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A theoretical analysis of the dynamic electrophoretic mobility of surfactant-stabilized
nano-drops is undertaken. Whereas the theory for rigid spherical nanoparticles is
well developed, its application to nano-drops is questionable due to fluid mobility
of the interface and of the surfactant molecules adsorbed there. At zero frequency,
small drops with surface impurities are well known to behave as rigid spheres due
to concentration-gradient-induced Marangoni stresses. However, at the megahertz
frequencies of electroacoustic (and other spectral-based) diagnostics, the interfacial
concentration gradients are dynamic, coupling electromigration, advection and
diffusion fluxes. This study addresses a parameter space that is relevant to anionic-
surfactant-stabilized oil–water emulsions, using sodium-dodecylsulfate-stabilized
hexadecane as a specific example. The drop size is several hundred nanometres,
much larger than the diffuse-layer thickness, thus motivating thin-double-layer
approximations. The theory demonstrates that fluid mobility and fluctuating Marangoni
stresses can have a profound influence on the magnitude and phase of the dynamic
mobility. We show that the drop interface transits from a rigid/immobile one at
low frequency to a fluid one at high frequency. The model unifies electrokinetics
and equilibrium interfacial thermodynamics. Therefore, with knowledge of how the
interfacial tension varies with electrolyte composition (oil, surfactant and added salt
concentrations), the particle radius might be adopted as the primary fitting parameter
(rather than the customary ζ -potential) from an experimental measure of the dynamic
mobility. This theory is general enough that it might be applied to aerosols and
bubbly dispersions (at sufficiently high frequencies).

Key words: colloids, emulsions, drops

1. Introduction
Surfactants have extraordinarily widespread uses as cleaning, dispersing, emulsifying,

foaming and anti-foaming agents, and their adsorption at fluid interfaces has been
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studied extensively (Miller 1988; Schramm, Stasiuk & Marangoni 2003; Bouchemal
et al. 2004). Ionic surfactants are particularly effective at stabilizing dispersions, since
the charge provides an electrosteric barrier to coalescence, which would otherwise
promote macroscopic phase separation by minimizing interfacial energy. On the
other hand, the charge also provides an electrostatic penalty for surfactant adsorption,
increasing the interfacial energy. Thus, mixtures of charged and uncharged surfactants
can be especially effective for optimizing the tradeoff between minimizing the surface
energy and maximizing electrosteric repulsion. Such considerations are fundamental to
well-established and contemporary technologies harnessing nano- and micro-emulsions
(Gupta et al. 2016; Hashemnejad et al. 2019).

The significant role of charge in influencing adsorption is demonstrated by the role
of added salt in the surface tension of interfaces bearing ionic surfactants. Borwankar
& Wasan (1988) developed a theory for the surface tension that captures this effect.
Their isotherm, which incorporates a Gouy–Chapman model of the electrostatic
and translational entropy of the diffuse double layer, provided an excellent fit to
surface-tension measurements. However, the model was drawn into question due to
the very high electrostatic surface potentials that it predicts, thus motivating models
that invoke counterion binding (Kralchevsky et al. 1999). These reduce surface
potentials to values that are considered compatible with ζ -potentials inferred by
electrophoretic mobility measurements on surfactant-stabilized emulsion drops, but the
correspondence may be questioned due to the challenge of interpreting electrophoretic
mobility.

For example, mobilities are routinely measured using commercial electrophoretic
light-scattering instruments and converted to surface potentials using the well-known
Smoluchowski formula (Russel, Saville & Showalter 1989), which predicts a linear
relationship between the mobility and ζ -potential for particles that are much larger
than the Debye length κ−1. However, for highly charged interfaces, it is perhaps
less well known that mobility can be significantly lower than predicted by the
Smoluchowski formula, e.g. as captured by the standard electrokinetic model
(O’Brien & White 1978). Overlooking this correction would underestimate the actual
ζ -potential, and therefore infer an erroneously low surface-charge density.

A compelling correspondence between adsorption thermodynamic and electrokinetic
interrogations of ionic-surfactant-stabilized emulsion drops is elusive. For example,
de Aguiar et al. (2010) used vibrational sum frequency scattering to ascertain the
surface density of sodium dodecylsulfate (SDS) on nanoscopic oil drops in water.
These novel measurements inferred an unusually large area of 425 Å2 per SDS
molecule, significantly higher than the 40–50 Å2 that the authors reported for
macroscopic planar interfaces (as furnished by surface-tension measurements) but
consistent with the surface-charge density inferred by the ζ -potential, e.g. as furnished
by the Gouy–Chapman formula (Russel et al. 1989), or coupling this to an adsorption
isotherm (Borwankar & Wasan 1988). However, because the Smoluchowski formula
was used to convert the mobility to a ζ -potential, the analysis does not preclude the
possibility of the surface adsorption being much higher. In fact, using their reported
drop size and ζ -potential to back out the measured electrophoretic mobility reveals
that the mobility and/or size are incompatible with the standard electrokinetic model
for rigid spheres (O’Brien & White 1978).

More recently, the possibility of emulsion-stabilized drops having the higher of
two ζ -potentials predicted by the standard electrokinetic model was rejected on the
basis that they are unphysically high (Yang et al. 2017). However, such a claim is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.256


Dynamic mobility of surfactant-stabilized nano-drops 895 A14-3

controversial, as other electrokinetic studies have expressly identified such interfaces
as bearing significantly higher charge (Hunter & O’Brien 1997).

It is interesting to note that the earliest electrokinetic determinations of the
charge of ionic-surfactant micelles invoke fractional charging of a micelle (Tokiwa
& Aigami 1970), inferring that only approximately 20 %–30 % of the surfactant
molecules in a micelle are charged. This is despite the surfactants being strong
electrolytes, as indicated by solution conductivity measurements below the critical
micelle concentration (c.m.c.) (Stigter 1978; Benrraou, Bales & Zana 2003).

To summarize, electrokinetic determinations of the charge of ionic surfactants,
with the notable exception of Hunter & O’Brien (1997), infer anomalously low
surface-charge densities as compared to (i) adsorption isotherms for planar interfaces
and (ii) aggregation numbers of micelles. Many explanations have been proposed to
explain these discrepancies, but none of the tests are satisfactorily complete. This
assertion becomes more compelling when one considers that many electrokinetic
measures of surface charge (spanning three decades) have been undertaken with
electrokinetic models for rigid particles (Barchini & Saville 1996; Hunter & O’Brien
1997; Djerdjev & Beattie 2008; de Aguiar et al. 2010; Yang et al. 2017).

Note that the standard (rigid-particle) electrokinetic model has been extended
to accommodate a variety of interesting physical processes at the rigid-particle
surfaces, e.g. polymer-decorated interfaces (Ohshima 1995), surface slip (Khair &
Squires 2009), ion-steric effects (Khair & Squires 2009) and Stern-layer conductance
(Zukoski & Saville 1986). Internal recirculation of drops during electrophoresis,
or the interfacial forces generated by flow-induced surface-concentration gradients,
otherwise termed Marangoni effects, have received notably less attention. The
coupling of fluid dynamics to electric-field-induced surface-tension gradients is
termed electro-capillarity, and, according to Levich (1962), was first described by
Christiansen (1903) in the study of mercury drops. Levich summarizes the early
literature on the electrophoresis of highly conducting drops, which has been advanced
more recently, in the weak-field limit by Ohshima, Healy & White (1984) (arbitrary
κa and ζe/kBT), and, for finite electric field strengths, by Schnitzer, Frankel & Yariv
(2013) (κa� 1 and arbitrary ζe/kBT). Here, κa is the ratio of the drop radius to the
Debye length, and ζe/kBT is the scaled equilibrium surface potential. Interestingly,
the weak-field limit of the asymptotic analysis of Schnitzer et al. (2013) reveals a
discrepancy with the earlier weak-field model of Ohshima et al. (1984). Schnitzer
et al. attribute this to the relative magnitude of the two small independent parameters,
which measure double-layer thickness and electric field strength. Specifically, when
the former is smaller than the latter, they show that current transport is dominated by
advection rather than diffusion.

While the foregoing models address the internal fluid dynamics, the equipotential
surface of ‘highly conducting’ (and ideally polarizable) drops distinguishes them
from the surfactant-stabilized oil drops addressed in the present study. Closer to
the present work (which is undertaken in the weak-field limit) is an analytical
theory of Booth (1951) for the steady electrophoresis of spherical drops, albeit
with a uniform interfacial charge (and thus an absence of Marangoni effects), also
neglecting polarization effects. For thin double layers and a non-conducting interior,
Booth’s theory furnishes an electrophoretic mobility

M =
V
E
=MS

ηi

ηo

ηi

ηo
+

2
3

(|ζ | � kBT/e, κa� 1),
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where MS = εoε0ζ/ηo is the Smoluchowski mobility (for a rigid sphere), ηi/ηo is the
ratio of the inside and outside shear viscosities, and εoε0 is the dielectric permittivity
of the (outside) electrolyte. Note that the finite viscosity of the internal fluid decreases
the mobility with respect to a rigid sphere, whereas the mobility of mercury drops
is generally much higher than for their rigid-particle counterparts (Ohshima et al.
1984; Schnitzer et al. 2013). However, as highlighted by Baygents & Saville (1991a),
surface-active impurities generate Marangoni stresses that suppress internal flow, thus
making drops behave as rigid spheres (Velarde 1998). The numerical calculations
of Baygents & Saville, undertaken in a similar manner to O’Brien & White (1978)
for rigid spheres, reveal a wide variety of electrokinetic behaviours stemming from
a greatly extended parameter space. Note that Baygents & Saville (1991a) assume
local equilibrium (captured as a proportionality) between the ions adsorbed at the
interface and those in the fluid immediately adjacent to the interface, which produces
the accompanying Marangoni stress. Baygents & Saville (1991b) extend this model
to weak electrolytes; and Schnitzer, Frankel & Yariv (2014) have analysed in the
strong-field limit for bubbles (without surface impurities), elucidating the special
limit in which the measure of double-layer thickness is smaller than the measure of
the electric field strength (when both are small). Despite these (and other) studies,
Wuzhang et al. (2015) have emphasized the need to know much more of how
adsorbed charges on oil drops influence their electrophoretic mobility and flow.

