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The interaction between boundary layer turbulence and a porous layer is the cornerstone
of interface engineering. In this study, the spatial and spectral-resolved transfer entropy
is used to assess the asymmetry of the causal interaction next to the permeable wall.
The analysis is based on pore-resolved direct numerical simulation of turbulent channel
flow over cylinder arrays. The spatial map of transfer entropy reveals the information
flux between the porous medium and arbitrary nearby positions, and paths connecting
locations with maximum information transfer are identified. The paths in the ‘top-down’
and ‘bottom-up’ directions, respectively, lean upstream and downstream, demonstrating
that the coupling process is directionally dependent. The scale dependence of transfer
entropy is inspected with a surrogate data strategy. As wall permeability increases, the
active scale range in causal interaction shifts from near-wall vortices to Kelvin–Helmholtz
type eddies. In addition, linear stochastic estimation is used to determine the statistical
velocity field for a local informative event. In an average sense, the interaction between
a convecting sweep or ejection event and the up/down-welling motions at the pore unit is
the core mechanism that contributes to the causal coupling. The statistical findings derived
from the transfer entropy are then validated using a neural network-based remote sensing
model.

Key words: turbulent boundary layers, porous media

† Email address for correspondence: xu.chu@simtech.uni-stuttgart.de

© The Author(s), 2022. Published by Cambridge University Press 949 A16-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

77
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:xu.chu@simtech.uni-stuttgart.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.770&domain=pdf
https://doi.org/10.1017/jfm.2022.770


W. Wang, A. Lozano-Durán, R. Helmig and X. Chu

1. Introduction

The system of a free flow over a porous medium region appears in a wide range of
industrial and environmental applications, such as catalytic reactors, heat exchangers,
fuel cells and porous river beds (Nepf 2012; Bottaro 2019; Terzis et al. 2019). The flow
and transport processes involved are characterised by complex interactions between the
porous medium and the free flow, including the two-way exchange of mass, momentum
and energy across the interface (Breugem, Boersma & Uittenbogaard 2006; Manes,
Poggi & Ridolfi 2011; Fang et al. 2018; Kim et al. 2020; Suga, Okazaki & Kuwata
2020). Understanding the transport behaviour at the permeable interface is a non-trivial
challenge, which involves a wide range of properties of the porous medium, such as
permeability (Suga, Nakagawa & Kaneda 2017; Voermans, Ghisalberti & Ivey 2017; Rosti,
Brandt & Pinelli 2018), surface roughness (Kim et al. 2020) and pore geometry (Suga
et al. 2020; Shen, Yuan & Phanikumar 2020; McCorquodale & Munro 2021; Xu et al.
2021). The early works have (Finnigan 2000; Jiménez et al. 2001; Breugem et al. 2006)
established a framework for the coupling dynamics across the interface, which can be
summarized as competing mechanisms in the flow: the formation of wall-attached eddies
and the disruption by shear layer instabilities. When the permeability is low, the near-wall
structures are less disrupted and behave as the canonical wall-bounded flow. However,
as the permeability increases, large-scale vortical structures related to Kelvin–Helmholtz
(KH) type instabilities emerge in the surface flow. Meanwhile, the characteristics of
the near-wall cycle are substantially weakened. This scenario is supported by both
experimental (Kim et al. 2018) and numerical results (Manes et al. 2009; Kuwata & Suga
2016; Motlagh & Taghizadeh 2016; Chu et al. 2021).

Apart from the traditional isotropic porous medium, attention has recently been drawn
to the anisotropic permeability. Rosti, Cortelezzi & Quadrio (2015); Rosti et al. (2018)
conducted a parameter study with direct numerical simulation (DNS). They found that the
total drag over a permeable wall could be reduced by approximately 20 % by adjusting the
diagonal components of the permeability towards streamwise and spanwise directions.
Abderrahaman-Elena & García-Mayoral (2017); Gómez-de Segura & García-Mayoral
(2019) confirmed the result of Rosti et al. (2018) by showing the drag reduction ability of
anisotropic permeable substrates. Kuwata & Suga (2017); Suga et al. (2020) investigated
the influence of an anisotropic permeability tensor of porous media at a higher permeable
regime. It was found that streamwise and spanwise permeabilities enhance turbulence,
whilst vertical permeability itself does not. In particular, the enhancement of turbulence is
remarkable over porous walls with streamwise permeability, as it allows the development
of streamwise large-scale perturbations induced by KH instability.

The surface roughness of porous media, in addition to permeability, also has an impact
on interfacial flow. Yuan & Aghaei Jouybari (2018) compared turbulence statistics of
turbulent open-channel flows over a smooth wall and wall roughness with different
textures. They showed that the shear production peaks near the roughness crest while
the individual form-induced productions are more texture sensitive and peak at a lower
elevation. Kim et al. (2020) investigated the spatiotemporal signatures of amplitude
modulation using a correlation map and a conditional averaging method. It was found
that the porous media with rough surfaces are subject to stronger penetration of the flow
into the permeable bed modulated by large-scale structures in the surface flow. Wang et al.
(2021c) reveal the dependence of turbulent transport on the slope angle formed by the
top-layer cylinders using the conditional average.

Despite the latest advancements in the field, the interfacial transport process is far from
being completely understood. In particular, the fundamental cause-and-effect relations
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between the surface and subsurface flows are not systematically inspected. In many cases,
a causal relationship between flow quantities is inferred using linear correlation (Breugem
et al. 2006; Kim et al. 2020; Chu et al. 2021; Wang, Pan & Wang 2021b), which is
closely related to the linear stochastic estimation (LSE) introduced by Adrian & Moin
(1988). Recently, nonlinear modelling of dynamics based on the neural network has also
found popularity in the fluid mechanics community. For example, Srinivasan et al. (2019)
assessed the capabilities of neural networks to predict temporally evolving turbulent flows
with two types of neural networks: the multilayer perceptron and the long short-term
memory networks. Kim & Lee (2020) used convolutional neural networks (CNN) to
predict the wall-normal heat flux in a turbulent channel flow with nearby wall shear stresses
and pressure fluctuations. Guastoni et al. (2021) predict heat flux at the wall by taking
the orthogonal basis functions of wall shear stress and pressure obtained through proper
orthogonal decomposition (POD) as the input of CNN. However, for both the linear and
nonlinear methods mentioned above, the causal relationship between the input and output
data is largely presumed, and the optimization of the inputs can only be achieved by a
posteriori analysis of the model performance. This limits their ability to make causal
inferences.

