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ABSTRACT. Well-defined and enforceable property rights are usually seen as a
prerequisite for optimal resource management. However, the interaction effects between
different renewable resource pools with different ownership structures are often not
well recognized. In this paper we introduce these interaction effects in optimal fishery
management theory. Various property rights regimes and market structures for fisheries
are analyzed. Furthermore, we perform a sensitivity analysis with respect to the carrying
capacity of a fish lake for the different agents. We describe various approach paths towards
the new equilibrium after opening up to a common market. We show that a decline in
market power leads to a lower stock and a higher supply. Furthermore we identify
conditions under which market power might reduce profits.

1. Introduction
Efficiency of natural resource use is strongly related to property rights
regimes and market structures. For all privately owned resources, be they
renewable or nonrenewable, resource use and efficiency depend on the
market structure for the product derived from the natural resource. For
the case of privately owned nonrenewable resource stocks this has been
addressed in great detail in the literature (see, e.g., Dasgupta and Heal,
1979 and Groot et al., 2003 for a brief survey). Alternatively, and more
scarcely, attention is paid to the case where there is a single nonrenewable
resource that is common property of a given number of firms (see, e.g.,
Karp, 1992). Usually, the focus is on welfare losses due to the common
property regime. For renewable resources such as fisheries, open access
is more common in the literature, based on real world evidence. In some
respects, Datta and Mirman (1999) have the same approach as Karp, but
for renewable resources. They consider the case of two types of fish,
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harvested from spatially separated pools, where both are common property
of a given number of countries. And they show that a noncooperative
equilibrium is inefficient. In an international trade context the contributions
by Chichilnisky (1994) and Brander and Taylor (1998) should be mentioned.
Chichilnisky shows that if two regions have different property rights
regimes for a renewable resource, the free trade equilibrium is Pareto
inefficient. Brander and Taylor (1998) compare autarky and free trade and
formally derive conditions under which a resource exporting country might
lose under free trade. The two latter papers assume that in the case of trade,
the world market for the resource is competitive.

So, it appears that in the trade papers private ownership of the renewable
resource does not carry over to market power of the resource owner when
the regions open up to trade. And, for the case where market power is
assumed for the resource owners, these owners also share the resource
stock. However, in the latter literature the case of autarky is not considered.
This is the gap the present paper aims to bridge. So, we have two regions
in which there is a homogeneous renewable resource, privately owned
(by one owner) or commonly owned by a continuum of agents, so that
open access is in place. In autarky the regional markets are separated. We
then first consider market equilibrium in autarky. Next, we study the new
market equilibrium when demand of both regions is aggregated on a single
market. On this market perfect competition may prevail or the sole owner of
the resource in one region may exploit some market power, or both private
owners may play a Nash game. The objective is to characterize both autarky
and common market equilibria in terms of (steady state) resource stocks and
catch, under different assumptions with regard to natural growth functions
and unit extraction cost functions. Among the findings we have that with
two open access regimes the common market may lead to a higher steady
state stock in one region and a lower one in the other region, depending
on the cost structure. But it might also be the case that both stocks get
exhausted. Another finding is that in the case of mixed ownership, one
resource privately owned and the other with open access, the privately
owned resource stock may increase under free trade. Clearly it is of interest
to extend the analysis into a general equilibrium trade framework. This
step will be made in future research. For that reason we also refrain from a
welfare analysis for the time being.

An example where our analysis may be applicable are the alkaline lakes
in Tanzania and Kenya. Due to the high concentration of alkaline, only
certain kinds of tilapia can grow in these lakes and this fish is not found
anywhere else. In addition no other fish grows here (Ramsar, 2001; Fishbase,
2005). Currently a regime of regulated open access prevails; fishermen can
buy permits allowing them to catch whatever they want. In the future the
two countries may opt for a different strategy of assigning property rights
resulting in different market structures. Another example concerns lake
trout in Trout Lake and Black Oak Lake in Northern America. Genetic
tests showed that this fish is a unique species and only lives in these
two lakes. The regulating government decides on the amount of fish that
can be caught (Outdoor News Network, 2003). Both examples are real-life
situations where there might be interaction between lakes. Furthermore, if
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one of these regions decides to introduce well-defined property rights this
will lead to a new market structure and thus the interaction between the
two regions changes. However, the field of application is broader. Markets
for renewable resource commodities may be separated for a number of
reasons, for example high transaction costs or transportation costs or for
technological or regulatory reasons. This paper investigates the effects of
these impediments disappearing.

In the next section we present the model. In the third section the
equilibrium in autarky will be analyzed as a benchmark. The fourth section
will analyze equilibria when the countries supply to a common market
and section 5 will analyze the situation when the two countries cooperate.
Section 6 concludes.

2. The model
To describe the different market structures and property rights regimes, a
model with two separate lakes indexed by i (i = 1, 2) will be considered.
Fish stock in lake i at instant of time t is denoted by Xi(t). The initial stocks
are Xi0 > 0. The natural growth function Gi satisfies:

(A.1) Gi (0) = Gi (Ki ) = 0 for some Ki > 0. Gi is nonnegative and strictly
concave on [0, Ki). Finally, Gi(X) = 0 for all X > Ki.