In light-scattering and electrokinetic-sonic-amplitude (ESA) electrophoresis instru-
ments, particles are subjected to oscillatory electric fields. The frequencies at which
the electric field switches in light-scattering instruments seems to be less than 100 Hz,
whereas ESA measures spectra in the range 1–20 MHz. O’Brien (1988) pioneered the
theoretical interpretation of ESA spectra, establishing how the measured oscillating
acoustic pressure is related to the dynamic (frequency-dependent) electrophoretic
mobility of rigid particles. He and others have developed theoretical formulae and
computational models to connect the mobility to particle and electrolyte properties
(O’Brien 1986; Mangelsdorf & White 1992; Ohshima 1996), thus providing a rigorous
framework for converting the measured mobility spectrum to a ζ -potential. Noteworthy
is that the ESA measurement does not require a dispersion to be optically transparent,
so the mobility can be measured without dilution. Moreover, the magnitude and
phase of dynamic mobility spectra can be used to ascertain the particle size and
charge from one sample and measurement (O’Brien, Cannon & Rowlands 1995). We
note that Mohammadi (2016) has undertaken an impressive analytical calculation of
the dynamic displacement of drops that are embedded in charged hydrogel media
and subjected to an oscillatory electric field, albeit for low ζ -potentials without
Marangoni effects. In principle, his formulae furnish the dynamic electrophoretic
mobility of uniform and weakly charged drops in a Newtonian electrolyte.

Several electroacoustic measurements have been reported for surfactant-stabilized
emulsions without drawing on a fluid-sphere model. Based on reasonable correspon-
dence between fits of the rigid-sphere theory to data, one may question whether
a dynamic fluid model is necessary. We believe that fluid characteristics could be
concealed by the rigid-sphere model being fitted to ESA spectra with (i) an adjustable
particle size distribution (e.g. log-normal), and (ii) a modified surface conductivity,
which accounts for an additional surface-charge transport behind the shear plane
(Djerdjev & Beattie 2008). Evidently, both of these are necessary to satisfactorily fit
to the data. According to this methodology, Djerdjev & Beattie (2008) have shown
that the additional surface conductance is comparable to that of the diffuse layer.
However, this suggests that adsorbed charge (behind the shear plane) has a mobility
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that is comparable to that of the counterions in the diffuse layer. It is not clear that
this is physically acceptable, because surfactant molecules (e.g. dodecylsulfate, DS−)
are considerably larger than their (sodium, Na+) counterions (Stigter 1967), and they
reside predominantly in an oil phase (e.g. hexadecane) that has a viscosity higher
than or comparable to that of water.

A theory to address the foregoing questions is set out as follows. After defining
the general problem and basic assumptions (§ 2), we detail the general solution of
a predominantly hydrodynamic problem for the flow in the bulk regions inside and
outside a drop (§ 2.1). Next, we address the thin interfacial region where species,
charge and momentum conservation principles are coupled, providing boundary
conditions (matching conditions) for the two bulk regions (§§ 2.2 and 2.3). This
model for the dynamics requires as input detailed knowledge of the equilibrium
state of the interface, which is addressed separately by integrating the Gibbs
thermodynamic relationship between surface tension and surface excesses (§ 2.4).
Here, knowledge of the interfacial tension also furnishes the surface-charge density
and, therefore, the equilibrium structure of the diffuse double layer. The results (§ 3)
are presented by first interpreting the dynamic drag force (§ 3.1) and how it depends
on the key dimensionless parameters, particularly the Marangoni number and ratio
of concentration and momentum diffusivities. We then examine the dynamic mobility
(§ 3.2), highlighting how the Marangoni effects manifest at the megahertz frequencies
of ESA measurements. The paper concludes with a summary of the key results (§ 4).

2. Theory

We consider a dilute dispersion of oil drops in an aqueous electrolyte. It is
assumed that a surfactant in the aqueous phase establishes an equilibrium partitioning
between the aqueous phase and the oil–water interface, according to an isotherm
derived from the concentration dependence of the surface tension of macroscopic,
i.e. millimetre-sized drops. We will assume, for simplicity, that the dispersion is
monodisperse with drop radius a and volume fraction φ. Note that the size cannot be
established from thermodynamics, which favours coalescence leading to macroscopic
phase separation. However, the surface-charge density arising from the adsorption of
an anionic surfactant tends to provide a strong electrosteric barrier to coalescence.
Strong ultrasonic and/or mechanical mixing therefore produces emulsions with drop
radii of several hundred nanometres. Thus, with a prescribed φ and measured a, an
adsorption isotherm and prescribed total surfactant concentration c∞,0 furnish the
equilibrium interface c0 (contributing to the total ‘surface excess’, number per unit
area) and aqueous-phase c∞ surfactant concentrations. Accompanying this equilibrium
state is an electrostatic surface potential ζ and an equilibrium diffuse layer, which –
at the high prevailing interfacial charge densities zec0 – is predominantly occupied
by ions with oppositely signed charge to the adsorbed surfactant.

To probe the surface charge experimentally, such a dispersion may be subjected to
an oscillatory electric field, represented mathematically as (the real part of) Ee−iωt. As
is well known, this sets the particles into harmonic motion with a particle velocity
Ve−iωt, where V =ME defines the (dynamic) electrophoretic mobility M. The electro-
kinetic model developed here seeks to ascertain how M depends on the frequency
ω/(2π) and physical properties of the emulsion. As highlighted by the schematic in
figure 1, the model is limited to drops for which the radius a= O(102) nm is large
compared to the characteristic thickness of the interface δ. O(1) nm (assumed ideal,
locally planar) and of the diffuse layer of counterions κ−1 < O(10) nm. The small
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V = ME

Aqueous phase

Oil phase

Diffuse layer

∂

er

eœ

r = a-

r = a

r ¡ a + ˚-1

˚-1

FIGURE 1. Schematic representation (not to scale) of a surfactant-stabilized nano-drop
(of radius a) subjected to an oscillatory electric field Ee−iωt. The model is developed
for δ� κ−1

� a with no transfer of surfactant between the phases. The bulk surfactant
(e.g. anionic SDS) concentration is below the c.m.c., with an interface concentration
that is subject to lateral advection, diffusion and electromigration. The interfacial control
volume (dashed lines) encloses the interface and diffuse layer, and so is electrically
neutral: open arrows indicate the surface tractions: viscous on the top and bottom, and
Marangoni/surface tension on the sides.

(‘nanometric’) radius also makes the Laplace pressure sufficiently large to maintain a
spherical shape when subjected to the electric field.

The present theory also assumes that there is no transfer of surfactant between the
bulk solution and interface when responding to the electric field. This is motivated
by the high frequencies encountered in ESA experiments, assuming that first-order
kinetic rates (rate constants for adsorption and desorption, ka and kd) are much smaller
than ω/(2π) ∼ 106 Hz. Note that, with an equilibrium isotherm, only one of these
kinetic rate constants is independent, since, at equilibrium, c0kd= kac(r= a), where c0

is the equilibrium surfactant (e.g. dodecylsulfate, DS−, with valence z=−1) surface
concentration and c(r= a)= c∞e−zζe/kBT is the equilibrium surfactant concentration in
the immediately adjacent electrolyte. Here, c∞ is the bulk surfactant concentration, and
ζe/kBT is the scaled equilibrium surface potential. It follows that (Denbigh 1964)

c0
=

ka

kd
c∞e−zζe/kBT

= Γ̂ (c∞, Is), (2.1)

where Γ̂ (c∞, Is) is an experimentally measurable function of the bulk surfactant
concentration and the ionic strength of an added (non-adsorbing) salt (e.g. NaCl).
In § 2.4, we present details of a theory that links a Langmuir model for the
isotherm Γ̂ (c∞, Is) to the measurable interfacial surface tension γ 0(c∞, Is). Note
that a Langmuir isotherm at low bulk surfactant concentrations is proportional to
c∞ with |ζ |e/kBT � 1, in which case (2.1) furnishes ka/kd = const., as adopted by
Baygents & Saville (1991a).

The subsections below address inner (drop), outer (bulk electrolyte) and interfacial
(interface and diffuse layer) regions. The interfacial analysis (§ 2.2) provides boundary
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conditions that are necessary to match the inner and outer domains (§ 2.1). Note that,
whereas the interfacial region may be considered an ‘inner’ boundary layer when
adopting the language of matched asymptotic expansions, we use the terms ‘inner’
and ‘outer’ here to distinguish the bulk regions inside and outside the drop (both
considered ‘outer’ in the context of matched asymptotic expansions). Our entire
analysis implicitly tackles the leading-order matching due to κ−1

� a. We will
also require the frequency to be sufficiently high that dynamic disturbances to the
electrolyte composition are confined to the interfacial region. As described by Hunter
(2001), this requires

√
Di/ω . a, where Di ∼ 10−9 m2 s−1 is an ionic diffusivity,

so
√
ωa2/Di & 1. Supplementing the analysis of dynamics (which are taken to be

linear perturbations to an equilibrium state) and dynamic mobility (§§ 2.1–2.3) is
an analysis of the equilibrium interfacial thermodynamics (§ 2.4). This links the
equilibrium surface tension and surface-charge density to the bulk composition.
Readers who wish to skip the theoretical derivations may proceed to the final results
(e.g. closed-form formulae available as (3.1), (3.2) and (3.3)) and discussion in § 3.

2.1. Bulk inner and outer regions
The bulk oil and aqueous phase beyond the diffuse layer are electrically neutral, and
so their dynamics are governed by the unsteady Stokes equations (Re= Va/ν� 1)

− iωρu=−∇p+ η∇2u with ∇ · u= 0,

where the density ρ and shear viscosity η (kinematic viscosity ν=η/ρ) for the oil and
aqueous phases are hereafter distinguished using subscripts i and o (denoting inside
and outside the drop) when appropriate. With the velocity V ∼ ME ∼ 10−5 m s−1

(taking M ∼ 10−8 m2 s−1 V−1 with E ∼ 103 V m−1) and ν ∼ 10−6 m2 s−1, a small
Reynolds number is readily achieved for submicrometre-sized drops. Moreover, drops
may be considered spherical, since the Laplace pressure dominates the inertial stress:
balancing an O(ωρVa) inertial stress with an O(γ /a) Laplace pressure (interfacial
tension γ ∼ 0.01 N m−1) suggests a spherical interface when a .

