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Abstract

An engineering service project can be highly interactive, collaborative, and distributed. The implementation of such projects
needs to generate, utilize, and share large amounts of data and heterogeneous digital objects. The information overload pre-
vents the effective reuse of project data and knowledge, and makes the understanding of project characteristics difficult.
Toward solving these issues, this paper emphasized the using of data mining and machine learning techniques to improve
the project characteristic understanding process. The work presented in this paper proposed an automatic model and some
analytical approaches for learning and predicting the characteristics of engineering service projects. To evaluate the model
and demonstrate its functionalities, an industrial data set from the aerospace sector is considered as a the case study. This
work shows that the proposed model could enable the project members to gain comprehensive understanding of project
characteristics from a multidimensional perspective, and it has the potential to support them in implementing evidence-
based design and decision making.
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1. INTRODUCTION

Many service providers are now offering maintenance and
repair of long-life, high-value manufacturing products, often
the original equipment manufacturer such as Boeing, Airbus,
and Rolls-Royce (Baines et al., 2007). An example of such
engineering services can be found in maintenance repair
and overhaul (MRO) service providers for airline fleets.
According to the International Air Transport Association, the
global market for such providers was estimated at $50 billion
in 2011, an increase of 11% compared with 2010 (http://
www.iata.org). MRO service providers often analyze trends,
features, and failure for products, to enhance their operations
and effectiveness. However, one of the challenges faced is
that the service occurs globally, consists of complex service
systems, often has distributed teams/experts, and is supported
by data that is heterogeneous by nature (Zhen et al., 2011).

The aim of the research described in this paper is to dem-
onstrate how companies such as MRO providers can enhance
their decision making and deliver more timely and cost effec-
tive services through the automatic analysis of engineering
project data.

Within this paper a review of the current state of the art in
data analytics is provided and shows that there is a need to
provide tools and techniques to automatically analyze ser-
vices entering an MRO facility. In order to explore the
potential of using historical data and modeled knowledge to
support the understanding of project characteristics, this paper
proposes a characteristic learning and prediction model.
The model incorporates with some analytical approaches by
using data mining and machine learning techniques. It shows
how projects can be characterized, such as level of activity,
level of complexity, and sequence of activities.

Through the use of the analytical approaches, the model
aims to provide automatic project characteristic identification,
representation, and prediction, and support project members
in implementing evidence-based design and decision making.
To evaluate the approaches and demonstrate their functional-
ities, this paper describes the approach through the use of an
industrial data set from the aerospace maintenance repair and
overhaul sector. The data set focuses on unplanned repairs for
airline fleets.

The paper is organized as follows: Section 2 reviews re-
lated work. Section 3 introduces the characteristic learning
and prediction model and related analytical approaches.
Section 4 describes the industrial data set and demonstrates
the use of the model as a learning and prediction tool. Section
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5 concludes the paper and discusses the future activities of the
research.

2. RELATED WORK

Often large data sets are difficult for individuals to assess, and
information overload often prevents the effective reuse of pro-
ject data and knowledge (Paroutis & Al Saleh, 2009). This
can make the understanding of project characteristics difficult
(Griffin, 1997).

Many engineering service projects are highly collaborative,
interactive, and distributed. Hence, project members would be
unable to review all the data being captured through the product
life cycle, due to the restriction of time and ability. For most of
them, gaining a comprehensive understanding of project char-
acteristics could be a challenging task. This is evidenced by the
research being undertaken in domains such as product data
management (Mesihovic et al., 2004; Feng et al., 2009).

The service design of engineering products utilizes various
types of data and information such as the product features,
functionalities, and reliability, as well as the customer re-
quirements, market demands, and the organizational context
of the service (Petersen et al., 2003; Luchs & Swan, 2011).

In the design of engineering services, a thorough under-
standing of the characteristics of previously completed service
projects is important (Shi, Gopsill, Snider, et al., 2014). These
characteristics cover the aspects of engineering process, project
performance, activity sequence, communication content, the
scale of collaboration, and resource consumption. Understand-
ing these multiple characteristics and their inner relationships is
a complex process, but one which is considered critical for the
design engineers to perform the process design, task planning,
resource allocation, and decision-making related work in an
effective manner (Shi, Gopsill, Newnes, et al., 2014; Snider
et al., 2014).

Numerous studies have shown that the data and knowledge
of historical service projects can be used as guidance for the
design of future engineering services (Baines et al., 2007;
Doultsinou et al., 2009; Settanni et al., 2015). The work by
Zhang et al. (2012) describes an engineering service approach
for large construction machines. Their findings describe how
it is important to analyze the design, in-use, and failure data
for the product and the supporting of integrated services.
This is also required when designing more complex engineer-
ing products and services such as an aircraft. Hence, the ser-
vice knowledge and generic service process regarding
product components are necessary to be identified from the
historical service data and records (Shi et al., 2015).