Here, Ki is the carrying capacity. By yi we denote total catch from lake i,
which is required to be nonnegative. Hence the following holds

Ẋ1(t) = G1(X1(t)) − y1(t), X1(0) = X10, X1(t) ≥ 0, y1(t) ≥ 0, (1)

Ẋ2(t) = G2(X2(t)) − y2(t), X2(0) = X20, X2(t) ≥ 0, y2(t) ≥ 0. (2)

Fish from the two lakes is homogeneous. Local demand for fish is given by
an identical inverse demand function P(yi) that is monotonically decreasing.
The amount of fish caught depends on the current stock and the effort ei
(see, for example, Clark, 2005). The cost per unit of effort is wi. With constant
returns to scale of effort, for a given stock, the cost of fishing is wiei = Ci(Xi)yi.
With regard to Ci(Xi) the following assumption is made:

(A.2) Ci is decreasing and strictly convex. Moreover P(0) = Ci (X̂i ) for
some X̂i > 0.

The latter condition implies that fishing is not profitable for all 0 ≤ Xi ≤
X̂i . The locus of points where P(y) = Ci(X) is increasing for all (y, X) > (0, X̂i ).
The system P(yi) = Ci(Xi), yi = Gi(Xi) yields the steady states under open
access. In general nothing can be said about the number of solutions of the
system. However, if the locus of points satisfying P(y) = Ci(X) is concave,
the number of solutions is one, two or three, where the case of two steady
states is a border case (see figure 1). In the case of three steady states, one of
them will be on the downward-sloping part of the natural growth function
G. Moreover, the steady state in the middle is unstable. In the sequel we
will assume:

(A.3) The function y = fi(X) defined by P(y) = Ci(X) is concave.
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Figure 1. Steady state in open access autarky

In the sequel we will sometimes rely on simulations. The specific
functional forms used are: Gi (Xi ) = r Xi [1 − Xi

Ki
]. Here the constant r,

assumed positive, is the intrinsic growth rate and Ki is the carrying capacity
of lake i.

With linear demand and market clearing we have P(yi ) = p̄ − yi , where
p̄ is the choke price.

Ci (Xi ) = a − b( Xi
Ki

)c , with a > b > 0, a > p̄ and 0 < c < 1. Since a > b we
have Ci(Ki) > 0. Since a > p̄ assumption (A.2) is satisfied. The carrying
capacity is included to allow, for example, for higher search costs if the lake
is larger. If p̄ − a + (1/2)cb < 1/4r Ki then there is a unique point of intersection
of the zero profit curve and the steady state stock with G′ < 0.

For illustrative purposes we make numerical exercises as well. The
parameter values we are using are: r = 0.35,1 K2 = 3,750, p̄ = 200,2 a = 250,3

1 The value of r is the average of 0.15 which is used by Perman et al. (2003) and
0.55 which corresponds to a doubling time of the fish in 15 months at a minimal
viable population which is characteristic for the tilapia under perfect conditions
(Fishbase, 2005).

2 The average catch in a small African lake (which are the alkaline lakes) is 329 kg/
ha/year. However, shallow lakes have a productivity of 50–200 kg/ha/year
(Jackson and Marmulla, 2001). Therefore we assume a catch in between these two
of 300 kg/ha/year. The size of the lake varies between 0 and 44 km2 (Vareschi,
1982; LakeNet, 2008). Given that the latter number is reported more recently we
value this more and therefore we assume a size of around 33 km2 giving a catch
of about 1,000,000 kg/year. Furthermore, the average price for one kilogram of
tilapia is €1 (Kaliba et al., 2007). We normalize this to a catch of 100 and a market
price of 100, given the inverse demand function we have p̄ = 200.

3 Given that the postulated cost function is not a common one and that it is difficult
to find fishery data in most developing countries (Kahn, 2005), this value is taken
arbitrarily satisfying the condition a > p̄.
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b = 157,4 c = 0.5, α = 0.4 (from Perman et al., 2003) and ρ = 0.05. The value
of K1 will vary between 1,2505 and 20,000.

3. Autarky
The ownership regimes considered in autarky are open access and private
ownership. In the latter regime we make a distinction between the case
where the private owner can exercise market power and the case where he
cannot. In the present section we omit the index i.

3.1. Open access
With open access anyone can start fishing without restrictions and
fishermen will continue fishing as long as they make a profit. Hence, in the
long run all rents dissipate (Gordon, 1954). Following the standard approach
in fishery economics, entry and exit do not take place instantaneously. We
introduce some delay in the response of the catch to changes in profitability

ẏ(t) = α[P(y(t)) − C(X(t))].

Here α denotes the speed of adjustment. As long as the price exceeds
the unit cost of fishing, catch will increase. If fishing is not profitable, it
gradually declines. We also have

Ẋ(t) = G(X(t)) − y(t).

In the case depicted in figure 1 there are two stable equilibria. The first
one occurs if the initial stock is small. The other equilibrium occurs with a
relatively high initial stock. From the existing literature we know that the
approach path to the interior steady state is typically oscillating (see, e.g.,
Perman et al., 2003).

In the sequel we will occasionally consider the carrying capacity as a
pivotal parameter to perform a sensitivity analysis. The carrying capacity
can vary between lakes because of, for example, the size of the lakes or
climatological circumstances.6 For higher values of the carrying capacity
the locus of points for which y = G(X) will lie entirely above the one with a
lower carrying capacity. Let us start from the existence of two stable steady
states (as in figure 1) and let us assume that the cost function does not
depend on the carrying capacity. If we consider the case with a considerably
higher carrying capacity, it could happen that only one steady state with

4 Assuming a carrying capacity of 3,750 and the given parameter values, we can
calculate the value of b using the zero profit condition under open access. Thus
a − b( X

K )c = P(y) or b = (a − P(y))( X
K )−c . This results in a value of b of 157 when

the market price P(y) = 100.
5 We know that the maximum amount that can be caught is equal to 1

4 r K . If there
is a catch of 100, this would mean that K is at least 1,143. Furthermore, as Lake
Nakuru is a small lake, we use K = 1,250 as the minimum value for the carrying
capacity.

