

• If v partially blossoms and d2(v) � 2, consider the first two appearances of v in E1 as

a second vertex whose first vertex is saturated. The first is an in-edge and the second

is an out-edge (see Section 2.1).

• If v partially blossoms and dAB(v) � 2, consider the first two A–B edges in E2 incident

to v. One is an out-edge and the other is an in-edge. Note that, unlike other cases, the

actual order of in-edge and out-edge will depend on the configuration. But since the

configuration contains all the positions at which v appeared in the process, the choice

of in-edge or out-edge only depends on the configuration and not on the non-revealed

vertices (note that this is slightly different from the blossomed vertices).

• If v partially blossoms and d1(v) = 1, d2(v) = 1, consider the first appearance of v in

E1 as a first vertex, and the first appearance of v in E1 as a second vertex whose first

vertex is saturated. The former is an out-edge and the latter is an in-edge.

• If v partially blossoms and d1(v) = 1, dAB(v) = 1, consider the first appearance of v in

E1 as a first vertex, and the first A–B edge connected to v in E2. The former is an

out-edge and the latter is an in-edge (see rule (1) in Section 2.2).

• If v partially blossoms and d1(v) = 0, d2(v) = 1, dAB(v) = 1, consider the first appear-

ance of v in E1 as a second vertex whose first vertex is saturated, and the first A–B

edge connected to v in E2. The former is an in-edge and the latter is an out-edge (see

rule (2) in Section 2.2). Thus we can construct OUT(v) and IN(v) of size 1 each, for

all partially blossomed vertices.

• If v is a bud, then consider the first (and only) A–B edge connected to v. Let this edge

be es. For a typical configuration, by property (iii) of Definition 4.7, we know that v

has a neglected edge connected to it. Let et be the first neglected edge of v. By property

(v) of Definition 4.7, we know that the first vertex of the neglected edge is either in

A or B1. According to the direction of this edge, the direction of es will be chosen as

the opposite direction (see rule (3) in Section 2.2). As in the partially blossomed case

with dAB(v) � 2, the direction is solely determined by the configuration. Thus we can

construct OUT(v) and IN(v) of size 1 each (which is already fixed once we have fixed

the configuration).

This in particular shows that Dm∗ has minimum in-degree and out-degree at least

1, which is clearly a necessary condition for the graph to be Hamiltonian. A crucial

observation is that, once we condition on the random edge process having a fixed typical

configuration, we can determine exactly which edges are going to be used to construct the

graph D5-in, 5-out just by looking at the configuration.

For a set X, let RV (X) be an element chosen independently and uniformly at random

in the set (consider each appearance of RV (X) as a new independent copy).

Proposition 5.1. Let V ′ = V \ B2. Conditioned on the edge process having a typical config-

uration, D5-in, 5-out has the following distribution.
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(i) If v is saturated, then OUT(v) and IN(v) are a union of 5 copies of RV (V ′).

(ii) If v blossoms, then OUT(v) and IN(v) are a union of 5 copies of RV (A).

Proof. For a vertex v ∈ V , the configuration contains the information on the time of

arrival of the edges that will be used to construct the set OUT(v) and IN(v).

If v is a saturated vertex, then we even know which edges belong to OUT(v) and IN(v)

(if there are no B2 vertices connected to the first 12 appearances of v as a first vertex,

then the first five odd appearances of v as a first vertex will be used to construct OUT(v),

and the first five even appearances of v as a first vertex will be used to construct IN(v)).

Since the non-revealed vertices are independent random vertices in V ′, we know that

OUT(v) and IN(v) of these vertices consist of 5 independent copies of RV (V ′).

If v blossoms, then the analysis is similar to that of the saturated vertices. However,

even though the configuration contains the information as to which 10 edges will be

used to construct OUT(v) and IN(v), the decision of whether the odd edges or the even

edges will be used to construct OUT(v) depends on the particular edge process (this is

determined by the orientation rule at Step I). However, since the other end-points are

independent identically distributed random vertices in A, the distribution of OUT(v) and

IN(v) is not affected by the previous edges, and is always RV (A) (this is analogous to the

fact that the distribution of the outcome of a coin flip does not depend on whether the

initial position was head or tail).