Two decades ago, the concept of transfer entropy was proposed by Schreiber (2000)
as a tool to evaluate the directional information transfer between a source signal
and a target signal. Schreiber (2000)’s definition of transfer entropy measures the
information contained in the source about the next state of the target that was not
already contained in the target’s past. This allows one to differentiate the direction
of the information flux, and can therefore be used to quantify causal interactions.
Recently, Lozano-Durán (Lozano-Durán, Bae & Encinar 2020; Lozano-Durán et al. 2021)
highlighted the importance of causal inference in fluid mechanics and proposed leveraging
information-theoretic metrics to explore causality in turbulent flows. Lozano-Durán &
Arranz (2022) revisited the definition of information flux and derived a new definition
of causality, which is grounded on the conservation of information in the dynamics
of a system. The new definition takes into account the intermediate variables, which
Schreiber’s definition does not. The settings of time lags and normalization are also
optimized to achieve conservation of information. Wang et al. (2021a) used transfer
entropy as a marker to evaluate the causal interaction between turbulent channel flow
and porous media consisting of circular cylinders. The POD time coefficients of the
leading-order modes were extracted as the representative signals for surface and subsurface
flow. The result showed that top-down and bottom-up interactions are strongly asymmetric
for low permeability cases, the former being mostly influenced by small near-wall eddies.
As the porosity increases, both top-down and bottom-up interactions are dominated by
shear-flow instabilities.

The explorations above illustrate the potential strength of information-theoretic tools
in revealing the surface/subsurface coupling dynamics. However, there are still numerous
challenges and unanswered questions. In the work of Wang et al. (2021a), the source and
target signals are selected as the time coefficients of the orthogonal basis of the flow fields.
For the leading-order modes investigated, the spatial location is fixed for each pore unit,
and the scale of flow motions are constrained to a relatively large-scale range. Therefore,
the dependence of transfer entropy on spatial location and spectral components is not fully
explored. In addition, transfer entropy is a purely statistical concept, which is difficult to
associate with a certain type of flow motion. It is also quite challenging to testify whether
the abstract conclusion derived from transfer entropy is solid. In the current work, we
will compute spatial and spectral-resolved transfer entropy between turbulent fluctuations
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in channel flows over porous media. We use the local transfer entropy as a marker and
determine which flow events in the boundary layer and the porous domain exhibit the
most significant information flux. In addition, we leverage artificial neural networks as a
practical model to validate the statistical results of transfer entropy. The work is organized
as follows. In § 2 we present the numerical details of the DNS dataset. In § 3 coupling
dynamics will be inspected in detail using spatial and spectral-resolved transfer entropy,
including validation by a neural network model. Finally, conclusions are offered in § 4.

2. Numerical set-up

In our DNS the three-dimensional incompressible Navier–Stokes equations are solved in
non-dimensional form,

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ 1

ReD

∂2uj

∂xi∂xj
+ Πδi1, (2.2)

where Π is a constant pressure gradient in the mean-flow direction. The governing
equations are normalized using the half-width of the whole simulation domain H
(figure 1a) and the averaged bulk velocity Ub of the channel region (y/H = [0, 1]).
Hereafter, the velocity components in the streamwise x, wall-normal y and spanwise z
directions are denoted as u, v and w, respectively. The domain size (Lx/H × Ly/H × Lz/H)
is 10 × 2 × 0.8π in all cases. The lower half (y/H = [−1, 0]) contains the porous media,
and the upper half (y/H = [0, 1]) is the channel flow. The porous layer consists of
50 cylinder elements along the streamwise direction and five rows in the wall-normal
direction, as illustrated in figure 1. The distance D between two nearby cylinders is fixed at
D/H = 0.2. A no-slip boundary condition is applied to the cylinders, the upper wall and
the lower wall. Periodic boundary conditions are used in both streamwise and spanwise
directions.

The spectral/hp element solver Nektar++ is used to solve ((2.1) and (2.2)) (Cantwell
et al. 2011; Chu et al. 2019, 2020; Pandey et al. 2020). The geometry in the x–y plane
is discretized into quadrilateral elements with local refinement near the cylinders (see
figure 1a). Local element expansions are applied based on the modified Legendre basis
(Karniadakis, Karniadakis & Sherwin 2005). We used flexible polynomial orders across
the wall-normal range in a continuous Galerkin projection. The polynomial order in the
free flow region y/H = [0.2, 1] is P = 6–7. The near-wall region and the top two layers of
cylinders y/H = [−0.4, 0.2] are enhanced with a higher order of P = 8–9. A lower order
of P = 5 is selected in the deeper positions of the cylinder array (y/H = [−1, −0.4]).
The spanwise direction is extended with a Fourier spectral method. The 2/3 rule is
used to avoid aliasing errors. The time stepping is performed with a second-order mixed
implicit–explicit scheme proposed by Karniadakis, Israeli & Orszag (1991). The time step
is fixed at �T/(H/Ub) = 5 × 10−4.

Four DNS cases are performed with varying porosity ϕ = 0.5, 0.6, 0.7 and 0.8, which
is defined as the ratio of the void volume to the total volume of the porous structure.
The parameters of the simulated cases are listed in table 1, where the cases are named
after their respective porosity. The superscripts ( · )p and ( · )s represent permeable wall
and smooth wall side variables, respectively. Variables with superscript + are scaled by
friction velocities uτ of their respective side and viscosity ν.
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Figure 1. (a) Configuration of the computational domain (C05), the permeability in three directions can be
found in table 1. The blue and red isosurfaces show the wall-normal fluctuation v′/up

τ at level −0.4 and 0.4,
respectively. Panels (b–d) show the profiles of the streamwise u′, wall-normal v′ and spanwise w′ fluctuation
intensity, respectively.

