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We perform a thorough qualitative and quantitative comparison of theoretical
predictions and direct numerical simulations for the two-dimensional, vertical impact
of two droplets of the same fluid. In particular, we show that the theoretical
predictions for the location and velocity of the jet root are excellent in the early
stages of the impact, while the predicted jet velocity and thickness profiles are
also in good agreement with the computations before the jet begins to bend. By
neglecting the role of the surrounding gas both before and after impact, we are able
to use Wagner theory to describe the early-time structure of the impact. We derive
the model for general droplet velocities and radii, which encompasses a wide range
of impact scenarios from the symmetric impact of identical drops to liquid drops
impacting a deep pool. The leading-order solution is sufficient to predict the curve
along which the root of the high-speed jet travels. After moving into a frame fixed in
this curve, we are able to derive the zero-gravity shallow-water equations governing
the leading-order thickness and velocity of the jet. Our numerical simulations are
performed in the open-source software Gerris , which allows for the level of local grid
refinement necessary for a problem with such a wide variety of length scales. The
numerical simulations incorporate more of the physics of the problem, in particular
the surrounding gas, the fluid viscosities, gravity and surface tension. We compare the
computed and predicted solutions for a range of droplet radii and velocities, finding
excellent agreement in the early stage. In light of these successful comparisons, we
discuss the tangible benefits of using Wagner theory to confidently track properties
such as the jet-root location, jet thickness and jet velocity in future studies of splash
jet/ejecta evolution.

Key words: drops and bubbles, gas/liquid flow, interfacial flows (free surface)

1. Introduction
Impact problems are widespread throughout real-world phenomena and industrial

processes and occur on a multitude of scales. On the large scale, ship-slamming
involves a large solid body crashing into the ocean, so that the key question is to
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Early-time jet formation in liquid–liquid impact problems 765

determine the force felt on the body as it slams. On a smaller scale, the impact
of liquid drops onto solids or liquids has a variety of applications including inkjet
printing, coating processes, agricultural and industrial sprays and understanding soil
erosion. In such scenarios, the evolution of the ejecta/splash jet is often the pertinent
flow feature.

Rapid topological changes on small length scales make impact problems a challenge
analytically, numerically and experimentally, so that in order to gain an understanding
of the problem, each field must complement the others. Recent advances in numerical
and experimental capabilities have allowed us a deeper insight into the early stages of
droplet impact in particular, although the mathematical principles can be extended to
solid impact as well. Yarin (2006) and Josserand & Thoroddsen (2016) give excellent
reviews of recent progress in the field and here we outline some of the early-stage
phenomena that play important roles in the formation and evolution of a splash.

Before an impacting droplet touches down on a solid or liquid pool, the free
surface of the droplet deforms due to the presence of the surrounding gas, see for
example Wilson (1991), Smith, Li & Wu (2003), Mandre, Mani & Brenner (2009) and
Mani, Mandre & Brenner (2010). Several recent studies including Mandre & Brenner
(2012), Kolinski et al. (2012), Kolinski, Mahadevan & Rubinstein (2014) and de
Ruiter, van den Ende & Mugele (2015) argue that the droplet begins to spread on
an ultra-thin gas layer before it touches down, with Liu, Tan & Xu (2015) showing
that by draining the gas from under an impacting drop using a porous substrate,
splashing can be inhibited. Recent progress on the early dynamics and advances in
ultra-high-speed imaging experiments have lead to renewed insight into the motion
inside the gas region under the impact and its consequences for touchdown (see Li &
Thoroddsen (2015), Li, Vakarelski & Thoroddsen (2015), Langley, Li & Thoroddsen
(2017) and Li et al. (2017)). Once touchdown has occurred, the gas layer retracts
into a central gas bubble, which can have detrimental effects in, for example, printing
applications, see amongst others Thoroddsen et al. (2005), Hicks & Purvis (2010)
and Hicks & Purvis (2013).

For liquid–liquid impact problems in particular, the formation and evolution of the
splash jets or ejecta are also of fundamental interest, with recent studies investigating
the bending of the ejecta as it extends, which can lead to touchdown onto the bulk
of the droplet or the solid/pool it is impinging upon, see for example Thoraval
et al. (2012), Zhang et al. (2012a), Zhang et al. (2012b), Agbaglah et al. (2015)
and Moore & Oliver (2018). After touching down, ligaments of fluid can be ‘sling
shot’ away from the drop, so that fluid is lost in the form of satellite droplets, see
Thoroddsen et al. (2011). Furthermore, as the ejecta bends, vorticity can be shed
from the highly curved root of the jet, see Thoraval et al. (2012), Castrejón-Pita,
Castrejón-Pita & Hutchings (2012), Thoraval et al. (2013), Moore et al. (2014) and
Agbaglah et al. (2015). It is an open question as to whether vorticity shedding causes
the jet to bend or vice versa. If we wish to be able to control the amount of fluid
lost to sling shotting and the formation of satellite droplets in, say, inkjet printing as
discussed in Martin, Hoath & Hutchings (2008), it is crucial to understand why the
ejecta behaves as it does, which requires a thorough consideration of its early-time
formation and growth. Thoroddsen (2002) first reported on experimental results in
this challenging regime by considering the impact of drops onto thin liquid layers
and describing the splash properties (contact radius, ejecta sheet velocity) for a wide
range of viscosities obtained using different mixtures of water and glycerin that
otherwise preserve properties such as density and surface tension coefficient. Soon
after, Josserand & Zaleski (2003) proposed a theory predicting the transition between
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766 R. Cimpeanu and M. R. Moore

deposition and splashing, while deriving model expressions in the latter case for
the jet-root position, its velocity and the thickness of the outward-growing ejecta.
Considering an almost equally rich interval of viscosities, it was concluded that this
quantity plays a key role at the base of the jet in which vorticity is concentrated,
with a viscous length scale becoming dominant in the analysis of the formation
and thickening of the ejecta at early times. The splash mechanism is then further
investigated and developed in the more recent work of Josserand, Ray & Zaleski
(2016).

In this study, we consider the collision of two droplets of the same Newtonian
liquid. We perform a thorough qualitative and quantitative comparison of high-
resolution numerical simulations performed in Gerris (Popinet 2003, 2009) with the
theoretical predictions of Wagner theory, named after the seminal work of Wagner
(1932), for a range of droplet radii and velocities. For the purposes of this paper it
is sufficient to remain in two-dimensions, although it is relatively straightforward to
extend the analysis to axisymmetric or fully three-dimensional comparisons, with the
natural increase in cost to computing power.

Wagner theory is an inviscid, incompressible, small-time asymptotic theory that is
applicable to both liquid–solid and liquid–liquid impact problems, see for example
Korobkin (1985), Armand & Cointe (1987) and Howison, Ockendon & Wilson
(1991), while Howison et al. (2005) and Purvis & Smith (2005) in particular consider
Wagner theory for liquid–liquid impact problems. Since Wagner theory was primarily
developed to consider problems in naval architecture, it is particularly concerned with
predictions of the force felt on an impacting solid, which compare favourably with
numerical simulations and experiments, see for example Zhao & Faltinsen (1993)
and Oliver (2007). On the other hand, since it contributes a lower-order effect to the
force, the splash jet itself is less well studied in the context of Wagner theory: in
particular, several physical effects are neglected in the analysis (surface tension, the
surrounding gas, gravity), which are likely to play a role in its evolution, see Moore
& Oliver (2018).

Recent comparisons between Wagner theory, experiments and numerical simulations
for droplets impacting onto a smooth solid substrate have been presented by Riboux
& Gordillo (2014), Riboux & Gordillo (2015) (experiments) and Philippi, Lagrée &
Antkowiak (2016) (simulations). These demonstrate a favourable comparison between
the theory and the experiments/simulations for the size of the effective contact set
(essentially, the speed of the root of the splash jet). In addition, Riboux & Gordillo
(2014) and Riboux & Gordillo (2015) use Wagner theory to obtain the results of
Oliver (2002) that give the thickness of the splash jet and its velocity at its root.
They use these to solve a model for the evolution of the splash jet which couples
the classical ballistic jet model of Wagner theory to a model for the growth of the jet
tip, which give reasonable comparisons to their experimental data. Riboux & Gordillo
(2017) have recently updated their approach to account for the effects of the boundary
layer growing between the radial position of the stagnation point of the impact in the
moving frame of reference and the root of the lamella, leading to improved agreement
with experimental measurements.

Here we aim to extend this theory to a wide variety of liquid–liquid impact
problems (see figure 1 for illustrative examples), while in addition comparing the
theoretical prediction of the angle the jet root and the jet velocity to the numerical
results. Our goal is twofold. Firstly, we wish to extend the range of impact problems
to which Wagner theory gives a good approximation to include a wide class of
liquid–liquid impacts. Secondly, we wish to show that the theory accurately predicts
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Early-time jet formation in liquid–liquid impact problems 767

(a) (b) (c)

FIGURE 1. (a) The general configuration of two circular droplets of the same liquid just
before impact. The fluid in each droplet is coloured with different shades of grey for
ease of viewing. The upper droplet is moving downwards with speed V+ and has a radius
of curvature R+. The lower droplet is moving upwards with speed V− and has radius
of curvature R−. The droplets are surrounded by gas. (b) The symmetric limit in which
V+=V− and R+=R−, i.e. R= 1,V = 1. (c) The deep pool limit in which V−= 0, R−=∞,
i.e. V = 0, R=∞.

the position and velocity of the root of the jet. However, we shall demonstrate that
Wagner theory cannot always predict the angle the jets are emitted at, which appears
to be strongly affected by the build-up of vorticity on the highly curved free surfaces
local to the jet roots and the ratio of the droplets’ radii. These conclusions allow us
to isolate which properties we can reliably use Wagner theory to predict in models
of splash jet evolution. Since impacts are such complex processes, with effects on
various disparate length scales, having accurate boundary data for the jet at its root
allows us to employ a simpler jet model with the impact itself modelled through
appropriate boundary conditions, analogous to the model of Riboux & Gordillo
(2015) for liquid–solid impact. In addition, further validation of the numerical code
will support any future results for more complex scenarios that are not so readily
tackled using Wagner theory, for example the impact of two fluids with different
densities, which has applications to aerosol formation in the dispersion of oil slicks
or biological matter, see for example Murphy et al. (2015). Note that Semenov,
Wu & Korobkin (2015) exploit the similarity solution admitted by the geometry to
investigate the impact of two fluid wedges of different densities numerically.