5.2. A small 1-factor

The main result that we are going to prove in this section is summarized in the following

proposition.

Proposition 5.2. Conditioned on the random edge process having a typical configuration,

there exists w.h.p. a 1-factor of D5-in, 5-out containing at most 2 log n cycles, and in which at

least 9/10 of each cycle are saturated vertices.

Throughout this section, rather than vaguely conditioning on the process having a

typical configuration, we will consider a fixed typical configuration c and condition on

the event that the edge process has configuration c. Proposition 5.2 easily follows once

we prove that there exists a Hamilton cycle w.h.p. under this assumption. The reason we

do this more precise conditioning is to fix the sets A,B, B1, B2 and the edges incident to

vertices of B2 (note that these are determined solely by the configuration). In our later

analysis, it is crucial to have these fixed.

To prove Proposition 5.2, we represent the graph D5-in, 5-out as a certain bipartite graph

in which a perfect matching corresponds to the desired 1-factor of the original graph Dm∗ .

Then, using the edge distribution of D5-in, 5-out given in the previous section, we will show

that the bipartite graph w.h.p. contains a perfect matching. The proof of Proposition 5.2

will be given at the end after a series of lemmas.

Define a new vertex set V ∗ = {v∗| v ∈ V } as a copy of V , and for sets X ⊂ V use

X∗ to denote the set of vertices in V ∗ corresponding to X. Then, in order to find a

1-factor in D5-in, 5-out, define an auxiliary bipartite graph BIP(V , V ∗) over the vertex set
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V ∪ V ∗ whose edges are given as follows. For every (directed) edge (u, v) of D5-in, 5-out, add

the (undirected) edge (u, v∗) to BIP. Note that perfect matchings of BIP have a natural

one-to-one correspondence with 1-factors of D5-in, 5-out. Moreover, the edge distribution of

BIP easily follows from the edge distribution of D5-in, 5-out. We will say that D5-in, 5-out is

the underlying directed graph of BIP. A permutation σ of V ∗ acts on BIP to construct

another bipartite graph which has edges (v, σ(w∗)) for all edges (v, w∗) in BIP.

Our plan is to find a perfect matching which is (almost) a uniform random permutation,

and show that this permutation has at most O(log n) cycles (if it were a uniform random

permutation, then this would be a well-known result: see, e.g., [13]). Since our distribution

is not a uniform distribution, we will rely on the following lemma. Its proof is rather

technical, and to avoid distraction, it will be given at the end of this subsection.

Lemma 5.3. Let X be subset of V . Assume that w.h.p. (i) BIP contains a perfect matching,

(ii) every cycle of the underlying directed graph D5-in, 5-out contains at least one element from

X, and (iii) the edge distribution of BIP is invariant under arbitrary permutations of X∗.

Then w.h.p. there exists a perfect matching which, when considered as a permutation, contains

at most 2 log n cycles.

The next set of lemmas establishes the fact that BIP satisfies all the conditions we need

in order to apply Lemma 5.3. First we prove that BIP contains a perfect matching. We

use the following version of the well-known Hall’s theorem (see, e.g., [11]).

Theorem 5.4. Let Γ be a bipartite graph with vertex set X ∪ Y and |X| = |Y | = n. If,

for all X ′ ⊂ X of size |X ′| � n/2, |N(X ′)| � |X ′| and for all Y ′ ⊂ Y of size |Y ′| � n/2,

|N(Y ′)| � |Y ′|, then G contains a perfect matching.

Lemma 5.5. The graph BIP contains a perfect matching w.h.p.

Proof. We will verify Hall’s condition for the graph BIP to prove the existence of a

perfect matching. Recall that BIP is a bipartite graph over the vertex set V ∪ V ∗.

Let us show that every set D ⊂ V of size |D| � n/2 satisfies |N(D)| � |D|. This will be

done in two steps. First, if D ⊂ B2, then this follows from the fact that OUT(v) are distinct

sets for all v ∈ B2 (if they were not distinct, then there would be two restricted vertices

at distance two away, and this violates property (v) of Definition 4.7). Second, we prove

that for D ⊂ V \ B2 and |D| � n/2,

|N(D) ∩ (V ∗ \ N(B2))| � |D|.