6 For example, Lake Nakuru (one of the alkaline lakes in Kenya) experienced in
1973 a decline in lake volume of almost 100 per cent due to lack of rain (Vareschi,
1979).
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Table 1. Steady states for a single open access lake

K 1,250 2,500 3,750 5,000 6,250 20,000

X 921.33 2, 183.59 3, 437.32 4, 689.13 5, 940.19 19, 693.03
y 84.79 96.73 100.12 102.04 103.06 105.79

a high steady state stock remains. In that new7 steady state the harvest is
larger than in the case of a low carrying capacity. If the alternative carrying
capacity is only moderately larger, there will still be two steady states.
Compared to the old steady states the new steady states are larger and
they allow for higher steady state harvesting. The picture becomes slightly
more complicated if the cost function depends on the carrying capacity as
well. If the costs are increasing in the carrying capacity, for example due to
increased search costs, then the locus of points for which P(y) = C(X) will
move downwards. Hence, starting from two old steady states and keeping
the growth function unchanged, the new steady state stocks are larger, with
one having a lower steady state catch, and one having a higher steady state
catch. When both the growth function and the cost function are affected,
the result is no longer unambiguous. To analyze this further we make use
of our specific functional forms. Note that in an open access steady state
the zero profit condition reads

p̄ − a + b(X/K )c = r X(1 − X/K ).

Total differentiation yields

d X/X
d K/K

= cb(X/K )c + r X2/K
cb(X/K )c + 2r X2/K − r X

.

The expression 2rX2/K − rX is larger than 0 if and only if X > 1/2K .
Hence if K increases by 1 per cent and X > 1/2K , the steady state increases
by more than 1 per cent. Now y increases since y = p̄ − a + b(X/K )c . We
thus experience an increase in y.8 However, if X < 1/2K and b is sufficiently
small, it might lead to a decrease of X and of y.

For later reference we use the parameter values introduced above for a
numerical exercise to confirm the effects of a change in the carrying capacity
on the steady state amount of fish being caught and the size of the fish stock
under open access in table 1. These parameter values imply a unique steady
state at the decreasing part of the growth function.

7 For the sake of exposition we will sometimes refer to ‘old’ and ‘new’ despite the
fact that we perform a comparative statics analysis only and nothing is claimed
regarding transitional dynamics. However, in some instances we will consider
transitional dynamics.

8 When using the logistic growth function this result will hold for all cost functions
as long as the cost of catching a fish is equal to equal density levels of fish.
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3.2. Private ownership
The private owner maximizes profits over time, discounted at the constant
rate ρ > 0

max
y

∫ ∞

0
{P(y) − C(X)}ye−ρtdt

subject to the natural growth equation. The current-value Hamiltonian is

H(X, y, λ) = P(y)y − C(X)y + λ[G(X) − y].

The necessary conditions for an interior solution read

∂ H
∂y

= 0 : P ′(y)y + P(y) = C(X) + λ, (3)

∂ H
∂ X

= −λ̇ + ρλ : λ̇ = C ′(X)y − [G ′(X) − ρ]λ. (4)

Condition (3) requires that marginal revenue equals the marginal cost
of harvesting (C′(X)) plus the marginal costs (λ) of having less fish left
in the lake. Condition (4) is the arbitrage condition stating that the change
in the future benefits is given by the stock effect (having more stock reduces
the price of catching the fish C′(X)y) and the difference between the growth
effect of having more fish in the lake and the discount rate ([G′(X) − ρ]λ). For
the case of private ownership we consider first the case where the private
owner is a price taker in order to have a benchmark for the market structures
investigated in the sequel. Next we assume that the private owner acts as a
monopolist.

If the private owner is a price taker, the first-order conditions for an
interior solution boil down to

∂ H
∂y

= 0 : P(y) = C(X) + λ, (5)

∂ H
∂ X

= −λ̇ + ρλ : λ̇ = C ′(X)y − [G ′(X) − ρ]λ. (6)

The steady state is defined by Ẋ = 0 and therefore λ̇ = 0. The locus of
points for which Ẋ = 0 is the same as under open access. It follows from (5)
and (6) that along an interior path

P ′(y)ẏ = C ′(X)G(X) − (P(y) − C(X))(G ′(X) − ρ).

There will only be supply if P(y) − C(X) > 0. Under this condition and in
view of the fact that C′ < 0, y is increasing for G′(X) − ρ > 0. Consequently,
in the steady state we must have G′(X) − ρ < 0. In figure 2 an example
is drawn of how an equilibrium might look and how it can be reached.
The example shows a case where the zero profit manifold intersects with
the growth function three times. We have also drawn a ẏ = 0 curve. Note
that it cannot be the case that this curve intersects the growth function for
values lying above the zero profit manifold. For very low initial stocks there
will be no fishing for an initial interval of time. After some instant of time,
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Table 2. Steady states under price-taking private ownership

K 1,250 2,500 3,750 5,000 6,250 20,000

X 996.07 2, 214.43 3, 456.31 4, 702.78 5, 950.84 19, 694.79
y 70.82 88.53 94.74 97.84 99.70 105.19
Profit 1, 368.76 817.08 567.01 432.42 349.08 63.50

Figure 2. Steady state for a price-taking private owner in autarky

where the stock X̂ is reached, fishing effort will increase until the steady
state is reached. For high initial stock values, the fishing effort will decrease
monotonically until the steady state is reached. This figure is an example
only. The zero profit curve, the growth function, and the ẏ = 0 isocline may
have different locations relative to each other, which would yield different
steady states as well as different approach paths. However, here we do not
want to go into a complete taxonomy of all possibilities. What can be said
is that in case of unique steady state stock it will be higher than in the case
of open access. This also holds when there are multiple steady states.