Case ϕ Rep
τ Res

τ

√
Kxx

p+,
√

Kyy
p+ √

Kzz
p+ Cp+

xx , Cp+
yy rp+

c Cp
f Cs

f

C05 0.5 336 180 4.55 8.86 0.37 42 0.0112 0.0084
C06 0.6 464 190 9.34 15.23 0.58 48 0.0149 0.0085
C07 0.7 625 160 20.65 30.98 2.99 52 0.0278 0.0096
C08 0.8 793 170 36.83 53.99 13.58 52 0.0298 0.0094

Table 1. Simulation parameters. The porosity of the porous medium region is ϕ. The friction Reynolds
numbers are Rep

τ and Res
τ for the porous and impermeable top walls, respectively. Here

√
Kαα

p+ and Cp+
αα are

the diagonal components of the permeability tensor and Forchheimer coefficient, respectively, in the direction
of α (α ∈ {x, y, z}), which are normalized by wall units; rp+

c is the radius of the cylinders.
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For an arbitrary variable φ, we denote the time-averaged value as ·̄, i.e. φ̄ = 1/T
∫ T

0 φ dt,
and spatial-averaged value in the x–z plane as 〈 · 〉, i.e. 〈φ〉 = 1/Af

∫
Af

φ dA, Af being the

fluid area. The instantaneous turbulent fluctuation is φ′ = φ − φ̄, and the form-induced

fluctuation is ˜̄φ = φ̄ − 〈φ̄〉. For the permeable wall side, the total shear stress at the
interface can be derived as (Shen et al. 2020; Suga et al. 2020)

τ p
w =

(
μ

∂〈ū〉
∂y

− ρ〈u′v′〉 − ρ〈 ˜̄u ˜̄v〉
)

y=0
. (2.3)

For the smooth wall side, the total shear stress is

τ s
w =

(
μ

∂〈ū〉
∂y

)
y=H

. (2.4)

The friction velocity can then be calculated from total shear stress at both walls, i.e. up
τ =√

τ
p
w/ρ and us

τ = √
τ s

w/ρ. The friction coefficients at the permeable and smooth walls
are defined as Cp

f = τ
p
w/(1

2ρU2
b) and Cs

f = τ s
w/(1

2ρU2
b), respectively, which are listed in

table 1.
Note that the distance between cylinders is fixed, and the porosity is changed by

varying the radius of the cylinders. The normalized cylinder radius is in the range
rp+

c = rcup
τ /ν = 42–52 for all the cases tested (see table 1), such that the effect of surface

roughness is assumed to be at a similar level. For all the cases, the Reynolds number of
the top wall boundary layer is set to be Res

τ = δsus
τ /ν ≈ 180 (δ is the distance between

the position of maximum streamwise velocity and the wall). In this manner, changes in
the top wall boundary layer are minimized. On the top smooth wall side, the streamwise
cell size ranges from 4.1 ≤ �xs+ ≤ 6.3 and the spanwise cell size is below �zs+ = 5.4.
On the porous media side, �zp+ is below 8.4, whereas �xp+ and �yp+ are enhanced
by polynomial refinement of local mesh (Cantwell et al. 2011). The total number of grid
points ranges from 88×106 (C05) to 595×106 (C08). Each cylinder in the porous domain
is resolved with 80 to 120 grids along the perimeter. The spatial resolution of the present
work is close to those of previous DNS investigations. For example, Shen et al. (2020)
conducted DNS of a turbulent flow over sediment beds using the immersed boundary
method, where the diameter was discretized into 36–50 points. The mesh of Karra et al.
(2022) had 26 grid points along the diameter of each grain. Wu, Christensen & Pantano
(2020) investigated the turbulent channel flow with hemispherical roughness using the
spectral element method. Each hemisphere was resolved by 50 grid points. In addition,
the high-order scheme used in the current work with body-fitted mesh has a significant
advantage in resolving fine scales and requires fewer grids than the finite volume method
and immersed boundary method to reach the same accuracy (Kooij et al. 2018; Theobald
et al. 2021). Furthermore, we compared our grid resolutions with the Kolmogorov length
scale η = (ν/ε)1/4 at the interface. For all the cases, (�x/η)y=0 � 2, (�y/η)y=0 � 1,
(�z/η)y=0 � 4.5, which indicates that current resolution is sufficient (Moin & Mahesh
1998).

By performing parameter tests on porous media and fitting the Darcy–Forchheimer
equation, the permeability tensor K and Forchheimer coefficient C may be obtained, and
the details of the computation can be referred to Wang et al. (2021a). The intensity profiles
of u′, v′ and w′ are shown in figure 1(b–d), respectively. The turbulent intensity grows with
porosity for both the channel and the porous medium region. In the current study, we focus
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on the up- and down-welling motions at the upper surface of the porous medium, which is
represented by the fluctuation v′.

3. Results

3.1. Transfer entropy
In the current work, the transfer entropy (Schreiber 2000) is used to evaluate the direction
of coupling, i.e. the cause-effect relationship, between two time series. The transfer entropy
originates from the framework of information theory, and is a specific version of the
mutual information for conditional probability. Suppose we have two variables, X and
Y , and the time sequences of their states are denoted by Xt and Yt (t = . . . 1, 2, 3 . . .). The
transfer entropy between processes X and Y can be defined as

TY→X(�t) = H(Xt|Xt−1) − H(Xt|Xt−1, Yt−�t), (3.1)

where Xt represents the current state of X and Xt−1 denotes the immediate past of Xt. Here
Yt−�t is the history state of Y , which has a time lag �t from current Xt; H(A|B) is the
conditional Shannon entropy of the variable A given B, which is defined as

H(A|B) = −E
[
log2( p(A|B)

] = −E
[

log2

(
p(A, B)

p(B)

)]
= E[log2( p(B))] − E[log2( p(A, B))],

(3.2)
where p( · ) is the probability density function and E[ · ] denotes the expectation value.
The terms in the form of H(A|B) are conditional entropy, which denotes the amount of
information in A that is not contained in B.