The structure of the paper is as follows. In § 2, we shall outline the problem
formulation and discuss the modelling assumptions necessary for the Wagner model.
We present this model in § 3, describing the asymptotic structure and the leading-order
solution. In § 4 we discuss the numerical configuration, leading to the computational
results and comparison to the leading-order Wagner predictions in § 5. Finally, we
conclude with a summary of our findings and discuss avenues for future research in
§ 6.

2. Problem formulation

We consider the two-dimensional vertical impact of two droplets of the same
incompressible, Newtonian fluid. While there is an acknowledged influence of the
gas layer between two droplets as they impact, we shall assume that the effect of
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any trapped central bubble on the later time motion is negligible in our leading-order
analysis. Hence, in order to investigate the post-impact dynamics in detail, we
shall seed the droplets so that at time t∗ = 0−, the droplets touch at the origin in
the Euclidean (x∗, y∗)-plane; here and hereafter an asterisk indicates a dimensional
variable. We shall check the veracity of this assumption later in § 5. Gas – in most
applications air, but we shall be general in this analysis – fills the region not occupied
by the liquid.

The upper and lower droplets will be denoted by a + and a − respectively. Just
before impact, the droplets are assumed to be moving uniformly with speeds V±.
The droplets are assumed to be circular, with their respective radii of curvature
denoted by R±. The liquids comprising the droplets and the gas have densities ρl, ρg
and viscosities µl, µg respectively. The gas–liquid surface tension is denoted by σ
and acceleration due to gravity is denoted by g. The configuration before impact
is depicted in figure 1. We shall assume that R− > R+ without loss of generality:
since gravity will be negligible in this analysis, we could simply map y∗ 7→ −y∗ to
accommodate situations in which the lower droplet had a smaller radius of curvature.
Note that, if R− =∞, the lower droplet is simply a deep pool, while if V− = 0, the
lower droplet is stationary.

After impact, at t∗ = 0+, the droplets collide and their free surfaces are violently
disturbed, forming fast-moving, thin splash jets. The aim of this analysis is to predict
the speed of the roots of these jets in the early stage of the motion, as well as the
shape of the jet.

We denote variables in the liquid and the gas by l and g respectively. The Navier–
Stokes equations are assumed to hold in each fluid, so that

ρi

[
∂u∗i
∂t∗
+ (u∗i · ∇)u

∗

i

]
=−∇p∗i +µi∇

2u∗i − ρig j, ∇ · u∗i = 0, (2.1)

for i= l, g, where u∗i is the velocity and p∗i is the pressure in each fluid.
On the multivalued free surface of the liquid region, which we denote by y∗ =

h∗(x∗, t∗), the kinematic condition is

v∗n = u∗l · n on y∗ = h∗, (2.2)

where n is the outward pointing unit normal to the free surface and v∗n is the normal
speed of the boundary. Furthermore, we require there to be continuity of velocities
and stress across the free surface, so that

u∗g = u∗l , n · [Tg − Tl] =−σκn on y∗ = h∗, (2.3a,b)

where Ti denotes the Cauchy stress tensor in each fluid and κ=−∇ ·n is the curvature
of the interface.

Initially, the droplet velocities dictate that

u∗l (x
∗, y∗, 0)=

{
−V+j for y∗ > 0,
V−j for y∗ < 0,

(2.4)

while the initial droplet shapes are given by

x∗2 + (y∗ ∓ R±)2 = R2
±
. (2.5)

Finally, far from the impact, the gas velocity should decay, so that

u∗g→ 0 as x∗2 + y∗2→∞. (2.6)
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Early-time jet formation in liquid–liquid impact problems 769

2.1. Non-dimensionalisation
We non-dimensionalise distances by R+, velocities by V+, time by R+/V+ and pressure
by ρlV2

+
. The key dimensionless parameters are the Reynolds number in the liquid, the

Weber number and the Froude number, defined by

Re=
ρlR+V+
µl

, We=
ρlR+V2

+

σ
, Fr2

=
V2
+

gR+
. (2.7a−c)

Moreover, the density, viscosity, radius of curvature and impact speed ratios are
defined by

ρ =
ρg

ρl
, µ=

µg

µl
, R=

R−
R+
, V =

V−
V+
. (2.8a−d)

2.2. Modelling assumptions
For the purposes of our analysis in § 3, we shall make the assumption that Re, We
and Fr2 are large, so that viscosity, surface tension and gravity are negligible, with
the motion dominated by inertia. For the impact of a water droplet with radius of
curvature R+= 10−3 m at speed V+= 10 m s−1 with air as the surrounding gas, these
numbers are

Re≈ 104, We≈ 103, Fr2
≈ 102, (2.9a−c)

so that this assumption is not unreasonable at early time, at least in the bulk of the
droplet. However, since the free surface is highly curved at the root of the splash jet,
it may be that viscosity and surface tension are more relevant there, see for example
Moore et al. (2014). We shall discuss this further in § 5. We also note here that the
viscosities we consider in this paper (for water) are in general at the lower limit of
those considered in Thoroddsen (2002) and Josserand & Zaleski (2003). Moreover, for
the example above, the typical time scale is R+/V+ ∼ 10−4 s, which is significantly
longer than the time scale tv = 2R+/(V+Re) ∼ 10−8 s, over which viscous effects
dominate the flow at the root of the jet, discussed by Josserand & Zaleski (2003).
Hence, we expect the inviscid regime to be appropriate.

In addition to these assumptions, since, in general, the gas-liquid viscosity and
density ratios are small – ρ ≈ 10−3, µ≈ 10−2 for air–water systems – we shall also
neglect the role of the gas layer post-impact in this analysis. Thus, for our analytical
model, we will consider a one-fluid inviscid impact model known as the Wagner
model.

3. Inviscid approximation: Wagner theory
As discussed in § 2.2, in our theoretical model we neglect the effects of viscosity,

surface tension, gravity and the surrounding gas. Since we neglect the gas in this
section, we shall omit the subscript l on the liquid variables for convenience. At early
times, say when t= δt̂ where 0< δ� 1, the major effects of the impact are focussed
close to the original contact point, where the two droplets are well approximated by
the parabolae:

y=
x2

2
− δt̂, y=−

x2

2R
+ δVt̂. (3.1a,b)
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The resulting early-time model is a variation of Wagner theory for solid–liquid impact,
see for example Howison et al. (1991). The analysis we present here follows closely
that of Purvis & Smith (2005), although we shall focus more on the jet root and the
behaviour of the jet here.

At the outset, we note that, as in Purvis & Smith (2005), we shall include a vortex
sheet (or interface) between the two droplets after impact, across which conditions
of continuity of pressure and normal velocity are applied, see Saffman (1992). This
is in contrast to Howison et al. (2005) who, in considering the impact of a liquid
droplet onto a thin layer of the same fluid, state that for impacts initiating at a point,
such a sheet can be ignored and the fluid treated as one body. To leading order, this
is true, since it transpires that the solutions with and without a vortex sheet are the
same. However, proceeding to second order, a local analysis at the jet root suggests
that failing to include a vortex sheet leads to singularities in the local droplet free
surface profiles that are inconsistent with Wagner theory. Thus, although a second-
order analysis is well beyond the scope of what we pursue here, we shall include
a vortex sheet in our analysis for consistency and we denote it by y = η(x, t). The
subscripts ± will be introduced to the flow variables in the upper and lower droplets
respectively. Finally, we note that such a vortex sheet is, of course, only necessary
in the context of a purely inviscid theory (which we pursue here), and will not be
necessary when we consider numerical simulations of the full Navier–Stokes equations
in § 4 (although a passive tracer introduced to the simulations tracks the location of
the initial interface between the droplets, see figure 8).

Under the above assumptions and since the flow is initially irrotational, there is a
velocity potential φ±, such that u± =∇φ±. Thus, by the continuity condition,

∇
2φ± = 0 in the fluid, (3.2)

with the liquid pressure given by Bernoulli’s equation

1
δ

∂φ±

∂ t̂
+ p± +

1
2
|∇φ±|

2
=

1
2
, (3.3)

where the Bernoulli constant has been chosen by considering the far-field behaviour
of the flow in the upper droplet.

On the free surfaces, which we denote by h+ and h− for the upper and lower
droplets respectively, the kinematic and dynamic conditions are given by

∂φ±

∂y
=

1
δ

∂h±
∂ t̂
+
∂φ±

∂x
∂h±
∂x
, p± = 0 on y= h±. (3.4)

Across the vortex sheet, we enforce

∂φ±

∂y
=

1
δ

∂η

∂ t̂
+
∂φ±

∂x
∂h±
∂x
, p+ = p− on y= η. (3.5)

Far from the impact, the flow velocities are given by the impact velocities, so that

∇φ+→−j as x2
+ y2
→∞, y> 0, ∇φ−→ Vj as x2

+ y2
→∞, y< 0,

(3.6a,b)

while the free surfaces must approach the parabolic profiles (3.1) so that

h+ ∼
x2

2
− δt̂, h− ∼−

x2

2R
+ δVt̂ as |x|→∞. (3.7a,b)
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Early-time jet formation in liquid–liquid impact problems 771

FIGURE 2. The Wagner asymptotic structure based on the small time scale δ. The fluid in
each droplet is coloured with different shades of grey for ease of viewing. The horizontal
coordinates of the upper and lower turnover points are denoted by ±d±(t̂) respectively.
Note that the problem is symmetric about the y-axis.