It is easy to see that the above two facts prove our claim.

Let D ⊂ V \ B2 be a set of size at most k � n/2. The inequality |N(D) ∩ (V ∗ \ N(B2))| <
|D| can happen only if there exists a set N∗ ⊂ V ∗ \ N(B2) such that |N∗| < k, and for all

v ∈ D all the vertices of OUT(v) belong to N∗ ∪ N(B2). Since D ⊂ V \ B2, every vertex in

D has 5 random neighbours distributed uniformly over some set of size (1 − o(1))n, and
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thus the probability of the above event happening is at most

k

(
n

k

)2( |N(B2)| + |N∗|
(1 − o(1))n

)5k

�
(
e2n2(log13 n + k)5

k2 · (1 − o(1))n5

)k

�
(

9(log13 n + k)5)

k2n3

)k

.

For the range 9n/20 � k � n/2, we will use the following bound:

k

(
n

k

)2(
log13 n + k

(1 − o(1))n

)5k

� 22n

(
1 + o(1)

2

)9n/4

� 2−n/5.

Summing over all choices of k, we obtain

n/2∑
k=1

k

(
n

k

)2(
log13 n + k

(1 − o(1))n

)5k

�
log14 n∑
k=1

(
9(log13 n + k)5

k2n3

)k

+

9n/20∑
k=log14 n

(
9(log13 n + k)5

k2n3

)k

+

n/2∑
k=9n/20

2−n/5

�
log14 n∑
k=1

(
10 log70 n

n3

)k

+

9n/20∑
k=log14 n

(
10k3

n3

)k

+ o(1) = o(1).

This finishes the proof that w.h.p. |N(D)| � |D| for all D ⊂ V of size at most n/2. Similarly,

for sets D∗ ⊂ V ∗ of size |D∗| � n/2, using the sets IN(v) instead of OUT(v) we can show

that w.h.p. |N(D∗)| � |D∗| in BIP.

For restricted vertices v, the sets OUT(v) and IN(v) are of size 1 and are already fixed,

since we have fixed the configuration. Thus the edge corresponding to theses vertices will

be in BIP. Let

Â = A \ (∪v∈B2
OUT(v)),

and let Â∗ be the corresponding set inside V ∗ (note that Â and Â∗ are fixed sets). This set

will be our set X when applying Lemma 5.3. We next prove that every cycle of D5-in, 5-out

contains vertices of Â.

Lemma 5.6. With high probability, every cycle C of D5-in, 5-out contains at least � 9
10

|C|�
vertices of Â.

Proof. Recall that by Proposition 5.1, for vertices v ∈ V \ B2, the set OUT(v) and IN(v)

are uniformly distributed over V \ B2, or A. Therefore, for a vertex w ∈ B2, the only

out-neighbour of w is OUT(w), and the only in-neighbour is IN(w) (note that they are

both fixed since we have fixed the configuration). Also, note that

|V \ Â| � |V \ A| + |B2| � |B1| + 2|B2| � (log log n)12

log2 n
n + 2 log13 n � n

log n
.

We want to show that in the graph D5-in, 5-out, w.h.p. every cycle of length k has at most

k/10 points from V \ Â, for all k = 1, . . . , n. Let us compute the expected number of cycles

for which this condition fails and show that it is o(1). First choose k vertices v1, v2, . . . , vk
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(with order) and assume that a of them are in B2. Then, since we already know the

(unique) out-neighbour and in-neighbour for vertices in B2, for the vertices v1, . . . , vk to

form a cycle in that order, we must fix 3a positions (a for the vertices in B2, and 2a for

their in- and out-neighbours by property (v) of Definition 4.7). Assume that among the

remaining k − 3a vertices, � vertices belong to V \ (Â ∪ B2). Then, for there to be at least

�k/10� vertices among v1, . . . , vk not in Â, we must have 3a + � � �k/10�. There are at

most 3k ways to assign one of the three types Â, B2, and V \ (Â ∪ B2) to each of v1, . . . , vk .