In order to quantify the strength of causality, normalization is necessary to scale the
magnitude of causality within [0, 1] and eliminate small values caused by statistical errors.
As proposed by Gourévitch & Eggermont (2007), the normalized transfer entropy can be
defined as

T̃Y→X = TY→X − E[TYs→X]
H(Xt|Xt−1)

, (3.3)

where E[TYs→X] is an estimation of the statistical bias and Ys is the surrogate variable of
Y , which is acquired by randomly permuting Y in time to break its causal links with X.
The conditional entropy H(Xt|Xt−1) is the intrinsic uncertainty of X knowing its history.
Equation (3.3) thus represents the fraction of information in the target X not explained by
its past that is explained by Y in conjunction with that past.

3.1.1. Local transfer entropy
The physical interpretation of the quantity of transfer entropy can be hard to grasp, and
sometimes the outcome is confused with the more widely used correlation method. In the
following, the results from both analysis tools will be presented and compared. A simple
example will be presented to illustrate the strength of transfer entropy and explore the
connection between information transfer and flow motions.

The definition of transfer entropy quantifies the statistical coherence between
time-evolving systems in a global and averaged manner. Using (3.2), we rewrite (3.1) in
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the following form:

TY→X(�t) = −E
[

log2
p(xt|xt−1)

p(xt|xt−1, yt−�t)

]
. (3.4)

Here xt and yt are instantaneous measurements at time t of processes X and Y , respectively.
We define local transfer entropy ζ as

ζY→X(t, �t) = log2
p (xt | xt−1, yt−�t)

p (xt | xt−1)
. (3.5)

The transfer entropy in (3.1) is essentially the expectation value of the local transfer
entropy, that is,

TY→X = E[ζY→X(t, �t)]. (3.6)

It should be noted that the definition in (3.1) and (3.5) is a simplified form with
the temporal length of the source and destination’s history (or embedding dimension)
being one. The definition can be expanded by taking more history states of X and Y
into account (Schreiber 2000; Lizier, Prokopenko & Zomaya 2012), which takes more
samples to converge and is more complicated to explain. However, in the current work,
we will concentrate on this most fundamental setting in order to build the groundwork
for future research on higher embedding dimensions. Local transfer entropy characterizes
the information transfer into each spatiotemporal point in a given system as opposed to
a global average overall point, which provides important insights into the dynamics of
nonlinear systems.

To explain the idea of (local) transfer entropy more explicitly, figure 2(a) shows the
excerpts of wall-normal fluctuation v′

1(t) and v′
2(t) of case C05, which are extracted from

the middle of a first-layer cylinder gap (y = −rc) and the crest position above the gap
(y = 0), respectively. The two signals v′

1 and v′
2 are acquired from the same streamwise

position. Despite their clear differences in scale content, the two signals appear to be
connected, with the positive and negative peaks appearing to be coordinated. This feature
is also evidenced by the cross-correlation profile between v′

1 and v′
2 (see figure 2b), which

is defined as
Rvv(�t) = v′

1(t)v
′
2(t + �t)/(σv′

1
σv′

2
), (3.7)

where �t is the shifted time interval between the two signals. The profile shows a positive
peak value of 0.48 at �tUb/H ≈ 0.02, revealing that the two signals are considerably
correlated. However, the cross-correlation profile is generally symmetric and does not
show clearly the directionality of cause and effect between signals. As a comparison,
figure 2(c) shows the transfer entropy T̃v′

2→v′
1

and T̃v′
1→v′

2
as functions of �t. First of

all, the time delay for transfer entropy can only be positive due to the constraint that the
‘cause’ always happens before the ‘effect’. Secondly, there is a large disparity between the
magnitude of T̃v′

2→v′
1

and T̃v′
1→v′

2
, which reveals the strong dependence of information flux

on the coupling direction. For the current signal set, the transfer entropy in both directions
reaches a maximum at �tUb/H ≈ 0.15. This time lag can be interpreted as the time an
influence needs to propagate between the two signals, which is not necessarily the same
for both coupling directions (Wibral et al. 2013).

Figure 3(a) shows the local transfer entropy corresponding to the time series in
figure 2(a). The time delay �t is fixed at �tUb/H = 0.15, corresponding to the maximum
value of transfer entropy. Several observations can be made. First, ζ of the two transfer
directions are totally different. The magnitude of ζv′

2→v′
1

is generally greater than that of
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Figure 2. Comparison between correlation and transfer entropy. (a) Excerpts of instantaneous vertical
fluctuations v′

1 and v′
2 at y = −rc (solid line) and y = 0, respectively. (b) Profile of cross-correlation between

v′
1 and v′

2. (c) Transfer entropy T̃v′
2→v′

1
(solid line) and T̃v′

1→v′
2

(dashed line) as a function of time delay �t.

ζv′
1→v′

2
, which explains the disparity between the two profiles of T̃ in figure 2(c). Secondly,

both positive and negative values exist for local transfer entropy. Unlike the global transfer
entropy that is positive by definition (Schreiber 2000), the value of local transfer entropy is
not constrained to be larger than zero. According to the definition of local transfer entropy
ζ (3.5), the sign of ζ depends on the ratio between p(xt|xt−1, yt−δt) and p(xt|xt−1). The
latter represents the probability of observing xt given its immediate history xt−1, and the
former denotes the probability of observing xt in the condition of both xt−1 and yt−�t.
If ζ > 0, that is, p(xt|xt−1, yt−�t) > p(xt|xt−1), i.e. knowing the state of yt−�t indicates
a higher probability of observing xt. In this case, the information of yt−�t improves our
chance of correctly predicting xt, so the local state of y is informative. On the contrary,
if ζ < 0, i.e. p(xt|xt−1, yt−�t) < p(xt|xt−1), the inclusion of yt−�t predicts a lower chance
of observing xt, which contradicts the fact that xt is actually observed. In this particular
event, the knowledge of yt−�t is not helping, but misleading our prediction.