Finally, the initial conditions are given by

φ+(x, y, 0)=−y, φ−(x, y, 0)= Vy, h+(x, 0)=
x2

2
, h−(x, 0)=−

x2

2R
.

(3.8a−d)

Note that (3.6) implies that φ+∼−y+F(t̂) and φ−∼Vy+G(t̂) in the far field of the
fluids. We are able to determine F(t̂) and G(t̂) by matching to an ‘outer–outer’ region
where x, y are O(1), which we discuss in appendix A. In this region, the droplets are
undeformed to leading order, with the perturbation to the vertical impact velocities
driven by the dipole at the origin. Note that this perturbation is only important in the
outer region discussed in § 3.2 at second order, which we do not consider here, and
for the purposes of the rest of this paper, it suffices to say here that F and G are
O(δ) and thus

φ+→−y+O(δ) as x2
+ y2
→∞, y> 0,

φ−→ Vy+O(δ) as x2
+ y2
→∞, y< 0.

}
(3.9)

3.1. Asymptotic structure
The impact breaks down into three distinct regimes based on the time scale δ, which
are depicted in figure 2. In the outer region, where lengths scale with δ1/2, the thin
jet can be neglected and the free surface and interface boundary conditions linearise
on to the undisturbed waterline, leading to a mixed boundary value problem. Local
to the jet roots, the outer velocity and pressure are singular, which is rectified by
matching to an inner region of size O(δ3/2) centred around the root, that is two orders
of magnitude smaller than the outer region. In the inner region, the free surface turns
over into the splash jet. The final regions are the thin, fast-moving jets, whose lengths
are comparable to the outer region and whose thicknesses are comparable to the inner.

Since some of the key results that we aim to extract from the model and compare
with our numerical simulations are the location of the jet roots, the thickness of the
jet at its root and the angle the jet makes to the horizontal, we briefly clarify what
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FIGURE 3. A close-up of the right-hand jet root to highlight the main quantities of interest
local to the turnover region. The fluid in each droplet is coloured with different shades of
grey for ease of viewing. The turnover points xj± as defined in (3.10) are taken to be the
points at which the curvature of the free surface is locally maximised. The thickness of
the jet is taken to be the distance between the turnover points and is denoted by J(t̂). The
angle θjet(t̂) is a measure of the local angle the jet makes to the horizontal. Specifically,
we take θjet(t̂) to be the angle formed when we take the local tangent to the interface
between the fluids at the point at which the line joining the turnover points intersects the
interface.

we mean by these quantities here. Without loss of generality we shall describe these
properties for the right-hand jet. The upper and lower jet-root coordinates are taken
to be xj± = (d±(t̂), h±(d±(t̂), t̂)), and, as seen in figure 3, these are taken to be the
points at which the curvatures of the free surfaces are maximised locally. Note that
this requires the jet to have formed: when the jet initially emerges, this criterion is not
necessarily a sensible definition, particularly with the presence of a tip, but recall that
we are not considering the initial emergence of the jet in our analysis. Furthermore,
this definition may also break down in the event that the free surface becomes unstable
to small perturbations (perhaps driven by viscosity or surface tension forces) local
to the jet root. In this purely inviscid theory, we do not see such instabilities, but
it is something that must be considered later in the numerical study. As seen in § 5.1,
however, over the time scales we consider and with the fluids we study, we do not see
such issues in this analysis. We shall refer to these upper and lower jet locations as
the turnover points of the droplet free surfaces throughout our analysis. In summary,
for the whole impact, there are four turnover points, two for each of the jets, with
the right-hand turnover points located at x∗j±, where

x∗j± = R+xj± = R+(d±(t̂), h±(d±(t̂), t̂)), (3.10)

using the notation of figure 3. The left-hand turnover points are easily deduced from
the symmetry of the problem.

Integral to the inviscid theory is that the distance between the turnover points
(scaled by R+), defined by the thickness J(t̂) in figure 3, is of O(δ3/2). We note
that this is an order of magnitude smaller than the O(δ) stated in Josserand &
Zaleski (2003) for an inviscid approximation of the local jet thickness, but it is well
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established in Wagner theory – see, for example, Howison et al. (1991) – that the
only consistent asymptotic structure for a purely inviscid model requires the local jet
thickness at its root to be two orders of magnitude smaller than the size of the outer
region, which is of O(δ1/2), as stated above. The veracity of the above assumption is
realised by both the consistency of the matched asymptotic solution and the excellent
comparisons between the predictions of the location of the turnover points and the
numerical results in § 5.

Finally, we need to define an angle θjet(t̂) that gives a representation of the angle
the jet makes to the horizontal. The choice of such an angle is not unique. In this
paper, we instantaneously draw a straight line between the upper and lower turnover
points, this line intersects the interface between the fluids. The jet angle, θjet(t̂), is
taken to be the angle made by the local tangent to the interface to the horizontal at
this point. Other definitions of the jet angle have also been postulated, for example the
angle between the normal to the line drawn between x∗j± and the horizontal (as used
in, for example, Thoraval et al. (2012)), or the angle made to the horizontal by a line
drawn from the jet root to the jet tip (which does not take into account jet bending
due to the surrounding air, see Moore & Oliver (2018) for example). We do not seek
to discuss the relative merits of one definition over another here, but state that we
have chosen our definition of the jet angle to tie most closely to the inviscid analysis
we pursue in the following sections. At the outset, we state that this is the quantity
that is most poorly predicted by the inviscid theory, and it appears that viscosity and
surface tension may have crucial roles in its evolution.

3.2. Outer region
In the outer region, we scale

(x, y)= δ1/2(x̂, ŷ), φ± = δ
1/2φ̂±, p± = δ−1/2p̂±,

h± = δĥ±, η= δη̂, d± = δ1/2d̂±,

}
(3.11)

and expand the variables in asymptotic series in powers of delta, viz.:

φ̂± = φ̂±0 + δ
1/2φ̂±1 +O(δ) (3.12)

etc. For notational convenience – and subject to the assumption mentioned above –
we shall denote the leading-order term in the expansions of d̂± by d̂0.

The leading-order problem is depicted in figure 4. It is a Riemann–Hilbert boundary
value problem of index −1, since, as is confirmed when considering the inner region,
the velocity potentials have square-root behaviour close to the turnover points, ±d̂0(t̂).
The solution for the complex velocities ŵ±0 = φ̂±0 + iψ̂±0 can readily be found in
terms of the complex variable ẑ= x̂+ iŷ:

ŵ±0(ẑ, t̂)= i
[(

1− V
2

)
ẑ+
(

1+ V
2

)√
ẑ2 − d̂0(t̂)2

]
, (3.13)

where the branch cut for the square root is taken along the real axis for |x̂| > d̂0.
Evaluating (3.13) on the real axis and integrating allows us to determine the leading-
order upper and lower free surface profiles, which take the form

ĥ+0 =
x̂2

2
−

(
1− V

2

)
t̂−
(

1+ V
2

) ∫ t̂

0

|x̂|√
x̂2 − d̂0(s)2

ds, (3.14)
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FIGURE 4. The leading-order outer problem for the velocity potentials φ̂±0. We have
integrated the dynamic boundary conditions with respect to time and applied the
leading-order initial condition to obtain the boundary conditions φ̂±0 = 0 on the free
surfaces and φ̂+0 = φ̂−0 on the interface. The problem is supplemented by the far-field
conditions that φ̂+0∼−ŷ as x̂2

+ ŷ2
→∞ and φ̂−0∼Vŷ as x̂2

+ ŷ2
→∞. The free surfaces

have initial profiles given by ĥ+0 = x̂2/2 and ĥ−0 = −x̂2/(2R) respectively. This problem
is co-dimension two in the sense that d̂0(t̂) must be solved for as part of the problem.

ĥ−0 = −
x̂2

2R
−

(
1− V

2

)
t̂+
(

1+ V
2

) ∫ t̂

0

|x̂|√
x̂2 − d̂0(s)2

ds. (3.15)

In order to complete the leading-order solution, we require a condition for the
leading-order turnover point location, d̂0. For this we use the Wagner condition,
which is a matching condition with the inner region, but in essence says that in the
outer region, the leading-order free surfaces and the vortex sheet must coincide at the
turnover point, so that

ĥ+0(d̂0(t̂), t̂)= ĥ−0(d̂0(t̂), t̂)= η0(d̂0(t̂), t̂). (3.16)

Upon substituting (3.14)–(3.15) into (3.16), we obtain an integral equation that may
be inverted subject to the initial condition that d̂0(0)= 0, giving

d̂0(t̂)= 2

√
(1+ V)R

1+ R
t̂. (3.17)

Note that in the symmetric regime where R, V = 1 this reproduces the well-known
formula for the turnover point location for the impact of a parabola onto a solid,
d̂0 = 2

√

t̂, see for example Korobkin (2007). The free surface height at the turnover
point is therefore given by

ĥ+0(d̂0(t̂), t̂)=
(3RV + R− V − 3)

2(1+ R)
t̂. (3.18)

Finally, after evaluating (3.13) for |x̂|< d̂0 and carefully integrating with respect to
time, we are able to determine the leading-order vortex sheet location:

η̂0 =
x̂2

2
−

(
1− V

2

)
t̂−
(

1+ V
2

)
|x̂|
∫ ω̂0

0

1√
x̂2 − d̂0(s)2

ds, (3.19)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.704


Early-time jet formation in liquid–liquid impact problems 775

0

–0.2

–0.4

0.2

0.4

0.6

–0.6

–0.8
0 2 4 6

0.5

0

–0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 0 2 4 6

FIGURE 5. (Colour online) The leading-order jet-root curve for δ= 0.1 and various values
of R and V . Note that V = 0 corresponds to a stationary lower droplet and V = 1 to
symmetric impact speeds, while 1/R= 1 represents identical droplets and 1/R→ 0 allows
the lower droplet to approach a half-space.

where we have used the Wagner condition (3.16) and where t̂= ω̂0(x̂) is the location
of the turnover curve – i.e. ω̂0 = d̂−1

0 , provided that the inversion is well defined. As
discussed in Howison et al. (1991), inversion is possible provided that ˙̂d0(t̂) > 0.