Therefore the number of ways to choose k vertices as above is at most

3k · nk−�−3a|V \ Â|�|B2|a � 3k · nk−�−3a

(
n

log n

)�(
log13 n

)a
.

There are k − 2a random edges that have to be present in order to make the above

k vertices into a cycle. For all i � k − 1, the pair (vi, vi+1) can become an edge either

by vi+1 ∈ OUT(vi) or vi ∈ IN(vi+1) (and also for the pair (v1, vk)). There are two ways to

choose where the edge {vi, vi+1} comes from, and if both vi and vi+1 are not in B2, then

{vi, vi+1} will become an edge with probability at most 5
(1−o(1))n

. Therefore the probability

of a fixed v1, . . . , vk chosen as above being a cycle is at most

2k−2a

(
5

(1 − o(1))n

)k−2a

,

and the expected number of such cycles is at most

2k−2a

(
5

(1 − o(1))n

)k−2a

· 3k · nk−�−3a

(
n

log n

)�(
log13 n

)a

�
(

log13 n

n

)a

·
(

1

log n

)�

· (30 + o(1))k

�
(

log13 n

n

)a

·
(

1

log n

)�k/10�−3a

· (30 + o(1))k �
(

log16 n

n

)a

·
(

40

(log n)1/10

)k

,

where we used 3a + � � �k/10� for the second inequality. Sum this over 0 � � � k and

0 � a � k and we get

n∑
k=1

k∑
�=0

k∑
a=0

(
log16 n

n

)a

·
(

40

(log n)1/10

)k

= O

( n∑
k=1

(k + 1)

(
40

(log n)1/10

)k)
= o(1),

which proves our lemma.

The following simple observation is the last ingredient of our proof.

Lemma 5.7. The distribution of BIP is invariant under the action of an arbitrary permuta-

tion of Â∗.

Proof. This lemma follows from the following three facts about the distribution of

D5-in, 5-out. First, all the saturated vertices have the same distribution of IN. Second, for the

vertices v ∈ V \ B2, the distribution of OUT and IN is uniform over a set which contains
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all the saturated vertices (for some vertices it is V \ B2, and for others it is A). Third, for

the vertices v ∈ B2, the set OUT(v) lies outside Â by definition. Therefore, the action of

an arbitrary permutation of Â∗ does not affect the distribution of BIP.

Note that here it is important to fix the configuration beforehand, as otherwise the set

Â∗ will vary and a statement such as Lemma 5.7 will not make sense.

By combining Lemmas 5.3, 5.5, 5.6 and 5.7, we obtain Proposition 5.2.

Proof of Proposition 5.2. Lemmas 5.5, 5.6, and 5.7 show that the graph BIP has all the

properties required for the application of Lemma 5.3 (we use X = Â). Thus we know that

w.h.p., D5-in, 5-out has a 1-factor containing at most 2 log n cycles, and in which at least

9/10 of each cycle are saturated vertices (the second property by Lemma 5.6).

We conclude this subsection with the proof of Lemma 5.3.

Proof of Lemma 5.3. For simplicity of notation, we use the notation B for the random

bipartite graph BIP. Note that both a 1-factor over the vertex set V and a perfect

matching of (V , V ∗) can be considered as a permutation of V . Throughout this proof we

will not distinguish between these interpretations, and treat both 1-factors and perfect

matchings as permutations.

First, let f be an arbitrary function which, for every bipartite graph, outputs one fixed

perfect matching in it. Then, given a bipartite graph Γ over the vertex set V ∪ V ∗, let Φ be

the random variable Φ(Γ) := τ−1f(τΓ), where τ is a permutation of the vertices Â∗ chosen

uniformly at random. Since the distribution of B and the distribution of τB are the same

by condition (iii), for an arbitrary permutation σ of Â∗, Φ has the following property:

P(Φ(B) = φ) = P(τ−1f(τB) = φ)
(∗)
= P((τσ)−1f(τσB) = φ)

= P(τ−1f(τσB) = σφ)
(∗)
= P(τ−1f(τB) = σφ) = P(Φ(B) = σφ). (5.1)

In the (∗) steps, we used (iii), and the fact that if τ is a uniform random permutation of

Â∗ then so is τσ, and therefore B, τB and τσB all have identical distribution.