√
γ0/(ωρoME) ∼

1 cm with ω/(2π)∼ 1 kHz.
Symmetry, linearity and incompressibility demand solutions of the form

u=∇× [ f (r)X× er] = ( fr + fr−1)X+ (−fr + fr−1)X · erer,

with
p= p̂(r)X · er,

where X=U or E, and er is a radial unit vector with eθ its tangential counterpart.
For mathematical convenience, we consider solutions for a stationary sphere at

the origin with either a far-field translation of the fluid U with electric field E = 0
or a finite electric field E with stationary far-field fluid U = 0. These far-field
boundary conditions define what are termed the U- and E-problems, and their linear
superposition will be used to construct a solution that satisfies boundary conditions
that are compatible with the particle equation of motion.

Substituting the fluid velocity (which is divergence-free) and pressure above into the
Stokes equations requires

p̂= iΩr2( frr−1
+ fr−2)+ rfrrr + 3frr − 2frr−1

+ 2fr−2, (2.2)
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where Ω = ωρ/η (square of the reciprocal viscous penetration depth). Note that the
continuity equation furnishes ∇2p= 0, so p̂=Ar−2

+Br, where A and B are constants
that can be ascertained from (2.2).

The general solution, leading to (2.3) and (2.4) for f and (2.5) and (2.6) for p̂ below,
is found as follows. Taking the curl of the momentum equation gives

− iΩL ( f )=L 2( f ),

where

L =
∂2

∂r2
+

2
r
∂

∂r
−

2
r2
.

Defining
g=L ( f )

gives
− iΩg= grr + 2gr/2− 2g/r2,

for which
g= c2y1(

4
√
−1
√
Ωr)− c1j1(

4
√
−1
√
Ωr)

and
frr + 2fr/r− 2f /r2

= g.

The solution of this equation (in which y1 and j1 are spherical Bessel functions) has
four integration constants for each domain (c1–c4, c′1–c′4).

However, in the inside domain, removing singularities at the origin, and requiring
zero radial velocity at r= a, furnish

f = c′4r+ c′1
4
√
−1
√
Ωir cos( 4

√
−1
√
Ωir)− sin( 4

√
−1
√
Ωir)

Ω2
i r2

for r< a, (2.3)

where

c′4 = c′1a
sin( 4
√
−1
√
Ωia)− 4

√
−1
√
Ωia cos( 4

√
−1
√
Ωia)

Ω2
i a4

.

Similarly, in the outside domain, removing singularities in the far field and requiring
zero radial velocity as r→ a, furnish

f =
U
2X

r+ c3r−2
+ c1

( 4
√
−1
√
Ωor+ i)e(i−1)

√
Ωo/2r

Ω2
o r2

for r> a, (2.4)

where

c3 =−
U
2X

a3
− c1a

( 4
√
−1
√
Ωoa+ i)e(i−1)

√
Ωo/2a

Ω2
o a

.

The inner and outer flows are therefore determined to within one unknown scalar
coefficient each: c′1 and c1. We will prescribe these using boundary conditions arising
from analysis of the interfacial region, as undertaken in § 2.2 below. Similarly to the
fluid properties, subscripts i and o attached to Ω denote inside and outside the drop.

With the entire fluid velocity (outside the interfacial region) now prescribed by just
two scalar constants of integration, equation (2.2) furnishes

p̂=− 2
3

4
√
−1
√
Ωic′1r for r< a (2.5)
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and

p̂= iΩo

(
U
X

r− c3r−2

)
for r> a. (2.6)

These confirm that p satisfies Laplace’s equation. Note that Ω and the integration
constants must be prescribed separately for the inside and outside domains, which
are coupled by boundary conditions at r = a that account for electro-osmotic and
Marangoni flow in the interfacial region. For future reference, note that the tangential
velocity uθ and traction tθ (on the surface with inward unit normal −er) inside the
interface (i.e. at the interface, on the drop side, r= a−) are

uθ(r= a−)= frX · eθeθ = c′1aVi(Ωia2)X · eθeθ ,

where

Vi(Ωia2)=
(3− iΩia2) sin( 4

√
−1
√
Ωia)− 3 4

√
−1
√
Ωia cos( 4

√
−1
√
Ωia)

Ω2
i a4

(2.7)

and
tθ(r= a−)=−ηifrr(a)X · eθeθ =−ηic′1Ti(Ωia2)X · eθeθ ,

where

Ti(Ωia2)

=
(6 4
√
−1
√
Ωia− (−1)3/4Ω3/2

i a3) cos( 4
√
−1
√
Ωia)+ (3iΩia2

− 6) sin( 4
√
−1
√
Ωia)

Ω2
i a4

.

(2.8)

Outside the interface (i.e. at the interface, on the aqueous side, r = a+), the
tangential velocity and traction (surface with outward unit normal er) are

uθ(r= a+)= frX · eθeθ and tθ(r= a+)= ηofrrX · eθeθ ,

where
fr(r= a+)=

3U
2X
− c1aVo(Ωoa2)

and
frr(r= a+)=−

3U
Xa
+ c1To(Ωoa2),

which define

Vo(Ωoa2)=
e(i−1)

√
Ωo/2a

Ωoa2

and
To(Ωoa2)= [3− (i− 1)

√
Ωo/2a]Vo(Ωoa2).

The coefficient c3 for the outside flow measures the (dipole) strength of the
decaying contribution to the pressure, which also measures the slowest-decaying
contribution to the velocity disturbance, e.g. as identified in (2.4). Note that integrating
the total hydrodynamic traction over the surface of a sphere furnishes a force

F(r= a+)=− 4
3πa2ηoX[iΩo(rfr + f )+ rfrrr + frr − 6frr−1

+ 6fr−2
],
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895 A14-10 R. J. Hill and G. Afuwape

where the terms premultiplied by iΩo come from the pressure/normal traction. This
formula does not include the electrical stress, which is non-zero on the surface of
the drop. This physics enters via the interfacial region and its coupling to the outer
flows, as addressed in § 2.2 below. A much more convenient evaluation of the force
is available that requires only knowledge of c3 (measuring the far-field decay of the
outer velocity disturbance), furnishing (Mangelsdorf & White 1992)

F= 6πηoaX 2
3 iΩoa2c3a−3.

Accompanying the foregoing hydrodynamic flows is an electrostatic potential ψ ′,
which can be shown (at sufficiently high frequency) to satisfy Laplace’s equation
everywhere, i.e. in the bulk and interfacial regions:

∇
2ψ ′ = 0. (2.9)

Thus, linearity, symmetry and the far field require

ψ ′ = r[−(E/X)+ d̂ψr−3
]X · er for r> a,

where we will term d̂ψ the (electrostatic) dipole strength. This measures electrical
polarization of the interfacial region, which has contributions from the charge-density
perturbations in the diffuse layer and at the interface due to lateral transport of charged
surfactant. To be finite inside the drop and continuous across the interface (continuous
tangential electric field (Baygents & Saville 1991a)), the potential inside the drop must
be

ψ ′ = r[−(E/X)+ d̂ψa−3
]X · er for r< a.

Perturbations to the equilibrium interfacial charge and momentum balances are
addressed below: together, these determine the presently unknown scalars, d̂ψ , c1 and
c′1 (and therefore c3).

2.2. Inner/interfacial region
This inner region provides matching conditions for the foregoing solutions in the bulk
regions. Here, in addition to mass and momentum conservation, we must consider the
conservation of ions and surfactant molecules in the aqueous phase, and of surfactant
molecules adsorbed on the interface. These differential relationships are coupled, and
we will show that their solution leads to a set of linear algebraic relationships which,
when combined with those in § 2.1, solve the full dynamic electrokinetic model.

We begin with a species conservation equation for any molecular species
(subscript i) that is subject to advection, diffusion and electromigration:

−∇ · ji =−iωc′i with ji =−Di∇c′i −∇ψ
0ziec′i

Di

kBT
−∇ψ ′ziec0

i
Di

kBT
+ uc0

i . (2.10)

Note that we have linearized the flux with respect to perturbations defined by ci =

c0
i + c′i and ψ =ψ0

+ψ ′, where ci denotes the concentration of a species with c0
i the

equilibrium concentration, and c′i the perturbation induced by the forcing X.
Similarly, ψ0 and ψ ′ denote the equilibrium electrostatic potential and perturbation.

As usual, Di, zi, e and kBT are the diffusion coefficient, valence, fundamental charge
and thermal energy. Note that the equilibrium quantities are functions of radial
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Dynamic mobility of surfactant-stabilized nano-drops 895 A14-11

position, for which tangential gradients vanish in the formulae below. As is well
known, the equilibrium state satisfies the nonlinear Poisson–Boltzmann equation
(Russel et al. 1989):

εε0∇
2ψ0(r)=−

∑
i

ziec0
i (r),

where (εε0 is the dielectric permittivity)

c0
i (r)= c∞i e−ψ

0(r)zie/kBT .

The radial and tangential components of ji are

ji,r =

[
−Di∇c′i −∇ψ

0ziec′i
Di

kBT
−∇ψ ′ziec0

i
Di

kBT
+ uc0

i

]
· erer

and

ji,θ =

[
−Di∇c′i −∇ψ

′ziec0
i

Di

kBT
+ uc0

i

]
· eθeθ .

These can be used to develop conservation equations for an interfacial control volume
(thickness ∼ κ−1

� a, as identified by the region bounded by dashed lines in figure 1):

−∇s ·

〈
−Di∇sc′i −∇sψ

′ziec0
i

Di

kBT
+ uθc0

i

〉
− jr · er = 〈−iωc′i〉,

where ∇s is the surface gradient operator, uθ = u · eθeθ , and

〈·〉 =

∫ r

r′=a
· dr′.

