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We present a type-based flow analysis for simply typed lambda calculus with booleans,

data-structures and recursion. The analysis is exact in the following sense: if the analysis

predicts a redex, there exists a reduction sequence (using standard reduction plus context

propagation rules) such that this redex will be reduced. The precision is accomplished using

intersection typing.

It follows that the analysis is non-elementary recursive – more surprisingly, the analysis is

decidable. We argue that the specification of such an analysis provides a good starting point

for developing new flow analyses and an important benchmark against which other flow

analyses can be compared. Furthermore, we believe that the techniques employed for stating

and proving exactness are of independent interest: they provide methods for reasoning

about the precision of program analyses.

A preliminary version of this paper has previously been published (Mossin 1997b). The

present paper extends, elaborates and corrects this previously published abstract.

1. Introduction

Flow analysis of a program aims at approximating at compile-time the flow of values

during execution of the program. This includes relating definitions and uses of first-order

values (for example, which booleans can be consumed by a given conditional) but also

flow of data-structures and higher-order values (for example, which function-closures

can be applied at a given application). Hence, the term ‘flow analysis’ is used here for

the natural generalisation of classical value flow analysis to higher order programming

languages.

Flow information is directly useful for program transformations such as constant

propagation or firstification, and, by interpreting the value flow in an appropriate domain,

for many other program analyses. In addition, information about higher-order value flow

can allow us to apply first-order program analysis techniques to higher-order languages.

We present a flow analysis for typed, higher-order functional languages which we prove

exact: the analysis captures exactly the set of potential redexes in the analysed program.

This is done by proving that:

† This work was done while at DIKU, University of Copenhagen.
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— The result of analysis is invariant under β and δ reduction and expansion. The

reduction rules are non-standard – they correspond to standard reduction but modified

such that redexes are never discarded.

— The analysis correctly predicts that normal forms have no redexes.

— Since non-standard reduction never discards redexes, terms involving ‘fix’ can never

reduce to a value. We prove that the result of analysing a term involving fix is

equivalent to the result of analysing a certain finite unfolding of the term. Hence, all

redexes predicted by the analysis will be met in a finite number of reduction steps.

As a consequence of a theorem by Statman (Statman 1979) the problem solved is

non-elementary recursive, but we show that the analysis is decidable. While the analysis

may not be of immediate practical interest, we believe that it provides a fundamental

understanding of the nature of flow analysis. Thus, the analysis can be used both as

a starting point in the development of practical analyses, and to give an understanding

where other analyses lose precision. Finally, the techniques involved in stating and proving

exactness are of independent interest: invariance properties under non-standard reduction

rules are useful for characterising the precision and imprecision of program analyses.

2. Outline

Section 3 presents the language we will be analysing. Section 4 presents the analysis using

an annotated type system. Section 5 gives a syntax directed version of the type system

and proves decidability. Section 6 shows the existence of a best result of the analysis.

Section 7 presents a modification of the semantics of our language such that computa-

tion is never discarded. Using this non-standard semantics, Section 8 proves the analysis

is sound and Section 9 proves that the flow predicted is invariant under expansion. For

example, the set of redexes predicted for (λx.e)@e′ only contains one more redex (namely

the redex itself) than the set of redexes predicted for e[e′/x]. Section 9 does not consider

‘fix’ (treating ‘fix’ is problematic since never throwing away a computation implies that

all expressions involving ‘fix’ are non-terminating under the non-standard semantics):

Section 10 proves that for any fix-expression, there exists a finite unfolding for which the

analysis will predict exactly the same redexes. Section 11 proves that the analysis need

not predict any redexes for an expression in normal form.

Section 12 summarises the theorems proved, and proves that the analysis is non-

elementary recursive. Finally, Section 13 discusses related work and Section 14 gives our

conclusions.

3. Language

We analyse simply typed lambda calculus extended with booleans, pairs and recursion.

The expression ‘letl (x, y) be e in e′’ evaluates e to a pair and binds the first component of

the pair to x and the second to y†.

† This construct is chosen instead of separate operators for picking the first and second component of the

pair, as these operators discard data. This would imply that the non-standard reduction of Section 7 and the

completeness results of Section 9 would be less elegant (though no less true).
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Types:

t ::= Bool | t → t′ | t × t′

Type Rules:

Id
A, x : t � x : t

Bool-intro
A � Truel : Bool A � Falsel : Bool

Bool-elim A � e : Bool A � e′ : t A � e′′ : t
A � if l e then e′ else e′′ : t

fix
A, x : t � e : t

A � fixlx.e : t

→-intro
A, x : t � e : t′

A � λlx : t.e : t → t′
→-elim A � e : t′ → t A � e′ : t′

A � e@le′ : t

×-intro A � e : t A � e′ : t′

A � (e, e′)l : t × t′
×-elim

A � e : t × t′ A, x : t, y : t′ � e′ : t′′

A � letl (x, y) be e in e′ : t′′

Contexts:

C ::=[ ] | λlx : t.C | C@le | e@lC | fixlx.C | if l C then e′ else e′′ | if l e then C else e′′ |
if l e then e′ else C | (C, e′)l | (e, C)l | letl (x, y) be C in e′ | letl (x, y) be e in C

Reduction Rules:

(β) (λl
′
x.e)@le′ −→ e[e′/x]

(δ-if) if l Truel
′
then e else e′ −→ e

if l Falsel
′
then e else e′ −→ e′

(δ-let-pair) letl (x, y) be (e, e′)l
′
in e′′ −→ e′′[e/x][e′/y]

(δ-fix) fixlx.e −→ e[fixlx.e/x]

(Context) C[e] −→ C[e′] if e −→ e′

Fig. 1. Language.

We present the language using the type system of Figure 1. We call the set of expression

defined by the type system Exp. In order to refer to sub-expression occurrences, we assume

that terms are labelled.

Definition 3.1. For any given expression e∈ Exp, let Le denote a finite set of labels. Every

occurrence of a (sub)expression e′ in e is mapped to a label l ∈ Le – we say that l is the

label of e′. We use L to denote sets of labels, that is, L ⊆ Le.

We assume that labelling is preserved under reduction – hence, a label does not identify

a single occurrence of a sub-expression, but a set of sub-expressions (intuitively, residuals

of the same original sub-expression).

Figure 1 also presents the standard semantics of our language. As usual, we write −→∗

for the reflexive and transitive closure of −→. We assume for all expressions that bound

and free variables are distinct, and that this property is preserved (by α-conversion) during

reduction.

Definition 3.2. Abstractions, booleans and pairs are called data, and applications, condi-

tionals and ‘letl (x, y) be e in e′’ are called consumers – thus β, δ-if and δ-let-pair reductions

are data-consumptions.
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Definition 3.3. For an expression e, a flow relation Φ is a relation between consumers and

data Φ ⊆ Le × Le.

Intuitively, (l, l′) is in Φ if l is the label of a consumer, l′ is the label of data and the

consumer can consume the data.

Definition 3.4. Given a reduction sequence e −→∗ e′, the flow relation for the reduction

R(e −→∗ e′) is defined as follows:

R((λl
′
x.e)@le′ −→ e[e′/x]) = {(l, l′)}

R(if l Truel
′
then e else e′ −→ e) = {(l, l′)}

R(if l Falsel
′
then e else e′ −→ e′) = {(l, l′)}

R(letl (x, y) be (e, e′)l
′
in e′′ −→ e′′[e/x][e′/y]) = {(l, l′)}

R(fixlx.e −→ e[fixlx.e/x]) = {}

R(C[e] −→ C[e′]) = R(e −→ e′)

R(e −→ e′ −→∗ e′′]) = R(e −→ e′) ∪ R(e′ −→∗ e′′).

Flow analysis seeks a safe approximation to the possible consumptions during any

reduction of a term. That is, given e, a flow analysis will compute Φ such that whenever

e −→∗ e′, we have R(e −→∗ e′) ⊆ Φ.

4. Intersection based flow analysis

Intersection types allow us to state more than one property of an expression and use any

of the properties at will. Intersection types are more powerful than F2 polymorphism:

any polymorphic type can be regarded as an infinite intersection where each component

is forced to have the same fixed structure. We use a version of intersection types that

includes a subtype ordering. This formulation originates from work by Barendregt, Coppo

and Dezani-Ciancaglini (Barendregt et al. 1983).