To understand the event contributing to positive ζ , we computed the accumulative map
of ζ in the space of (v′

1, v
′
2) (figure 3b,c). For the current example of local transfer entropy

with a determined delay �t, the accumulative map Aζ is defined as

Aζ (χ, γ ) =
∫ T

t=0
ζ(t)δ(v′

1 − χ)δ(v′
2 − γ ) dt, (3.8)
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Figure 3. Interpretation of transfer entropy from the scope of local events. (a) Local transfer entropy ζv′
2→v′

1
(solid line) and ζv′

1→v′
2

(dashed line) corresponding to the time series shown in figure 2(a). The colour in panels
(b,c) show the accumulative maps of ζv′

2→v′
1

and ζv′
1→v′

2
in the space of (v′

1, v
′
2), respectively. The isolines are

the joint probability density function of p(v′
1, v

′
2) with a time delay �t imposed on the source signal. The levels

are from 1×10−3 to 3×10−3 with a step of 5 × 10−4.

where δ denotes the Dirac delta function and T is the total length of the time sequence.
Note that the source event happens earlier than the target event, and one should shift the
source signal forward in time by �t when computing Aζ so that ζ is accumulated on
the corresponding event set. In addition, the joint probability density function (j.p.d.f.)
p(v′

1, v
′
2) is superimposed on the accumulative map as dashed isolines for comparison,

which is computed as

p(χ, γ ) =
∫ T

t=0
δ(v′

1 − χ)δ(v′
2 − γ ) dt/N, (3.9)

where N is the total sample number. It is shown in figure 3(b) that ζv′
2→v′

1
is mainly positive

in the second (i.e. (v′
1(t) < 0, v′

2(t − �t) > 0)) and fourth quadrants (i.e. (v′
1(t) > 0,

v′
2(t − �t) < 0)), and negative in the remaining areas. Moreover, the events with v′

1 and
v′

2 of a small magnitude are mostly non-informative, although they are of a larger number
(see the j.p.d.f. indicated by dashed isolines). We focus on the major positive peak in the
fourth quadrant as it represents the dominant scenario of the predictive event sets. The peak
locates at (v′

1(t)/σv′
1
, v′

2(t − �t)/σv′
2
) = (0.5, −1.5). This is consistent with the positive

ζv′
2→v′

1
peaks (indicated by arrows) in figure 2(a), where a large negative v′

2 happens
first, and then a minor positive v′

1 is found after a time delay of around �tUb/H = 0.15.
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Such a combination of source and target events is essentially different from the events
contributing to the correlation peaks in figure 2(b), i.e. those slightly shifted peaks. During
the computation of transfer entropy, the information carried by the immediate past of the
destination is subtracted from the predictive information. This may explain why the shifted
peaks are not identified as informative events by transfer entropy, as the information of the
peak could be already encoded in the history of the destination signal. The accumulative
map of ζv′

1→v′
2

(figure 3c) shares a similar pattern with that of ζv′
2→v′

1
in figure 3(b),

but with a much smaller magnitude. This is consistent with the previous observation of
figure 3(a).

3.2. Inter-layer correlation and transfer entropy
In the previous section the concepts of transfer entropy and correlation are compared using
a particular pair of signals from the flow field. In this section we extend this comparison
to different wall-normal positions and porosity cases.

3.2.1. Correlation map
To illustrate the statistical connection between wall-normal positions, we calculate the map
of the maximum correlation coefficient for the v fluctuations at different y positions, which
is defined as

Rmax
vv ( y1, y2) = max

�t

{
v′(t; y2)v′(t + �t; y1)

σv′( y1)σv′( y2)

}
, (3.10)

where the operator max�t denotes the maximum regarding the variable of �t. For the
current tested range, the time shift at the peak of the correlation functions varies in
a narrow range of �tUb/H = [−0.04, 0.04]. Figure 4(a i–d i) shows the contours of
Rmax

vv ( y1, y2) for all the cases. By definition, the correlation maps are exactly symmetrical
about the diagonal line y1 = y2, since the correlation does not differentiate the order of
the two input signals.

For lower porosity cases C05 and C06 (figure 4a i,b i), the correlation map shows a
‘neck’ around ( y1, y2) = (0, 0) that separates the contour into two parts, i.e. the part with
both y1 and y2 above the interface, and the one involving porous medium flow (y1 < 0 or
y2 < 0). Without loss of generality, we can consider y2 (the vertical axis) as the position
of the reference v′, and its correlated range is shown on the y1 axis (the horizontal axis).
The fluctuation v′ at the interface (y2 = 0) has a quite strong connection with the flow
below the interface (y1 < 0), but a limited correlated range in the channel region (y1 > 0).
This is probably due to the scale separation between eddies in the near-wall region and
the outer layer. As y2 goes up to the channel (y2 ≥ 0), the correlated range of y1 increases
linearly with y2, which is associated with the growth of the scale of coherent structures.
The correlated y1 range increases more drastically when y2 descends into the porous media
area (y2 < 0). In fact, the correlation coefficient between surface/subsurface flow can even
exceed that of two points in the channel. This is direct evidence that the motions in the
transitional layer of the porous medium are interacting with the flow structures in the
boundary layer. As porosity grows (C07 and C08), the intensity of the correlation map
increases, and the ‘neck’ between the channel region and the porous media region becomes
ambiguous. However, the outline of the correlation map remains similar.