Research has also demonstrated that these complex engi-
neering service systems integrate people, processes, and pro-
ducts (Chuang, 2007; Goh et al., 2015). Because large-scale
engineering projects include multiple types of characteristics
that cross disciplines and functions, their data sets are often
distributed and interpreted by the project members within dif-
ferent areas of expertise (Li et al., 2009). To achieve the ef-
fective administration and management for such projects,

the product and process knowledge may need to be captured
from the communication data, individual behaviors, and team
interactions (Wasiak et al., 2011). To this end, it is important
that the understanding of project characteristics should con-
sider multiple perspectives.

2.1. Understanding engineering project
characteristics

The understanding of project characteristics has a direct influ-
ence on project success. The comprehensive understanding
could help project members optimize the project structure,
refine the project granularity settings, and make rational
decisions on product design, manufacturing, and marketing
(Cho et al., 2009; Li, Xie, et al., 2009).

In practice, project characteristics often have various defi-
nitions according to information needs. From an engineering
design perspective, they are defined as the high-level interpre-
tations of project features, which are associated with the pro-
ject operation and management tasks (Snider et al., 2014). For
certain types of projects, their characteristics can be defined in
explicit forms. The characteristics of software engineering
projects include, for example, the design paradigm, program-
ming language, database type, and amount of created source
code (Walter, 2014). However, project characteristics can
also be defined in implicit forms. For example, from a man-
agement perspective, project characteristics usually contain
performance indicators such as elapsed time and cost (Cho
et al., 2009). Meanwhile, the uncertainty and complexity
are also considered as the key aspects of project characteris-
tics (Ahmad et al., 2013). From an information management
perspective, the trace of digital object creation and evolution
can be considered a characteristic enabling project members
to have a detailed understanding of engineering design
processes (Gopsill et al., 2014). From a human–computer
interaction perspective, the change of sentiment or topic of
communications provides project characteristics aimed at
assisting project members to monitor work complexity and
track project progress (Jones et al., 2015).

Engineering projects often involve multiple collaborators,
utilize distributed resources, and handle heterogeneous and
fragmented data. Consequently, their characteristics can be dy-
namic and time sensitive in nature. Understanding the evolv-
ing characteristics can be challenging for most project mem-
bers (Engwall & Jerbrant, 2003; Meredith & Mantel, 2011).
In most cases, the processing of project data, capturing, and
modeling the project knowledge is often undertaken using
expert effort to assess, evaluate, understand, and interpret
the information into a usable form (Pascal et al., 2013).
This understanding and identification of characteristic is largely
dependent upon the availability, capability, and experience of
the project members. The following issues can occur due to
these dependencies:

† High cost on knowledge discovery and capture: In the
characteristic understanding process, the knowledge
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concepts contained by the project data need to be dis-
covered and captured. To perform this task, data items
created during the project operation should be reviewed
and analyzed. The identified knowledge concepts are
often organized through the use of knowledge models,
such as ontology, concept map, or semantic web. Rely-
ing on manual work means this task requires intensive
efforts from the knowledge experts or experienced pro-
ject members, implying it can be considerably time con-
suming and expensive.

† Diversified perspectives of characteristic understand-
ing: In order to understand the project characteristics
at the appropriate level of granularity, project members
are required to have the knowledge about the project
components and the interrelationships between them
(Shi, Gopsill, Snider, et al., 2014). Such knowledge
could be the specific and precise descriptions of tasks,
subsystems, project teams, the sequence of multiple
tasks, the dependency of multiple subsystems, and the
responsibilities of different project teams. Within a ser-
vice project, numerous project members and project
components are involved. Chandrasegaran et al.
(2013) describe how knowledge sharing and utilzation
among the project teams can be difficult. Various
knowledge capabilities of the project members could
lead to different viewpoints/understanding for identical
project components (Chungoora et al., 2013).

† Low capability of processing complex data: A service
project could generate various types of data, for exam-
ple, e-mails, instant messages, formal reports, spread-
sheets, computer-aided design models, and simulation
files. During the characteristic learning process, the pro-
ject members need to spend time on reviewing and ana-
lyzing such data. However, due to the restrictions on
time and capability, processing large amount of com-
plex data using manual work is not always realistic.
More important, such data is likely to be generated by
multiple sources, and have heterogeneous and frag-
mented forms, so that the manual data processing can
cause the analysis results to lack accuracy or be problem-
atic. This can be exacerbated if the project members lack
certain knowledge, or when human errors occur.

To overcome these challenges, the analytical techniques such
as data mining and machine learning need to be adopted.

2.2. Data mining and machine learning based models

With the application of information and communication tech-
nology, large volumes of data can be generated, captured, and
stored during the project execution process. The data contains
detailed information about project objectives, processes, out-
comes, problems encountered, and lessons learned, so that it
can be used to facilitate the understanding of project charac-
teristics (Harding et al., 2006; Choudhary et al., 2009).

To process the data in an effective manner, the use of data
mining and machine learning techniques is considered to be
critical. Data mining includes specifically designed computa-
tional approaches that could achieve automatic knowledge
discovery, condition monitoring, pattern recognition, and as-
sociation analysis. Meanwhile, machine learning includes ad-
vanced statistical methods that could achieve automatic deci-
sion making, predictive modeling, data classification, and
data clustering. In practice, both techniques have been applied
in various fields to create intelligent systems or analytical ap-
proaches (Chen et al., 2012; Kamsu-Foguem et al., 2013).