The set of type formation rules presented in Figure 2 defines properties. If e is the

analysed expression, a property is a standard type where we add a set of labels L ⊆ Le

(called an annotation) to each type constructor. Furthermore, we allow intersections of

properties. Note that properties are defined in terms of standard types such that ∧ is only

allowed on properties with the same underlying standard type.

Definition 4.1. If κ ∈ K(t), define |κ| = t. Extending the definition to environments,

|x1 : κ1, . . . , xn : κn | = x1 : |κ1|, . . ., xn : |κn|.

Figure 2 also presents the subtype relation. The first two rules say that anything that

has type κ ∧ κ′ can be given type κ or κ′. The third states that if κ is smaller than κ1 and

smaller than κ2, then it is also smaller than κ1 ∧ κ2. The fourth rule states transitivity.

The (Bool) rule states that BoolL1 is smaller than BoolL2 if L1 is a subset of L2. The

(Arrow) and (Product) rules lift the relation to function and pair types in a contra-variant

or co-variant way, respectively. Finally, we have three distribution rules for → and × over
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Type Formation:

Bool
BoolL ∈ K(Bool)

→ κ ∈ K(t) κ′ ∈ K(t′)
κ →L κ′ ∈ K(t → t′)

× κ ∈ K(t) κ′ ∈ K(t′)
κ ×L κ′ ∈ K(t × t′)

∧ κ ∈ K(t) κ′ ∈ K(t)
κ ∧ κ′ ∈ K(t)

Subtype Relation:

∧-E � κ ∧ κ′ � κ � κ ∧ κ′ � κ′ ∧ � κ � κ1 � κ � κ2

� κ � κ1 ∧ κ2

Trans � κ1 � κ2 � κ2 � κ3

� κ1 � κ3
Bool L1 ⊆ L2

� BoolL1 � BoolL2

→ � κ1 � κ′
1 � κ2 � κ′

2 L1 ⊆ L2

� κ′
1 →L1 κ2 � κ1 →L2 κ′

2

× � κ1 � κ′
1 � κ2 � κ′

2 L1 ⊆ L2

� κ1 ×L1 κ2 � κ′
1 ×L2 κ′

2

∧-arrow � (κ1 →L κ2) ∧ (κ1 →L κ′
2) � κ1 →L (κ2 ∧ κ′

2)

∧-pair-L � (κ1 ×L κ2) ∧ (κ′
1 ×L κ2) � (κ1 ∧ κ′

1) ×L κ2

∧-pair-R � (κ1 ×L κ2) ∧ (κ1 ×L κ′
2) � κ1 ×L (κ2 ∧ κ′

2)

Annotated Type Rules:

Id
A, x : κ � x : κ

→-I
A, x : κ � e : κ′

A � λlx.e : κ →{l} κ′

→-E A � e : κ′ →L κ A � e′ : κ′

A � e@le′ : κ
×-I A � e : κ A � e′ : κ′

A � (e, e′)l : κ ×{l} κ′

×-E
A � e : κ ×L κ′ A, x : κ, y : κ′ � e′ : κ′′

A � letl (x, y) be e in e′ : κ′′

Bool-I
A � Truel : Bool{l} A � Falsel : Bool{l}

Bool-E A � e : BoolL A � e′ : κ A � e′′ : κ
A � if l e then e′ else e′′ : κ

fix
A, x : κ � e : κ

A � fixlx.e : κ

Sub A � e : κ � κ � κ′

A � e : κ′ ∧-I A � e : κ A � e : κ′

A � e : κ ∧ κ′

Fig. 2. Intersection flow analysis.

intersections. Note that these three rules introduce equivalences since the opposite sub-

typings are derivable.

We define positive and negative occurrences of an annotation L as follows.

Definition 4.2. Assume the syntax tree for a type κ. If the path from the root of the

tree to a type constructor cL (one of Bool, × or →) follows the argument branch of →
constructors an even (odd) number of times, then L is said to occur positively (negatively)

in κ.
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Finally, Figure 2 presents the inference rules defining our flow analysis. Rules for data

constructing expressions e with label l add {l} to the top constructor of the type. This

indicates that e can evaluate to one value only: itself. The subtype rule states that if e has

type κ and κ′ is less precise than κ, then e has type κ′. The final rule states that if e has

got type κ and type κ′, then it has got type κ ∧ κ′.

It is easy to show that if A � e : κ, then |A| � e : |κ| by the standard type rules.

We remark that the following rule is admissible:

A, x : κ1 � e : κ � κ2 � κ1

A, x : κ2 � e : κ
.

We refer to this as the strengthened assumption property.

We call a type derivation using the system of Figure 2 a flow derivation.

Definition 4.3. We define a function F from flow derivations T for e to flow relations as

follows: let F(T) = Φ where Φ ⊆ Le × Le is the least relation such that whenever one

of the rules

→-E
A � e′ : κ′ →L κ A � e′′ : κ′

A � e′@le′′ : κ

×-E
A � e′ : κ ×L κ′ A, x : κ, y : κ′ � e′′ : κ′′

A � letl (x, y) be e′ in e′′ : κ′′

Bool-E
A � e′ : BoolL A � e′′ : κ A � e′′′ : κ

A � if l e′ then e′′ else e′′′ : κ

is an inference in T, we have (l, l′) ∈ Φ for all l′ ∈ L.

Hence, F collects the flow information of the derivation and summarises it as a flow

relation.

Let = be the equivalence induced by �. For each t, let K(t)/= denote the equivalence

class under =. Since Le is finite, we have the following proposition.

Proposition 4.1. Given t, e, we have that K(t)/= is finite.

Definition 4.4. For every expression e and standard type t, define ⊥t ∈ K(t) and �t ∈ K(t)

inductively over t as follows:

⊥Bool = Bool{}

⊥t×t′ = ⊥t ×{} ⊥t′

⊥t→t′ = �t →{} ⊥t′

�Bool = BoolLe

�t×t′ = �t ×Le �t′

�t→t′ = ⊥t →Le �t′ .

The following proposition states that ⊥t and �t are the bottom and top elements of K(t),

respectively.

Proposition 4.2. For every expression e, standard type t and κ ∈ K(t), we have that

� ⊥t � κ and � κ � �t
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Proof. The proof is by induction over the structure of κ.

Definition 4.5. For each t introduce a special constant, which we also call ⊥t ∈ Exp of

type ⊥t.

5. Decidability

We will give a syntax directed version of our inference system. Coppo, Dezani-Ciancaglini

and Veneri (Coppo et al. 1981) and van Bakel (van Bakel 1995) have used a similar

technique for integrating the non-structural rules in the elimination rules.

The first step is to combine the two non-syntax directed rules into one. Define the

relation A �′ e : κ by replacing the (Sub) and (∧-I) rules by the following rule:

Sub′ ∀i ∈ I : A �′ e : κi � κi � κ′
i

A �′ e :
∧
i∈I

κ′
i

.

Lemma 5.1.

1 If we can deduce A � e : κ from A � e : κ1 · · ·A � e : κn using only rules (Sub) and

(∧-I) then we can deduce the same from the same assumptions using rule (Sub′) only.

2 If

Sub′ ∀i ∈ I : A �′ e : κi � κi � κ′
i

A �′ e :
∧
i∈I

κ′
i

is the conclusion of a valid derivation, then A � e :
∧

i κ
′
i can be inferred using rules

(Sub) and (∧-I) from the same assumptions.

Proof. Part (1) is trivial since (Sub) and (∧-I) are special cases of (Sub′).

If I = {1, . . . , n}, then n applications of (Sub) and n− 1 applications of (∧-I) suffices for

part (2).

Lemma 5.1 implies that the resulting system is sound and complete with respect to the

original system.

Proposition 5.1. �′ is sound and complete with respect to �:

Soundness: If
T

A �′ e : κ
is a valid derivation, then there exists a valid derivation

T′

A � e : κ

such that

F
(

T′

A � e : κ

)
= F

(
T

A �′ e : κ

)
.
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Completeness: If

T
A � e : κ

is a valid derivation, then there exists a valid derivation

T′

A �′ e : κ

such that

F
(

T′

A �′ e : κ

)
= F

(
T

A � e : κ

)
.