Therefore recalling (3.10), and that to leading-order xj+ = xj− = xj, we have

xj = (δ
1/2d̂0(t̂), δĥ+0(d̂0(t̂), t̂)), (3.20)

where d̂0(t̂) and ĥ+0(d̂0(t̂), t̂) are given by (3.17), (3.18). Hence, after returning to
dimensional variables, to leading order the right-hand jet root moves along the curve

x∗j = (x
∗

j , y∗j )=

(
2

√
(1+ V)R

1+ R

√
R+V+t∗,

(
3RV + R− V − 3

2(1+ R)

)
V+t∗

)
. (3.21)

We shall henceforth refer to this as the ‘jet-root curve’.
We plot curves of the locus mapped out by the jet-root region for various values of

R and V in figure 5. It is clear that the shape of the jet-root curve depends strongly on
R and V . In particular, in figure 5(a), when the lower droplet is stationary, the jet-root
location moves towards the lower droplet when the radii of curvature are similar, but
curves away from the lower droplet as it approaches a half-space. There is similar
behaviour as we increase the velocity of the lower droplet, although the transition
from a downward-moving to an upward-moving jet root happens earlier, as seen in
figure 5(b). In figure 5(c), the impact speeds are identical, so that for R= 1 we see
that yj = 0 to leading order, as expected. However, note that even for R, V 6= 1 we
can get yj = 0 to leading order provided the numerator for the ŷ-coordinate in (3.21)
is zero, that is, when

V =
R− 3
1− 3R

. (3.22)
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Finally, we note that after substituting for d̂0 into (3.19), the vortex sheet location
is found to be

η̂0 =

(
R− 1

4R

)
x̂2
−

(
1− V

2

)
t̂. (3.23)

This is simply the average location of the undisturbed parabolae (3.1); as expected the
vortex sheet moves with the flow, see Saffman (1992). Moreover, since the tangential
velocity is continuous across η̂ to leading order, the vortex sheet is completely passive
in the leading-order theory.

3.3. Inner region
Local to the jet root (3.21), the droplet free surfaces turn over in a region that is
two orders of magnitude smaller than the outer region. This displacement of the free
surface forms a fast-moving, thin jet of fluid. In this section, we shall report the
existing results in the literature that allow us to determine the thickness and velocity
of the jets at their roots, which we can then compare to the full numerical simulations
we perform in § 5. By symmetry, we need only consider the right-hand jet root here.

Before starting, we note it is natural that the jet-root region should be aligned with
the slope of the vortex sheet at x∗ = d∗(t∗), which can be calculated from (3.23) to
be at an angle

α = δ1/2

(
(R− 1)

√
1+ V

R(1+ R)

)√
t̂+ o(δ1/2) (3.24)

to the horizontal. However, since α is small and we shall only pursue a leading-
order solution in this paper, we shall neglect any rotation of the jet-root region in
our analysis, since it will make the analysis significantly more complex while having
no impact on the leading-order results. We shall, however, return in § 5 to discuss the
angle (3.24) and how it compares to the angle θjet as defined in figure 3.

The appropriate scales for this region are derived in Howison et al. (1991) for the
related problem of water entry – in particular, their deadrise angle ε is equivalent to
δ1/2 here – and they are given by

x= δ1/2d̂+(t̂)+ δ3/2X, y= δĥ+0(d̂0(t̂), t̂)+ δ3/2Y, (3.25a,b)

with the velocity potential and pressure in each fluid scaled by

φ± = δ(
˙̂d+(t̂)X +Φ±), p± = δ−1P±. (3.26a,b)

In the inner region, the free surfaces are denoted by Y =H± and the vortex sheet is
denoted by Y =∆, where

h± = δĥ+0(d̂0(t̂), t̂)+ δ3/2H±, η= δĥ+0(d̂0(t̂), t̂)+ δ3/2∆. (3.27a,b)

Upon expanding the rescaled equations in asymptotic series of the form Φ±=Φ±0+

o(1) etc., the leading-order problem is quasi-steady and is depicted in figure 6. There
is a stagnation point on the vortex sheet where dividing streamlines in the upper and
lower droplets meet. Fluid to the left of the dividing streamlines heads back into the
bulk of the droplets, while fluid to the right of the dividing streamlines is forced into
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FIGURE 6. The leading-order inner problem for the velocity potentials, Φ±0, upper and
lower free surfaces H±0 and vortex sheet ∆0. Dividing streamlines in each fluid are
denoted by the dashed lines. They meet on the vortex sheet at a stagnation point. The
far-field jet thickness is denoted by Hj(t̂).

the jet. The quantity Hj(t̂) denotes the leading-order downstream thickness of the jet in
the inner region (as opposed to J(t̂), which is measured at the jet root, see figure 3).

Since the vortex sheet essentially plays a passive role in the leading-order outer
problem, we are able to deduce that the leading-order inner problem must be
symmetric about the sheet, which is thus simply given by ∆0(X, t̂) = 0 at leading
order. We would need to proceed to second order in the outer problem to show this
rigorously, but we omit the analysis here for brevity. We can use the symmetry and
the complex variable Z=X+ iY to derive the parametric solution for the leading-order
complex potentials W±0 =Φ±0 + iΨ±0 as given in Oliver (2002):

W±0 =C±(t̂)+
˙̂d0Hj

2π
(ζ − log ζ ), Z =−

Hj

2π
(1+ ζ + 4

√
ζ + log ζ ), (3.28a,b)

where the branch cuts are taken along Re(ζ ) < 0, Im(ζ )= 0 with H±0 corresponding
to Re(ζ ) < 0, Im(ζ )=∓0 respectively.

Matching with the leading-order outer solution as in Oliver (2002) gives the leading-
order jet thickness to be

Hj(t̂)=
π

16
(1+ V)2d̂0(t̂)
˙̂d0(t̂)2

=
π(1+ V)3/2

8

√
1+ R

R
t̂3/2, (3.29)

with the far-field jet velocity, Uj(t̂), given by

Uj = 2 ˙̂d0 = 2

√
(1+ V)R

1+ R
t̂−1/2, (3.30)

where the factor of two occurs due to the velocity of the moving frame.
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Although we omit this here for brevity, by proceeding to second order in the
outer region it is possible to show that the O(δ)-correction to the horizontal turnover
point locations d̂1 = 0, as in solid–liquid parabola impacts, see Korobkin (2007) and
Oliver (2007). In order to calculate the O(δ3/2)-corrections to the horizontal jet-root
coordinates, d̂±2, we would need to proceed to second order in the inner region
as well, which is a non-straightforward task, particularly as the rotation of the inner
region will be important at this order. Unfortunately, without d̂±2 we are unable to get
an exact leading-order form for J(t̂), although it is clear that J(t̂)∝ t̂3/2: in particular,
the vertical distance between the turnover points in the rotated frame is given by
(1+ 4/π)Hj(t) ∝ t̂3/2, as can be deduced by evaluating (3.28) on ξ < 0, η =±0 and
finding the turnover points. We shall discuss the thickness at the jet root in more
detail in § 5.2.

Thus, in summary, the right-hand jet root is located at x∗j given by (3.21) and is
aligned at a small angle to the horizontal, (3.24). In the inner region local to x∗j ,
the free surfaces turn over and fluid is ejected into a jet with leading-order velocity
δ−1/2V+Uj, with the leading-order jet thickness given by δ3/2R+Hj as we approach the
jet root from downstream in the jet.

3.4. Jet region
The information we have obtained from the leading-order outer and leading-order
inner regions indicates that the fast-moving jet is emitted almost horizontally from
the jet root as it moves along the curve (3.21). Since the jet has a long, thin
aspect ratio, we can still derive a model for the leading-order jet thickness and
leading-order horizontal component of velocity using the standard Wagner jet scalings
discussed in Howison et al. (1991). The angle at which the jet is emitted affects the
centreline of the jet, not its thickness, so, assuming that the jet centreline does not
deviate significantly from the curve (3.21) we can neglect the angle here. Such an
assumption seems reasonable in the early stages of impact, particularly in the absence
of air effects, and we shall discuss its validity in § 5.4. Determining the centreline
of the jet is an interesting problem in its own right, see Moore & Oliver (2018), but
not one we seek to analyse here.

In order to study the jet evolution it is sensible to move to a frame (s, n) based on
the curve (3.21), where we shall use s to represent arc length along the curve and n
is in the normal direction to the curve. The curvature is denoted by κ(s). Based on
(3.21) and the known size of the jet root, we scale

s= δ1/2s̄, n= δ3/2n̄. (3.31a,b)

It is straightforward to show that κ=O(1), so that the radius of curvature of the curve
(3.21) is much larger than the length of the jet (essentially meaning we can replace
(s̄, n̄) by (x̂, δŷ)). Moreover, by the symmetry at leading order in the jet root, we
can neglect the interface in the jet and simply treat the jet as a single fluid. Hence,
introducing the leading-order tangential component of jet velocity ū0 (scaled by δ−1/2)
and the leading-order jet thickness χ̄0 (scaled by δ3/2), we can derive, akin to the jet
in solid–liquid impact, the zero-gravity shallow-water equations in s̄> d̂0(t̂):

ū0t̂ + ū0ū0s̄ = 0, χ̄0t̂ + (ū0χ̄0)s̄ = 0, (3.32a,b)

subject to the jet-root conditions

ū0(d̂0(t̂), t̂)=Uj(t̂), χ̄0(d̂0(t̂), t̂)=Hj(t̂). (3.33a,b)
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Using the method of characteristics, we can solve (3.32), (3.33) to find that

ū0 =
s̄
t̂
, χ̄0 =

4π(1+ V)4R2

(1+ R)2
t̂4

s̄5
. (3.34a,b)

Therefore, since χ̄0> 0 for all s̄> d̂0(t̂), the jet is predicted to be infinitely long and to
achieve this in an infinitesimally small amount of time (note that ū0(d̂0(t̂), t̂)∼ t̂−1/2 as
t̂→ 0). This is a well-known drawback of the Wagner jet model, with further physical
effects likely to play a key role further down the jet. This problem is discussed in
more detail for liquid–solid impacts after the jet has detached in Riboux & Gordillo
(2015), where the Wagner jet model given by (3.32), (3.33) is coupled to a model for
the evolution of the tip (in their paper the lamella rim), which incorporates the role
of surface tension and the surrounding gas. Note that in such a model, the location
of the jet centreline is important, see Moore & Oliver (2018), and this would require
a more careful analysis of the second-order outer and second-order inner problems in
the Wagner structure, as discussed in § 3.3.