For the private owner acting as a monopolist we have a similar result as
long as we make the usual innocuous assumption that the revenue function
P(y)y is concave (so that P′′(y)y + 2P′(y) < 0) and we have

{P ′′(y)y + 2P ′(y)}ẏ = C ′(X)G(X) − (P ′(y)y + P(y) − C(X))(G ′(X) − ρ).

The effects of changes in carrying capacity are given in table 2 in the case
of price-taking behavior. For a monopolist the results are given in table 3.

Comparing tables 2 and 3 with the results for open access confirms the
analytical results as stock levels are higher for a price-taking private owner
and even more so for a monopolistic private owner. Interestingly, for a price-
taking private owner the profits are decreasing with an increase in carrying
capacity, while for the monopolist the result is the other way around.
The intuition for this seemingly surprising result is that the price-taking
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Table 3. Steady states for a monopolist

K 1,250 2,500 3,750 5,000 6,250 20,000

X 1, 107.22 2, 351.39 3, 599.81 4, 849.08 6, 098.66 19, 847.59
y 44.27 48.92 50.46 51.23 51.69 52.94
Profit 2, 368.02 2, 609.51 2, 692.74 2, 734.78 2, 760.11 2, 830.21

fisherman will supply ‘too’ much compared to the monopolist because the
shadow price of the resource gets smaller with an increase in the carrying
capacity, and the equilibrium therefore gets closer to the zero profit (open
access) equilibrium, as can be seen from a comparison of tables 1 and 2.

4. Common market
If a common market for fish comes into existence, three regimes may unfold.
One is where the lakes in both regions have open access, one where one
region has an open access regime and the other lake is privately owned
(the mixed regime), and, finally, one with both lakes privately owned.
In the sequel, autarky values and values under the common market are
distinguished by superscripts A and T respectively. We have PT (y1 + y2) ≡
P( 1

2 [y1 + y2]). We are interested to see how the market interaction affects
the stocks and amounts of fish being caught. We also study the dynamic
aspects of introducing a common market. In particular, we will for some
cases sketch the approach paths to the new steady state, assuming that
we start from an autarky steady state, as is usual in the literature (see e.g.
Brander and Taylor, 1998).

4.1. Open access
In the case of open access, a large variety of potential outcomes arises, even
if the two lakes have equal growth functions and cost functions. Let us
assume that this is the case. The dynamics are given by

ẏT
1 (t) = α1

[
P

(
1/2

(
yT

1 (t) + yT
2 (t)

) − C
(
XT

1 (t)
)]

ẏT
2 (t) = α2

[
P

(
1/2(y1(t) + y2(t)) − C

(
XT

2 (t)
)]

,
ẊT

1 (t) = G
(
XT

1 (t)
) − yT

1 (t)

ẊT
2 (t) = G

(
XT

2 (t)
) − yT

2 (t).

The initial values are the autarky steady state values XT
i (0) = XA

i (∞),
yT

i (0) = yA
i (∞). Now consider the picture below (figure 3), based on a

numerical example.9 Suppose lake 1 finds itself in the equilibrium with
the low steady state and the low catch, whereas lake 2 has a relatively
high initial stock as well as catch, where initial refers to the steady state in
autarky. Then when the common market comes into existence, there occurs

9 With: P = 200, a = 215, K1 = K2 = 3750, r = 0.15, c = 0.4, b = 157, α1 = 0,05 and
α2 = 0.4.

https://doi.org/10.1017/S1355770X08004701 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X08004701


784 Alex Halsema and Cees Withagen

Figure 3. Transition paths of X1 and X2 when a common market comes into existence

a price drop for lake 1 fish and a price hike for lake 2 fish. As a result,
fishing in lake 1 will decrease, whereas fishing in lake 2 will increase (seen
from a purely mathematical perspective, it can even be the case that fishing
from lake 1 becomes negative, which is obviously infeasible). In any case,
if the speed of adjustment α1 is low, supply from lake 1 will be at a low
level for some time, say at ỹ1. The curve P(1/2(ỹ1 + y) = C(X) lies above the
curve P(1/2y) = C(X), meaning that y2 can increase from the initial steady
state because profits are made. The increase in y2 induces a decrease in
X2, which works against the expansion of the fishery because of the high
cost. However, it might be the case that the zero profit locus is reached too
late to prevent total exhaustion of the second lake. The subsequent drop
of the catch then boosts the price, which, together with the increased stock
in lake 1, enhances fishing in lake 1. The outcome can be that eventually
also the first lake gets exhausted. The situation depicted here shows that
the fact that the common market comes into existence might have extreme
consequences. But other possibilities arise as well.

Let us assume that in autarky, with possibly differing growth and cost
functions, there exists a unique steady state for each lake, with both stocks
corresponding with the declining part of the growth function. Hence
G′1(XA

1 ) < 0 and G′2(XA
2 ) < 0. For our functional forms this is the case if,

for each lake, p̄ − a + (1/2)cb < 1/4r Ki . We consider several cases in detail. If
G1 ≡ G2 and C1 ≡ C2, then nothing changes compared to autarky. Assume
next that G1 ≡ G2. Also assume that the cost functions differ in the following
sense: C1(X) > C2(X) for all X > 0. The locus of points for which P(y) = C1(X)
lies strictly below the locus of points where P(y) = C2(X), at least for
points where y > 0. For the common market we have in an interior steady
state C1(XT

1 ) = C2(XT
2 ). For every X1 ≥ XA

1 we can find X2 < XA
2 such that

C1(X1) = C2(X2). For every such pair we can calculate the corresponding ys
on the growth function. If we take XA