The correlation map provides insight into the connection of signals at different layers.
However, as explained earlier, this method cannot discern between the two coupling
directions. In the next section transfer entropy is used to clarify this problem.
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Figure 4. (a i–d i) Inter-layer correlation coefficient of v′ fluctuations. Panels (a i–d i) represent cases
C05–C08, respectively. The contours show the logarithm of the correlation coefficient, with levels from −1.5 to
−0.01 with a step of 0.02. (a ii–d ii) Transfer entropy between different y positions. Panels (a ii–d ii) represent
cases C05–C08, respectively. The contours show the logarithm of the transfer entropy, with levels from −6 to
−2 with a step of 1.

3.2.2. Transfer entropy map
The same set of data as in § 3.2 is be used to compute transfer entropy, and the result is
shown in figure 4(a ii–d ii). Since the input signals for transfer entropy are assigned as

949 A16-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

77
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.770


Information flux between TBL and porous media

target or source, the y positions of the target and source v′ signals are defined as ytarget and
ysource, respectively. For each set of ( ytarget, ysource), the delay time �t is selected so that
the maximum value of transfer entropy is reached, which is generally found in the range
of �tUb/H = [0, 1]. The optimal �t for signal pairs with an extremely weak causal link
could be contaminated by noise. Nonetheless, this does not undermine the map of transfer
entropy since we mainly focus on the areas with considerable information exchange.

In contrast to the correlation map, the transfer entropy map is asymmetrical, especially
near and below the crest position. When the destination ytarget is located in the channel
region, the transfer entropy decays quickly as ysource moves away from ytarget. In contrast,
for a target signal below the interface (ytarget < 0), the information flux from the channel
flow maintains a high magnitude as ysource rises, suggesting that the fluctuations below the
interface are actively subject to the influence of channel flow. The magnitude of transfer
entropy from the porous medium to the channel flow is almost negligible for the lowest
porosity case C05. As the porosity increases, the information flux from below the interface
to above (bottom-up effect) rises accordingly, but the top-down coupling always dominates
for the cases tested.

The transfer entropy map illustrates clearly the asymmetry of the interaction between
channel flow and porous medium, which cannot be identified by correlation due to its
symmetry. Each coupling direction will be explored separately in the following sections.

3.3. Spatial structure of transfer entropy
In the previous section we explored the transfer entropy in the y direction, which elucidated
the causal relation between the channel and porous medium flow. Note that only one
streamwise location is selected, which is right in the middle of two nearby cylinders. In this
section the influence of streamwise position on transfer entropy will also be investigated.
However, instead of enumerating all possible combinations of spatial locations in § 3.2,
we specify v′ in the midst of the top-layer cylinders, i.e. (xc/H = 0, 0.2, 0.4, . . . , 10; yc =
−rc), as the representative signal of the porous medium, and explore the information flux
between it and nearby spatial points.

As in previous sections, we first show the two-dimensional correlation map as a
comparison with transfer entropy. With the reference location selected at (xref , yref ) =
(xc, yc), the definition of the correlation map differs from that in (3.10), i.e.

Rvv(�x, y) = max
�t

{
v′(t; xref , yref )v′(t + �t; xref + �x, y)

σv′(xref , yref )σv′(xref + �x, y)

}
. (3.11)

For each (�x, y) pair, the time shift �t is selected so that the correlation function inside the
braces from the right-hand side of (3.11) reaches its maximum. The results are shown in
figure 5. There is a strong correlation between the v′ of nearby upstream and downstream
pore units for all cases tested. As discussed by Wang et al. (2021a), this strong correlation
can be attributed to the interaction of fluids in adjacent pores under the constraint of
continuity. A strong up-welling motion at one pore could induce down-welling motions
of nearby pore units. In addition, Kim et al. (2020) show the up-welling and down-welling
motions at the permeable surface is under the modulation of large-scale structures from the
channel flow. In particular, up-welling motions happen during the passage of a low-speed
structure, while down-welling motions usually correspond to high-speed motions. This
is also supported by the large-scale statistical structure in the channel region, which
encapsulates the correlated pore unit below (figure 5).
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Figure 5. Map of correlation coefficient Rvv(�x, y) in x–y plane. Panels (a–d) represent cases C05–C08,
respectively. The reference point is located at the middle of cylinders, i.e. (�x, y) = (0, −rc). The colour and
the isolines show the logarithm of the correlation coefficient, with levels from −2 to −0.02 with a step of 0.02.

However, the question of coupling direction remains unanswered. Is it that the
large-scale structure in the channel induces the up/down-welling motions at the permeable
wall? Or are the up/down-welling motions contributing to the large-scale motions in the
channel? This question will be answered in the next section.

3.3.1. Optimal information transfer locations
In this section the transfer entropy is computed with a similar set of signals as in the
computation of the correlation map in § 3.3. As the first part, the information transfer
from channel to porous medium (Tc→p) is inspected, with the vertical fluctuation v′ at
the first-layer cylinder gap (xc, −rc) chosen as the target signal, and the v′ at (xc + �x,y)
selected as the source signal. That is,

T̃c→p( y, �x) = max
�t

{T̃v′
c→v′

p
(�t)}, (3.12)

where
v′

c(t) = v′(xc + �x, y, t),

v′
p(t) = v′(xc, −rc, t).