Define a map Π from the 1-factors over the vertex set V to the 1-factors over the

vertex set Â obtained by removing all the vertices that belong to V \ Â from every cycle.

For example, a cycle of the form (x1x2y1y2x3y3x4) will become the cycle (x1x2x3x4) when

mapped by Π (where x1, . . . , x4 ∈ Â, and y1, y2, y3 ∈ V \ Â). Note that if all the original

1-factors contained at least one element from Â, then the total number of cycles does not

change after applying the map Π. This observation combined with condition (ii) implies

that it suffices to obtain a bound on the number of cycles after applying Π.

Let σ, ρ be permutations of the vertex set Â∗. We claim that for every 1-factor φ of the

vertex set V , the equality σ · Π(φ) = Π(σ · φ) holds. This claim together with (5.1) gives

us

P(Π(Φ(B)) = ρ) = P(Φ(B) ∈ Π−1(ρ))
(5.1)
= P(σΦ(B) ∈ Π−1(ρ)) = P(Π(σΦ(B)) = ρ)

= P(σ · Π(Φ(B)) = ρ) = P(Π(Φ(B)) = σ−1ρ).
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Since σ and ρ were arbitrary permutations of the vertex set Â, we can conclude that,

conditioned on there existing a perfect matching, Π(Φ(B)) has a uniform distribution over

the permutations of Â. It is a well-known fact (see, e.g., [13]) that a uniformly random

permutation over a set of size n has w.h.p. at most 2 log n cycles. Since B w.h.p. contains

a perfect matching by condition (i), it remains to verify the equality σ · Π(φ) = Π(σ · φ).

Thus we conclude the proof by proving this claim.

For a vertex x ∈ Â, assume the cycle of φ containing x is of the form (· · · xy1y2 · · ·
ykx+ · · · ) (k � 0) for y1, . . . , yk ∈ V \ Â. Then, by definition Π(φ)(x) = x+, and thus

(σ · Π(φ))(x) = σ(x+). On the other hand, since σ only permutes Â and fixes every other

element of V , we have (σ · φ)(x) = σ(y1) = y1, and (σ · φ)(yi) = yi+1 for all i � k − 1, and

(σ · φ)(yk) = σ(x+). Therefore the cycle in σ · φ which contains x will be of the form

(· · · xy1y2 · · · ykσ(x+) · · · ), and then by definition we have (Π(σ · φ))(x) = σ(x+).

5.3. Combining the cycles into a Hamilton cycle

Assume that, as in the previous subsection, we started with a fixed typical configuration c,

conditioned on the edge process having configuration c, and found a 1-factor of D5-in, 5-out

by using Proposition 5.2. Since this 1-factor only uses the edges which have been used

to construct the graph D5-in, 5-out, it is independent of the A–A edges in Step II that we

did not reveal. Moreover, by the definition of a typical configuration, there are at least
1
3
n log n such edges. Note that the algorithm gives a random direction to these edges.

So interpret this as receiving 1
3
n log n randomly directed A–A edges with repeated edges

allowed. Then the problem of finding a directed Hamilton cycle in Dm∗ can be reduced to

the following problem.

Let V be a given set and let A be a subset of size (1 − o(1))n. Assume that we are given

a 1-factor over this vertex set, where at least 9/10 of each cycle lies in the set A. If we are

given 1
3
n log n additional A–A edges chosen uniformly at random, can we find a directed

Hamilton cycle?

To further simplify the problem, we remove the vertices V \ A from the picture. Given

a 1-factor over the vertex set V , mark in red all the vertices not in A. Pick any red

vertex v, and assume that v−, v, v+ ∈ V appear in this order in some cycle of the given

1-factor. If v− �= v+, replace the three vertices v−, v, v+ by a new vertex v′, where v′ takes as

in-neighbours the in-neighbours of v−, and as out-neighbours the out-neighbours of v+.