It is trivial to see that we never need two consecutive applications of rule (Sub′).

Definition 5.1. Define type contexts TC as

TC ::= [ ] | κ ×L TC | TC ×L κ | κ →L TC | κ ∧ TC | TC ∧ κ.

Definition 5.2. Define function normalise : K(t) → K(t) for all t as follows:

normalise(κ) is the normal form of κ with respect to the following system:

κ1 →L (κ2 ∧ κ′
2) −→ (κ1 →L κ2) ∧ (κ1 →L κ′

2)

(κ1 ∧ κ′
1) ×L κ2 −→ (κ1 ×L κ2) ∧ (κ′

1 ×L κ2)

κ1 ×L (κ2 ∧ κ′
2) −→ (κ1 ×L κ2) ∧ (κ1 ×L κ′

2)

TC[κ] −→ TC[κ′] if κ −→ κ′.

Note that � κ = normalise(κ) for all κ. Also, consider the syntax tree for normalise(κ):

the path from the root to a ∧ node will either not traverse any other nodes than ∧ or the

path will traverse a → node through the argument child (in other words, conjunctions

appear at top-level or not in ‘Rank 1’ position).

Lemma 5.2. If normalise(κ′ →L κ) =
∧

i∈I (κ
′ →L κi) then normalise(κ) =

∧
i∈I κi

Proof. We prove the more general property that if∧
i∈I

(κ′′ →L κi) −→∗
∧
j∈J

(
κ′′ →L κ′

j

)
,

then ∧
i∈I

κi −→∗
∧
j∈J

κ′
j .

The proof is by induction on the number of rewrite steps applied.

A syntax directed version of the inference system is given in Figure 3. We need a version

of the property of strengthened assumptions.

Lemma 5.3. If
T

A, x : κ1 �n e : κ
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Id
A, x : κ �n x : κ

→-I
A, x : κ �n e : κ′

A �n λlx.e : κ →{l} κ′

→-E

A �n e : κ′ →L κ ∀i ∈ I : A �n e′ : κ′
i �

∧
i∈I

κ′
i � κ′

A �n e@le′ : κ

×-I A �n e : κ A �n e′ : κ′

A �n (e, e′)l : κ ×{l} κ′

×-E

∀i ∈ I : A �n e : κi ×L κ′
i A, x :

∧
i∈I

κi, y :
∧
i∈I

κ′
i �n e′ : κ′′

A �n letl (x, y) be e in e′ : κ′′

Bool-I
A �n Truel : Bool{l} A �n Falsel : Bool{l}

Bool-E A �n e : BoolL A �n e′ : κ′ A �n e′′ : κ′′ � κ′ � κ � κ′′ � κ
A �n if l e then e′ else e′′ : κ

fix

∀i : A, x : κ �n e : κi �
∧
i∈I

κi � κ

A �n fixlx.e : κj

for any j ∈ I

Fig. 3. Syntax directed intersection flow analysis.

is a valid derivation and � κ2 � κ1, then T′, κ′ exists such that

� κ′ � κ,

T′

A, x : κ2 �n e : κ′

is a valid derivation and

F
(

T′

A, x : κ2 �n e : κ′

)
⊆ F

(
T

A, x : κ1 �n e : κ

)
.

Proof. The proof is by induction over the structure of e.

The syntax directed system is sound and complete with respect to the original system

in the sense given by the following theorem.

Theorem 5.1.

Soundness: If
T

A �n e : κ
is a valid derivation, then there exists a valid derivation

T′

A′ � e : κ′

such that

F
(

T′

A′ � e : κ′

)
= F

(
T

A �n e : κ

)
.
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Completeness: If

T
A � e : κ

is a valid derivation, then there exists a valid derivation

T′

A′ �n e : κ′

such that

F
(

T′

A′ �n e : κ′

)
⊆ F

(
T

A � e : κ

)
.

Proof. We prove the theorem for �′ instead of �. Then, the theorem follows by

Proposition 5.1.

Soundness is a trivial induction since we have have just incorporated the non-syntax

directed rules in the syntax directed ones.

For completeness, we prove in addition to the above that:

If

T
A �′ e : κ

is a valid derivation and normalise(κ) =
∧

i∈I κi, then there exists a family

Ti

A �n e : κ′
i

for i ∈ I

of derivations such that for all i we have � κ′
i � κi and

F
(

Ti

A �n e : κ′
i

)
⊆ F

(
T

A �′ e : κ

)
.

We prove completeness by induction over the inference tree for

T
A �′ e : κ

.

We will just give a few illustrative cases:

(→-I) Assume a derivation

→-I

T
A, x : κ �′ e : κ′

A �′ λlx.e : κ →{l} κ′

By induction, we find a family of derivations for i ∈ I:

Ti

A, x : κ �n e : κ′
i
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such that if normalise(κ′) =
∧

i∈I κi, then � κ′
i � κi for all i ∈ I . We construct

→-I

Ti

A, x : κ �n e : κ′
i

A �n λlx.e : κ →{l} κ′
i

Now we have normalise(κ →{l} κ′) =
∧

i∈I (κ →{l} κi) and

� κ →{l} κ′
i � κ →{l} κi

for all i ∈ I

(→-E) Assume

→-E

T
A �′ e : κ′ →L κ

T′

A �′ e′ : κ′

A �′ e@le′ : κ

Further assume

normalise(κ′ →L κ) =
∧

i∈I (κ
′ →L κi)

normalise(κ′) =
∧

j∈J κ
′
j .

Then, by induction, there exist families of derivations

Ti

A �n e : κ′
i →Li κ′′

i

and
T′

j

A �n e′ : κ′′′
j

for i ∈ I and j ∈ J such that

� κ′
i →Li κ′′

i � κ′ →L κi and � κ′′′
j � κ′

j .

We construct

Ti

A �n e : κ′
i →Li κ′′

i

∀j ∈ J :
T′

j

A �n e′ : κ′′′
j �

∧
j∈J

κ′′′
j � κ′

i

A �n e@le′ : κ′′
i

where �
∧

j∈J κ
′′′
j � κ′

i follows from � κ′′′
j � κ′

j , �
∧

j∈J κ
′
j = κ′ and � κ′ � κ′

i.

By Lemma 5.2, we have that normalise(κ) =
∧

i∈I κi. Finally, � κ′′
i � κi and Li ⊆ L.

(Sub′) Assume

∀i ∈ I :

Ti

A �′ e : κi � κi � κ′
i

A �′ e :
∧
i∈I

κ′
i

.

Let
∧

j∈Ji κij = normalise(κi) for all i ∈ I . For each i ∈ I we have, by induction,

families of derivations
Tij

A �n e : κ′
ij
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where � κ′
ij � κij for all i ∈ I and j ∈ Ji. Now, the family indexed by I × J fulfills

the property we wish to prove.

We can now show that the analysis is decidable as follows: first note that the subtype

relation � κ � κ′ is decidable. Now, given an expression e, the maximal height of

the syntax directed inference tree (leaving out the � κ � κ′ judgments) is bounded by the

size of e. With respect to width, the only interesting rules are (→-E) and (fix) since the

number of assumptions in these rules is not fixed:

1 In the (→-E) rule we have assumptions A �n e′ : κ′
i, but the number of such assumptions

is bounded by the size of K(t)/ =, where t = |κ′
i | .

2 Similarly, in the (fix) rule we have that the number of assumptions A, x : κ �∧
n e′ : κi

is bounded by the size of K(t)/ =, where t = |κi | .

Since (K(t)/=,�) is finite for each t, we have that for each e we can construct a finite set

of trees, such that the set of all valid derivations is a subset. Checking whether each tree

is a valid derivation is clearly decidable, so we can compute all valid derivations.

6. Minimality

This section shows that for every expression e there exists a minimal derivation T such

that F(T) is the minimal flow relation derivable for e. Given the results of the previous

section, we are thus able to compute the most precise flow information derivable from the

type system. In the following section, we will show that this minimal result is in a certain

sense exact.

In this section, we return to the original formulation � of the analysis.

Definition 6.1. A label vector is written as 〈L1, . . . , Ln〉, where L1, . . . , Ln are sets of labels.