1 as the starting point, then we have for
the corresponding ys that 1/2(yA

1 + y2) > yA
1 , implying that the corresponding
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price would be smaller than P A(yA
1 ), which is incompatible with the

unchanged per unit extraction costs. Similarly, there will exist an X such that
the associated X2 is XA

2 with corresponding ys such that 1/2(yA
1 + y2) < yA

2
with a price higher than P A(yA

2 ). So, following this procedure, we conclude
that in the new equilibrium XT

1 > XA
1 and XT

2 < XA
2 . Moreover, the catch in

the low cost lake goes up, the catch in the high cost lake decreases. This
is also intuitively clear from the dynamics behind the open access case.
Initially, when the new market opens, there is more supply from the low
cost than from the high cost lake. This implies that the price for the high cost
lake decreases, triggering less supply and therefore an increase in its stock.
For the low cost lake the situation is just the other way around. Finally, if
we allow the growth functions to differ as well as the cost functions, the
same results will be obtained, as long as these functions do not differ too
much.

Turning now to our specific functional forms, it can be shown that K1 > K2
implies XT

1 < XA
1 , yT

1 > yA
1 and PT > P A

1 . The proof runs as follows. Clearly
C1(X1) = C2(X2) if and only if X2 = K2

K1
X1. The autarky price in region 1 is

P A
1 = p̄ − r XA

1

[
1 − XA

1

K1

]
= a − b

(
XA

1

K1

)c

.

The price on the common market reads

PT = p̄ − 1
2

r XT
1

[
1 − XT

1

K1

]
− 1

2
r XT

1
K2

K1

[
1 − XT

1

K1

]

= p̄ − r XT
1

[
1 − XT

1

K1

] [
K1 + K2

2K1

]

= p̄ − r∗ XT
1

[
1 − XT

1

K1

]

= a − b
(

XT
1

K1

)c

with r K1+K2
2K1

≡ r∗. Suppose K1 > K2. Then r∗ < r. It is then easily seen that
XT

1 < XA
1 , yT

1 > yA
1 and PT > P A

1 .
Moreover, if for both lakes the equilibrium is on the declining part of

the growth function, we have that an increase in K1 implies an increase of
XT

1 /K1. Therefore the equilibrium price is lower, and, moreover, also XT
2 is

higher. These outcomes are confirmed by the numerical exercises with our
specific functional forms (see table 4).

In conclusion, there is no unambiguous answer to the question whether
the common market leads to smaller or larger steady state resource stocks.
The outcome depends on the growth functions as well as the cost functions.
However, with similar functional forms and autarky equilibria it is to be
expected that the new equilibrium price will be between the autarky market
prices. With major differences in initial states (autarky) the dynamics can
lead to new steady states where both lakes are completely depleted.
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Table 4. Steady states for two open access lakes and a single market

K1 1,250 2,500 3,750 5,000 6,250 20,000

X1 1, 091.79 2, 248.68 3, 437.32 4, 643.84 5, 861.41 19, 481.53
X2 3, 275.38 3, 373.02 3, 437.32 3, 482.88 3, 516.84 3, 652.79
y1 48.36 79.12 100.31 115.78 127.55 176.76
y2 145.09 118.68 100.31 86.83 76.53 33.14

4.2. Mixed regime
In one region the lake is privately owned. The other region has a lake with
open access. For the privately owned lake we consider two cases. One where
the owner is a price taker, and one where the lake owner takes the supply
from the other lake as given. The problem of the private owner of lake 1
reads

max
y1

∫ ∞

0
{PT (y1 + y2)y1 − C1(X1)y1}e−ρtdt

subject to (1). The current-value Hamiltonian is

H1 = PT (y1 + y2)y1 − C1(X1)y1 + λ1[G1(X1) − y1].

The necessary conditions for an interior solution read

∂ H1

∂y1
= 0 : (PT )′y1 + PT = C1(X1) + λ1,

∂ H1

∂ X1
= −λ̇1 + ρλ1 : λ̇1 = C ′

1(X1)y1 − [G ′
1(X1) − ρ]λ1.

The steady states are characterized by

yT
i = Gi

(
XT

i

)
, i = 1, 2

PT(
yT

1 + yT
2

) = C2
(
XT

2

)
,

ρ = G ′
1

(
XT

i

) − C ′
1

(
XT

1

)
G1

(
XT

1

)
(
PT

(
yT

1 + yT
2

))′
yT

1 + PT
(
yT

1 + yT
2

) − C1
(
XT

1

) (i = 1, 2).

If the lake owner takes the common market price as given, i.e. (PT)′ = 0,
the expression for the steady state is the same expression as under autarky.
Assume identical growth functions as well as cost functions, some results
can be derived analytically. So we assume that G1 ≡ G2 = G and C1 ≡ C2 = C.
Moreover, as in the previous section where we discussed two open access
lakes, we assume that the autarky equilibrium is unique and satisfies
G′1(XA

1 ) < 0 and G′2(XA
2 ) < 0. We have C(XT

2 ) = C(XT
1 ) + λT

1 , implying
XT

1 > XT
2 . Hence, the steady state stock of the private owner is larger than

the stock in the open access lake. Since by assumption the autarky steady
state stocks are on the downward sloping part of the (identical) growth
functions, we also have XA

1 > XA
2 and yA

1 < yA
2 . Therefore, the open access

lake will experience a price hike when the common market comes into
existence, whereas for the privately owned lake the opposite occurs. As in
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Table 5. Steady states under a mixed regime with a price-taking private owner