}
(3.13)

The time delay �t is chosen where Tc→p reaches a maximum for each set of source
and target signals. Similarly, the transfer entropy map in the ‘bottom-up’ direction can be
defined as

T̃p→c( y, �x) = max
�t

{T̃v′
p→v′

c
(�t)}, (3.14)

where v′
c and v′

p are the same as defined in (3.13). Figure 6(a i–d i) shows the map Tc→p for
different cases that illustrate the variation of ‘top-down’ transfer entropy due to the spatial
variation of the source signal. For all cases, the upstream locations have a larger influence
on the porous medium. The solid lines in figure 6(a i–d i) illustrate the maximum transfer
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Figure 6. Spatial map of transfer entropy T̃ in x–y plane. The colours in panels (a i–d i) show the transfer
entropy T̃c→p in the direction from the channel to the porous medium (indicated by arrows) for cases C05 to
C08, respectively. The vertical axis ysource denotes the y position of the source signal. Panels (a ii–d ii) represent
the transfer entropy T̃p→c in the bottom-up direction (indicated by arrows) for cases C05 to C08, respectively.
Here ytarget is the wall-normal position of the target signal. The solid lines are the paths that connect the
positions of maximum transfer entropy at each y layer.

entropy locations at different y layers. Hereafter, we refer to the points on the lines as the
‘optimal information transfer source’, since each of them has the maximum informative
flux towards the porous medium. Note that the line of optimal source leans more towards
the upstream direction with the increase of porosity. In addition to the optimal source, there
are secondary sources at the nearby pore unit downstream for the low porosity cases C05
and C06 (figure 6a i–b i). It appears that the fluctuations at the downstream pore unit can
also affect its neighbouring pore in the upstream. This is related to the inter-pore coupling
effect shown by the correlation map in figure 5. Nonetheless, the strength and wall-normal
range of the secondary source is generally limited compared with the optimal sources.

Figure 6(a ii–d ii) shows the map of ‘bottom-up’ transfer entropy Tp→c. For the same
porosity, the magnitude of Tp→c is much smaller than Tc→p in the channel region.
This is consistent with our observation in § 3.2. The main reason is the blockage of
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near-wall turbulence. The turbulence near the interface is highly energetic and chaotic,
while the up- and down-welling motions in the porous medium are much weaker (see
intensity profiles in figure 1b–d). The fluctuations near the interface are mainly driven by
the self-sustaining cycle, and the information flux that comes from the porous medium
is quite low. The strong turbulence in the buffer layer thus blocks the information of v′

p
from going further to the outer layer. Nevertheless, we can still draw lines of optimal
target positions for bottom-up transfer. In the case of the lowest porosity (ϕ = 0.5), we
stop looking for maximum points above y/H = 0.2 because the value of T̃ becomes
extremely small and subject to statistical uncertainty. For all the cases, the optimal paths
of ‘bottom-up’ transfer lean downstream. This is reasonable since the fluid ejected by the
up-welling motion can be convected by the mean velocity of the channel.

Wang et al. (2021a) inspected the full spectra of the channel flow and porous medium
flow. They showed that the energy of the porous medium flow concentrates on the
low-frequency modes, and has a large disparity with the central frequency of near-wall
turbulence. For current observations, the turbulence in the channel flow is the driver while
the fluid in the porous medium behaves as a passive damper. The porous medium flow
accepts information from the channel flow and damps out the high-frequency modes,
leaving only low-frequency fluctuations that are considerably weak. The details of this
argument will be described in the next section.

3.4. Spectral-resolved transfer entropy

3.4.1. Surrogate method based on discrete wavelet transform
In this section the contribution of different frequency modes to the information flux at the
interface region will be evaluated. Understanding the scale range of sending or receiving
information is an essential step to unraveling the dynamics of time sequences. However,
finding the connection between scale and causality is a non-trivial problem. Earlier
attempts to obtain the desired frequency-resolved transfer entropy relied on narrow-band
filtering of data from the information source and the information receiving target, followed
by feeding the resulting narrow-band signals into a transfer entropy analysis (Besserve
et al. 2010; Wang et al. 2021a). However, this method could be sensitive to the choice
of the band filter. A very narrow-band filter may cause false-positive results due to phase
distortions. In addition, the information transfer between a source and a target within a
specific narrow frequency band practically confines the analysis to the linear interaction
regime, while information transfer can transform frequencies between source and target.

In the current work we adopt the surrogate data method from Pinzuti et al. (2020) to
bypass the potential biases originating from narrow-band filtering. Instead of extracting a
limited band from the original signals, this method substitutes the frequencies of interest
with surrogate data representing the null hypothesis of no information transfer. The
surrogates are produced by destroying the temporal order of the original signal at a specific
scale range while keeping the remaining scales unchanged. The frequency specificity is
obtained by evaluating the drop of transfer entropy with these surrogate data compared
with the original one.

The flow chart for the computation of the frequency-specified transfer entropy, or
spectral transfer entropy (STE), is illustrated in figure 7. The creation of surrogate data is
the first and crucial step, which is achieved through the maximum overlap discrete wavelet
transform (MODWT) method (Percival & Walden 2000). The MODWT of a time series
X = (X0, . . . , XN−1) of J levels consist of J vectors of wavelet coefficient W̃ 1,. . . ,W̃ J and
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an additional vector Ṽ J , all with dimension N, which is computed as

W̃ j = W̃ jX,

Ṽ J = Ṽ JX,

}
(3.15)

where W̃ j and Ṽ J are N × N matrices, each row of which are the wavelet and scaling filter,
respectively. The vector of wavelet coefficients W̃ j are associated with the underlying
dynamics at a certain scale, and the coefficient Ṽ J represents the unsolved low-frequency
scale of X. If J is set to �log2(N)�, any scale that is shorter than N will be resolved
by the wavelet coefficient W̃ j. The nominal frequency band of the jth scale is |f | ∈
(1/2j+1, 1/2 j). If W̃ j and Ṽ J are not modified, it is possible to reconstruct X through
the inverse MODWT,

X = J
Σ

j=1
W̃ T

j W̃ j + Ṽ T
J Ṽ J, (3.16)

where the superscript T denotes the transpose of the matrix. If we randomly shuffle the
wavelet coefficient W̃ i at a specific level i, and replace the original W̃ i with the scrambled
W̃ ′

i in (3.16), the reconstructed surrogate data X̌ will share the same energy distribution
with the original signal X (figure 7) in spectral space, yet the temporal order and phase
relations in the frequency band represented by W̃ i are lost. For the same source signal, the
STE with a frequency-specified target signal can be defined as the difference between the
transfer entropy with original signals and that with the surrogate target signal, i.e.