Define point-wise set intersection on label vectors by

〈L1, . . . , Ln〉 ∩ 〈L′
1, . . . , L

′
n〉 = 〈L1 ∩ L′

1, . . . , Ln ∩ L′
n〉

and vector concatenation by

〈L1, . . . , Li〉 ++ 〈Li+1, . . . , Ln〉 = 〈L1, . . . , Li, Li+1, . . . , Ln〉.

Finally, define point-wise subset inclusion:

〈L1, . . . , Ln〉 ⊆ 〈L′
1, . . . , L

′
n〉 iff L1 ⊆ L′

1 and · · · and Ln ⊆ L′
n.

Definition 6.2. The vectorising function vec maps K(t) to label vectors and is defined as

follows:

vec(BoolL) = 〈L〉
vec(κ ×L κ′) = vec(κ) ++ 〈L〉 ++ vec(κ′)

vec(κ →L κ′) = vec(κ) ++ 〈L〉 ++ vec(κ′)

vec(κ ∧ κ′) = vec(κ) ∩ vec(κ′).

Definition 6.3. Define an ordering � on properties K(t) by

κ � κ′ iff vec(κ) ⊆ vec(κ′).
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We extend the definition of the ordering to judgments by defining

(x1 : κ1, . . . , xn : κn � e : κ) � (x1 : κ′
1, . . . , xn : κ′

n � e : κ′)

iff

κ � κ′ and κi � κ′
i for i ∈ {1, . . . , n}.

Note that the � ordering is co-variant: for example, the least type of λl1x.Truel2 is

Bool{} →{l1} Bool{l2}. The ordering is extended to derivations as follows.

Definition 6.4. Define the ordering � on derivations inductively as follows:

1 If one of (Id), (→-I), (→-E), (×-I), (×-E), (Bool-I), (Bool-E) and (fix) is the last rule

applied in both derivations, then

T1 · · · Tn

A � e : κ
� T′

1 · · · T′
n

A′ � e : κ′

if

(A � e : κ) � (A′ � e : κ′) and ∀i ∈ {1, · · · , n} : Ti � T′
i.

2 For any last rule applied in the second derivation

Sub
T

A � e : κ
� T′

A′ � e : κ′ if T � T′

A′ � e : κ′ .

Similarly, for any last rule applied in the first derivation

T
A � e : κ

� Sub
T′

A′ � e : κ′ if
T

A � e : κ
� T′.

3 For any last rule applied in the second derivation

∧-I
T1 T2

A � e : κ1 ∧ κ2
� T′

A′ � e : κ′

if

T1 � T′

A′ � e : κ′ and T2 � T′

A′ � e : κ′ .

Similarly, for any last rule applied in the first derivation

T
A � e : κ

� ∧-I
T′

1 T′
2

A′ � e : κ′
1 ∧ κ′

2

if
T

A � e : κ
� T′

1 and
T

A � e : κ
� T′

2.

The rules of the inductive definition are overlapping, but it is easy to check that the order

of applying the rules makes no difference, so the definition is valid.

The following property follows easily from the definitions of � and F.

Lemma 6.1. If T � T′, then F(T) ⊆ F(T′).

Hence, we find the smallest (most precise) flow relation by finding the smallest derivation

under �. We shall now prove that a smallest derivation exists.
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Definition 6.5. For any t and κ, κ′ ∈ K(t), define κ � κ′ as follows:

BoolL1 � BoolL2 = BoolL1∩L2

κ1 ×L1 κ′
1 � κ2 ×L2 κ′

2 = (κ1 � κ2) ×L1∩L2 (κ′
1 � κ′

2)

κ1 →L1 κ′
1 � κ2 →L2 κ′

2 = (κ1 � κ2) →L1∩L2 (κ′
1 � κ′

2)

(κ1 ∧ κ′
1) � κ2 = (κ1 � κ2) ∧ (κ′

1 � κ2)

κ1 � κ2 = κ2 � κ1.

Lemma 6.2. For any t and κ, κ′ ∈ K(t), we have κ � κ′ � κ and κ � κ′ � κ′.

Definition 6.6. Define

(x1 : κ1, . . . , xn : κn � e : κ) � (x1 : κ′
1, . . . , xn : κ′

n � e : κ′)

= (x1 : κ1 � κ′
1, . . . , xn : κn � κ′

n � e : κ � κ′).

Lemma 6.3. Let κ, κ′ ∈ K(t) and for all i ∈ {1, . . . , n}: κi, κ′
i ∈ K(ti). Then

(x1 :κ1, . . . , xn :κn � e :κ) � (x1 :κ′
1, . . . , xn :κ′

n � e :κ′) � (x1 :κ1, . . . , xn :κn � e :κ)

and

(x1 :κ1, . . . , xn :κn � e :κ) � (x1 :κ′
1, . . . , xn :κ′

n � e :κ′) � (x1 :κ′
1, . . . , xn :κ′

n � e :κ′).

Definition 6.7. The definition of � is extended to derivations by the following inductive

definition:

1 If one of (Id), (→-I), (→-E), (×-I), (×-E), (Bool-I), (Bool-E) and (fix) is the last rule

applied in both derivations, then

T1 · · · Tn

A � e : κ
� T′

1 · · · T′
n

A′ � e : κ′ =
T1 � T′

1 · · · Tn � T′
n

(A � e : κ) � (A′ � e : κ′)
.

2 If the last rule applied in the first derivation is (Sub), then for any last rule applied in

the second derivation

T
A � e : κ1 � κ1 � κ2

A � e : κ2

�
T′

A′ � e : κ′ =

T
A � e : κ1

�
T′

A′ � e : κ′ � κ1 � κ′ � κ2 � κ′

(A � e : κ2) � (A′ � e : κ′)
.

3 If the last rule applied in the first derivation is the (∧-I) rule, then for any last rule

applied in the second derivation

T1

A � e : κ1

T2

A � e : κ2

A � e : κ1 ∧ κ2

�
T′

A′ � e : κ′ =

T1

A � e : κ1

�
T′

A′ � e : κ′

T2

A � e : κ2

�
T′

A′ � e : κ′

(A � e : κ1 ∧ κ2) � (A′ � e : κ′)
.

4 T � T′ = T′ � T.

In Lemma 6.5, we show that T � T′ is a valid derivation. First, we need a simple

lemma.

Lemma 6.4. For all κ1, κ2 and κ3, we have � κ1 � κ2 implies � κ1 � κ3 � κ2 � κ3.
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Proof. The proof follows by induction on the derivation of � κ1 � κ2.

Lemma 6.5. If T and T′ are derivations, then so are T � T′ and T � T′ � T and

T � T′ � T′.

Proof. The lemma follows by induction over the sum of the heights of the two

derivations. The cases where the last rule of both derivations are syntax directed follow

by Lemma 6.3.

If the last rule of one of the derivations is the (Sub) rule, appeal to the induction

hypothesis and use Lemma 6.4.

Assume the last rule of one of the derivations is the (∧-I) rule. That is, assume the

situation of case (3) in Definition 6.7. By the induction hypothesis,

T1

A � e : κ1

�
T′

A′ � e : κ′
and

T2

A � e : κ2

�
T′

A′ � e : κ′

are derivations, and by Definition 6.7 (all cases), the conclusions of these two must be

A � A′ � e : κ1 � κ′ and A � A′ � e : κ2 � κ′.

Using the (∧-I) rule, we find A � A′ � e : (κ1 � κ′) ∧ (κ2 � κ′). By definition of �, this is

equivalent to A � A′ � e : κ1 ∧ κ2 � κ′, so the right-hand side of case (3) is indeed a valid

derivation.

From the induction hypothesis, we also find

T1

A � e : κ1

�
T′

A′ � e : κ′
�

T1

A � e : κ1

and
T1

A � e : κ1

�
T′

A′ � e : κ′
�

T′

A′ � e : κ′

and similarly for T2. Now the second part of the lemma follows from Definition 6.4.

Since there is a finite number of derivations for every expression e, the following corollary

is an immediate consequence of Lemmas 6.1 and 6.5.

Corollary 6.1. For each e there exists a minimal derivation T under the � ordering.

Furthermore, F(T) is the minimal flow relation derivable for e.