Linearity and symmetry require the general forms

c′i = di,c(r)X · er and ψ ′ = dψ(r)X · er,

with
ur = 2fr−1X · erer and uθ = ( fr + fr−1)X · eθeθ .

Note that, within the diffuse layer, the function f here is not the one calculated in
the section above (outer domain), since the momentum equation for the diffuse layer
includes an electrical body force that drives electro-osmotic flow.

With the foregoing forms of the perturbation functions, the conservation equations
(one for each species) for the diffuse layer become〈

2r−2(iωr2/2−Di)di,c − 2r−1dψziec0
i

Di

kBT
+ 2r−1( fr + fr−1)c0

i

〉
X · er = ji,r · er, (2.11)

where

ji,r · er =

[
−Didi,c,r −ψ

0
r ziedi,c

Di

kBT
− dψ,rziec0

i
Di

kBT
+ 2fr−1c0

i

]
X · er.

Note that we have prescribed zero flux on the oil side of the oil–water interface,
assuming that the integrals are finite when r & a+ κ−1

= a+.
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895 A14-12 R. J. Hill and G. Afuwape

Applying (2.11) to the surfactant adsorbed on the interface (taking the thickness of
the control volume to zero with a Dirac-delta concentration (c0

+ c′)δ(r− a)), where
(as required by linearity and symmetry)

c′ = dcX · er

is the surface-concentration perturbation, gives

(iωa2/2−D)dc − dψzec0 D
kBT
+ a( fr + fa−1)c0

= 0 at r= a,

where the absence of a subscript i attached to c′, c0, dc, D and z distinguishes the
adsorbed surfactant from the non-adsorbed species; it follows that c0 is now a surface
concentration (molecules per unit area). Note that this balance captures tangential
transport (electromigration, diffusion and advection) of the adsorbed surfactant,
neglecting exchange with the oil and aqueous phases. Here, the approximation
is motivated by the high frequency of the oscillating electric field. Thus, with
diffusion-limited exchange kinetics, we anticipate an O(D/a2) limit on the frequency
below which the model may break down.

The constant dc measures the concentration polarization of the interface, which
is forced by advection and electromigration, and relaxed by diffusion. The surface
divergence of the interface velocity is

∇s · uθ =−2a−1( fr + fa−1)X · er =−2a−1c′1Vi(Ωia2)X cos θ. (2.12)

A charge conservation relationship for the interfacial control volume is obtained by
multiplying the species conservation equations above by the respective charge zie and
summing over all species:∑

i

〈
−2r−2Didc,i − 2r−2dψziec0

i
Di

kBT
+ 2r−1( fr + fr−1)c0

i

〉
zie

−

∑
i

[
−Didc,i,r −ψ

0
r ziedc,i

Di

kBT
− dψ,rziec0

i
Di

kBT
+ 2fr−1c0

i

]
zie=−iωdσ , (2.13)

where
dσ =

∑
i

zie〈dc,i〉

measures the net charge density (per unit area). Recall that we have taken the radial
flux of all species at r= a− to be zero, so the second sum is to be evaluated at r∼
a+ κ−1

= a+.
Similarly to the radially averaged species conservation equation above, the

(perturbed) Poisson equation

−∇ · (εε0∇ψ
′)=

∑
i

ziec′i

may be written as

− εoε0∇ψ
′
· er|a+ + εiε0∇ψ

′
· er|a− − εoε0∇

2
s 〈ψ

′
〉 =

∑
i

zie〈c′i〉,
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which (εiε0 and εoε0 are the dielectric permittivities of the inside (oil) and outside
(aqueous) phases), using the foregoing forms of the perturbation functions, becomes

− εoε0dψ,r|a+ + εiε0dψ,r|a− + εoε02a−2
〈dψ〉 =

∑
i

zie〈dc,i〉 = dσ . (2.14)

We can now eliminate dσ from the Poisson and charge-conservation equations (2.13)
and (2.14), furnishing

iωεoε0dψ,r|a+ − iωεiε0dψ,r|a− + εoε02a−2
〈dψ〉

=

∑
i

〈
−2r−2Didc,i − 2r−2dψziec0

i
Di

kBT
+ 2r−1( fr + fr−1)c0

i

〉
zie

−

∑
i

[
−Didc,i,r −ψ

0
r ziedc,i

Di

kBT
− dψ,rziec0

i
Di

kBT
+ 2fr−1c0

i

]
zie

− 2a−2Dzedc − 2a−2dψ(ze)2c0 D
kBT
+ 2a−1( fr + fa−1)c0ze. (2.15)

Note that sums are now over all mobile species in the diffuse layer, and the last line
(tangential transport of the surfactant at the interface) is the separate contribution (to
the interfacial charge balance from radial and tangential fluxes) of the adsorbed species
at the interface with f (i.e. the advective velocity) evaluated at r= a− for the oil phase
(where f = 0 due to the radial velocity vanishing at the interface).

Next, based on a thin diffuse layer, we note that the third term on the left-hand
side of (2.15) will be O(κ−1/a) smaller than the other terms, and may therefore
be neglected. Moreover, O’Brien (1988) has analysed the other radial and tangential
fluxes in the second and third lines of equation (2.15), for thin diffuse layers, showing
that they can be expressed in terms of the ‘surface’ (hereafter termed ‘diffuse layer’)
and bulk conductivities, Ks and K∞, with the electrostatic potential inside the diffuse
layer well approximated by the electrostatic potential in the outer domain, which
satisfies Laplace’s equation. Note that O’Brien’s Ks accounts for charge transport
within the (thin) diffuse layer and its exchange with the outer bulk domain. Thus,
drawing on his analysis of current in the diffuse layer, we set∑

i

〈
−2r−2Didc,i − 2r−2dψziec0

i
Di

kBT
+ 2r−1( fr + fr−1)c0

i

〉
zie

−

∑
i

[
−Didc,i,r −ψ

0
r ziedc,i

Di

kBT
− dψ,rziec0

i
Di

kBT
+ 2fr−1c0

i

]
zie

= 2Ksa−1(E/X − d̂ψa−3)−K∞(E/X + 2d̂ψa−3)

+ 2a−1( fr + fa−1)
∑

i

〈c0
i 〉zie− 2fa−1

∑
i

c0
i zie,

where we have used (§ 2.1) dψ(r= a+)=−a(E/X − d̂ψa−3), dψ,r(r= a+)=−(E/X +
2d̂ψa−3) and dψ,r(r= a−)=−(E/X− d̂ψa−3). Note that the last two terms capture the
advective contribution to the current arising from the interfacial mobility. The first of
these is the tangential velocity of the interface multiplied by the net charge of the
diffuse layer, and the second is the radial velocity of the interface multiplied by the
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895 A14-14 R. J. Hill and G. Afuwape

net (vanishing) charge outside the diffuse layer. From the boundary conditions in § 2.1,
the only non-zero term is

2a−1fr

∑
i

〈c0
i 〉zie=−2a−1frc0ze,

which, by overall electroneutrality of the interfacial control volume (interface and
diffuse layer), is equal and opposite to the advective current of the adsorbed species
at the interface. Equation (2.15) therefore reduces to

−iωεoε0(E/X + 2d̂ψa−3)+ iωεiε0(E/X − d̂ψa−3)

= 2Ksa−1(E/X − d̂ψa−3)−K∞(E/X + 2d̂ψa−3)

− 2a−2Dzedc + 2a−1(E/X − d̂ψa−3)(ze)2c0 D
kBT

.

For a rigid interface with immobile surface charge (dc = D = 0), this furnishes
O’Brien’s electrostatic dipole strength:

d̂ψa−3
=

E
X

iωεoε0 − iωεiε0 + 2Ksa−1
−K∞

−2iωεoε0 − iωεiε0 + 2Ksa−1 + 2K∞
, (2.16)

which clearly vanishes for the problem in which the drop translates in the absence of
an applied electric field. This is a consequence of the thin-double-layer approximations.

We must now address momentum conservation for the interfacial control volume.
Here we note that the viscous diffusion time for the diffuse layer κ−2/ν .
O(10−17/10−6) = O(10−11) s (this is the shortest relaxation time, table 1), justifying
quasi-steady hydrodynamics within the diffuse layer at frequencies f . 100 MHz.
Accordingly, the fluid velocity outside the diffuse layer slips relative to the interface
by the well-known Smoluchowski-slip velocity (Russel et al. 1989; Hunter 2001):

uS =MS∇ψ
′
· eθeθ ,

where the interfacial-slip mobility MS = ζεoε0/ηo, with ζ =ψ0(r= a) the equilibrium
electrostatic potential at the interface (ηo is the aqueous-phase shear viscosity).

As highlighted by Hunter (2001), the Smoluchowski-slip velocity emerges from a
neglect (in the momentum balance) of ion-concentration perturbations in the diffuse
layer. He shows that this may be questionable for highly charged interfaces, but the
question still remains as to the magnitude of such errors. To assess these, we compare
in figure 2 O’Brien’s dynamic mobility formula ((3.2) below, requiring ωa2/D & 1,
ζe/kBT & 1, κa� 1) with the standard electrokinetic model (Mangelsdorf & White
1992), as computed by the MPEK software package (Hill, Saville & Russel 2003).
Note that the surface potentials (|ζ | � kBT/e) and ionic strengths are representative
of the values adopted below for SDS-stabilized oil-in-water emulsions. As cautioned
by Hunter (2001), for these extremely highly charged interfaces, O’Brien’s formula
– and therefore the theory for fluid spheres advanced here – departs somewhat from
the numerically exact solutions in the megahertz range. Also consistent with Hunter’s
analysis is the error diminishing with increasing κa.