We call the above process a compression of the three vertices v−, v, v+. A crucial property

of compression is that every 1-factor of the compressed graph corresponds to a 1-factor

in the original graph (with the same number of cycles). Since a directed Hamilton cycle

is also a 1-factor, if we can find a Hamilton cycle in the compressed graph, then we can

also find one in the original graph.

Now, for each v ∈ V \ A compress the three vertices v−, v, v+ into a vertex v′ and mark

it red if and only if either v− or v+ is a red vertex. This process always decreases the

number of red vertices. Repeat it until there are no red vertices remaining, or v− = v+

for all red vertices v. As long as there is no red vertex in a cycle of length 2 at any

point of the process, the latter will not happen. Consider a cycle whose length was k at

the beginning. Since at least 9/10 of each cycle comes from A and every compression
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decreases the number of vertices by 2, at any time there will be at least (8/10)k non-red

vertices, and at most (1/10)k red vertices remaining in the cycle. Thus, if a cycle has a

red vertex, then its length will be at least 9, and this prevents length 2 red cycles. So the

compressing procedure will be over when all the red vertices disappear. Note that since

|V \ A| = |B| = o(n), the number of remaining vertices after the compression procedure is

over is at least n − 2|B| = (1 − o(1))n. As mentioned above, it suffices to find a Hamilton

cycle in the graph after the compression process is over.

Another important property of this procedure is related to the additional A–A edges

that we are given. Assume that v is the first red vertex that we have compressed where

the vertices v−, v, v+ appeared in this order in some 1-factor. Further assume that v− and

v+ are not red vertices. Then, since the new vertex v′ obtained from the compression will

take as out-neighbours the out-neighbours of v+, and as in-neighbours the in-neighbours

of v−, we may assume that this vertex v′ is a vertex in A from the perspective of the new
1
3
n log n edges that will be given.

This observation shows that every pair of vertices of the compressed graph has the same

probability of being one of the new 1
3
n log n edges. Since the number of vertices reduced

by o(n), only o(n log n) of the new edges will be lost because of the compression. Thus

w.h.p. we will be given ( 1
3

− o(1))n log n new uniform random edges of the compressed

graph.

Theorem 5.8. For a typical configuration c, conditioned on the random edge process having

configuration c, the directed graph Dm∗ w.h.p. contains a Hamilton cycle.

Proof. By Proposition 5.2, there exists w.h.p. a perfect matching of BIP which corres-

ponds to a 1-factor in Dm∗ consisting of at most 2 log n cycles. Also, at least 9/10 of the

vertices in each cycle lies in A. After using the compression argument discussed above,

we may assume that we are given a 1-factor over some vertex set of size (1 − o(1))n.

Moreover, the random edge process contains at least ( 1
3

− o(1))n log n additional random

directed edges (distributed uniformly over that set). By Theorem 3.1, with L being the

whole vertex set, we can conclude that w.h.p. the compressed graph contains a directed

Hamilton cycle, and this in turn implies that Dm∗ contains a directed Hamilton cycle.

Corollary 5.9. The directed graph Dm∗ w.h.p. contains a Hamilton cycle.

Proof. Let e be a random edge process. Let D = Dm∗(e) and let Ham be the collection of

directed graphs that contain a directed Hamilton cycle. For a configuration c, denote by

e ∈ c the event that e has configuration c. If e ∈ c for some typical configuration c, then

we say that e is typical.

By Theorem 5.8, we know that for any typical configuration c, P(D /∈ Ham|e ∈ c) = o(1),

from which we know that P({D /∈ Ham} ∩ {e is typical}) = o(1). On the other hand, by

Lemma 4.8 we know that the probability of an edge process having a non-typical

configuration is o(1). Therefore w.h.p. the directed graph Dm∗ is Hamiltonian.
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6. Going back to the original process

Recall that the distribution of the random edge process is slightly different from that

of the random graph process since it allows repeated edges and loops. In fact, one can

show that at time m∗, the edge process w.h.p. contains at least Ω(log2 n) repeated edges.

Therefore, to obtain our main theorem for random graph processes, we cannot simply

condition on the event that the edge process does not contain any repeated edges or

loops. Our next theorem shows that there exists an on-line algorithm OrientPrime which

successfully orients the edges of the random graph process.