As stated by recent research, there is an increasing trend of
using data mining and machine learning in manufacturing
fields (Wang, 2007; Köksal et al., 2011; Wu et al., 2012).
Numerous applications and models have been proposed and
introduced by the research community, with the aim of
achieving engineering knowledge management, production
process management, project characteristic identification, and
performance monitoring.

To capture the process-related knowledge and identify the
sequential activities of engineering projects, Shi, Gopsill,
Newnes, et al. (2014) proposed an analytical approach based
on data mining and nature language processing techniques.
The approach extracts knowledge concepts from engineering
documents, and automatically interprets activity sequences of
engineering projects. The output of this approach provides
pictorial and numeric knowledge representations to the pro-
ject members. The aim is to enable the project members to
learn the structures of different projects processes, and also
to help them understand the similarity and normality of
such processes.

To understand the characteristics of the engineering design
process, Gopsill et al. (2014) proposed an analytical tool. It
applies metadata analysis and frequency analysis to identify
the evolution of product design activities, that is, the creation
and modification of computer-aided design and computa-
tional fluid dynamics files. By using this approach, the pro-
ject members are able to assess the quantity of generated
digital objects at different project stages, and to understand
the dependency changes of such files over time.

For MRO activities, the analysis of service records would
assess the product condition and predict the fault. Certain ma-
chine learning techniques such as support vector machine, ar-
tificial neural networks, and decision trees are considered
useful. These data classification and decision-making ap-
proaches can be used to validate the product running status
on a real-time basis by analyzing the operating data and his-
torical data. Once any unexpected status of the product has
been detected, these approaches can make intelligent deci-
sions in an automatic manner (Widodo & Yang, 2007; Kan-
kar et al., 2011).

To design the preventive maintenance solutions for com-
plex engineering products or infrastructures, the integration
of data mining and machine learning is necessary. For in-
stance, to diagnose the fault of aircraft engines, Sahin et al.
(2007) proposed a model that integrates Bayesian networks,
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particle swarm optimization, and parallel computing. More-
over, to predict the risk of failures of a power grid, Rudin
et al. (2012) introduced a system framework that employs su-
pervised learning, ranking, and mean time between failures
modeling.

From the examples described in this section, there are var-
ious information needs that are dependent upon an indi-
vidual’s role; hence, the creation of a model for learning
and predicting the characteristics of collaborative and com-
plex engineering projects may need to apply the combina-
tions of techniques. However, presently there is still limited
research describing how to select appropriate techniques to
create the model and assist in the analysis of heterogeneous
engineering data (Wagstaff, 2012). Hence, the adaptive capa-
bility and reusability of such models still need to be improved.

3. PROPOSED MODEL AND APPROACHES

The core modules of the proposed model are characteristic
learning and characteristic prediction. As shown in Figure 1,
the learning module identifies pattern-related, process-related
and knowledge-related characteristics from historical project
data. It categorizes such characteristics, and then sends
them to the prediction module. The prediction module treats
the categorized characteristics as the training data, and then
applies them to predict the characteristics of ongoing projects.
During the learning and prediction processes, a feature-based

knowledge representation of each project is created. The crea-
tion of such knowledge representation involves knowledge-
based feature selection and characteristic representation
modules. The detailed information of this model and involved
approaches is given in the following sections.

3.1. Feature modeling

During the characteristic learning process, a project is repre-
sented using a multilayer structure (see Fig. 2). From top to
bottom, the layers contain project layer, characteristic layer,
feature layer, and data layer. For any information elements
contained in the adjacent layers, a one-to-many relationship
is used to connect them. Based on this structure, a project
can be represented by a set of hierarchical characteristics:
each characteristic is represented by a set of features, and
each feature is derived from the content of multiple data items.

In the data layer, the data items are gathered from different
project teams. To enable the application of data mining and
machine learning techniques, all these data items should be
stored in digital formats.

In the feature layer, all the project features are extracted by
analyzing the content of data items. Project feature is the
atomic information element in this model. Each project fea-
ture contains a meaningful description, and such description
will be used to distinguish one feature from the others, or link
the feature to the others. The fact that the feature does not have

Fig. 1. The modules of the model.
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format restrictions means it can be represented by a term,
phrase, image, or file.

In the characteristic layer, a project characteristic com-
prises a set of features with interrelationships. These relation-
ships are identified by analyzing the feature attributes and
contexts. In this work, project characteristics are defined to
have three forms: pattern related, process related, and knowl-
edge related. The features contained in a pattern-related char-
acteristic are independent of each other. For example, the
participation of team members is a pattern-related charac-
teristic; the list of equipment names is also a pattern-related
characteristic. Such features are identified by counting the
occurrence of people/equipment names contained in certain
data items. The features of a process-related characteristic
are time dependent. For example, the fatigue test activity 1
and the fatigue test activity 2 comprise a process-related char-
acteristic. Such features are the adjacent activities being
performed during the project. The features contained in a
knowledge-related characteristic are time dependent, and they
also have semantic associations with each other. For example,
the assembly activity 1, the assembly activity 2, the constrain
of assembly activity 1, and the constrain of assembly activity 2
comprise a knowledge-related characteristic. Such features
include the activities, the associations of the activities, and
the constrains of the activity implementation.