Note that the net electrical force acting on the interface and diffuse layer is zero,
so the tangential tractions on the interfacial control volume sum to zero:

tθ(r= a−)+ tθ(r= a+)− γ 0β∇sc′ = 0,
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Quantity Value Units

φ 0.05 —
a 325 nm

εi 2 —
εo 78 —
ηi 3.5 mPa s
ηo 0.89 mPa s
ρi 768 kg m−3

ρo 998 kg m−3

Is = c∞
−

1 mM
I 4.63 mM
c∞,0 5 mM
c∞ 3.63 mM

c0 2.02 nm−2

βc0 1.46 —
γ 0 20.3 mN m−1

γ (0, 0) 47 mN m−1

ζ −227 mV

D1 (Na+) 1.33 10−9 m2 s−1

D2 (Cl−, DS−) 0.74 10−9 m2 s−1

D (DS−) 0.10 10−9 m2 s−1

κ−1 4.47 nm
κa 72.7 —
K∞ 0.0362 S m−1

Ks/a 0.0696 S m−1

Mac = γ
0βc0a/(ηoD) 1.07× 105 —

D/a2 9.65× 102 s−1

D/κ−2 5.22× 106 s−1

νo/a2 8.44× 106 s−1

K∞/(εoε0) 52.5× 106 s−1

Ks/(aεoε0) 101× 106 s−1

νo/κ
−2 4.56× 1010 s−1

TABLE 1. Representative set of model parameters (T = 25 ◦C) and characteristic
frequencies, e.g. for the spectra plotted in figures 5 and 7. The variables that can be varied
experimentally are the oil volume fraction φ, drop size a, total surfactant concentration
c∞,0 and added salt concentration c∞

−
. All other quantities are derived from these and

known material properties, as detailed in the main text. Here Is is the ionic strength for
the added salt (NaCl) with I the total ionic strength (SDS and NaCl).

with tangential slip (across the diffuse layer)

uθ(r= a−)+ uS = uθ(r= a+).

The hydrodynamic tractions, e.g. tθ(r = a+)= {−pI + ηo[∇u+ (∇u)T]} · er · eθeθ , are
evaluated according to the fluid velocity in the bulk outer regions, and the Marangoni
traction −γ 0β∇sc′ = −γ 0βdca−1X · eθeθ is from the perturbation in surface tension
γ ′ that accompanies the perturbation in the interfacial concentration c′. Thus, with γ 0

the equilibrium surface tension, which will be prescribed according to an equilibrium
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FIGURE 2. Dynamic electrophoretic mobility spectra (magnitude and phase) for large,
highly charged rigid spheres. Calculations are according to the standard electrokinetic
model (solid lines) and O’Brien’s dynamic mobility formula ((3.2) with D = 0; dashed
lines): ζ = −224 mV, I = 4.63 mM (κa = 90, blue); ζ = −215 mV, I = 8.50 mM
(κa= 120, red); and ζ =−200 mV, I = 23.0 mM (κa= 200, yellow). Other parameters:
a= 400 nm, ρi= 768 kg m−3, ρo= 998 kg m−3, εi= 2, εo= 78, aqueous NaCl electrolyte
at T = 298 K. Vertical lines identify the relaxation frequencies Dκ2 (solid) and D/a2

(dashed) with D = DNa+ = 1.33 × 10−9 m2 s−1. Errors in the megahertz range can be
attributed to ion-concentration perturbations in the diffuse layers, and thus a breakdown
of the Smoluchowski-slip velocity formula (Hunter 2001).

isotherm, we define

γ 0β =−
∂γ

∂c

∣∣∣∣
c0

> 0

via the linearization γ = γ 0(1 − βc′). Note that the radial traction need not be
continuous: with the assumption of a spherical interface, the pressure jump is assumed
to be balanced by the Laplace pressure (equilibrium value 2γ /a). Pozrikidis (1998)
has shown that the pressure jump across the interface of an uncharged oscillating
spherical drop is independent of position, in which case the motion does not induce
a shape change. (Under steady translation, Taylor & Acrivos (1964) showed that such
drops transform to oblate spheroids and then spherical caps with increasing Weber
number.) More generally, we have

1p= [p̂(a−)− p̂(a+)]X · er =

[
−

2
3

4
√
−1
√
Ωic′1a− iΩoa

(
U
X
− c3a−3

)]
X · er. (2.17)

Finally, combining the foregoing momentum boundary conditions with the other
independent conservation relationships, we must solve the following linear system for
d̂ψ , dc, c′1 and c1 (or c3):

(iωa2/2−D)dc + a(E/X − d̂ψa−3)zec0 D
kBT
+ afr(r= a−)c0

= 0, (2.18)

−iωεoε0(E/X + 2d̂ψa−3)+ iωεiε0(E/X − d̂ψa−3)

= 2Ksa−1(E/X − d̂ψa−3)−K∞(E/X + 2d̂ψa−3)

− 2a−2Dzedc + 2a−1(E/X − d̂ψa−3)(ze)2c0 D
kBT

, (2.19)
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ηofrr(r= a+)= ηifrr(r= a−)+ γ 0βdca−1, (2.20)

fr(r= a−)−MS(E/X − d̂ψa−3)= fr(r= a+), (2.21)

where a+ ∼ a + κ−1 and a− ∼ a − δ (see figure 1). Equations (2.18)–(2.21) may
be termed, respectively, interfacial adsorbed surfactant conservation, interfacial
charge conservation, interfacial tangential momentum conservation, and diffuse-layer
tangential slip relationships. Recall that f and its radial derivatives are readily obtained
from (2.3) and (2.4). Note that the surface conductivity Ks emerging from O’Brien’s
matching of current between the diffuse layer and bulk electrolyte depends on the
electrolyte composition and interfacial charge density and, therefore, surface potential
ζ (O’Brien 1986, 1988). In this paper, ζ , β, c0 and γ 0 are furnished by a surface
adsorption isotherm (detailed below) that links these variables to the composition of
the bulk surfactant-containing electrolyte.

2.3. Model solution and mobility
The equations above become too cumbersome to solve in closed form, and so we
evaluate the solution numerically as a linear system

f (x)=
4∑

j=1

xjaj − b= 0

for which xj are the unknowns and

aj = f (ej)+ b with b=−f (0),

where ej is a vector for which the jth entry is 1 and the others are 0. It follows that

x= [a1, a2, a3, a4]
−1
· b.

To compute the electrophoretic mobility, we solve the system with U= 1 and E= 0,
and E = 1 and U = 0, furnishing, for example, cU

3 and cE
3 , respectively. Then, since

the particle equation of motion is (Mangelsdorf & White 1992)

− iω
4πa3

3
(ρi − ρo)V = 4πiωρo(cU

3 V + cE
3 E),

where the particle velocity V=−U, the dynamic mobility (complex-valued M=V/E)
is

M =
−3cE

3 a−3

−3cU
3 a−3 + ρi/ρo − 1

. (2.22)

This linear superposition can be used to construct, for example, the flow and dipole
strengths under electrophoresis:

u= uE
−MuU and d̂ψ = d̂E

ψ −Md̂U
ψ ,

and so on.
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2.4. Surface tension and adsorption isotherm
The surface tension and its dependence on the electrolyte composition are extremely
important contributions to the foregoing electrokinetic model. In addition to
prescribing the Marangoni stress, the isotherm prescribes the surface-charge density
and ζ -potential.

Here we consider the equilibrium existing between a flat interface between oil and
water containing bulk concentrations of an anionic surfactant c∞ (valence z = ±1)
and added ‘1-1’ salt with bulk concentration c∞

−
(anion concentration). It is assumed

that only the surfactant anion adsorbs to the interface, at an equilibrium concentration
c0
= Γ̂ . The system is exemplified by an aqueous electrolyte of sodium dodecylsulfate

(SDS, anion DS− and cation Na+) and sodium chloride (Na+, Cl−), at surfactant
concentrations below the c.m.c. We must also assume here that an ionic surfactant is
strongly dissociated, existing in solution as unimers (e.g. DS−). With adsorption to
the interface is the formation of a diffuse layer of ions. The concentrations in excess
of or below the bulk values contribute to the surface excesses of each species, and
it is these that all contribute to how the surface tension/free energy of the interface
varies with the bulk composition.

For this system, it can be shown that the equilibrium surface tension may be
evaluated from the Gibbs thermodynamic relationship (Eriksson & Ljunggren 1989)
as

γ (c∞, c∞
−
) = γ (0, 0)− kBT

∫ c∞

0

Γ̂

c∞
dc∞

− 4kBT
∫ c∞

0
{cosh [ζe/(2kBT)] − 1}

√
kBTεoε0

2(c∞ + c∞
−
)e2

dc∞, (2.23)

where γ (0, 0) is the surface tension of the oil–water interface with no surfactant
or added salt. We use (2.23) to numerically evaluate the partial derivative β for
the Marangoni stress in the electrokinetic model: first, c0

= Γ̂ (c∞, c∞
−
) and the

equilibrium surface tension γ 0
= γ (c∞, c∞

−
) are computed for two bulk surfactant

concentrations that are very close to c∞, and then ∂γ 0/∂c0 is approximated using
a centred finite-difference formula. This prescription implicitly assumes that the
dynamic (non-equilibrium) perturbations in the interfacial surface tension arise solely
from (lateral transport-induced) perturbations in the adsorbed surfactant concentration.

The first integral in (2.23) captures the free energy of the adsorbed layer
(electrostatic, entropic and enthalpic contributions), and the second is the contribution
from the diffuse layer (electrostatic and translational entropic free energies) with
adsorption isotherm (Prosser & Franses 2001)

Γ̂ =
c∞Γ

ezeζ/kBTn+ c∞
, (2.24)

where the surface-charge density (Gouy–Chapman formula (Russel et al. 1989))

Γ̂ ze= 2
√

2kBTεoε0(c∞− + c∞) sinh[|z|eζ/(2kBT)]

and (model parameters)

Γ = 1/(πa2
s ) and n= e1ε/(πa2

sδ).
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The integrals are evaluated numerically using iteration at each integrand evaluation
to ascertain how the integrand changes with respect to the integration variable c∞. In
deriving the isotherm, as is interpreted as the ‘excluded-volume’ radius of an adsorbed
surfactant molecule, and δ is a length that characterizes the thickness of the interface,
ultimately prescribing the translational free energy. Moreover, 1ε is the change in
enthalpic free energy (scaled with kBT) when transferring a DS− ion from the bulk
solvent/water to the interface.