7. Non-standard semantics

In this section, we give a non-standard semantics that exactly characterises the strength

of intersection flow analysis. The semantics is a modification of the standard semantics

such that if the flow analysis predicts a potential redex, then reduction to normal form

under these semantics will indeed cause the redex to be reduced.

Intuitively, the intersection based analysis loses precision whenever a computation is

discarded. For example, a derivation for if l1 Truel2 then Falsel3 else (λl4x.x)@l5Falsel6 will

tell us that λl4 can be applied at application @l5 . If we choose to reduce the conditional,

we will discard the else-branch and therefore never perform the reduction predicted by

the analysis.

We introduce new syntactic constructs to ensure that this never happens. To avoid

discarding a computation when ‘if ’ is reduced, we introduce a new construct ‘either’. To
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avoid discarding function arguments that are not used, we introduce a special syntactic

construct ‘discard’. The type rules for the extensions of the language look as follows:

Discard
A � e′ : κ′ A � e : κ

A � discard e′ in e : κ

Either
A � e : t A � e′ : t

A � eitherb e or e′ : t
where b ∈ {True,False}.

Call the extended set of expressions Exps.

The analysis is also imprecise in another way: it can predict redexes that are ‘blocked’.

For example, for (letl1 (x1, x2) be y in λl2z.z)@l3Falsel4 , where y is free, the analysis will

predict that λl2z.z can be applied to Falsel4 . Under any (type legal) instantiation of y,

this will indeed be a redex, so this is not really an error of the analysis. It is, however,

important to model this behavior in the non-standard semantics. We therefore introduce

context propagation rules in the new semantics to ensure that all potential redexes are

reduced.

Figure 4 presents the non-standard reduction system. In rules (β), (δ-if) and (δ-let-pair)

data labelled l′ is consumed by a consumer labelled l. The remaining rules are non-

consumptions. Reduction by the rule C[e] −→s C[e′] is a consumption (non-consumption)

if e −→s e
′ is a consumption (non-consumption). Function R() is defined on the extended

reduction system as expected. Note that fix is missing in Figure 4 – we will deal with fix

in Section 10.

The extended reduction system is confluent, and all reduction paths reduce the same

redexes.

Proposition 7.1 (Confluence). If e −→∗
s e1 and e −→∗

s e2, there exists e′ such that e1 −→∗
s e

′

and e2 −→∗
s e

′. Furthermore, R(e −→∗
s e1 −→∗

s e
′) = R(e −→∗

s e2 −→∗
s e

′).

Proof. The proof is a standard confluence proof.

It is easy to see that −→s is strongly normalising. Extending the analysis to handle the

new constructs is straightforward:

Discard
A � e′ : κ′ A � e : κ

A � discardl e′ in e : κ

Either
A � e : κ A � e′ : κ

A � eitherlb e or e′ : κ
where b ∈ {Truel

′
,Falsel

′ }.

Definition 7.1. Any expression v such that no e exists with v −→s e is called a value.

Proposition 7.2. An expression v is a value if and only if it has the following syntax:

v := letl (x, y) be v in v′ | if l v then v else v′ | λlx.v | (v, v′)l |
eitherlb v or v′ | discardl v in v′ | Truel | Falsel | v

v ::= v@lv′ | x | ⊥t.
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Contexts:

C ::= discardl C in e′ | discardl e in C | eitherlb C or e | eitherlb e or C

Reduction Rules:

(β) (λl
′
x.e)@le′ −→s e[e

′/x] if x ∈ FV (e)

−→s discardl e′ in e otherwise

(δ-if) if l Truel
′
then e else e′ −→s eitherl

Truel
′ e or e′

if l Falsel
′
then e else e′ −→s eitherl

Falsel
′ e or e′

(δ-let-pair)

letl (x, y) be (e, e′)l
′
in e′′ −→s e

′′[e/x][e′/y] if x, y ∈ FV (e′′)

−→s discardl e′ in e′′[e/x] if x ∈ FV (e′′) and y ∈/ FV (e′′)

−→s discardl e in e′′[e′/y] if y ∈ FV (e′′) and x ∈/ FV (e′′)

−→s discardl e in discardl e′ in e′′ otherwise

(Context) C[e] −→s C[e′] if e −→s e
′

Context Propagation Rules:

(discard) (discardl e1 in e2)@
l′e3

−→s discardl e1 in (e2@
l′e3)

letl
′
(x1, y1) be (discardl e1 in e2) in e3

−→s discardl e1 in (letl
′
(x1, y1) be e2 in e3)

if l
′
(discardl e1 in e2) then e3 else e4

−→s discardl e1 in (if l
′
e2 then e3 else e4)

(pair) (letl (x, y) be e1 in e2)@
l′e3

−→s letl (x, y) be e1 in (e2@
l′e3)

letl (x1, y1) be (letl
′
(x2, y2) be e1 in e2) in e3

−→s letl
′
(x2, y2) be e1 in (letl (x1, y1) be e2 in e3)

if l
′
(letl (x, y) be e1 in e2) then e3 else e4

−→s letl (x, y) be e1 in (if l
′
e2 then e3 else e4)

(if) (if l e1 then e2 else e3)@
l′e4

−→s if l e1 then (e2@
l′e4) else (e3@

l′e4)

letl
′
(x, y) be (if l e2 then e3 else e4) in e1

−→s if l e2 then (letl
′
(x, y) be e3 in e1) else (letl

′
(x, y) be e4 in e1)

if l (if l
′
e1 then e2 else e3) then e4 else e5

−→s if l
′
e1 then (if l e2 then e4 else e5) else (if l e3 then e4 else e5)

(either) (eitherlb e1 or e2)@
l′e3

−→s eitherlb (e1@
l′e3) or (e2@

l′e3)

letl
′
(x, y) be (eitherlb e2 or e3) in e1

−→s eitherlb (letl
′
(x, y) be e2 in e1) or (letl

′
(x, y) be e3 in e1)

if l
′
(eitherlb e1 or e2) then e3 else e4

−→s eitherlb (if l
′
e1 then e3 else e4) or (if l

′
e2 then e3 else e4)

Fig. 4. Extensions for non-standard reduction.
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Proof. It is easy to see that if v has the above syntax, then no e exists such that v −→s e.

Let e be any expression. We will prove that if no e0 exists such that e −→s e0, then e

has the above syntax. We prove this by induction on the structure of e. First we note that

e cannot be fix x.e.

True: This is clearly a value.

False: This is clearly a value.

if e then e′ else e′′: Clearly, e, e′ and e′′ have to be values for ‘if e then e′ else e′′’ to

be a value. Furthermore, e cannot be ‘True’ or ‘False’ since the conditional would

then reduce to ‘eitherTrue e′ or e′′’ or ‘eitherFalse e′ or e′′’, and it cannot be a discard,

a ‘let (x, y) . . .,’ another conditional or an ‘either’ expression since then a context

propagation rule would be applicable. Finally, it cannot be an abstraction or a pair

since it would not be well-typed. The only things left are applications or variables.

eitherb e or e′: Clearly both e and e′ have to be values.

x: This is clearly a value.

λx.e′: This is a value if e′ is.

e′@e′′: Clearly e′′ has to be a value. Also e′ has to be a value. If e′ is a pair or a truth

value the expression is not well-typed. If e′ is an abstraction, e cannot be a value.

Similarly, if e′ is a discard, a ‘let (x, y) . . .’, a conditional or an ‘either’ expression, one of

the context propagation rules is applicable. The only options left for e′ are a variable

or an application.

(e′, e′′): This is a value if the components are.

let (x, y) be e′ in e′′: Both e′ and e′′ have to be values. If e′ is a pair, e would not

be a value, and, similarly, if it is another pair destructor or a discard, a context

propagation rule would be applicable. Since e must be well typed, the only options

left are applications and variables.

Definition 7.2. We define a reduction system −→c on standard terms as −→ plus the

context propagation rules for (pair) and (if).

Note that the context rule for (if) allows strictly more consumptions even for closed

terms. For example, applying the rule to

(if l3 Truel4 then λl1x.e else λl2y.e′)@l5Truel6

allows the reduction (l5, l2).