4. Numerical configuration
We use the open-source package Gerris (Popinet 2003, 2009) to validate the

previous analytical findings and complement the investigation with flow information
from both within and outside of the discussed asymptotic framework. The freely
available software has enjoyed tremendous success in the multiphase flow community
for almost a decade and a half in a variety of contexts ranging from microfluidics to
geophysical flows. Of particular relevance to the present discussion is the well-suited
environment for the study of drop impact, which requires careful consideration of a
large range of scales, as well as possible topological changes. Especially during the
last five years, also aided by advances in experimental/imaging equipment, a range
of influential studies using Gerris as computational support have been published.
These are concerned with impacts of liquid drops onto both solid surfaces (Visser
et al. 2015; Philippi et al. 2016; Wildeman et al. 2016; Jian et al. 2018) and liquid
pools (Thoraval et al. 2012; Agbaglah et al. 2015). The scope of the work is of both
fundamental interest and practical significance, given the translation of the results into
engineering contexts related to inkjet printing, agricultural sprays, combustion and
environmental research. The underlying algorithms have also been proven sufficiently
robust even in challenging high-speed regimes of relevance to the aircraft industry, as
elaborated on in the recent study of Cimpeanu & Papageorgiou (2018).

To aid our discussion of the direct numerical simulation set-up, we refer to
figure 7 below. Where suitable, the notation from previous sections is preserved,
with (·)g and (·)l denoting quantities in gas and liquid respectively, while subscripts
(·)− and (·)+ will be used to indicate the bottom and top droplets. For all of
our simulations we shall take the gas to be air and the liquid to be water at
room temperature, and therefore, the appropriate physical parameters are as follows:
densities ρl= 999.98 kg m−3 and ρg= 1.21 kg m−3; viscosities µl= 10−3 kg m−1 s−1

and µg = 1.81 × 10−5 kg m−1 s−1; and surface tension coefficient σ = 0.072 kg s−2.
The radius of the top droplet is considered to be the reference length scale in
the domain, with R+ = 10−3 m selected as being representative. Its reference impact
velocity has a magnitude of V+= 10 m s−1, giving rise to the following dimensionless
parameters.

Re= 9999.8≈ 104, We= 1388.86≈ 103, Fr2
= 100.96≈ 102, (4.1a−c)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.704


780 R. Cimpeanu and M. R. Moore

FIGURE 7. (Colour online) Direct numerical simulation set-up, with the background image
illustrating the finite computational domain at t= 0 for a test case described by R= 2 and
V = 1. The inset focuses on details of the grid refinement at later times (t = 0.05, once
impact has taken place and the jet is formed), when temporal and spatial adaptive criteria
based on changes in velocity, vorticity and interfacial location are imposed.

all sufficiently large to be in line with the range of the validity of the model discussed
in § 3. We do emphasise, however, that some assumptions considered in the analytical
work are not reflected in the numerical set-up: gravity, the liquid viscosity, surface
tension and the surrounding gas are present in direct numerical simulations. These
additional effects aim to bring the computational experiments as close as possible to
a realistic laboratory scenario, while at the same time providing a stringent verification
for the modelling assumptions on which the analytical model was built.

While we fix the properties of the upper (+) droplet, we allow for significant
variation of the lower drop parameters, with V = V−/V+ taking values between 0
and 4, and R = R−/R+ having 1 (equally sized droplets) and R→∞ (impact onto
a liquid pool) as limiting cases. The latter case requires a dedicated implementation.
Referring back to figure 7, symmetry conditions are used on the left-hand side of
the domain in order to improve efficiency, while outflow conditions are set on the
opposite right-hand side boundary, as well as on the top and bottom boundaries. For
the latter of the two, we have carefully examined any potential issues stemming
from the fact that for large values of R the boundary cuts through the drop itself.
While locally near the respective boundary the flow is sensitive to the specific choice
in condition (stress free and imposed time- and colour-function-dependent vertical
velocity have been tested), any details play an inconsequential role at the level of
the region of interest in the centre of the domain for the time scales considered here.
An extended computational domain with a suitably reduced refinement level may
also be used as an alternative solution, maintaining an overall reasonable number of
degrees of freedom. The dimensionless size of the finite computational box is set to
L = 5 with 0 6 x 6 5 and −2.5 6 y 6 2.5, which has proven sufficient to track the
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impact process even beyond early times. Initially we consider the drops to be placed
at a small finite distance from one another, such that the centre of the top drop sits
at y = 1.025, while the lower drop centre is described by −R − 0.025V , reflecting
the variations in both size and velocity. The approach time of the drops is taken to
be negative (starting from t = −0.025), such that t = 0 coincides to the theoretical
time of contact at the y= 0 centreline if there were no deformation of the interfaces.
We consider times up to t = 0.175 to cover the early-time evolution appropriate for
comparison with analytical results. Detailed flow measurements are taken at every
0.0001 time units for the interfacial shapes, as well as every 0.001 units for all
variables of interest (velocities, pressure etc.). This provides a comprehensive dataset
spanning 0.2 dimensionless time units, which corresponds to 20 µs in real time. Each
direct numerical simulation is run in parallel on 8 CPUs on local high performance
computing facilities for approximately 72 h in wall clock time.

Several steps have been taken to ensure the numerical accuracy of the
implementation. Taking advantage of the parallel capabilities of the code through
its highly efficient quadtree (or octree in three dimensions) construction has already
been alluded to above. One other key advantage of Gerris rests in its ability to
represent multi-scale features using versatile adaptive mesh refinement (AMR). As
shown in the inset in figure 7, we have taken full advantage of this feature in the
region of impingement and liquid jet formation. More generally, the grid resolution
varies between levels 9 and 12, with level n corresponding to 2n cells per dimension
should the grid be uniform. Thus the smallest cell size is 5/212 in our case, which
translates to 1.22 µm in dimensional terms. Far away from the impact region this
is increased to almost 10 µm in size. A fully uniform grid at the finest resolution
would require (212)2 ≈ 17× 106 cells, however with careful refinement imposition we
require less than 5× 105 cells at any given time in the flow evolution. We prescribe
the smallest cell sizes to represent the fluid–fluid interfaces (both liquid–gas and the
internal liquid–liquid interface, described in more detail in the following section),
and in response to sharp changes in vorticity. Furthermore, we consider a moving
rectangular structure which is refined more strongly outside the liquid regions in
anticipation of the evolving jet and possible droplet break-off.

In addition to the above, inspired by the careful experimentation of Thoraval
(2013) and expanded upon in the associated publications within, we consider a
spatial filtering scheme (applied once) to manage the strong contrast in density and
viscosity in order to aid convergence of the projection solver, which has also been
adapted to include rigorous tolerances at every time step. Finally, to avoid allocating
unnecessary resources far away from the impact, jet formation and evolution regions
of interest, small droplets and gas bubbles (spanning less than 12 grid cells as
x< 0.5 and 32 grid cells as x> 0.5) are dynamically removed from the domain by a
numerical procedure which effectively replaces the small target fluid region with the
surrounding fluid should the imposed criteria be met.

As part of an extensive validation procedure, we have considered several refinement
levels in order to verify that the results have converged, with the smallest cell size
being varied from level 10 to level 13 for several reference test cases. It was
clearly observed that level 10 (yielding cells of size 4.88 µm) was insufficient
for this challenging regime, producing numerical artefacts during the coalescence
process and not allowing an appropriate formation of the liquid jet itself. At level
11, the qualitative features were correctly recovered, however quantitatively there
were still significant discrepancies when comparing to selected metrics from the
analytical model. Moving to level 12 alleviated these issues and good agreement to
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the predictions has been observed. In order to confirm this, level 13 (corresponding
to sub-micron resolution) refinement indicated no further improvement when studying
properties of the fully developed jet such as root location, velocities and thickness.
We have thus concluded that level 12 suffices for our target time scales and length
scales, and the remaining studies in the parameter space have been finalised at the
respective resolution level. We emphasise however that the described computational
resources are specialised towards resolving the formation and evolution of the liquid
jet in view of validating and extending our analytical results. Consequently, more
detailed features that have formed the subject of previous investigations such as the
structure of the gas entrapment in Thoraval et al. (2012) are beyond the reach of the
selected numerical configuration and would require additional refinement in the target
regions to ensure convergence.