The calculations undertaken in this paper have, as prescribed parameters (fitted to
experimental data to be published elsewhere), γ (0, 0) = 0.047 N m−1, 1ε ≈ −19
(value for similarly sized hydrocarbons transferred between water and oil) and as =

2.42 Å (solution radius of an SO2−
4 ion to represent the DS− polar head group in

water). Then, setting n = e1ε/(πa2
sδ) ≈ 9.29 × 10−4 mmol l−1 as a single adjustable

parameter, we find δ ≈ 0.225as ≈ 0.54 Å, which, as expected, is small, suggesting a
compact interface with weak fluctuations in the protrusion of DS− head groups from
the oil–water interface.

This physically motivated approach to prescribing the model parameters provides
an excellent fit to data for salt concentrations . 20 mmol l−1 and SDS concentrations
below the c.m.c. (varying with salt concentration) at which point the surface tension
becomes constant with further addition of surfactant, departing from the theory, which
predicts a continuous decline (unphysical negative surface tension). Surface tension
above the c.m.c. is ∼0.2γ (0, 0) (Prosser & Franses 2001), which can be used as a
guide with which to bound the isotherm to concentrations below the c.m.c.

Note that numerically integrating (2.24) yields the surface tension as furnished
by formulae of Borwankar & Wasan (1988) (which require an iterative solution) to
ascertain, for example, the ζ -potential. A numerical integration enables the model
to be modified, e.g. to model electrostatic excluded-volume effects. Nevertheless, for
the results presented in this paper, the model is applied in its most basic form to
compute the equilibrium surface-charge density zec0, equilibrium surface tension γ 0,
surface-tension gradient (with respect to surface concentration) β and equilibrium
ζ -potential, as required for the electrokinetic model. These are plotted in figure 3
versus the bulk SDS concentration for three representative concentrations of added salt.
Note that calculations at SDS concentrations above those for which γ 0 . 0.2γ (0, 0)
are unphysical extrapolations of the model, since it does not account for micelle
formation. We also note that the volume fraction of Na+ ions at the interface can
reach values of the order of close packing at high SDS concentrations and higher
added salt concentrations. It may therefore be prudent to examine the role of ion-steric
effects on the adsorption isotherm, e.g. as undertaken by Khair & Squires (2009) for
interfaces with prescribed surface-charge density using the Bikerman mean-field
model.

Before proceeding to the results, note that sonication of oil and water with a
strongly adsorbing surfactant produces an extremely large surface area, so the
concentration of surfactant in the aqueous phase can be significantly lower than
initially prepared. Here, we invoke the isotherm equation (2.24) with a material
balance on the oil and surfactant phases to link the overall surfactant concentration
c∞,0 to the actual/equilibrium bulk concentration c∞, assuming equilibrium and a
monodisperse emulsion with drop radius a. In the absence of a direct measurement, a
becomes the single unknown when comparing theoretical predictions of the dynamic
mobility with experiments. In practice, dynamic light scattering or acoustic attenuation
may be used to independently ascertain a and estimate its distribution.
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FIGURE 3. Equilibrium characteristics of the SDS–hexadecane–water interface versus the
bulk SDS concentration: added salt concentrations c∞

−
=1 mM (solid), 5 mM (dashed) and

20 mM (dash-dotted). Note that the model is extrapolated beyond its range of validity at
each ionic strength, i.e. beyond the c.m.c. to values of c∞ for which γ 0/γ (0, 0). 0.2.

Mass balances on the oil and surfactant (comparing the as-prepared and equilibrium
states) furnish

3φΓ̂ /a+ c∞(1− φ)= c∞,0,

where we recall that φ is the oil volume fraction. Owing to the nonlinear manner in
which the equilibrium surface concentration c0

= Γ̂ depends on c∞ (using (2.24)), this
is solved numerically for c∞ using a standard iterative algorithm that also furnishes
γ 0
=γ 0(c∞, c∞− ), β, c0

= Γ̂ (c∞, c∞− ) and ζ . As exemplified by pioneering electrokinetic
interpretations of the ESA for dispersions of solid particulates (O’Brien 1990), such a
measurement furnishes mobility magnitude and phase spectra, so, at least in principle,
such a measurement may furnish the particle size (O’Brien et al. 1995).

3. Results

As a prelude to the dynamic mobility, § 3.1 examines the electrokinetic model from
the perspective of the drag-force spectrum: for drops in the absence of an electric
field. This simpler problem highlights the role of Marangoni effects, permitting
comparisons with literature calculations of the dynamic drag force for spherical drops
without interfacial comtaminants. Dynamic mobility spectra are presented in § 3.2,
again highlighting the role of Marangoni effects.
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3.1. Drag coefficient
First, for a drop that is stationary in a translating fluid (with E= 0), the force exerted
on the drop can be written as

F = 6πηoaU

×

− iΩoa2

3
−

((i− 1)
√
Ωo/2a− 1)

(
2+

ηi

ηo

Ti(Ωia2)

Vi(Ωia2)
−

Mac

iΩoa2νo/(2D)− 1

)
3− (i− 1)

√
Ωo/2a+

ηi

ηo

Ti(Ωia2)

Vi(Ωia2)
−

Mac

iΩoa2νo/(2D)− 1

 ,
(3.1)

where the concentration Marangoni number

Mac =
γ 0βc0a
ηoD

=
γ 0βc0aas

kBT
ηi

ηo

and νo= ηo/ρo. Note that Ti(Ωia2)/Vi(Ωia2) is readily evaluated using (2.7) and (2.8).
For adsorbed surfactants, we expect D ∼ kBT/(ηias), where as is the hydrodynamic
size of a surfactant molecule. The drag coefficient F∗=F/(6πηoaU) depends on four
independent dimensionless parameters, which are taken to be ηi/ηo, ρi/ρo, Ωoa2 and
ν0/D in the analysis of figure 4. The selected values are motivated, in part, by fluid
systems for which ρi/ρo ∼ 1, ηi/ηo ∼ 1, ν0/D ∼ 104 and Mac ∼ 104. Moreover, at
megahertz frequencies for drops with a∼ 500 nm, we have Ωoa2

∼ 0.1.
Figure 4(a,b) shows how the magnitude and phase of the drag coefficient vary with

frequency for drops with three distinct viscosity ratios (same density ratio). This might
be achieved experimentally by adding polymer to vary the viscosity of a low-viscosity
liquid (albeit possibly imparting viscoelasticity). From a theoretical perspective, the
figure highlights how the drag coefficient transits from a low-frequency rigid-sphere
value (steady Stokes drag coefficient F = 1 as Ωoa2

→ 0) to a high-frequency
fluid-sphere value, as calculated by Pozrikidis (1998) (dash-dotted line). Note
that the low-frequency limit for fluid spheres with Mac = 0 is the well-known
Hadamard–Rybczynski theory (horizontal lines) for which the drag coefficient varies
with ηi/ηo. Figure 4(c,d) shows how the drag coefficient transits (now at a fixed
frequency) from the fluid-sphere limit with Mac → 0 to a rigid-sphere limit for
which Mac→∞ and the drag coefficient becomes independent of the viscosity. The
transition is accompanied by a distinct viscosity-contrast dependence of the phase
angle. Note that the transition occurs at frequencies for which Ωoa2

∼MacD/νo or

ω∼
γ 0βc0

aηo
.

This is independent of D, as expected based on D� νo, i.e. the concentration diffusion
time is very large compared to the momentum diffusion time. Under these conditions,
the adsorbed surfactant advects with the interface. Thus, if we estimate the surface-
advection-induced concentration gradient to be O(c0Vω−1/a2), then the corresponding
surface-tension force is O(γ 0βc0Vω−1). Balancing this with an O(Vηoa) viscous force
furnishes the required scaling. This characteristic frequency is within the range of ESA
measurements, so we should expect the transition to impact the dynamic mobility.
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FIGURE 4. Dimensionless analysis of the drag coefficient (for stationary drops in a
translating fluid). (a,b) The magnitude and phase spectra for ηi/ηo = 0.01, 1 and 32
(blue to yellow), ρi/ρo = 0.8, ν0/D= 104 and Mac = 104 according to (3.1) (solid lines).
(c,d) The magnitude and phase for ηi/ηo = 0.01, 0.5, 2, 8 and 32 (blue to green), ρi/ρo
= 0.8 and Ωoa2

= 1. Dashed lines: theory for drops without Marangoni stress (Mac = 0),
as calculated by Pozrikidis (1998). Dash-dotted lines: the Hadamard–Rybczynski formula
(Mac =Ωoa2

= 0).

3.2. Dynamic electrophoretic mobility
Before examining the full dynamic mobility model, we will highlight some limiting
simplifications for which closed-form expressions are readily obtained. For rigid
spheres bearing mobile charge, the full model reduces to

M =
3MS(1− d̂E

ψa−3)((1+ i)
√
Ωo/2a+ i)

3
2Ωoa2 +

9
2((1+ i)

√
Ωo/2a+ i)+Ωoa2(ρi/ρo − 1)

, (3.2)

where

d̂E
ψa−3
=

iωεoε0 − iωεiε0 + 2Ks/a−K∞ +
2(ze)2c0Diωa2/(2D)
akBT(iωa2/(2D)− 1)

−2iωεoε0 − iωεiε0 + 2Ks/a+ 2K∞ +
2(ze)2c0Diωa2/(2D)
akBT(iωa2/(2D)− 1)

.

This is readily verified to be O’Brien’s dynamic mobility formula (O’Brien 1988),
but with a modified electrostatic dipole strength d̂E

ψ for the mobile surface charge.
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FIGURE 5. (a,b) Dynamic electrophoretic mobility (magnitude and phase) for spherical
drops subject to a uniform electric field: drop radius a = 325 nm and bulk added salt
concentrations c∞

−
= 1 mM (blue), 5 mM (red) and 20 mM (yellow). Solid lines: full

theory (numerical evaluation) for fluid spheres, including Marangoni stresses and mobile
surface charge. Dash-dotted lines: closed-form approximation of the full theory for the
surface-advection-dominated limit (3.3). Dashed lines: O’Brien’s formula for rigid spheres
bearing immobile surface charge (e.g. (3.2) with D= 0). Dotted lines: modified O’Brien
theory for rigid spheres bearing mobile surface charge ((3.2) with D > 0). (c,d) The
same data, but over the frequency range of a commercial ESA measurement, with a
linear frequency axis. Note that, with c∞

−
= 20 mM, the adsorption isotherm has been

extrapolated beyond the c.m.c. and, therefore, overestimates the surface-charge density and
Marangoni gradient parameter βc0.