Proposition 7.3 characterises −→s in terms of −→c: every consumption while reducing

a term e to a value using −→s, is a potential consumption while reducing a term e to a

value using −→c. To prove this, we need a number of definitions and lemmas.

https://doi.org/10.1017/S0960129502003857 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003857


Exact flow analysis 143

Definition 7.3. Define call-by-value reduction −→s,CBV in the extended system by limiting

the applicability of the (β) and (δ-let-pair) reduction rules as follows:

(β) (λl
′
x.e)@lv −→s,CBV e[v/x] if x ∈ FV (e)

−→s,CBV discardl v in e otherwise

(δ-let-pair)

letl (x, y) be (v, v′)l
′
in e −→s,CBV e[v/x][v′/y] if x, y ∈ FV (e)

−→s,CBV discardl v′ in e[v/x] if x ∈ FV (e) and y ∈/ FV (e)

−→s,CBV discardl v in e[v′/y] if y ∈ FV (e) and x ∈/ FV (e)

−→s,CBV discardl v in discardl v′ in e otherwise.

Lemma 7.1. Let e, v ∈ Exps be given. If e −→s v, then there exists a reduction sequence

e −→s,CBV v.

Proof. The proof follows by confluence and strong normalisation.

Definition 7.4. Define a mapping S from Exps to Exp:

S(discardl e′ in e) = S(e)

S
(
eitherl

Truel
′ e or e′) = if l Truel

′
then S(e) else S(e′)

S
(
eitherl

Falsel
′ e or e′) = if l Falsel

′
then S(e) else S(e′)

S(λlx.e) = λlx.S(e)

S(e@le′) = S(e)@lS(e′)

S((e, e′)l) = (S(e),S(e′))l

S(letl (x, y) be e in e′) = letl (x, y) be S(e) in S(e′)

S(Truel) = Truel

S(Falsel) = Falsel

S(if l e then e′ else e′′) = if l S(e) then S(e′) else S(e′′).

Lemma 7.2. If e −→∗
s,CBV e′, then S(e) −→∗

c S(e′).

Proof. We use induction on the length of e −→∗
s,CBV e′. Reductions e1 −→s,CBV e2 are

mimicked by S(e1) −→c S(e2) except (δ-if), which is ignored.

Lemma 7.3. Let e, e′ ∈ Exps be given such that e −→s e
′ and R(e −→s e

′) = {(l, l′)}. Then

there exists e′′ ∈ Exp such that S(e) −→ e′′ and R(S(e) −→ e′′) = {(l, l′)}.

Proof. The proof is by induction on the context and simple case analysis of the

consumption involved.

Proposition 7.3. Let e ∈ Exp and v ∈ Exps be given such that e −→∗
s v and (l, l′) ∈

R(e −→∗
s v). Then v′ ∈ Exp exists such that e −→∗

c v
′ and (l, l′) ∈ R(e −→∗

c v
′).

Proof. By Proposition 7.1, any reduction from e to v using −→s will reduce the same

set of redexes. Specifically, we can (using Lemma 7.1) choose e −→∗
s,CBV v. But then we

can use Lemmas 7.2 and 7.3 to construct the reduction sequence using −→c.
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8. Soundness

We prove soundness for the analysis under the semantics defined by Figure 4 plus the

standard rule for ‘fix’:

fixlx.e−→s e[fixlx.e/x].

Soundness is stated as intensional subject reduction – we show that not only is the

judgment for the whole expression preserved, but the flow computed by the derivation is

preserved. We first prove an intensional version of the substitution lemma.

Lemma 8.1 (Substitution lemma). If

T
A, x : κ′ � e : κ

and

T′

A � e′ : κ′ ,

then there exists T′′ such that:

1
T′′

A � e[e′/x] : κ

2 F
(

T′′

A � e[e′/x] : κ

)
= F

(
T

A, x : κ′ � e : κ

)
∪ F

(
T′

A � e′ : κ′

)
.

Proof. The proof follows by simple induction on the structure of the derivation of

A, x : κ′ � e : κ.

Theorem 8.1 (Subject reduction). If

T
A � e : κ

and e −→s e
′, then there exists T′ such that:

1
T′

A � e′ : κ
2 If the reduction lets consumer l consume data l′, then

F
(

T
A � e : κ

)
= F

(
T′

A � e′ : κ

)
∪ {(l, l′)}

3 If the reduction is a non-consumption, then

F
(

T′

A � e′ : κ

)
= F

(
T

A � e : κ

)
.

Proof. The interesting cases follow from Lemma 8.1.

9. Completeness

This section proves subject expansion for the language without the ‘fix’ operator.
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Subject expansion can only hold if expansion preserves standard types, so this will be

an implicit assumption throughout the section. The subject expansion property we prove

is intensional, that is, the computed flow information is preserved.

Lemma 9.1. Let e be an expression with n > 0 occurrences of variable x. If

T
A � e[e′/x] : κ

then there exists κ1 · · · κn,T′ and T1 · · · Tn such that:

1
Ti

A � e′ : κi

2
T′

A, x :
∧

i∈{1,···,n}

κi � e : κ

3 F
(

T
A � e[e′/x] : κ

)
=

⋃
i

F
(

Ti

A � e′ : κi

)
∪ F


 T′

A, x :
∧

i∈{1,···,n}

κi � e : κ


.

Proof. The proof is by straightforward induction on the derivation T.

Definition 9.1. If T is a derivation where x does not occur, we write T, x : κ for the

derivation where x : κ is added to all environments.

Note that if T is a valid derivation and x does not occur free in the derivation, then

T, x : κ is a valid derivation.

Theorem 9.1 (Subject expansion). If

T′

A � e′ : κ

and e −→s e
′, then there exists T such that:

1
T

A � e : κ
2 If the reduction lets consumer l consume data l′, then

F
(

T
A � e : κ

)
= F

(
T′

A � e′ : κ

)
∪ {(l, l′)}

3 If the reduction is a non-consumption, then

F
(

T′

A � e′ : κ

)
= F

(
T

A � e : κ

)
.

Proof. We use case analysis on the definition of −→s, that is, the β and δ rules are the

base cases and the context rule is the induction step. We will just show some illustrative

cases:
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(β) If x not free in e, the case is simple. Assume x has n � 1 occurrences in e. Then

(λl
′
x.e)@le′ −→s e[e

′/x]. By assumption,

T
A � e[e′/x] : κ

.

By Lemma 9.1, we have Ti, κi such that

Ti

A � e′ : κi
and

T′

A, x :
∧
i

κi � e : κ
.

Finally,

T′

A, x :
∧
i

κi � e : κ

A � λl
′
x.e :

( ∧
i

κi

)
→{l′} κ

T1

A � e′ : κ1 · · ·

Tn

A � e′ : κn

A � e′ :
∧
i

κi

A � (λl
′
x.e)@le′ : κ

Part (2) follows from Lemma 9.1.

‘Context propagation rules’: The (discard) and (pair) cases follow from a simple re-

arrangement of the derivations. The (if) and (either) cases requires the use of ∧ but

are relatively straightforward: we give the first case of (if) as illustration.

Assume

(if l e1 then e2 else e3)@
l′e4 −→s if l e1 then (e2@

l′e4) else (e3@
l′e4).

Without loss of generality, we can assume

T1

A � e1 : BoolL1 T2 T3

A � if l e1 then (e2@
l′e4) else (e3@

l′e4) : κ

where

T2 =

T′
2

A � e2 : κ4 →L2 κ2

T′′
2

A � e4 : κ4

A � (e2@
l′e4) : κ2 � κ2 � κ

A � (e2@
l′e4) : κ

T3 =

T′
3

A � e3 : κ′
4 →L3 κ3

T′′
3

A � e4 : κ′
4

A � (e3@
l′e4) : κ3 � κ3 � κ

A � (e3@
l′e4) : κ
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We can now construct

T1

A � e1 : BoolL1 T4 T5

� if l e1 then e2 else e3 : (κ4 ∧ κ′
4) →L2∪L3 κ

T′′
2

A � e4 : κ4

T′′
3

A � e4 : κ′
4

A � e4 : κ4 ∧ κ′
4

A � (if l e1 then e2 else e3)@
l′e4 : κ

where

T4 =

T′
2

A � e2 : κ4 →L2 κ2

� κ4 ∧ κ′
4 � κ4 � κ2 � κ L2 ⊆ L2 ∪ L3

� κ4 →L2 κ2 � (κ4 ∧ κ′
4) →L2∪L3 κ

A � e2 : (κ4 ∧ κ′
4) →L2∪L3 κ

and

T5 =

T′
3

� e3 : κ′
4 →L3 κ3

� κ4 ∧ κ′
4 � κ′

4 � κ3 � κ L3 ⊆ L2 ∪ L3

� κ′
4 →L3 κ3 � (κ4 ∧ κ′

4) →L2∪L3 κ

� e3 : (κ4 ∧ κ′
4) →L2∪L3 κ

10. Handling ‘fix’

In Section 9 we proved that if e −→s e
′, analysing e will yield exactly one more redex than

analysing e′ if the reduction is a consumption and exactly the same redexes if it is not.