Before proceeding to a systematic study of the splash jet, we note that we have also
inspected the early stages of the flow prior to the formation of the jet guided by the
recent results of Josserand et al. (2016). Whilst the investigation in question is based
on axisymmetric calculations (as opposed to two-dimensional here) of impingement
onto relatively thin liquid films, several insightful analogies can be constructed by
concentrating on the early part of the impact. We find that in our high-speed regime,
as suggested by the jet number argument of the authors, the jet forms relatively soon
after the bubble entrapment takes place. We note that in the centre of the domain near
the axis of symmetry we see the formation of a vortex sheet about this bubble (see
the inset of figure 7). Perhaps owing to the large velocities considered, we find the
structure in question to be very rich (and sensitive to local refinement) close to the
centre, however it then becomes smooth roughly half-way through to the location of
the jet root once the latter appears. By considering the spreading radius as the point
of maximal velocity in the flow, we have also verified that the respective instance of
jet formation coincides with a significant increase in velocity and that the time scale
between when coalescence is first observed and the emergence of the jet is well in line
with the prediction of Josserand et al. (2016), despite noting again the geometrical
discrepancies between the two studies. These conclusions extend from the case of a
drop impacting a stationary pool to the symmetric case (R = V = 1), as well as the
asymmetric cases (e.g. R= 2, V = 1) we have analysed.

In what follows we elaborate on the comparison between the numerical results
obtained with the implementation described above and the analytical findings from
the earlier sections of the present work.

5. Results and comparisons
In order to conduct a comprehensive comparative study between the asymptotic

and the computational results, we focus on the jet-root region and along the jet itself.
Features related to these structures are extensively characterised in the analytical
section of this work. Furthermore, these concentrate some of the most challenging
aspects of the physics involved, such as rapid topological changes and large velocities
in relatively small areas of the domain. A typical region of interest in the fully
developed flow is illustrated in figure 8, where we plot the velocity components and
vorticity for the case R= 2 and V = 1. There are two different sets of curves in each
plot: in black, the upper and lower turnover curves defining the liquid–gas interface
and in a light grey, a virtual interface between the two liquid drops. The virtual
interface is tracked by means of a passive tracer. For this example, the jet curves
upwards due to the asymmetry in R, while the virtual interface allows us to track the
contribution of each liquid drop to the jet.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.704


Early-time jet formation in liquid–liquid impact problems 783

(a)
(b) (c) (d )

12.00 –5.0 –500 5007.0

U(x,y) V(x,y) (x,y)

FIGURE 8. (Colour online) Horizontal velocity U(x, y), vertical velocity V(x, y) and
vorticity ω(x, y) inside a selected jet-root region for an example solution characterised
by R = 2, V = 1 at dimensionless time t = 0.1. (a) Liquid–liquid interfaces are shown,
while the inset depicts the region of interest illustrated in the figures on the right-hand
side. Scale bars corresponding to 10 µm are present on the lower right-hand corner of
(b–d).

5.1. Jet-root location
Of primary interest is the correct identification of the jet-root location, with the
leading-order expressions given in (3.21). To accomplish this, a suitable large subset
of the curves around the upper and lower turnover points are selected from the
main liquid–gas interface. These are projected and interpolated onto regular grids,
as many of the underlying data points are found to be in close proximity to one
another due to the very fine grids used. We use a maximum curvature criterion in
each local turnover region to then identify the precise location of the turnover points
(cf. figure 3). Drawing a line between them, we then consider the intersection of this
line with the passive interface as the jet-root location to be compared to (3.21). We
note that the procedure of identifying the turnover points becomes non-trivial in view
of the large parameter space and different aspect ratios and locations of the arising
geometrical structures. Consequently, careful post-processing was required to ensure
accurate measurements have been considered.

The extracted results (symbols) are plotted alongside the analytically derived jet-
root location curves in figure 9 for two different families of tests. Note that while
the symbols are plotted relatively sparsely, the underlying datasets in each example
have 200 points. Both sets of coordinates have been re-cast into dimensional variables
(hence the (∗) superscripts) to facilitate the comparison. In figure 9(a), we keep the
impact velocities fixed and equal to one another and vary the radius of the lower
drop from a size equal to the upper drop to the limiting case in which the lower
liquid region becomes a liquid pool. For R=V = 1, we find the anticipated horizontal
location of the jet root, with the jet root moving away from the lower droplet/pool
as R is increased, as previously observed in figure 5(c). In figure 9(b), we fix R= 1
and focus on the variation of the impact velocity, with 0 6 V 6 4. The data are
extracted based on a fixed time window, with the different curve lengths reflecting the
jet-root coordinate dependence on parameters R and V . This is particularly noticeable
in figure 9(b), in which the presence of V solely in the numerator of the results
summarised in (3.21) translates to an overall movement of the jet root proportional to
its value. As alluded to previously in the discussion around figure 5, the non-trivial
behaviour of the jet curving either towards or away from the lower drop is recovered
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FIGURE 9. Comparison between analytical prediction (3.21) (lines) and numerical results
(symbols) for two families of tests. (a) Relative impact velocity coincides (V = 1), while
R is varied from a case with identical drop size to the limiting case R→∞, where a
drop impacts a liquid pool. (b) The relative drop size is set to 1 and the relative impact
velocity V is varied from 0.0 (stationary drop) to 4.0.

depending on the value of V . Excellent agreement is found across all examined test
cases over a generous early time interval spanning the range of validity of the model.
In the latter stages, the x∗j -coordinate of the jet-root location approaches 1 mm in size,
which indicates that the jet-root location has travelled a distance of almost one full
drop radius. At this stage, the leading-order analytical prediction underestimates the
numerical results.

5.2. Jet-root thickness
We move on to investigate the evolution of the dimensional jet thickness, J∗, in time,
where the thickness is measured as the distance between the upper and lower turnover
points as seen in figure 3). We recall that, as discussed in § 3.3, in Wagner theory
the jet thickness must grow like t∗3/2. This is in contrast to growth proportional to
t∗ in the inviscid regime suggested by Josserand & Zaleski (2003) for axisymmetric
droplet impact onto a thin film. In the same paper, the authors suggest that at early
times when t∗� tv = (2R+/V+)/Re, viscous effects play the dominant role in the jet
thickness, with the appropriate growth rate being proportional to t∗1/2. However, we
note that tv ≈ 10−8 s here, so on the time scales we consider in the present paper,
we expect the inviscid theory to dominate. In their study of planar droplet impact
onto a thin layer, Coppola, Rocco & de Luca (2011) show that the jet thickness
is approximately linear at later times, although they also show that the horizontal
projection of the jet thickness grows like t∗3/2.

We wish to investigate this in more detail for various values of V , R and we plot
the results in figure 10. In the first plot, we consider the symmetric case R= V = 1,
where we see J∗ exhibiting faster than linear growth, albeit significantly undershooting
growth proportional to the prediction of leading-order Wagner theory. If the velocity
ratio is increased, the thickness growth is now clearly faster than linear, although again
there appears to be a deviation away from t∗3/2 for larger times. In the final example,
for droplet impact onto a liquid pool (with R=∞ and V = 1 in figure 10c), the jet
thickness clearly follows the Wagner prediction over several decades.
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FIGURE 10. Jet-root thickness J∗ evolution in time for three different cases in R and V .
The symbols represent data from direct numerical simulations, while the underlying lines
present evolutions proportional to (t∗)a that best fit the early stages of the flow. The solid
line corresponds to a= 3/2 (the Wagner prediction), while the dashed line indicates linear
growth in time as given by a= 1 (the inviscid prediction of Josserand & Zaleski (2003)).

Overall, there is strong evidence that the jet thickness grows more rapidly than the
linear prediction of Josserand & Zaleski (2003), but in some cases more slowly than
the predictions of Wagner theory. It may be that other physical effects play a role in
thinning the jet: the highly curved free surfaces cause a build-up of vorticity in the jet
root (see figure 8d), so that viscous and capillary effects may play a role that cannot
be picked up by the inviscid theory. However, the clear evidence in the third example
of figure 10 that the jet thickness grows like t∗3/2 suggests that there are regimes in
which the Wagner prediction is valid.

5.3. Jet angle
The jet angle, θjet, was introduced in figure 3 as the instantaneous angle between the
tangent to the interface between the two droplets and the horizontal at the point at
which the line joining the upper and lower turnover points intersects the interface. In
§ 3.3, we discussed the difficulties in predicting this angle using Wagner theory, with
the only sensible prediction of the jet angle being given by α in (3.24), which is the
slope of the vortex sheet in the outer region as it approaches the turnover point. In this
section, we shall investigate the evolution of θjet for several different impact scenarios
and we shall consider whether α is a reasonable estimation of the jet angle.

To extract θjet numerically, at each instance in time we consider the point defining
the root of the jet on the virtual interface between the two fluids. We then move
ahead in a discrete sense, selecting another point further ahead along the jet and thus
enabling us to define an angle with the horizontal axis. We have experimented with
the choice in this reference point in order to study how the degree of locality affects
the jet angle. In particular, we have varied our spatial window from one point ahead to
16 virtual points ahead, which for our resolution gives us a distance between 0.25 µm
and approximately 4 µm. Figure 8(b–d) provides an indication of the bending of this
jet and hints at the variability of the angle depending on the choice of reference points.
To illustrate this aspect, we will refer to specific cases in more detail, however in
terms of summarising the datasets we have selected the 16 point heuristic as being
sufficiently robust, with the outcomes presented in figures 11–13.
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FIGURE 11. Summary of instantaneous jet angle θjet evolution for two families of tests. (a)
Relative impact velocity coincides (V = 1), while R is varied from a case with identical
drop sizes to the limiting case R→∞, where a drop impacts a liquid pool. (b) The
relative drop size is set to 1 and the relative impact velocity V is varied from 0 (stationary
drop) to 4.

In figure 11, we plot the evolution of θjet as a function of the dimensional time
for the first 17.5 µs of the impact. When we fix the ratio of the impact velocities at
V = 1 and vary R in figure 11(a), we see a strong variation from the horizontal jet
predicted when the impact is completely symmetric with R = 1 (a prediction that is
consistent with (3.24)). For R> 1, we see θjet∼

√
V+t∗/R+, a growth rate predicted by

Thoroddsen et al. (2011) – and indeed by (3.24) – using a simple geometric model.
It is worth reiterating that the exact definition of the jet angle is important. Thoraval
et al. (2012) take the angle to be that between the normal to the line between the
turnover points and the horizontal in their study of droplet impact onto a deep pool.
Over time scales similar to those we study here that angle grows linearly in time.