K1 1,250 2,500 3,750 5,000 6,250 20,000

X1 1, 156.81 2, 339.08 3, 537.38 4, 746.52 5, 963.35 19, 550.04
X2 3, 214.94 3, 289.47 3, 345.24 3, 388.71 3, 423.6 3, 590.90
y1 30.19 52.70 70.20 84.22 95.73 153.94
y2 160.55 141.39 126.37 114.27 104.30 53.32
Profit1 171.02 253.96 294.76 313.57 320.27 244.84

Figure 4. The transition phase from an autarky regime towards a common market.
Figure 4a represents the privately owned lake and figure 4b the open access lake (with
K1 = K2 = 3,750)

the analysis of the previous section this implies that the new steady state
for the open access lake is smaller than in autarky, whereas the reverse
holds for the privately owned lake. Figure 4 depicts the transition paths
from the autarky steady state to the steady state with the common market.
Some additional results are the following. If G1 ≡ G2 and C1(X) > C2(X)
for all X > 0, then XT

1 > XT
2 in equilibrium since C2(XT

2 ) = C1(XT
1 ) + λT

1 . If
G1(X) > G2(X) for all X > 0 and C1 ≡ C2, then C2(XT

2 ) = C1(XT
1 ) + λT

1 still
holds and thus XT

1 > XT
2 .

Several interesting further comparisons can be made for more general
cases than those discussed above. Table 5 contains information about the
outcomes of the common market under price-taking behavior of the private
owner.

First of all the outcomes confirm that with equal growth and cost
functions (K1 = K2 = 3,750), the private owner has the higher steady state
stock. However, even for the case of identical growth functions and costs
functions, differing possibly only in a single parameter, namely the carrying
capacity, no other unambiguous results are obtained.

We first compare autarky and common market outcomes. To this end
consider tables 1 and 5. For a carrying capacity of the privately owned
lake equal to K1 = 3,750 the new steady state stock of the open access lake
(3,345) is lower than in open access autarky (3,437), whereas for higher
carrying capacities (K1 = 20,000) we find the opposite result. This is due to
the increased catch at higher carrying capacity levels of the privately owned
lake resulting in a lower price. Comparison of tables 2 and 5 shows that
for the price-taking private owner, the autarky steady state is lower for low
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carrying capacities and higher for high carrying capacities. The reason for
the ambiguity lies in the fact that a higher carrying capacity on the one hand
enhances natural growth but on the other hand increases the unit costs of
fishing. We also see that the private owner loses from the common market
coming into existence for low values of the carrying capacity, but gains for
higher values.

Table 5 can also be used to see the effect of the carrying capacity on
profitability, within the common market regime. The price-taking firm first
experiences an increase in its profits with an increase in K1. The initial
increase is obtained because of the decrease of catch in the open access lake.
The catch in the open access lake decreases as the increase in catch in lake 1
leads to a decrease in price and given the zero-profit condition the stock
in lake 2 has to increase to reduce costs. This increase in stock leads to a
lower catch, which in turn means a higher price, but this is a second-order
effect. Thus, the reduced catch in lake 2 dampens the reduction in the price
experienced by the private owner who still enjoys the benefit of selling
more fish. However, as soon as more fish are being caught in the privately
owned lake compared to the open access lake, profits decline with a further
increase in the carrying capacity.

Next we assume the private owner is not a price taker, but sets the price,
taking the supply by the open access lake fishermen as given. The equations
of motion for the catch follow in a straightforward way from the necessary
conditions and read

ẏ1 = [
PT (y1 + y2) −1/2 y2 − C1(X1)

]
[G ′

1(X1) − ρ]

− 1/2[α[PT (y1 + y2) − C2(X2)] − C ′
1(X1)G1(X1),

ẏ2 = α[PT (y1 + y2) − C2(X2)].

We first consider the path towards equilibrium when the common market
is established. As before we assume that the monopolistic private owner
finds himself in the autarky steady state when the new market structure
comes about.10

When the common market comes into existence the open access lake will
supply more fish due to an increased price. In view of the large supply of
fish from the open access lake the private owner will reduce fishing, which
results in a build up of its stock. Steady state values under alternative
assumptions with regard to the carrying capacity of the former monopolist
(lake 1) are given in table 6.

The private owner acting as a Nash player unambiguously loses under
the common market coming into existence, at least in the steady state

10 To perform the calculations, we take a catch slightly off the equilibrium and let
time run back until we reach the moment the stocks equal the steady state stocks
in autarky. This gives the period of time needed to go from the autarky steady
state towards the steady state under a common market. With this period of time
we can also calculate the amount that needs to be caught when the common
market is established to follow the equilibrium path. To that end we employ the
transversality condition λi (t)Xi (t)e−ρt → 0 as t → ∞.
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Table 6. Steady states under a mixed regime where the private owner plays
Nash–Cournot

K1 1,250 2,500 3,750 5,000 6,250 20,000

X1 1, 205.74 2, 445.75 3, 691.46 4, 939.09 6, 187.59 19, 933.11
X2 3, 162.49 3, 175.15 3, 180.66 3, 183.74 3, 185.70 3, 191.57
y1 14.94 18.58 20.17 21.06 21.63 23.33
y2 173.41 170.36 169.01 168.26 167.79 166.34
Profit1 149.69 201.02 225.45 239.94 248.89 277.63

(compare with table 3). This comes as no surprise because of the fact
that the open access lake fishermen definitely reduce the private owner’s
monopoly power initially held in autarky. This result is confirmed in a series
of sensitivity analyses.11 More interestingly, the profit is lower compared to
the price-taking case. The underlying reasoning goes as follows. The private
owner takes the supply of the open access lake as given and then sets its
own supply to maximize profits. In performing the profit maximization
process, the private owner only takes into account the supply from the open
access lake. In other words, the private owner does not take into account
that supply from the open access lake essentially determines everything, at
least in the steady state. Indeed, steady state supply from the open access
lake determines the steady state stock of the open access lake, and thereby
the steady state costs and therefore the steady state price and, hence, the
steady state supply from the private owner. Actually, with a given supply
from the open access lake, the private owner has no degree of freedom,
although the private owner is not aware of that fact. Consequently, market
power actually leads to lower profits.