In Section 11 we will prove that analysing values yields the empty set of redexes. These

two properties are sufficient to prove that if e reduces to a value, then the analysis will

yield exactly the redexes that are actually reduced. Unfortunately, no expression with a

‘fix’ expression will ever reduce to a value! This section handles this problem.

Definition 10.1. For any expression e of type t, define

e0 = ⊥t

en+1 = e[en/x].

Definition 10.2. For any expression e, define

e(0) = x

e(n+1) = e[e(n)/x]

with respect to a variable x free in e.

The idea of this section is to show that there exists m such that the analysis is invariant

under expansion of the reduction rule fix x.e −→s em (throughout this section, we will

assume that x occurs in e, since the problem is trivial otherwise). The strategy is as

follows:

1 Show that it is no restriction to consider expressions fix x.e with exactly one occurrence

of x (Lemma 10.1).
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2 Show subject expansion for C[fix x.e(m)] −→ C[en] (Corollary 10.1).

3 Show subject expansion for C[fix x.e] −→ C[fix x.e(m)] (Lemma 10.3).

Lemma 10.1. Let e be an expression with n > 0 occurrences of x and no occurrences of

y. Let

T
A � C[e] : κ

and
T′

A′ � C[(λl
′
y.e[y/x])@lx] : κ

be minimal derivations. Then

F
(

T
A � C[e] : κ

)
∪ {l, l′} = F

(
T′

A′ � C[(λl
′
y.e[y/x])@lx] : κ

)
.

Proof. The proof is trivial from Theorem 9.1.

Lemma 10.2. Let e and C be given such that e has exactly one occurrence of x. Then

there exists m and n < m such that if

T
A � C[em] : κ

is a minimal derivation, then it contains the judgments A′ � en : κ′ and A′′ � em : κ′′ with

A′ |FV (e)= A′′ |FV (e) and κ′ = κ′′.

Proof. Clearly, for every y free in e, the underlying standard types of A′(y) and A′′(y)

are the same. Similarly, the underlying types of κ′ and κ′′ are the same. By finiteness of

K(t)/=, there are only finitely many pairs (A |FV (e), κ), and hence there must exist some

m where we meet a judgment, that has occurred earlier in the derivation.

Corollary 10.1. Let m, n be as computed by Lemma 10.2 and

T
A � C[em] : κ

be the minimal derivation. Then there exists

T′

A � C
[
fix x.e(m−n)

]
: κ

such that

F
(

T′

A � C[fix x.e(m−n)] : κ

)
⊆ F

(
T

A � C[em] : κ

)
.

Proof. The proof is immediate from Lemmas 10.2 and 9.1.

Lemma 10.3. Let T, A, κ, C and e (with exactly one occurrence of x) be given such that

T
A � C

[
fix x.e(m)

]
: κ

is a derivation. Then there exists T′ such that

T′

A � C[fix x.e] : κ
and F

(
T′

A � C[fix x.e] : κ

)
= F

(
T

A � C
[
fix x.e(m)

]
: κ

)
.
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Proof. We have the following derivation:

T0

A, x : κm � e(0) : κ0

A, x : κm � e(1) : κ1

· · ·
A, x : κm � e(m−1) : κm−1

A, x : κm � e(m) : κm

A � fix x.e(m) : κm
===============
A � C[fix x.e(m)] : κ

Dismantle this derivation according to Lemma 9.1 into

T0

A, x : κm � e : κ0

T1

A, x : κ0 � e : κ1
· · · Tm

A, x : κm−1 � e : κm
.

By the property of strengthened assumptions, we find

T′
0

A, x :
∧
i

κi � e : κ0

T′
1

A, x :
∧
i

κi � e : κ1

· · · T′
m

A, x :
∧
i

κi � e : κm

(where T′
i only differs from Ti in the assumptions for x). Then, by (∧-I), we have

T′
0

A, x :
∧
i

κi � e : κ0 · · ·
T′

m

A, x :
∧
i

κi � e : κm

A, x :
∧
i

κi � e :
∧
i

κi

A � fix x.e :
∧
i

κi �
∧
i

κi � κm

A � fix x.e : κm
=============
A � C[fix x.e] : κ

Invariance of the computed flow relations then follows by the construction.

We summarise Corollary 10.1 and Lemma 10.3 as follows (where we use Lemma 10.1

to generalise to an arbitrary number of occurrences of the fix-bound variable).

Theorem 10.1. Let C[fixlx.e] be given. Then there exists m such that if

T
A � C[em] : κ

,

there exists T′ such that

T′

A � C[fixlx.e] : κ
and F

(
T′

A � C[fixlx.e] : κ

)
⊆ F

(
T

A � C[em] : κ

)
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If we apply the reduction rule for fix to C[fixlx.e] m times, then, by Theorem 8.1, there

exists a derivation T1 for the resulting term such that

F(T1) = F
(

T′

A � C[fixlx.e] : κ

)
.

But from the derivation T1, we can construct a derivation T2 for C[em] such that

F(T1) = F(T2). Hence we have the following theorem.

Theorem 10.2. Let C[fixlx.e] be given. Then there exists m such that if

T
A � C[em] : κ

and
T′

A � C[fixlx.e] : κ

are minimal, then

F
(

T
A � C[em] : κ

)
= F

(
T′

A � C[fixlx.e] : κ

)
.

11. Normal forms

Definition 11.1. We use the notation A∧A′ for the environment mapping x to A(x) ∧A′(x)

if x is in the domain of both A and A′, and to A(x) or A′(x) if x is not in the domain of A′

or not in the domain of A, respectively. We extend this to use the abbreviation T ∧A for

the derivation where A is intersected with all environments in T (this derivation contains

appropriate subsumption steps at variable occurrences).

Clearly, T ∧A is a valid derivation if T is and F(T) = F(T ∧ A).

Definition 11.2. We say a property κ ∈ K is result-empty iff all positively occurring labels

are the empty set {}. Similarly, κ is called argument-empty iff all negatively occurring

labels are the empty set {}.

The following theorem states that the analysis need not predict any redexes for values.

Theorem 11.1. If v is a value, there exists A, κ,T such that

T
A � v : κ

and F
(

T
A � v : κ

)
= �.

Proof. We will show that:

1 For all v not being variables, applications or ⊥, there exists A, κ,T such that:

(a)
T

A � v : κ
(b) A(x) is result-empty for all x

(c) κ is argument-empty.

2 For all v and result-empty κ there exists A,T such that:

(a)
T

A � v : κ
(b) A(x) is result-empty for all x.

https://doi.org/10.1017/S0960129502003857 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003857


Exact flow analysis 151

It follows from 2(a) that any expression occurring in a ‘consumption’ context can be

given a type where all positively occurring annotations (in particular the top annotation)

are the empty set. Hence, we have

F
(

T
A � v : κ

)
= �.

The proof proceeds by induction over the structure of values. We will just show a few

illustrative cases:

v@lv′: If v′ is not a variable or an application, we have, by induction,

T′

A′ � v′ : κ′

where A′ is result-empty and κ′ is argument-empty. If v′ is a variable or an application,

then the above is true for any result-empty κ′ and, in particular, for the argument-

and result-empty κ′.

Let any result-empty κ be given. Then κ′ →{} κ is also result-empty. By induction,

there is

T
A � v : κ′ →{} κ

where A is result-empty.