The additional terms (depending on the surface diffusion coefficient D) arise from
electromigration and diffusion of the charge at the oil–water interface. Note that Ks
must be calculated using a formula (available in the literature) appropriate for the ζ -
potential and electrolyte composition. Here, due to the very high ζ -potential furnished
by the adsorption isotherm, we adopt O’Brien’s model for which the diffuse layer is
occupied – to an excellent approximation – exclusively by positively charged Na+ ions
(O’Brien 1986, equation (A.6)).

This may be compared with the phenomenological/empirical approach of Djerdjev
& Beattie (2008), who adapted O’Brien’s dynamic mobility to fit data by adjusting
Ks (for the diffuse layer). As highlighted in the introduction, the adjustment was
comparable to the value for the diffuse layer (and was necessarily frequency-
independent). The frequency-dependent correction for the adsorbed charge above
is not an adjustable model parameter: it takes a value at high frequencies (ω�D/a2)
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that adds to Ks an amount (ze)2c0D/kBT . More importantly, we will see that it has
a negligible impact on the dynamic mobility, because D for DS− at the interface is
much smaller than for the counterion Na+ in the diffuse layer.

A more interesting simplification of the full model occurs when we neglect the
surface electromigration and diffusion fluxes, assuming that the adsorbed charge
advects with the interface. Recall that the surface advective flux is not divergence-free
(e.g. equation (2.12)), but its contribution to the surface-charge perturbation vanishes
in the model owing to the counter-advection of charge in the diffuse layer (in the
linear model these are the product of an equilibrium charge density multiplied by
the advective velocity perturbation). This advective organization of the interface
nevertheless induces a concentration polarization that generates the Marangoni
surface-tension gradient, coupling hydrodynamics to concentration polarization. In
this advection-dominated surface-transport limit, the model furnishes a closed-form
solution

cX
3 a−3

= −
U
2X

−


3U
X
+

[
ηi

ηo

Ti(Ωia2)

Vi(Ωia2)
−Mac

2D
iωa2

] [
3U
2X
+MS(E/X − d̂ψa−3)

]
3− (i− 1)

√
Ωo/2a+

ηi

ηo

Ti(Ωia2)

Vi(Ωia2)
−Mac

2D
iωa2


×
( 4
√
−1
√
Ωoa+ i)

Ωoa2
, (3.3)

with O’Brien’s electrostatic dipole strength d̂ψ as given by (2.16). Note that this
simplification could have been anticipated by the balances of electrical and drag
forces on an adsorbed surfactant molecule. Such a scaling analysis furnishes a
surfactant velocity, relative to the interface velocity, that is ∼κa2

s/(φsδs), where φs
is the surfactant area fraction with δs a hydrodynamic size. Thus, for a crowded
interface with δs ∼ as and φs ∼ 1, we have κa2

s/(φsδ) ∼ κas � 1, indicating that the
surfactant dynamics are tightly coupled to the interface.

The values of cE
3 and cU

3 from (3.3) are readily converted to a mobility using (2.22).
As shown below, the mobility formula accurately mimics the full model (which
requires a numerical evaluation). More importantly, it identifies distinct departures
of the dynamic mobility spectrum – due to the Marangoni stresses – from those for
a rigid sphere (especially in the phase, but also in the magnitude). This addresses
the principal motivation for pursuing this study: whereas O’Brien’s formula captures
the dynamics of a rigid sphere with immobile surface charge, equations (2.22) and
(3.3) capture the internal fluid dynamics and advective migration of the charge at the
interface, which induce Marangoni stresses that modulate the particle dynamics. While
it is tempting to discard the terms Mac2D/(iωa2) in (3.3) based on the requirement
that ωa2/D� 1, Mac may be very large, so the ratio of these terms (which captures
the Marangoni effects) is non-negligible.

Interestingly, the Marangoni influences manifest in the frequency range for which
ESA measurements are conducted (limited above principally by the sound wave
wavelength being large compared to the particle radius). It should also be noted that
(3.3) does not adjust the diffuse-layer conductivity Ks to account for the mobility of
the adsorbed charge, i.e. as undertaken by Djerdjev & Beattie (2008). This clearly
changes the way in which dynamic mobility might be interpreted, and may have a
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significant impact on the interpretation of conductivity and dielectric spectroscopy
experiments.

Before discussing the results, we briefly review the model parameters, as
summarized in table 1 for an SDS–hexadecane emulsion prepared with an oil volume
fraction φ = 0.05, overall SDS concentration c∞,0 = 5 mmol l−1 and aqueous-phase
NaCl concentration c∞

−
= 1 mmol l−1. Here, the overall ionic strength (aqueous

SDS and NaCl) I = 4.63 mmol l−1 is dominated by surfactant, furnishing a Debye
length κ−1

= 4.42 nm and a substantial surface potential ζ = −223 mV that reflects
a surface-charge density (DS− monolayer packing density) zec0

= −1.9e nm−2

(equivalent to −0.3 C m−2).
Note that applying the Smoluchowski formula for (particle) electrophoretic mobility

(MS = εoε0ζ/ηo) when κa � 1 furnishes a mobility magnitude & 17.3 × 10−8

m2 s−1 V−1, which is almost three times the mobility registered at vanishing
frequency with the prevailing surface-charge density. As captured by the standard
electrokinetic model, and exemplified by O’Brien’s mobility formula (e.g. equation
(3.2)), this reflects the electrostatic dipole attenuating the electric field, and hence
the electro-osmotic flow within the diffuse layer. Electrophoretic mobilities are
often interpreted by converting measured mobility at vanishing frequency to a
‘Smoluchowski’ ζ -potential. Here, such a conversion furnishes an erroneous value
ζS ∼−80 mV, which is clearly much lower than the actual surface potential. Such a
large discrepancy underscores the challenges (e.g. as highlighted in the introduction)
that have confounded attempts in the literature to unify adsorption thermodynamics
and electrokinetics. Clearly, for highly charged interfaces, it is important to apply an
appropriate electrokinetic model to ensure a physically meaningful interpretation of
the mobility and surface charge.

Recall that the diffuse-layer conductivity Ks is calculated here using a relatively
simple formula that is appropriate for high surface potentials (O’Brien 1986,
equation (A.6)). Under these conditions, the mobility of the counterion (Na+) is the
only one contributing to Ks. For the bulk electrolyte, the three univalent ions (Na+,
Cl− and DS−) are combined to form a binary electrolyte for which the mobility of
the anion is the number-density-weighted average of those for Cl− and DS−. This
ensures that the bulk solution conductivity K∞ is the same as for the three-component
electrolyte. The diffusion coefficient for DS− in the aqueous domain is taken to be
0.74× 10−9 m2 s−1, according to measurements of the average molar conductivity of
this ion at finite concentrations where the SDS solution conductivity increases linearly
(to a good approximation) with surfactant concentration up to the c.m.c. (Benrraou
et al. 2003; Jalsenjak & Tezak 2004). Based on this value, the diffusion coefficient
for DS− at the oil–water interface is prescribed to be ηo/ηi≈ 0.89/3.5 times the value
in water. This assumes that the hydrodynamic size of the DS− ion is dominated by
the hydrophobic tail being fully immersed in the oil phase (also neglecting steric and
hydrodynamic interactions).

Dynamic mobility spectra are presented in figure 5. The blue lines correspond
to the parameters and isotherm calculations summarized in table 1 (added NaCl
concentration 1 mM), with the red and yellow lines the results of calculations
undertaken with the concentration of added salt being 5 mM and 20 mM. Adding
salt decreases the surface potential for a given surface-charge density, thus increasing
the surface-charge density zec0 and decreasing the interfacial tension γ 0. Interestingly,
despite increasing the surface-charge density, the mobility magnitude decreases
with increasing surface-charge density. This is counter to the expectations of the
Smoluchowski formula, but is well known from the so-called mobility maximum that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.256


895 A14-26 R. J. Hill and G. Afuwape

101100 10210-110-2

1.0

0.8

0.6

0.4

0.2

0

˙i/˙o

|M
|/

|M
(˙

i/˙
o =

 ∞
)|

FIGURE 6. Scaled dynamic electrophoretic mobility (magnitude) versus viscosity ratio
for ω/(2π) = 1 MHz (blue), 10 MHz (red) and 100 MHz (yellow). Other parameters
are provided in table 1. Note that D = const., independent of ηi/ηo. Dashed line is
(ηi/ηo)/(ηi/ηo + 2/3) (Booth 1951).

is the hallmark of the standard electrokinetic model (O’Brien & White 1978), and of
O’Brien’s theory for highly charged particles with κa� 1.

Figure 5 shows O’Brien’s dynamic mobility (rigid sphere, immobile surface charge,
dashed lines) calculated using the ζ -potential from the adsorption isotherm. This is
very close to the present theory (3.2) for mobile surface charge. Next, introducing
the Marangoni effects for fluid spheres, we have the full theory (solid lines) and
the surface-advection-dominated limit (dash-dotted lines, via equation (3.3)). This
is in very close correspondence with the full theory. The approximation (neglecting
interfacial diffusion and electromigration) shows that fluid characteristics of the
interface influence the dynamic mobility via the internal flow and Marangoni stress.

Performing the same calculations but with the Marangoni parameter c0β≈ 0 (results
not shown) produces a mobility magnitude spectrum that is the same as for a rigid
sphere, but shifted down by approximately one mobility unit (i.e. 10−8 m2 s−1 V−1),
and with the phase-angle spectrum remaining close to those in figure 5 for fluid
spheres. This suggests using the phase-angle spectrum to unambiguously identify
fluid behaviour. Note also that maintaining the same Marangoni stress but decreasing
the internal viscosity profoundly changes the mobility spectra, depending also on
whether we adjust the surface diffusivity D accordingly. As expected, increasing
the internal viscosity transits to the rigid-sphere limit. These observations highlight
the important roles of Marangoni stresses and internal fluid motion on the dynamic
mobility spectra for highly charged nano-drops. They also suggest that the mobility
spectra for low-viscosity liquids and bubbles may be significantly influenced by the
fluid and interfacial effects addressed here.