The private owner would do well to keep in mind the effect of his
own actions on the actions of the agents managing the open access lake.
This consideration calls for the Stackelberg equilibrium concept, where the
private owner, if well-informed, can exploit its position better by acting
as a Stackelberg leader. One option to the private owner is then to catch
at an arbitrarily low rate initially, thereby setting a relatively high price.
In an extreme case, this might lead to exhaustion of the other lake, after
which the private lake owner can act as a monopolist. In a less extreme
case, refraining initially from fully catching the Nash equilibrium amount
of fish might also enhance a low stock level in the other lake. It is well-
known that the open-loop Stackelberg equilibrium might lead to dynamic
inconsistency (see, e.g., Gilbert, 1978; Newbery, 1981; Groot et al., 1992,
2003, for similar problems occurring in the theory of nonrenewable natural
resources). Hence, this would urge a closer examination of the feedback
Stackelberg equilibrium. This is subject to further study. It is tempting to
speculate on the results. However, it seems only safe to state that a small

11 In the analysis a varies between 201 and 350, b runs from 51 to 300, c from 0.1 till
0.9, ρ varies between 0.01 and 0.5, and r from 0.15 till 0.55. The sensitivity analyses
are performed for each structure and are available upon request.
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discount rate of the potential leader will stimulate him to act as a leader
and let the follower extract in an early stage of the game.

4.3. Private owners
In this regime we have a private owner for each of the two lakes and
the owners play a Nash game against each other, each one taking the
quantities offered by the other as given. The optimization problem for the
agent managing lake i can be stated as follows

max
yi

∫ ∞

0
{PT (y1 + y2)yi − Ci (Xi )yi }e−ρtdt

subject to (1). The time path of yj (j 
= i) is taken as given. The corresponding
current-value Hamiltonian is

Hi = PT (y1 + y2)yi − Ci (Xi )yi + λi [Gi (Xi ) − yi ] .

The necessary conditions for an interior solution read

∂ Hi

∂yi
= 0 : (PT )′yi + PT = Ci (Xi ) + λi ,

∂ Hi

∂ Xi
= −λ̇i + ρλi : λ̇i = C ′

i (Xi )yi − [G ′
i (Xi ) − ρ]λi .

The steady states are the solution of

PT(
yT

1 + yT
2

) = PT(
G1

(
XT

1

) + G2
(
XT

2

))
,

ρ = G ′
i

(
XT

i

) − C ′
i

(
XT

i

)
Gi

(
XT

i

)
(PT )′yT

i + PT − Ci
(
XT

i

) (i = 1, 2). (7)

A distinction could be made between many cases, depending on price-
taking or monopolistic behaviour by each of the players before the common
market comes into existence and on price-taking or Nash behaviour by each
of the players afterwards. It goes beyond the scope of this paper to provide
a full account of all possibilities. We will restrict ourselves to the two polar
cases of both players being price takers throughout and both players being
monopolists before and Nash players afterwards.

If the suppliers are price takers, in autarky as well as for the common
market, and if they have identical growth and cost functions, the fact that
the common market comes into existence does not change anything. The
results of some numerical exercises are given in table 7.

We see that with an increase in the carrying capacity of the first lake, both
steady state stocks are increased. The supply from the second lake decreases,
as well as the profit made. For the first lake the profits as a function of the
carrying capacity are non-monotonic: they increase initially and decrease
eventually. Compared to the case of autarky (see table 2) we observe
a stock for lake 1 that is consistently lower, corresponding with more
supply. For high carrying capacities this does not lead to lower profits. For
example, when K1 = 6,250 (and K2 = 3,750), profits for the owner of lake 1
are higher than in autarky, due to the fact that supply by the competitor
is reduced considerably. We have tested for the robustness of this result
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Table 7. Steady states for two price-taking private owners

K1 1,250 2,500 3,750 5,000 6,250 20,000

X1 1, 107.22 2, 267.51 3, 456.31 4, 662.00 5, 878.48 19, 490.52
X2 3, 321.65 3, 401.26 3, 456.31 3, 496.50 3, 527.09 3, 654.47
y1 44.27 73.80 94.74 110.30 122.30 173.78
y2 132.80 110.71 94.74 82.73 73.38 32.58
Profit1 408.54 536.26 567.01 560.71 540.53 314.17
Profit2 1, 225.62 804.39 567.01 420.68 324.32 58.91

Table 8. Steady states for a Nash–Cournot game between two private owners

K1 1,250 2,500 3,750 5,000 6,250 20,000

X1 1, 088.62 2, 310.87 3, 551.12 4, 796.25 6, 043.34 19, 785.42
X2 3, 527.47 3, 544.47 3, 551.12 3, 554.63 3, 556.78 3, 562.88
y1 49.19 61.19 65.92 68.41 69.94 74.30
y2 73.26 67.99 65.92 64.82 64.14 62.22
Profit1 1, 735.85 2, 224.4 2, 429.96 2, 541.67 2, 611.63 2, 815.48
Profit2 3, 006.94 2, 586.86 2, 429.96 2, 349.21 2, 300.17 2, 163.69

Figure 5. The transition path of two privately owned lakes from the autarky steady
state towards the common market steady state (with K1 = K2 = 3,750)

by performing a sensitivity analysis (see footnote 11) and found the same
result throughout.