Feature modeling is an automatic approach for extracting
features from the project data. It contains three subtasks:

† Feature identification: It identifies potential features
from the data content, and then organizes them as a fea-
ture set.

† Feature selection: It selects certain features from the fea-
ture set, and eliminates the ones with low significance.

† Feature matching: It identifies the relations among the se-
lected features, and then organizes them as feature tuples.

The feature identification task applies named entity recogni-
tion (NER) and natural language processing (NLP). NER is
used to automatically identify the named entities from the
project data. Named entities indicate the terms or phrases re-
lated to date, location, organization, name of people, and
name of artifact. NLP contains multiple subtasks, that is, to-
kenization, part of speech tagging, stop words removal, and
stemming. As a fundamental task of content analysis, NLP
is used to covert textual information into meaningful tokens
or phrases.1

To understand the feature identification process, a sample
data item is shown in Figure 3. It is a part of the report being
generated by an aircraft service project. After implementing
the feature identification, certain named entities and tokens
are identified from the data content (see Table 1). Three types
of operations, that is, regular expression, NER, and NLP, are
applied. For example, the time-related information elements
with international standard date format YYYY-MM-DD
can be identified by using the following regular expression:

‘‘ ? : ? : 1½ � 1f gnnd 1f gnnd 1f gnndf1gð Þn ? : 2½ � 1f gnndf3gð Þð Þð Þ
� � : nn=:½ � ? : 0½ �? 1� 9 n� ½1½ � 012 Þ� ½� : nn=:½ �ð
� ? : ? : 0� 2½ �?nndf1gð Þn ? : 3½ � 01½ �f1gð Þð ÞÞ ?! nnd½ �ð Þ’’

The artifact name fuselage and the people name Bob Lewis
can be identified by using NER. The identification methods
regarding different types of features are shown in Table 1.

After this process, the identified elements are treated as the
potential features of the project, which will be processed by
the feature selection task in the next step. In this model,
only some of the identified named entities or tokens will be

Fig. 2. A multilayer project representation.

1 In this work, the open-source toolkit NLTK is applied to implement the
natural language processing related tasks. It can be downloaded from http://
www.nltk.org.
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recognized as project features. Feature selection is a variable
selection method that is applied to select the essential vari-
ables from a given data set based on predefined rules or mod-
eled knowledge (Gheyas & Smith, 2010; Shi & Setchi, 2013).
It could filter out the features with low significance, so that
the model could avoid the overfitting problem and deal
with lower dimensional data.

In practice, the implementation of service projects often
requires domain-specific knowledge. To identify the signifi-
cance of features, the feature selection task should also apply
the same knowledge. Such knowledge also helps the feature

matching task detect the relations among the features. After
this process, the selected features will be organized as feature
tuples. For each project, a set of feature tuples will be then
generated.

3.2. Feature-based characteristic representations

In this work, feature tuples from different projects are required
to be interpreted using normalized data representations, for
example, vector-based representation and sequence-based rep-
resentation. Let p denote a project, f denote a project feature,

Fig. 3. A data item generated by an aircraft service project.

Table 1. Features with descriptions

Index Description ID Method Index Description ID Method

1 Project ID Regular expression 9 Creation date Regular expression
2 Product model NER 10 Target date Regular expression

Regular expression
3 Universal location number Regular expression 11 Part name NER
4 Manufacturer serial number Regular expression 12 Manager name NER
5 Customer information NER 13 Detailed part information NER, NLP

NLP
6 Service type NER 14 Detailed solution NER

NLP
7 Service description NER 15 Engineer name NER

NLP
8 Product operation time Regular expression 16 Completed date Regular expression

Note: NER, Named entity recognition; NLP, natural language processing.
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t denote a feature tuple, and K denote a knowledge base. To
represent pattern-related feature tuples, the bag-of-words model
and vector space model are applied,

tpattern ¼ ½wð f1Þ, wð f2Þ, : : : , wð fnÞ�0, (1)

where w is a function to normalize the feature frequency.
To represent process-related feature tuples, the sequence-

based data representation is applied,

tprocess ¼ gð f1,t1 , a1Þ, : : : , gð fn,tn , anÞ, (2)

where tn is the timestamp of the feature, and tn . tn21; g is a
function to map the feature fn,tn to a specific activity an.

To represent knowledge-related feature tuples, the knowl-
edge-based feature vector is used,

tknowledge ¼ ½wð f1,t1 , K1Þ, : : : , wð fn,tn , KnÞ�0, (3)

where w is a function to map the feature fn,tn to a set of knowl-
edge concepts Kn, where Kn # K.