We now construct

T ∧ A′

A ∧ A′ � v : κ′ →{} κ

T′ ∧ A

A ∧ A′ � v′ : κ′

A ∧ A′ � v@lv′ : κ

where A ∧ A′ is result-empty and κ is any given result-empty type.

if l v then v′ else v′′: By induction we find A,T such that

T
A � v : Bool{}

and A′, A′′, κ′, κ′′,T′,T′′ such that

T′

A′ � v′ : κ′ and
T′′

A′′ � v′′ : κ′′

where A, A′ and A′′ are result-empty and κ′, κ′′ are argument-empty. Let A′′′ =
A ∧ A′ ∧ A′′. Clearly, there exists an argument empty type κ′′′ such that

T ∧ A′ ∧ A′′

A′′′ � v : Bool{}

T′ ∧ A ∧ A′′

A′′′ � v′ : κ′ � κ′ � κ′′′

A′′′ � v′ : κ′′′

T′′ ∧ A ∧ A′

A′′′ � v′′ : κ′′ � κ′′ � κ′′′

A′′′ � v′′ : κ′′′

A′′′ � if v then v′ else v′′ : κ′′′
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12. Summarising the results

Sections 9, 10 and 11 prove that the analysis is exact under non-standard reduction. Let

e be any expression. Then:

— By applying Theorem 10.1 to every occurrence of ‘fix’ in e, we have that there exists a

fix-free term e′. By Theorem 10.2, the minimal predictable flow of e and e′ is identical.

— By using Theorem 11.1 as a base case, and applying Theorem 9.1 inductively, we have

that the minimal predictable flow for e′ is exactly the redexes met when reducing e′ to

a value.

If non-standard reduction reduces e to a value v reducing redexes Φ, then, by

Proposition 7.3, for any (l, l′) ∈ Φ there exists a reduction sequence using standard

reduction extended with context propagation rules for (pair) and (if) such that (l, l′) is

reduced.

Theorem 12.1 (Exactness). Let e be any expression and let T be the minimal derivation

for e. Then, for any (l, l′) ∈ F(T), there exists a reduction sequence e −→∗
c e′ such that

(l, l′) ∈ R(e −→∗
c e

′).

Note that the context-propagation rules only involve extensions to the lambda calculus;

the theorem is true for the pure typed lambda calculus using standard β-reduction.

Statman (Statman 1979) shows that decidability of Henkin’s formulation of type theory

can be reduced to deciding whether simply typed lambda terms beta-reduces to the Church

numeral 0.

It follows that deciding whether e −→∗ λx.λy.y for simply typed pure lambda expressions

e of type (0 → 0) → (0 → 0) is non-elementary recursive.

Assume that our analysis is elementary recursive. Then we can find the minimal

derivation T for e@l1 (λl2x1.x1)@
l3x2 in elementary time. By Theorem 12.1, there exists

l4 such that (l4, l2) ∈ F(T) if and only if there exists a reduction sequence from

e@l1 (λl2x1.x1)@
l3x2, where λl2 is consumed at some application. But this is the case

if and only if e reduces to a lambda term different from λx.λy.y. By Statman’s theorem,

our assumption must be wrong, and we can conclude that our analysis is non-elementary

recursive.

13. Related work

Intersection Types It is well known that the intersection type discipline gives an exact

characterisation of normalising lambda-terms (Coppo et al. 1981; Barendregt et al. 1983) –

the proof of this is along the same lines as our proof of exactness of the analysis for fix-free

expressions: prove invariance under reduction and that all normal-forms are typable.

Type-based analysis Type-based analysis has received considerable attention over the last

decade. The analyses can be divided into Church and Curry style.

In Church style analysis, the language of properties is defined in terms of the underlying

standard types. A special case is annotated types where the language of properties is

found by adding annotations to type constructors (we do not consider our analysis
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an instance of annotated types due to the intersection). Examples of Church style

analyses are: binding-time analysis (Nielson and Nielson 1988; Henglein and Mossin 1994;

Dussart et al. 1995), strictness analysis (Kuo and Mishra 1987; Kuo and Mishra 1989;

Wright 1991; Jensen 1992; Benton 1992), boxing analysis (Leroy 1992; Henglein and

Jørgensen 1994; Jørgensen 1995), totality analysis (Solberg 1994; Solberg 1995) and flow

analysis (Heintze 1995; Mossin 1997a; Faxén 1997). Effect systems also belong in this

category (Lucassen and Gifford 1988; Talpin and Jouvelot 1994).

In Curry style analysis, the analysis makes no use of the underlying type structure.

This often makes the analysis applicable to untyped languages but fails to exploit

the structural information of the underlying types. Examples are: binding-time analysis

(Gomard 1989), dynamic typing (Henglein 1994) and flow analysis (Banerjee 1997; Heintze

and McAllester 1997).

Flow analysis Closure analysis (Sestoft 1991) and control flow analysis (Shivers 1991)

both address the same problem as the analysis presented in this paper. These analyses,

however, only only deal with the flow of higher order values.

Shivers (Shivers 1991) describes a family of analyses kCFA for all k. It is shown in

Mossin (1997a) that, in contrast to popular belief, 0CFA differs from closure analysis:

Shivers’ family of analyses is evaluation-order dependent†.

Palsberg later gave a constraint formulation of closure analysis (Palsberg 1994). Palsberg

and O’Keefe showed that the type information derived using closure analysis corresponds

to Amadio–Cardelli typing (Palsberg and O’Keefe 1995). Independently, Heintze showed

the same result and the converse (Heintze 1995), by annotating Amadio–Cardelli typings,

closure analysis is derived.

Heintze and McAllester define a variant of Palsberg’s constraint formulation of closure

analysis (Heintze and McAllester 1997). Termination of the analysis relies on the fact

that the analysed program is well-typed – if the size of types is bounded the analysis

will run in quadratic time (in contrast to Palsberg’s cubic algorithm). The present author

independently achieved the same time complexity (Mossin 1998). This variant explicitly

uses the structure of the type derivation in the construction of a flow graph.

Shivers’ analyses are abstractions of an instrumented semantics. This semantics is

defined using contours that keep track of different live instances of variables – kCFA

makes the set of contours isomorphic to Callk where Call is the set of call-sites. The

instrumented semantics can be thought of as an exact (though undecidable) flow analysis.

More refined instrumented semantics have been proposed by Jaganathan and Weeks

(Jaganathan and Weeks 1995) and by Nielson and Nielson (Nielson and Nielson 1997).

Both allow a wider choice of abstractions and thus provide good starting points for the

development of practical analyses.

Independently of the present work, Banerjee has studied rank 2 intersection based

flow analysis (Banerjee 1997). The goal of his work is practical (modularity and increased

precision compared to closure analysis), but an assessment of the practicality (in particular,

† The notion of evaluation-order dependency is well known in the imperative data-flow community, but has

received little attention for higher-order programming languages.

https://doi.org/10.1017/S0960129502003857 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003857


C. Mossin 154

complexity) of his analysis is made difficult by the lack of a clear-cut separation between

standard type system and flow information. Rank 2 intersection is indeed a promising way

of abstracting our analysis, but further studies are needed – it is likely that the techniques

employed here could be used to prove exactness of rank 2 intersection flow analysis on

first-order terms.

The present author has described (Mossin 1997a) a family of flow analyses based on

types: simple flow analysis, subtype flow analysis (which is equivalent to closure analysis),

polymorphic flow analysis (with polymorphic recursion) and the intersection flow analysis

presented here. Independently, Faxén gives a flow analysis with let-polymorphism in

annotations (Faxén 1997).

14. Conclusion

We have presented a flow analysis for a higher-order typed language with recursion, and

proved that the analysis is exact: if the analysis predicts a redex, then there exists a

reduction sequence such that this redex will be reduced.

The analysis is decidable but the precision of the analysis implies that it is non-

elementary recursive. This is, however, no worse (or better) than the complexity of

strictness analysis, and we believe that intersection based flow analysis (as strictness

analysis) provides a good starting point for developing practical analyses.

Finally, we believe that the technique of using invariance under reduction as a

characterisation of the precision of analyses can be useful for reasoning about other

analyses as well. In particular, the idea of proving invariance under non-standard reduction

and relating this to standard reduction seems useful.
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