For the case of two monopolists becoming Nash players we can use the
equations of motion to show the transition for the autarky steady state
towards the steady state. The transition path is shown in figure 5. Both
private owners reduce their steady state stock in a monotonic way.

Table 8 displays the outcomes of several calculations.
The conclusions drawn from the parametric change in the carrying

capacity of lake 1 are similar to those drawn from the case of price taking
(table 7). But in all cases the profits of both players are now considerably
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higher. Another result is that compared to the mixed regime (table 6) profits
are higher for the owner of lake 1 when the other lake is properly managed.
This is a result of reduced competition as the private owner supplies less fish
to the market. Moreover, it also follows from a comparison of tables 6 and 8
that the private owner has a lower stock and a higher supply of fish when
the other lake is also privately owned. More interesting perhaps is that for
high carrying capacities the profits are higher than in the monopolistic case
for a single lake (table 3). It can thus be profitable for the monopolist to give
up its monopoly if it can thereby access a bigger market.

5. Cooperation
In this final scenario both lakes are privately owned and the owners
cooperate by forming a monopoly. The optimization problem reads

max
y1,y2

∫ ∞

0
{PT (y1 + y2)[y1 + y2] − C1(X1)y1 − C2(X2)y2}e−ρtdt

subject to (1) and (2). The corresponding current-value Hamiltonian is

H = PT (y1 + y2)[y1 + y2] − C1(X1)y1 − C2(X2)y2

+ λ1(t)[G1(X1) − y1] + λ2(t)[G2(X2) − y2].

The necessary conditions are

∂ H
∂yi

= 0 : (PT )′[y1 + y2] + PT = Ci (Xi ) + λi (i = 1, 2),

∂ H
∂ Xi

= −λ̇i + ρλi : λ̇i = C ′
i (Xi )yi − [G ′

i (Xi ) − ρ]λi (i = 1, 2).

The new monopolistic firm takes into account that catching more fish in
one lake will not only decrease the price of the fish from that lake but the
price of fish from the other lake as well. The steady state is characterized
by

yT
i = Gi

(
XT

i

)
(i = 1, 2),

ρ = G ′
i

(
XT

i

) − C ′
i

(
XT

i

)
Gi

(
XT

i

)
(PT )′

[
yT

1 + yT
2

] + PT − Ci
(
XT

i

) .

A comparison with equation (7), for the steady state stocks in case
of an uncoordinated Nash, reveals the intuitively appealing fact that for
equal growth and cost functions the steady state stocks will be higher
now. Compared to the case of an uncoordinated oligopoly, total supply is
reduced. A further simulation exercise yields the outcomes given in table 9.

6. Conclusion
We have addressed several issues concerning trade and property rights
regimes of lakes as well as market structures. We have characterized market
equilibria in autarky as well as for a common market, mostly in terms of
steady state stocks as well as steady state catch. We have also performed
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Table 9. Steady states for a monopolist with two lakes for different carrying
capacities of the first lake

K1 1,250 2,500 3,750 5,000 6,250 20,000

X1 1, 175.70 2, 380.34 3, 599.81 4, 827.87 6, 061.35 19, 743.85
X2 3, 527.09 3, 570.50 3, 599.81 3, 620.90 3, 636.81 3, 701.97
y1 24.46 39.88 50.46 58.17 64.04 88.50
y2 73.38 59.82 50.46 43.63 38.42 16.59
Profit1 1, 304.75 2, 127.45 2, 692.74 3, 104.84 3, 418.47 4, 729.84
Profit2 3, 914.26 3, 191.17 2, 692.74 2, 328.63 2, 051.08 886.85

a sensitivity analysis employing specific functional forms, and in doing so
mainly used the carrying capacity as a pivotal parameter.

The main conclusion that can be drawn is that the establishment of
the common market can have quite large effects and that these effects are
strikingly different according to the original type of competition and the
new type of competition prevailing. When the new and the old markets
are served by lakes with open access, the new situation might give rise
to extinction of the fish stocks in both markets, depending on the speed of
adjustment governing the adjustment of catch to profit opportunities. In less
extreme circumstances it is to be expected that the new equilibrium price
will be between the two autarky prices. If the common market is supplied
by a lake with open access and another lake with a single owner, we obtain a
similar result. But it could be that it is more profitable for the private owner
to be a price taker than to act as a price setter while taking the supply
from the open access lake as given. Finally, when two fishermen being
monopolists previously are going to serve the common market we find that
the steady state stocks decrease, compared to the autarky equilibria.

It was found that with higher carrying capacity in a lake the steady state
stock of that lake always increases and that there is an ambiguous effect on
the catch. We also see that with a decline in market power the stock decreases
and supply increases (the monopolist had a higher stock compared to the
private owner who had more compared to the amount of fish left in the lake
in open access). This does not only hold in autarky: we found similar results
for a common market. A private owner will keep a higher stock when there
is an open access regime in the other lake compared to a private owner
who has market power. We have also shown that market power does not
necessarily result in a higher profit. Furthermore, opening up to a common
market has ambiguous results on the profits of a private owner as the
change in profits depends on whether the other lake is privately owned or
governed by an open access regime. From the simulations of the equations
of motion we have deduced the path from the autarky equilibrium towards
the single market equilibrium in several cases.

For further research, a Stackelberg type equilibrium should be explored
including the reaction of another private owner in the optimization process
of the Stackelberg leader. Besides this we could think of investigating
alternative cost structures. We could also think of the private owner buying
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better machineries when the carrying capacities increase, thereby changing
the cost function.
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