A project characteristic could include multiple feature tu-
ples. These tuples should explicitly describe the meaning of
this characteristic. Let cN denote a project characteristic
with a specific meaning, for example, task complexity level;
it could be represented by a collection of feature tuples,

cN ¼ fðt1, ‘NÞ, : : : , ðtk , ‘NÞg, (4)

where ‘N is the label that indicates the meaning of cN .
Based on the multilayer structure mentioned previously, a

project can be represented by a combination of characteristics;
that is, p ¼ fCpattern, Cprocess, Cknowledgeg, where Cpattern,
Cprocess, and Cknowledge are the sets of different characteristics.

3.3. Characteristic learning process

To understand the meaning of feature tuples, the characteris-
tic learning approach applies two strategies: labeling the un-
labeled feature tuples based on prior knowledge, for example,
based on a set of prelabeled feature-tuples; and labeling the
feature tuples based their similarities (it is for the situation
that the prior knowledge is insufficient).

With the first learning strategy, let cN denote a project char-
acteristic with label ‘N ; cN contains a set of labeled tuples, that
is, cN ¼ {(t1, ‘N) , . . . , (tk, ‘N)}. For any unlabeled feature
tuple (ti, ‘0), the label ‘N will be assigned to ti, if ti could
satisfy ti [ cN , or ti and tj satisfy sim(ti, tj) . a, where tj

[ cN , a is a defined threshold. In other words, if an unlabeled
feature tuple is included by an identified project characteris-
tic, then the label of the characteristic will be assigned to
this tuple. If the feature tuple is not included by any identified
project characteristic, but it is similar to some tuples of that
characteristic, then the label of the characteristic will be
assigned to this tuple.

The second learning strategy is a semisupervised approach
that means it could work with insufficient prior knowledge.

Given a set of unlabeled feature tuples X ¼ f(t1, ‘0), . . . ,
(tn, ‘0)g, using clustering approaches, these tuples will be cat-
egorized into j clusters, that is, X¼ fC1, . . . , Cjg, where Cj ¼

f(tm, ‘0), . . . , (tn, ‘0)g. The feature tuples contained by the
same cluster often have high similarity with each other in na-
ture; thus, all these tuples should represent an identical project
characteristic. The learning process then only needs to assign
a label to the cluster, that is, ‘N ! Cj, instead of each feature
tuple.

To implement the learning strategies, similarity measure
approaches are required. For the vector-based representation,
the similarity measure is based on,

simðti, tjÞ ¼
ti � tj

jtij jj jjtjjj
: (5)

For the sequence-based representation, an edit-distance based
approach is applied (Shi, Gopsill, Newnes, et al., 2014),

dðti, tjÞ ¼ min
qðti, tjÞ þ dðti�1, t j�1Þ
qðti, 1Þ þ dðti�1, tjÞ
qð1, tjÞ þ dðti, t j�1Þ

8<
: , (6)

where q is a cost function; d(1, 1)¼ 0; and d(ti, tj)¼ 0, if ti

and tj are identical.
The sequence similarity is calculated by using,

simðti, tjÞ

¼ 1� dðti, tjÞ
minð tij j, tj

�� ��Þ , if a � dðti, tjÞ � b�minð tij j, tj

�� ��Þ
0, otherwise

8<
: ,

(7)

where jtij and jtjj indicate the length of ti and tj; a and b are
defined thresholds, where 0�a�b�min (jtij, jtjj),b[ [0, 1].
For example, when b is 0.5, the similarity of ti and tj will be
considered as 0, if the edit distance between them is greater
than the half-length of the shorter one.

3.4. Characteristic prediction process

In practice, the data generation of a project is a gradual pro-
cess. It implies that the prediction of characteristics for an on-
going project at its early stage needs to utilize incomplete
data.

Under this circumstance, the training data applied by the
characteristic prediction process should reflect the dynamic
relations among the time, data, and evolution of project char-
acteristics. Assume a project p is contained by the training
data, which has a set of characteristics, that is, p ¼ fc1, . . . ,
cNg, and each of the characteristics contains a set of feature
tuples, that is, cN ¼ f(t1, ‘N), . . . , (tk, ‘N)g. To perform
the prediction on a real-time basis, the representation of
characteristic needs to be segmented based on predefined time
intervals. Consequently, a single characteristic will have multi-
ple representations, each of which links to a specific project
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stage. For a characteristic cN , its segmented representations are
represented as,

cN,t1 ¼ fðt1, ‘NÞ, : : : , ðtn, ‘NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{t1

g,

cN,t2 ¼ fðt1, ‘NÞ, : : : , ðtn, ‘NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{t1

, ðt1, ‘NÞ, : : : , ðtn, ‘NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{t1þDt

g,

: : :

cN,tk ¼ fðt1, ‘NÞ, : : : , ðtn, ‘NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{t1

, : : : , ðt1, ‘NÞ, : : : , ðtn, ‘NÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{t1þðk�1ÞDt

g,
(8)

where Dt is the length of time interval.
For a project, it is represented by using the time-segmented

characteristics,

pt ¼ffc1, : : : , cNgt1
, fc1, : : : , cNgt1þDt , : : : ,

fc1, : : : , cNgt1þðk�1ÞDtg, (9)

where k is the number of time intervals.
As an example, Figure 4a shows the process of a service

project. This project has three different stages: planning stage,
problem-solving stage and evaluation stage. The data items
regarding each stage have various file format and storage
locations. In this case, each stage takes approximately 30%
of the project progress. The process segmentation therefore

is implemented based on the 30% interval; that is, the project
process will be segmented into three subprocesses that map to
the stages accordingly. As shown in Figure 4b, each subprocess
is used to represent the project characteristics.