In contrast, in figure 11(b), we fix the ratio of the radii of curvature at R= 1 and
vary the impact speed ratio, V . Perhaps surprisingly, we see that, even for starkly
different impact speeds, when R= 1, the jet is essentially emitted horizontally, which
is consistent with the Wagner prediction, (3.24). Therefore, even though vorticity will
undoubtedly build up on the jet-root free surfaces, see for example figure 8(d), and
will play a role in the jet angle evolution when R 6= 1 (as we discuss shortly), perhaps
the largest contributing factor to the angle at which the jet is emitted is the ratio of
the droplets’ radii of curvature.

We now move on to compare θjet with α by carefully examining two particular cases
in more detail, with the results displayed in figures 12 and 13. In these figures, we
provide a comparison between the Wagner prediction for the leading-order jet angle
as given by (3.24) and the numerically measured angle, θjet. At the same time, we
also describe the methodology behind the results analysis in § 5.1 in more depth.

Firstly, guided by relation (3.24) and figure 11, we investigate a case which is
predicted to have a horizontally evolving jet despite an asymmetric R/V configuration,
with R = 1 and V = 2. In figure 12(a), we not only show the jet-root coordinate
evolution alongside the analytical prediction as before, but also present the identified
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FIGURE 12. Summary of the jet-root evolution for the case described by R = 1 and
V=2. (a) The identified lower and upper turnover points along with the associated jet-root
coordinates, with the symbols denoting the numerically obtained results and the continuous
line illustrating the analytical prediction as given by (3.21). (b) The inviscid estimate of
the jet angle, α previously derived as expression (3.24). (c) Instantaneous jet angle θjet
obtained numerically using distance criteria based on including either 1, 4 or 16 virtual
interface points ahead of the jet root in order to calculate the angle the jet makes with
the horizontal axis.

turnover points its detection is based on. In figure 12(b), we plot the analytic
prediction of the jet angle as given by α in (3.24), while in figure 12(c), we display
the numerically measured angle θjet for each of the 1-, 4- and 16-point reference
choices. For this case, where the jet is essentially emitted horizontally, there is very
little difference between these choices, and it is clear that both the analytic and
numerical jet angles agree.

In figure 13, however, we see somewhat different results. In this example, we
have chosen R = 3, V = 0 – note that this leads to a horizontal jet-root coordinate
of yj = 0 (cf. (3.22)). Firstly, we note that, despite the apparent noise in the data
in figure 13(a), the jet-root coordinate varies within roughly 1–2 µm throughout
its evolution, which is at the level of the grid cells used in the direct numerical
simulations. Thus, given the sensitivity of this particular case in light of the fine
balance between the impinging drop sizes and velocities, the result is actually very
accurate. However, when comparing the vortex sheet angle α (depicted in figure 13b)
and the measured instantaneous jet angle θjet seen in figure 13(c), we see that the
Wagner prediction significantly underestimates the jet angle – by approximately a
factor of two – although both figures capture the square-root growth of the angle in
time. We postulate that this discrepancy is due to the role of vorticity (and, to a lesser
extent, surface tension) in the inner region. Moore et al. (2014) discuss the boundary
layers induced by the highly curved free surface in the Wagner inner region, and it
is well known from previous works in the area, for example Thoraval et al. (2012),
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FIGURE 13. Summary of the jet-root evolution for the case described by R = 3 and
V=0. (a) The identified lower and upper turnover points along with the associated jet-root
coordinates, with the symbols denoting the numerically obtained results and the continuous
line illustrating the analytical prediction as given by (3.21). (b) Jet-root region angle α,
with the analytical result previously derived as expression (3.24). (c) Instantaneous jet
angle θjet obtained numerically using distance criteria based on including either 1, 4 or
16 virtual interface points ahead of the jet root in order to calculate the angle the jet
makes with the horizontal axis.

Thoraval et al. (2013), that vorticity build-up on the free surface can even lead to
vortex shedding and the formation vortex streets. Moreover, the vorticity build-up
can readily be seen in figure 8(d), with the dimensionless vorticity ω varying from
approximately −500 at the lower jet root to 500 at the upper jet root at t= 0.1. We
believe that the angle of the jet is strongly influenced by this significant vorticity,
with the jet angle increasing with time (so that the jet is emitted closer to the upper
drop in this example) due to an imbalance in the magnitude of the vorticity at each
jet root. This is also reported by Thoraval et al. (2012) who find the instantaneous
maximum positive and negative vorticities in the impact of a droplet onto a deep
pool. They find these extremal values occur near the upper and lower turnover points
respectively, with a marked difference in the numerical values. In that example the
jet angle increases sufficiently rapidly so as to impact on the side of the droplet
(‘bumping’), causing bubble entrapment.

Nevertheless, when considering the examples in which R = 1, it appears that the
ratio of the droplets’ radii of curvature also plays an important role the increase in θjet
with time: when R= 1 there are still large vorticities associated with the highly curved
free surface local to the jet root, but the jet remains approximately horizontal for
the duration of our simulations. Both of these assertions warrant further investigation,
although we do not aim to pursue such an analysis here. What is clear however, is
that Wagner theory cannot accurately predict the angle at which the jet is emitted,
aside for cases in which the droplets have comparable radii of curvature.
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FIGURE 14. (Colour online) (a) Evolution of the jet for R= 2 and V = 1 from the time
of its creation at t∗= 2.4× 10−6 s to t∗= 1.24× 10−5 s in increments of 1.0× 10−6 s. The
full shape up to the jet tip is extracted from the direct numerical simulations, while the
coordinates of the jet root as obtained analytically are also presented. (b) Dimensional
horizontal velocity U∗(x∗, t∗) for each time step and comparison to the leading-order
Wagner solution (3.34). Both a direct comparison (dotted line) and a simple correction
to account for the presence of the entrapped gas bubble (dashed line) are illustrated.

We note that figure 13(c) also indicates how sensitive the measurement of θjet is to
the choice of reference points: the 1- and 4-point based datasets resulting in lower
angle values. Finally, in all cases the nature of the instantaneous jet angle calculation
method results in strong variability in the early stages of jet formation, should the
jet be so small that the necessary number of points is not available and hence the
reference point is selected further along the interface and into the main body of the
drop.

5.4. Jet velocity and thickness
We now move on to consider the jet itself, in particular concentrating on the jet shape
and velocity at various stages of the impact. We present our findings in figure 14
for the R = 2 and V = 1 case. In figure 14(a) we employ a different visualisation
technique to overlay not only the leading-order jet-root locations, but also the full
numerically obtained jet shapes up to when the liquid begins to thicken and form the
tip. The more pronounced bend in the jet becomes visible as we advance towards this
region, especially in the latter stages. The respective curves are constructed from the
virtual interface given when considering the passive tracers in the flow. These have
previously been shown as part of figure 8 (in light grey) and they may be used as an
indication of the top and bottom liquid contributions into the jet. We note that in most
asymmetric cases (in either R or V , or both) we anticipate this virtual interface not
to be aligned with what can be defined as a geometrically central curve along the jet,
an aspect which is not accounted for in the analytical model, which cannot predict
non-symmetric contributions from the two droplets to the fluid in the jet at leading
order.

Typical jet velocity profiles extracted at the coordinates given by such curves are
shown in figure 14(b). Close to the jet root, there is a large initial increase in the
velocity consistent with the large velocity scales in § 3.3. The velocity subsequently
falls into a regime of linear growth, which compares favourably to the predicted
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leading-order tangential jet velocity profile given by (3.34), particularly for earlier
times. With the reference impact velocity at 10 m s−1, we find velocities along
the jet are larger by an order of magnitude in the tested conditions, with a steady
overall decrease as time advances. We note that this type of linear dependence is also
discernible in the potential flow calculations of Riboux & Gordillo (2017), although
in that paper, the authors have concentrated their attention on the characterisation of
the boundary layer properties preceding the location of the jet root.

It should be noted that initially the results have not been modified or adjusted at
the root of the jet to aid the comparison (represented through the dotted lines). The
small gap between the curves for smaller times is believed to be associated with the
existence of the trapped gas bubble, which is present in the full numerical set-up,
but ignored in the analysis. We opted to illustrate the unaltered results to enable a
clean contrast between the analytical predictions and the direct numerical simulation.
Especially for the first few sets of curves, the slopes compare favourably. This is
to be expected, as we are well within the regimes in which the asymptotic solution
is valid. At later stages and sufficiently far into the jet, the agreement begins to
deteriorate as the numerically obtained velocity starts to deflect away from the linear
behaviour. This is an indication of further physical effects coming into play, for
example the interaction of the jet with the surrounding gas. Having established the
above, a corrective step similar to that undertaken by Philippi et al. (2016) consisting
in a temporal and spatial adjustment accounting for the slight delay and shift in
location of the coalescence is then conducted, using t0 and x0 to denote these offsets
in figure 14(b). This results in significant improvement of the overall agreement
and in particular for the early stages of the jet evolution, where any differences are
essentially indistinguishable.

We found it significant that in this regime one of the classical definitions of the
spreading radius as the point of maximal velocity in the flow becomes somewhat
ambiguous. The increasing velocity inside the jet and the details around the tip of
this structure dictate the outcome under this metric. This does not appear to be the
case in lower speed impact scenarios, which select a point near the jet root as having
this property, see for example Thoraval et al. (2012) and Josserand et al. (2016).