Theorem 6.1. There exists a randomized on-line algorithm OrientPrime which orients the

edges of the random graph process, so that the resulting directed graph is Hamiltonian w.h.p.

at the time at which the underlying graph has minimum degree 2.

The algorithm OrientPrime will mainly follow Orient but with a slight modification.

Assume that we are given a random graph process (call it the underlying process). Using

this random graph process, we want to construct an auxiliary process whose distribution

is identical to the random edge process. Let t = 1 at the beginning and let at be the

number of distinct edges up to time t in our auxiliary process (disregarding loops). Thus

a1 = 0. At time t, with probability (2at + n)/n2 we will produce a redundant edge, and with

probability 1 − (2at + n)/n2 we will receive an edge from the underlying random graph

process. Once we have decided to produce a redundant edge, with probability 2at/(2at + n)

we choose uniformly at random an edge out of the at edges that have already appeared,

and with probability n/(2at + n) choose uniformly at random a loop. Let et be the edge

produced at time t (it is either a redundant edge or an edge from the underlying process),

and choose its first and second vertex uniformly at random. One can easily check that the

process (e1, e2, . . .) has the same distribution as the random edge process.

In the algorithm OrientPrime we feed this new auxiliary process into the algorithm

Orient and orient the edges accordingly. Since the distribution of the auxiliary process is

the same as that of the random edge process, Orient will give an orientation which w.h.p.

contains a directed Hamilton cycle. However, what we are seeking is a Hamilton cycle

with no redundant edge. Thus, in the edge process, whenever we see a redundant edge

that is a repeated edge (not a loop), we colour it blue. In order to show that OrientPrime

gives a Hamiltonian graph with high probability, it suffices to show that we can find a

Hamilton cycle in Dm∗ which does not contain a blue edge (note that loops cannot be

used in constructing a Hamilton cycle). We first state two useful facts.

Claim 6.2. With high probability, there are no blue edges incident to B used in constructing

D5-in, 5-out.

Proof. The expected number of blue edges incident to B in Step I used in constructing

D5-in, 5-out can be computed by choosing two vertices v and w, and then computing the

probability that v ∈ B, and (v, w) or (w, v) together appears twice among Step I edges. The

probability that v appears as a first vertex exactly i times is
(
n log log n

i

)(
1
n

)i(
1 − 1

n

)n log log n−i
.

https://doi.org/10.1017/S096354831200020X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831200020X


798 C. Lee, B. Sudakov and D. Vilenchik

Condition on the event that v has appeared i times as a first vertex for some i < 12

(and also reveal the i positions in which v appeared). We then compute the probability

that some two Step I edges are (v, w) or (w, v). There are three events that we need to

consider: first the event that (v, w) appears twice, whose probability is
(
i
2

)(
1
n

)2
; second

the event that (v, w) appears once and (w, v) appears once, whose probability is at most(
n log log n

1

)
1

n(n−1)
·
(
i
1

)
1
n
; third the event that (w, v) appears twice, whose probability is at

most
(
n log log n

2

)(
1

n(n−1)

)2
. Combining everything, we see that the expected number of Step I

blue edges incident to B is at most

n2 ·
11∑
i=0

(
n log log n

i

)(
1

n

)i(
1 − 1

n

)n log log n−i

×
((

i

2

)(
1

n

)2

+

(
n log log n

1

)(
1

n(n − 1)

)(
i

1

)
1

n
+

(
n log log n

2

)(
1

n(n − 1)

)2)
.

The main term comes from i = 11, and the third term in the final bracket. Consequently,

we can bound the expectation by

(1 + o(1)) · n2 ·
(
n log log n

11

)(
1

n

)11(
1 − 1

n

)n log log n−11

·
(
n log log n

2

)(
1

n(n − 1)

)2

= o(1).

We would then like to compute the expected number of blue edges incident to B in Step 2

used in constructing D5-in, 5-out. Condition on the first vertices of the Step I edges so that

we can determine the sets A and B. By Claim 4.3, we may condition on the event

|B| = O

(
(log log n)12

log2 n

)
.