In practice, the time interval could be defined as relative
value, that is, percentage, or absolute value, for example, a
single day or week. It can also be defined as arbitrary value;
for example, if the project stage I covers the first 10 days, the
project stage II covers the following 15 days, and the project
stage III covers the following 30 days, then the intervals can
be defined as ft1 : 10, t2 : 25, t3 : 55, . . .g.

In the prediction process, defining the time interval consid-
ers the details of the input data. Let (tk, ‘0) denote an unla-
beled feature tuple with a null characteristic label. If the time-
stamps of its contained features are in a time range (t1, tn),
then this time range will be applied to define the time interval
Dt, for the purpose of segmenting the training set. In the next
step, the prediction process will assign a label to tk, according
to the time-segmented training set. The detailed process is
summarized as the following steps:

STEP 1. For a given feature tuple tk, identifying its covered
time range (t1, tn) based on its contained features.

STEP 2. Determining a time interval Dt, where Dt � (t1, tn).

STEP 3. For a given training set, converting the characteris-
tic representations into time-segmented representations by
using Dt.

Fig. 4. Process segmentation-based defined time interval.
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STEP 4. Initializing the prediction ‘0! tk based on the time
range t1 þ Dt.

STEP 5. Finding the time-segmented characteristic representa-
tions with the time range t1 þDt from the time-segmented train-
ing set, that is, pt1þDt ¼ fc1, . . . , cNgt1þDt.

STEP 6. Measuring the similarity between tk and each of the
element contained by pt1þDt.

STEP 7. Determining ‘0 based on the similarity measure re-
sults, that is, ‘j! ‘0, if argmaxðsimðtk,c1Þ, : : : , simðtk,cNÞÞ
¼ simðtk,cjÞ, where j [ [1, N ].

According to the last step, ‘j is assigned as the label of tk;
thus, the feature tuple is predicted to be correlated to the pro-
ject characteristic cj.

4. INDUSTRIAL DATA SET: AEROSPACE CASE
STUDY

To evaluate the proposed model and approaches, an industrial
data set captured from an aerospace manufacturer is utilized.
In this case study, 156 aircraft engineering service projects are
considered. Each one of them has a data repository that con-
tains the communications, technical documents, and work-
flow data. The data items contain the detailed information re-
garding the project objectives, problem definitions, operation
processes, technical solutions, and evaluations. In this case
study, three tasks are included, in order to investigate the
learning of pattern-related characteristics, process-related
characteristics, and the learning and prediction of knowl-
edge-related characteristics.

4.1. Learning pattern-related characteristics

In this task, the project activity level is recognized as a pattern-
related characteristic. It indicates the frequency of key activities
being performed during the project execution. The calculation
considers the volume of activity in the workflow. In general, the
activity level could indicate the level of project input or output.

In general, the feature selection process follows the five Ws
(Who, What, Where, Why, and When) and one H (How) prin-
ciple. For most service cases, these features are the key
elements to form the characteristics. Therefore, the feature
selection process is a generalized approach that suits other
types of service cases with different contexts. In this scenario,
the involvement of core project members and the name of key
activities are considered. Such features are extracted directly
from the data content using NER.

During the learning process, the feature modeling approach
analyzes the project data, and then generates a feature set re-
garding each project stage. The feature set includes the project
member names, project activities, and timestamps. Let sk

denote a project stage that covers a range of time; where
sk ¼ ft1, . . . , tkg, the feature set regarding sk is

Fsk ¼ ff1,1 , f2,t2 , : : : , fk,tkg,

and the vector-based representation should be

csk ¼ ½wð f1,t1Þ, wð f2,t2Þ, : : : , wð fk,tkÞ�
0
:

The activity level regarding sk is calculated using

levðskÞ ¼
Pk

j¼1 f j,tjPN
j¼1 f j,tj

,

where N is the total number of the features being identified.
For example, if the task planning activities have been iden-
tified 6 times in the initial project stage, and the other activ-
ities have been identified 20 times at the same project stage,
then the activity level regarding task planning at the initial
project stage should equal to 6/(20 þ 6) ¼ 0.23.

Figure 5 shows the activity levels of two different service
projects. In general, the life cycle of both projects contains
four stages: the information request stage (the initial stage),
requirement finalisation stage (the early to middle stage), ser-
vice design stage (the middle to late stage), and evaluation
stage (the late stage).

Because the projects have the same type of service require-
ments, that is, repairing the wing surface corrosion, similar
amounts of activities regarding task planning are expected
at the information request stage. According to the figure,
both projects have similar activity levels at the initial stage.