Finally we explore the thickness of the jet in detail and concentrate on the
R = 2, V = 1 case in figure 15. In § 3.4 we derived an analytical result based on
Wagner theory for the leading-order jet thickness χ̄0, (3.34), predicting a variation
of s̄−5 along the jet where s̄ is the arc length coordinate along the jet. The figure
illustrates several such curves considered equidistantly in time, alongside the points
delimiting the inner region from the jet region (in white squares). Alongside these we
present the corresponding numerical results, which are calculated as follows. We start
from the jet-root coordinate and the identified lower/upper turnover points used to
calculate it. The distance between them forms the first natural thickness measurement.
For the next thickness result along the jet, we move along the virtual interface by
one discrete point and provide a subset of data points immediately ahead of the
turnover regions from which we select the nearest distance candidates to the virtual
interface point, both above and below. We then iterate on this procedure, marching
forward along the jet whilst also sliding the candidate points above and below. The
data extraction is halted once a significant jet thickening is observed, indicative of
the presence of the tip. As may be anticipated, the specific parameter choices such
as the size of the candidate points intervals does indeed affect the first few thickness
measurements, however we found that beyond these first points along the jet, the
algorithm becomes robust in the sense of the estimated thickness being insensitive
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FIGURE 15. Evolution of the jet thickness for the case described by R = 2 and
V = 1 illustrated at five instances in time, from t∗ = 6.7 × 10−6 s to t∗ = 1.47 × 10−5 s
in increments of 2.0 × 10−6 s. The grey symbols indicate results extracted from direct
numerical simulations, while the solid lines represent the associated analytical predictions
as given by expression (3.34). The leading-order jet thickness as given by analysing the
inner region, previously derived as (3.29), is also presented in each case using white
squares.

to parametric changes. Consistently, the threshold point roughly corresponds to the
identified limit of the inner region and start of the jet region.

As is clear from figure 15, the agreement between Wagner theory and the numerical
simulations is excellent, which is perhaps surprising as the Wagner jet does not take
any effects of the tip into account. Among others, Thoroddsen (2002), Josserand &
Zaleski (2003), Riboux & Gordillo (2015) and Josserand et al. (2016) discuss the
motion of the jet tip, with strong indication that its motion is governed by not only
the liquid viscosity and surface tension but also the action of the surrounding gas.
Despite the present study considering flow regimes towards the inviscid limit of the
parameter spaces in the respective investigations (either through the selection of water
as opposed to high viscosity water–glycerine mixtures or through the consideration of
comparatively larger impact velocities), it is likely that the decrease in accuracy of
the inviscid jet model as time increases is a result of these effects on the jet tip, or
indeed along the whole jet, as considered by Moore & Oliver (2018).

5.5. Summary
In summary, the comparisons between the full numerical simulations and the
leading-order analytical predictions are extremely encouraging. As discussed in
Riboux & Gordillo (2014), Riboux & Gordillo (2015) and Philippi et al. (2016), it is
well known that Wagner theory provides a good estimation of the size of the effective
contact set in droplet impact onto a solid substrate. Here, we have shown that this
is also true for the liquid–liquid regime for a range of droplet diameters and impact
speeds, as evidenced in figure 9. Moreover, we have shown that Wagner theory also
gives a reliable estimate of the elevation of the jet root and the shape of the curve
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mapped out by the jet root, as shown in figure 14(a). There is also good (subject
to a consideration of the role of the entrapped central gas bubble present in the
full model) agreement between the predicted leading-order jet velocity and the full
numerical simulations in figure 14(b). Furthermore, there is also excellent agreement
between the predicted leading-order jet thickness and the numerical solution, as seen
in figure 15.

All of these comparisons indicate that in any investigation of the behaviour of the
ejecta in droplet impacts, we can reliably use Wagner theory as a basis for prescribing
initial conditions for the jet-root location and fluid velocity. This has the potential
to make analysis of jet evolution much simpler, as we can neglect the flow in the
bulk of the droplet and investigate interactions between the fast-moving jet and the
surrounding gas in greater detail.

We do, however, need to be slightly more cautious when considering the jet
thickness and angle. In terms of the jet thickness, we saw in figure 10 that although
there was strong evidence of the jet thickness growing more rapidly than linearly
with time, it was only for large values of R (i.e. as we approach impact onto a deep
pool) that the characteristic Wagner t∗3/2-growth was seen over a long range of times.
It is possible that for smaller values of R, other physical factors such as the role of
viscosity or surface tension on the highly curved jet surfaces cause deviations from
the inviscid prediction of the jet thickness.

We encounter similar problems when considering the jet angle. In cases where the
ratio of the droplets’ radii of curvature is close to unity, both the theory and the
numerical simulations predict that the jet is approximately horizontal, see figures 11
and 12(b,c). However, as the ratio increases, the difference in the vorticity building up
on the highly curved jet-root free surfaces appears to lead the jet angle to increase
much more quickly than Wagner theory predicts, as displayed in figure 13(b,c).
Naturally this phenomenon cannot be captured by the purely inviscid theory and it
appears a more careful analysis of the full Navier–Stokes equations is required to
capture this behaviour, in a similar manner to Moore et al. (2014), who consider the
capillary and viscous boundary layers in the jet root region in liquid–solid impact. We
do note, however, that although there is a noticeable influence of the vorticity build-up
on the jet angle, there is at this stage no evidence of the vortex streets seen in similar
computations, see for example Thoraval et al. (2012) (with the usual caveat that we
are considering a two-dimensional problem here, rather than axisymmetric). Despite
this, as we observe in figure 14(a), the jet is already curving downstream of the
jet root, indicating that this deflection is likely not a product of vorticity shedding.
It is an open question as to what causes jet bending, but it is probable that the
surrounding gas plays a critical role, as described through a simple kinematic model
and via comparison with low pressure experiments by Thoroddsen et al. (2011), as
well as recently discussed in Moore & Oliver (2018).

From a more general viewpoint, the validation has proven robust across a wide
range of parameters and in various flow regions. Despite the differences in the two
set-ups (presence of a trapped gas bubble, presence of surrounding gas, surface
tension, gravity), the qualitative and, more importantly, quantitative validation of
the asymptotically predicted structures has been successfully addressed. Furthermore,
features beyond the analytically tractable arguments have been discussed through the
use of full numerical results.

6. Conclusion
In this paper we have performed an in-depth analytical and numerical investigation

into the vertical impact of two-dimensional liquid droplets of the same fluid.
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We employed full numerical simulations of the two-fluid Navier–Stokes equations
to assess the veracity of the classical Wagner solution at early stages of the impact.
Our particular concern has been with the location of the root of the jet of fast-moving
fluid that is emitted after impact and we have shown that there is excellent agreement
between the predictions of the Wagner model and the numerical solution. In addition,
we obtained good agreement for the speed of the fluid in the jet and the jet thickness
between the model and the simulations for a wide range of droplet radii and velocities.

While not expanded upon in the previous section, we have also experimented with
higher viscosity liquids in order to attempt to clarify the large Reynolds number
restriction and investigate the influence of this parameter on the properties of the
development of the flow. At an order of magnitude below the main set of results
presented here (with Re≈ 103 rather than 104), we have observed minimal differences
in the jet-root locations, while, arguably intuitively, a slight slowing down of the time
scale of the jet angle evolution to the same final values and a thickening of the jet
have also been observed. Despite having pushed towards a region of the parameter
space which lies at the edge of the validity of the analytical model, it still showed
remarkable robustness.

The implications of this successful qualitative and quantitative validation of the
Wagner model are twofold. Firstly it gives us further confidence in the accuracy
of the numerical simulations shortly after impact, where there are rapid topological
changes as the ejecta forms, which follows on from the existing works in the field,
for example Coppola et al. (2011), Thoraval et al. (2012), Riboux & Gordillo (2014),
Riboux & Gordillo (2015) and Philippi et al. (2016). Secondly, it also indicates that
validity of using the predictions of the Wagner model in local analyses of the jet root.
For some time, an open question in the literature has been the influence of vorticity
shedding on both the accuracy of the Wagner model and the behaviour of splash jets
in liquid–liquid impacts. In this paper we show that, certainly for problems where the
non-dimensional numbers are of the same order of magnitude as (4.1), the Wagner
model still gives an excellent approximation of the jet-root location and speed over
time scales in which the jet is first seen to bend, although Wagner theory is less
reliable in terms of the jet angle. Nevertheless, the very good agreement between the
theory and the simulations for the jet root location and speed, and the jet velocity
and thickness is extremely encouraging, and likely to be of benefit in future studies
of the behaviour of the jet and its interaction with the surrounding environment.

We have only considered a certain class of problems in this paper and there is
much scope for future work. Of particular interest are extensions to axisymmetric and
three-dimensional impacts – although Wagner theory is certainly more challenging in
the latter, see for example Scolan & Korobkin (2001), Korobkin & Scolan (2006) –
as well as incorporating an oblique impact velocity, which may be of relevance in
aerodynamic applications, see Cimpeanu & Papageorgiou (2018).
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Appendix A. Outer–outer region
When x, y=O(1), the droplets retain their circular shape to leading order and move

according to their initial conditions, so that if f±(x, y, t) represents shape of the upper
and lower droplets and we expand

φ± = φ±0 + δφ1 + o(δ), f± = f±0 + δf±1 + o(δ) (A 1a,b)

as δ→ 0, the leading-order solution is simply

φ+0 =−y, φ−0 = Vy, f+0 = x2
+ (y− 1)2 − 1, f−0 = x2

+ (y+ R)2 − R2.

(A 2a−d)

The O(δ)-perturbation to this is driven by the far-field dipoles from the leading-
order complex potential (3.13) in the outer region as discussed in § 3.2. The
appropriate solution is given by

φ+1 =
(1+ V)d2

0

8
−

(
1+ V

4

)
d2

0y
x2 + y2

, (A 3)

φ−1 =
(1− V2)t

2
+
(1+ V)d2

0

8R
−

(
1+ V

4

)
d2

0y
x2 + y2

, (A 4)

which gives the following expressions for F(t) and G(t):

F(t)=
(1+ V)d2

0

8
, G(t)=

(1− V2)t
2

+
(1+ V)d2

0

8R
, (A 5a,b)

so that it is clear that F,G=O(δ), as stated in § 3.2.
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