Figure 6 shows how the dynamic mobility magnitude varies with the viscosity ratio
at three frequencies in the megahertz range. At the lowest frequency, the mobility,
when scaled with the rigid-sphere value, coincides with Booth’s function (highlighted
in the introduction) for steady electrophoresis of drops without Marangoni effects.
At higher frequencies, when the Marangoni effects are activated, the mobility is
enhanced (relative to Booth’s function) by a low internal viscosity, and attenuated
with a high internal viscosity. As discussed by Baygents & Saville (1991a) (in the
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FIGURE 7. (a,b) Surface-concentration dipole strength (magnitude and phase) accompany-
ing the dynamic mobility spectra in figure 5 (according to the full model). (c,d) Accom-
panying dynamic interfacial pressure differential (scaled with the equilibrium Laplace
pressure) according to (2.17).

context of steady electrophoresis), the mobility reflects a subtle balance of the
Maxwell, Marangoni and viscous shear forces.

Accompanying the fluctuating concentration is a fluctuating surface concentration
and pressure differential. As shown in figure 7, the phase of the surface-concentration
dipole varies significantly with respect to the electrolyte composition in the frequency
range 1–100 MHz, with the magnitude of the concentration polarization (scaled
with c0, which varies with the electrolyte composition according to the isotherm)
decreasing significantly with frequency, practically independent of the electrolyte
composition. The dynamic pressure differential increases approximately linearly with
the frequency. This scaling reflects the temporal inertia of the fluid dynamics. There
is a weak influence that is coupled to variations in the concentration polarization, and,
therefore, to the Marangoni/interfacial effects. Nevertheless, the pressure differential
is evidently small compared to the equilibrium Laplace pressure, suggesting that it is
reasonable to have assumed a spherical shape from the outset.

Streamlines of the flow for the U-, E- and electrophoresis boundary conditions are
shown in figure 8. Comparing the flows at the three frequencies, spanning two orders
of magnitude, in the range for which many diagnostic measurements are undertaken,
including conductivity, dielectric spectroscopy and ‘static’ electrophoretic mobility
measurements, highlights the role of internal flow and of temporal inertia in shaping
the streamlines at high frequencies. For the U-problem (no electric field), the velocity
disturbance is that prevailing with the passage of a sound wave (wavelength � a)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.256


895 A14-28 R. J. Hill and G. Afuwape

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

2.0
1.5
1.0
0.5

0
-0.5
-1.0
-1.5
-2.0

x/a

y/a

y/a

y/a

x/a x/a

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 8. Streamlines (equally spaced isocontours of the streamfunction frX sin2 θ in the
particle frame) for the U-, E- and mobility problems (left to right) according to the full
model: ηi/ηo≈ 3.5/0.89; a= 325 nm; ω/(2π)= 1, 10 and 100 MHz (top to bottom), with
other parameters as set out in table 1. The increasing internal recirculation with frequency
highlights the transition from a rigid- to a fluid-behaving interface.

in a dilute dispersion. Differences in the streamlines (with respect to ω) reflect the
momentum diffusion length

√
νo/ω being comparable to the drop radius a at these

frequencies, e.g. Ωoa2
∼ 1 at f ∼ 8 MHz. When subjected to an electric field, transfer

of momentum to the internal fluid increases with frequency, and the coupling of
the electro-osmotic flow in the diffuse layer to the outer flow produces a distinct
recirculation, the extent of which is limited by the momentum diffusion length
√
νo/ω. This confirms the inferences in § 3.1 on the transition from a rigid to a

fluid interface when Ωoa2
∼ MacD/νo. The superposition of the U- and E-flows to

solve the electrophoresis problem (right panels of figure 8) produces a weak external
velocity disturbance. As is well known (O’Brien & White 1978), this reflects the
electroneutrality of the particle and its diffuse layer: the applied electric field does
not exert a net force on the fluid, so the slowest-decaying disturbances in the U-
and E-problems vanish upon their superposition (leaving a more rapidly decaying
irrotational disturbance).
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FIGURE 9. Dynamic electrophoretic mobility (magnitude and phase) for hexadecane
volume fraction φ = 0.05, bulk SDS concentration c∞,0 = 5 mM and added NaCl
concentrations c∞

−
= 1 mM (blue), 5 mM (red) and 20 mM (yellow). Solid lines: full

theory (fluid sphere, mobile surface charge). Dashed lines: O’Brien’s formula (rigid
spheres, immobile surface charge). Symbols: experimental data. Theory is evaluated with a
drop radius a= 400 nm. With c∞

−
= 20 mM, the SDS concentration is above the c.m.c., so

the theoretical adsorption isotherm overestimates the surface-charge density and Marangoni
gradient parameter βc0. In this regime, the adsorption (and dynamics) may also be subject
to ion-steric effects, presently not accounted for.

Before concluding, we briefly compare fluid- and rigid-sphere models with three
dynamic mobility spectra (from a Colloidal Dynamics, LLC, AcoustoSizer II ESA
instrument) for SDS-stabilized hexadecane emulsions in figure 9. Here, the total SDS
concentration is fixed at 5 mM with three concentrations of added NaCl: 1, 5 and
20 mM. Note that, in contrast to customary theoretical interpretations of such spectra,
we have adjusted only one model parameter, the drop radius a. In general, it seems
reasonable to conclude that the fluid-sphere model captures the magnitude and phase
better than the rigid-sphere model. A notable breakdown of both models occurs
in the mobility magnitude with 20 mM of added salt. However, at the prevailing
concentrations of surfactant and salt, this experiment is conducted above the c.m.c.,
and under conditions where the concentration of Na+ ions at the interface probably
brings ion-steric effects into play. We cannot be sure why this adversely impacts the
model prediction of the mobility magnitude, while furnishing a remarkably excellent
prediction of the phase. It is therefore our intention to investigate this – from a much
more comprehensive experimental perspective – in a future study.

4. Summary
We have developed an approximate theoretical model for the dynamics of

non-conductive, ionic-surfactant-stabilized nano-drops under oscillatory forcing.
The model is advanced with several simplifying approximations for thin, highly
charged interfaces. Most notably, we neglected ion-concentration perturbations in the
diffuse and bulk regions, and the exchange of surfactant between the interface and
the immediately adjacent electrolyte. The first is questionable for highly charged
interfaces, but there is presently no obvious remedy, other than pursuing a direct
numerical solution. The other approximations are reasonable provided that the
frequency is much higher than the characteristic reciprocal surfactant exchange
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time and the characteristic reciprocal diffusion time. Such conditions prevail at the
megahertz frequencies encountered in electroacoustic and dielectric spectroscopy.

The model integrates an equilibrium adsorption isotherm to predict how the
interfacial charge and surface tension depend on the emulsion composition. An
analytical solution of the species, charge and momentum conservation relationships
furnishes the dynamic electrophoretic mobility spectrum. As highlighted by our
dimensional analysis of the drag coefficient, the full model adds three dimensionless
parameters to the standard rigid-sphere model: drop viscosity ratio, ratio of the
surface-concentration and fluid-momentum diffusivities, D/νo, and concentration
Marangoni number, Mac.

For SDS-stabilized hexadecane nano-drops, D/νo � 1 and Mac � 1, in which
case the interface undergoes a transition from rigid to fluid state at frequencies
for which ωa2/νo ∼ MacD/νo. Under these conditions, surfactant transport on the
interface is advection-dominated. This simplifies the full model so that electrostatic
polarization of the drop is dominated by dynamics of the diffuse-layer charge, and can
therefore be modelled using O’Brien’s dipole formula (for immobile surface charge).
Accordingly, previous attempts to fit rigid-sphere electrokinetic theory to ESA spectra
by invoking an ad hoc adjustment of the diffuse-layer surface conductivity might not
be appropriate.

When combined with a surface-adsorption isotherm derived from surface-tension
measurements, the electrokinetic model provides a self-consistent interpretation of
dynamic electrophoretic mobility. The interpretation does not require the isotherm to
be modified to account for counterion condensation or partial ionization, and it does
not require a dynamic Stern layer with unknown mobility and capacitance parameters.

For SDS-stabilized hexadecane drops, the model predicts experimentally measured
magnitude and phase spectra, with the drop size as the only fitting parameter. The
radius of the drops in our experiments is inferred to be ∼400 nm, which is in
reasonable accord with the size inferred by acoustic attenuation.

We acknowledge that much more comprehensive experimental evaluation is required.
This is beyond the scope of the present theoretical focus, and will therefore be
undertaken in a separate study. For example, the present model identifies regimes
at higher surfactant and added-salt concentrations where micelle formation and
ion-steric effects (not accounted for in the present work) may be important. These
would limit the present theory to lower surfactant and added-salt concentrations (and
relax constraints posed by our neglect of ion-concentration perturbations in the diffuse
layer).

Nevertheless, if SDS-stabilized emulsions – even at low surfactant concentrations
– turn out to have the high surface-charge densities inferred by the isotherm of
Borwankar & Wasan (1988), it will be interesting to revisit earlier interpretations
of ζ -potential for these interfaces by accounting for the strong electrokinetic
polarization effect, as captured by the standard electrokinetic model and, in part,
the thin-double-layer model of O’Brien (1988). Considerable caution should be
applied when adopting the Smoluchowski formula to convert mobilities to ζ -potential
for such highly charged interfaces, since this may significantly underestimate the
actual charge density – even when κa� 1.

On the other hand, the conclusions drawn by Roke and her coworkers (de
Aguiar et al. 2010) – that DS− ions occupy an anomalously large surface area –
require radical revisions to existing interfacial thermodynamic models to achieve
thermodynamic and electrokinetic consistency. Interestingly, an anomalously low
surface-charge density would presumably improve the validity of our neglect of ion
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concentration perturbations in the diffuse layer. We suspect that much more attention
needs to be given to accurately measuring and reporting drop size and its distribution
in nanoemulsions.
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