Next, the cumulative activity level of Project A has a more
rapid increasing trend than Project B. The reason is that Pro-
ject A needs to deal with multiple corrosion locations, but
Project B only deals with one. At the requirement finalization
stage, Project A requires a higher level of activity than Project
B, as it needs to be received and send more information.
Meanwhile, at the service design stage, Project A requires a
higher level of activity than Project B, as it needs to issue a
higher volume of repair design solutions. At the evaluation
stage, Project A again requires a higher level of activity
than Project B, as it needs to perform more evaluation tasks.
According to the figure, Project A has the higher activity
levels at these stages than Project B.

For the reason that Project A requires more complicated en-
gineering process and involves a higher volume of collabora-
tions, the activity level regarding Project A could be affected
more easily. According to the visualization, the change of activ-
ity level regarding Project A is clearly more frequent than Pro-
ject B. This indicates the certainty regarding the execution of
Project A is less than Project B, which corresponds to the facts.

Meanwhile, Project A has heavier workload than Project
B; thus, it has a higher overall activity level. According to
the visualization, the growth rate of activity level of Project
A is clearly higher than Project B. This indicates Project A
needs to complete more work than Project B within the
same period of time, which also corresponds to the facts.
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Fig. 5. Activity levels of two service projects.
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4.2. Learning process-related characteristics

In this task, the activity sequence is defined as a process-
related characteristic. Given a project, the activity sequence
is the representation of its workflow or design process. The
understanding of the activity sequences regarding a type of
projects could help the project members to implement the
workflow standardization, design process optimization, and
process knowledge reuse.

In the feature modeling process, NLP, content analysis, and
modeled knowledge are used to analyze the data items on
both the content and metadata levels. The activities are iden-
tified from the data content, and their activities are identified
from the metadata. These activities are then organized as
chronological order according to the timestamps.

Figure 6 shows the activity sequences being generated
from the data set. Each row indicates the activity sequence
of a project, and each Tx indicates an activity-related feature.
For each activity sequence, its features are organized in a
chronological order.

In order to compare the characteristics of different projects
quantitatively, the similarity between a pair of sequences is
measured by using Eqs. (6) and (7). The applied strategy is
as follows: for two projects having similar characteristics,
the sequence similarity between them would be high; for
two projects having dissimilar characteristics, the sequence
similarity between them would be low.

In this scenario, the fact is that Project P5 and P6 have the
same type of service requirement, that is, corrosion damages,
but Project P3 has a different one, that is, lightening damages.
Therefore, the processes regarding P5 and P6 are supposed to

be similar, and the processes regarding P6 and P3 should be
different.

According to the learning approach, the edit distance be-
tween two sequences is equal to the number of operations
to convert one to the other (see the detailed explanation in
Section 3.3). For example, the number of operations (i.e.,
edit distance) to convert P5 to P6 (or P6 to P5) is equal to
11 (based on Eq. [6]). The edit distance is converted to a nor-
malized similarity value with the range between 0 to 1. Based
on Eq. (7), the similarity value regarding P5 and P6 is 0.656.
The similarity value regarding P6 and P3 is 0.333. The results
imply that P5 and P6 have similar characteristics, but P6 and
P3 have different ones. In other words, the sequences of P5
and P6 have higher volume of similar patterns, but sequences
of P6 and P3 have lower volume of similar patterns, which
correspond to the visualizations shown in Figure 6.

4.3. Learning and predicting knowledge-related
characteristics

In this task, operational complexity is defined as a knowledge-re-
lated characteristic. It covers time spending, resource consump-
tion, and technical difficulty. Operational complexity of a service
project is typically dynamic at different stages. The measure of it
needs to consider the proposition of certain activities at the spe-
cific project stage. For example, the activity regarding “issuing
repair instruction” has higher operational complexity than “issu-
ing technical deposition” and “issuing answer.” If a project is at
stage X and has higher proportion of “repair instruction” than an-
other project, its operational complexity should be at a higher

Fig. 6. Activity sequences of multiple service projects.

Table 2. Feature based representations for service projects

Incoming
Message

Outgoing
Message

Operator
Damage
Report

Stress
Test

Fatigue
Test

Repair &
Design

Approval
Technical
Deposition

Repair
Instruction Answer . . . Total

P1 0.083 0.104 0.021 0.013 0.011 0.033 0.003 0.051 0.009 . . . 1
P2 0.053 0.063 0.017 0.008 0.005 0.029 0.043 0.000 0.013 . . . 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status In. Out. In. Int. Int. Int. Out. Out. Out. . . . . . .
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level than the other one. In practice, the understanding of op-
erational complexity in an early stage could help the project
members to improve the rationality of the decision making
and the effectiveness of managing time and resource.

In the feature modeling process, NLP, NER, content analysis,
frequency analysis, and knowledge bases are employed. The
features identified from the project data include activity types,
timestamps, part information, and technical terminologies.
Each feature has an attribute to indicate the status of data trans-
action, which is identified based on the modeled knowledge. For
example, initializing fatigue test is classified as an activity with
internal data transaction; preparing repair instruction is classi-
fied as an activity with outgoing transaction; receiving operator
damage report is classified as an activity with incoming trans-
action. The feature vector with such attributes is used as the
data representation for the project (see Table 2).