Fix a vertex v ∈ B, and expose all appearances of v in Step II, and note that only the

first 10 appearances are relevant. By Claim 4.4, it suffices to bound the probability of the

event that there exists a vertex w ∈ A such that (v, w) or (w, v) appears twice among the

at most 24 Step I edges where v or w are the first vertices, and the at most 10 Step II

edges which we know are going to be used to construct the OUT and IN of the vertex v.

Therefore the expectation is

|B| · n ·
(

34

n

)2

= O

(
(log log n)12

log2 n
n2

)
·
(

34

n

)2

= o(1).

Claim 6.3. With high probability, there are at most (log log n)3 blue edges used in con-

structing D5-in, 5-out.

Proof. By Claim 6.2, we know that w.h.p. all the blue edges used in constructing D5-in, 5-out

are incident to A. Therefore it suffices to show that there are at most log n blue edges

among the Step I edges. The expected number of such edges can be computed by choosing

two vertices v, w, and computing the probability that (v, w) or (w, v) appears twice. This is
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at most

n2 ·
(
n log log n

2

)(
2

n2

)2

= o((log log n)3).

Consequently, by Markov’s inequality we can derive the conclusion.

Claim 6.4. With high probability, each vertex is incident to at most one blue edge.

Proof. It suffices to show that there do not exist three distinct vertices v, w1, w2 such that

both {v, w1} and {v, w2} appear at least twice. The probability of this event is at most

(
n

3

)(
m2

4

)
·
(

4

2

)(
2

n2

)4

= o(1).

Now assume that we have found a 1-factor as in Section 5.2. After performing the

compression process given in the beginning of Section 5.3, by Claim 6.2, no blue edges

will ‘disappear’ during the process. Therefore, if we can find a Hamilton cycle in the

compressed graph with no blue edge, then the original graph will also have a Hamilton

cycle with no blue edge. Since the compressed graph can be considered as a graph given

over a subset of A, we will use the additional non-revealed A–A edges to find a directed

Hamilton cycle in the compressed graph that uses no blue edge. By Claims 6.3 and 6.4,

it suffices to prove the following theorem in order to conclude that OrientPrime succeeds

with high probability.

Theorem 6.5. Suppose we are given a 1-factor over a vertex set of size (1 − o(1))n consisting

of O(log n) cycles, and let G be the graph obtained by adding to this 1-factor Ω(n log n)

independent uniformly chosen random edges. Then w.h.p. for all matchings H that intersect

the 1-factor in at most (log log n)3 edges, the graph G − H contains a directed Hamilton

cycle.

One can prove this theorem by taking various approaches, such as those used in [9] or

[15]. However, since we want to avoid using blue (repeated) edges, none of these proofs

directly apply, and it is indeed necessary to make at least some degree of modification.

Since these adjustments are rather straightforward, we omit the details here, and will

provide them in the arXiv version of our paper for interested readers.

7. Concluding remarks

In this paper we have considered the following natural question. Consider a random

edge process where, at each time t, a random edge (u, v) arrives. We are to give an

on-line orientation to each edge at the time of its arrival. At what time t∗ can one make

the resulting directed graph Hamiltonian? The best that one can hope for is to have a

Hamilton cycle when the last vertex of degree one disappears, and we prove that this is

indeed achievable with high probability.
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The main technical difficulty in the proof arose from the existence of bud vertices.

These were degree two vertices that were adjacent to a saturated vertex in the auxiliary

graph D5-in, 5-out. Note that for our proof we used the method of deferred decisions, not

exposing the end-points of certain edges and leaving them as random variables. Bud

vertices precluded us from doing this naively and forced us to expose the end-point of

some of the edges which we wanted to keep unexposed (it is not difficult to show that

without exposing these end-points we cannot guarantee that the bud vertices have degree

at least 2). If one is willing to settle for an asymptotically tight upper bound on t∗, then

one can choose t∗ = (1 + ε)n log n/2, and then for n = n(ε) sufficiently large there are no

bud vertices. Moreover, since for this range of t∗ the vertices will have significantly larger

degree, the orienting rule can also be simplified. While not making the analysis ‘trivial’ (i.e.,

an immediate consequence of the work in [15]), this will considerably simplify the proof.
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