In this scenario, the model employs the semisupervised
learning. Clustering approach is used to create a training set
from the historical project data. It categorizes the projects
into multiple clusters. During the clustering process, Silhou-
ette score is used to determine the number of clusters in an au-
tomated manner (Dudoit & Fridlyand, 2002). For the given
data set, the clustering result is shown in Figure 7. The opti-
mized cluster number is equal to six, and the projects within
the same cluster have the identical color.

To understand the meaning of each cluster, the following
rules contained in the knowledge bases are considered:

† The projects with high outgoing, low incoming data
transactions have the low level of complexity.

† The projects with low outgoing, high incoming data
transactions have the high level of complexity.

† The projects with high internal data transactions have
the high level of complexity.

† The projects with balanced outgoing and incoming data
transactions, and low internal data transactions, have the
medium level of complexity.

Based on these rules, the level of complexity regarding
each cluster is determined (see Table 3).

The projects with labels are treated as the training data,
which will be used to predict the operational complexity
of unlabeled projects. To evaluate the performance of the
characteristic prediction process, 10-fold cross-validation
is used. The set of labeled projects is divided into a training
set (90% of the data set) and a test set (10% of the data set).
During the evaluation process, the prediction algorithms, in-
cluding support vector machine, artificial neural network,
and random forest, are tested with the model respectively.
In this evaluation, F score is used as the prediction perfor-
mance measure.

In the test set, each project has a label ‘L being assigned by
the learning process previously. Such a label is considered as
the ground truth, and it is invisible to the predictors. In the
training set, the label of each project is visible to the predic-
tors. The predictors need to determine what label should be
assigned to the unlabeled projects in the test set based on la-
beled projects in the training set. The project representations
in both test set and training set are segmented by using nor-
malized time intervals, which are 0%–30%, 0%–50%, 0%–
70%, and 0%–90%. According to the training set, the predic-
tion process will assign a label to each test data, for all the
stages, for example, ‘1 ! 0%–30%, ‘2 ! 0%–50%, ‘3 !
0%–70%, and ‘4 ! 90%. The evaluation process is then to
compare whether the assigned labels f‘1, ‘2, ‘3, ‘4g are iden-
tical to the ground truth ‘L. The F score of this prediction pro-
cesses is shown in Table 4.

As shown in the table, the artificial neural network based
model has the best performance with 0%–30% and 0%–

Fig. 7. The clustering result regarding operational complexity.

Table 3. Operational complexity scores of the clusters (C1–C6)

Outgoing Internal Incoming Complexity

C1 0.3331 0.0381 0.6288 High
C2 0.2735 0.2578 0.4687 Medium
C3 0.1497 0.6062 0.2441 High
C4 0.5551 0.1569 0.2880 Low
C5 0.3530 0.3990 0.2480 Medium
C6 0.1760 0.4290 0.3950 Medium

Table 4. The F score of the prediction model

0%–30% 0%–50% 0%–70% 0%–90%

SVM based 0.712 0.745 0.802 0.909
ANN based 0.732 0.761 0.844 0.928
RF based 0.725 0.773 0.848 0.917
Average 0.723 0.760 0.831 0.918

Note: SVM, Support vector machine; ANN, artificial neural network; RF,
random forest.
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90% time intervals, and the random forest based model has
the best performance with 0%–50% and 0%–70% time inter-
vals. In general, the prediction performance is proportional to
the completion level of projects. It implies that the more data
is considered by the model, the better prediction performance
it will be. By using the model, the operational complexity of a
service project could be predicted with a 70þ% accuracy by
using 30% of the project data.

5. CONCLUSIONS AND FUTURE WORK

The engineering service project needs to take into account
various types of information such as the product features,
functionalities, and reliabilities, as well as the customer re-
quirements, market demands, and organizational context.
Consequently, a large amount of data and heterogeneous
digital objects are generated, utilized, and shared during the
design process. The information overload prevents the effec-
tive reuse of project data and knowledge, making the under-
standing of project characteristics difficult.

In order to improve the characteristic understanding pro-
cess, the requirements such as reducing the human interven-
tion, utilizing the collective knowledge, and developing the
data-driven models are critical. It implies that the integration
of data mining and machine learning techniques with the un-
derstanding process is necessary.

The work presented in this paper proposed a characteristic
learning and prediction model and data analytical approaches
based on the techniques including natural language process-
ing, named entity recognition, content analysis, sequence
analysis, feature modeling, data clustering, and classification.
The learning process of the model identifies the pattern-re-
lated, sequence-related, and knowledge-related characteris-
tics from the project data. Furthermore, the prediction process
of the model predicts the characteristics of projects at their
early stages, based on the incomplete data.

The case study using an industrial data set shows the pro-
posed model and approaches have the capability to learn the
characteristics of collaborative engineering service projects,
and also to predict certain characteristics of the projects based
on incomplete data. Future work includes the test of the model
with different data sets, the improvement of learning, and pred-
ication processes by integrating various knowledge resources.
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