δT̃Y→X̌(i) =
TY→X − TY→X̌i

H(Xt|Xt−1)
, (3.17)

where X̌i is the putative data for X with the temporal shuffled ith mode as illustrated in
figure 7. The intrinsic uncertainty of X is used for normalization. Similarly, the STE with
frequency-specified source signal is defined as

δT̃Y̌→X(i) =
TY→X − TY̌i→X

H(Xt|Xt−1)
, (3.18)

where Y̌i is the surrogate data for Y with the temporal shuffled ith mode. It should be
noted that the surrogate tests for X or Y need to be implemented multiple times to achieve
statistical convergence, as transfer entropy can fluctuate with the random permutation state
in X̌ or Y̌ . In the current study, we take the median of the 100 runs as the final result.

To illustrate the computation procedure described above, we use again the fluctuations
v′

1(t) at y = −rc and v′
2(t) at y = 0 as in § 3.2. The STE with frequency-specified source,

i.e. δT̃v̌′
2→v′

1
, will be computed. As the first step, the time sequences of v′

2 are decomposed
into a series of MODWT modes, as shown in figure 8(a). The maximum mode order that
can be achieved is �log2(2000)� = 10. The modes’ scales grow exponentially with their
order, with the fourth and fifth modes appearing to be the most active of them. This is
verified by the power spectra in figure 8(b). The original spectrum can be recovered by
combining all the spectra of the MODWT modes. Note that the first mode is extremely
weak and can be barely identified in the spectra.

As described above, the surrogate data are created by scrambling the temporal order
of the wavelet coefficient at a certain level. In the current study, we adopted the block
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Figure 7. The calculation of spectral transfer entropy using surrogate data. The variables involved with the
surrogate data are highlighted with shaded blocks.
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Figure 8. Generating surrogate data using maximum overlap discrete wavelet transform (MODWT). (a) The
decomposition of time series of v′ fluctuation (black solid line) with MODWT. The first to tenth modes are
denoted by blue solid lines, and the scrambled fifth mode is shown by the red dashed line. (b) The power
spectra of the original time series (black solid line) and MODWT modes (blue solid lines). The spectrum
of the scrambled fifth mode is shown by the red dashed line. The spectra of the first and second modes are
indicated by arrows M1 and M2, respectively. (c) The distribution of transfer entropy using surrogates data.
The dashed vertical line indicates the median value. Transfer entropy of the original time series is indicated by
the vertical solid line.

permutation method (Breakspear, Brammer & Robinson 2003). This method divides the
wavelet coefficients into smaller blocks, and then randomly permutes the temporal order of
them. For this study, the block size is chosen to be �TblockUb/H = 4 such that the original
energy and scale are substantially conserved. Other block sizes might be used as long as
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they allow for considerable phase order destruction while maintaining the scale feature.
Figure 8(a) shows an example of a scrambled fifth mode with the red dashed line, and
its corresponding spectrum is illustrated in figure 8(b) with the red dashed line. It shows
that both the energy and scale of the surrogate fifth mode are almost unchanged, but the
original temporal order of the phase is completely destroyed. Therefore, the information
transfer related to the frequency component in the fifth mode is eliminated. Combining
the scrambled fifth mode and the remaining unchanged modes, the surrogate data v̌′

2 is
generated with (3.16).

Taking v′
1 as the target signal, the STE can then be calculated by measuring

the difference between Tv′
2→v′

1
and Tv̌′

2→v′
1
. The computation procedure of Tv̌′

2→v′
1

is
performed 100 times to assess the statistical significance of the outcome, and the
distribution of Tv̌′

2→v′
1

is shown in figure 8(c) as a histogram. The dashed line indicates
the median of the distribution of Tv̌′

2→v′
1
, and the solid line indicates the value of Tv′

2→v′
1
.

In this case, all the samples of surrogate-based transfer entropy are significantly lower than
the original transfer entropy, while the median of Tv̌′

2→v′
1

is more than 50 % lower than the
original value, showing that the fifth mode is responsible for a considerable amount of
information flux.

3.4.2. Transfer entropy spectra
In this section the computation of STE established in § 3.4.1 is extended from the
permeable interface to the channel centre. As discussed in § 3.2.2, the porous medium
flow can scarcely impact the outer region of the boundary layer, and the transitional layer
is subject to strong influence from the surface flow. Moreover, the turbulent boundary
layer consists of a wide spectrum of scales, such as near-wall eddies, outer scale motions
in the log layer, as well as KH-type eddies (Breugem et al. 2006; Wang et al. 2021a). In
contrast, the porous medium flow features mainly low-frequency fluctuation (Chu et al.
2021). This is demonstrated by the power spectra of Φvv in figure 9 (isolines). In contrast
to the spectra of the channel flow, which is widely distributed across the whole spectral
domain, the turbulent kinematic energy below y = 0 concentrates primarily in the range
of Ub/( fH) ≥ 3. Therefore, we will simply look at the frequency specificity in the surface
flow and leave the subsurface flow untouched.

Similarly as in § 3.2.2, the vertical fluctuation at the gap between the top-layer cylinders
(y = −rc) is defined as v′

c to represent the mass flux originating from the porous medium.
The fluctuation in the channel is named as v′

c and will be decomposed by MODWT for the
surrogate data generation procedure. The colour contours in figure 9(a i–d i) show the map
of STE in the ‘top-down’ direction, namely δT̃v̌′

c→v′
p

. For the lower porosity case C05,

the strongest δT̃ concentrate in the near-interface region. The most active information
transfer scale range above the interface is found in Ub/( fH) ∈ [0.6, 1.2] (Ubuτ /( f ν) ∈
[300, 600]), which is consistent with the energetic scale of the spectrum Φvv at the same
layer. This is close to the scale of quasi-streamwise vortices in smooth wall-bounded
flow as the permeability of case C05 is quite low (

√
Kxx

p+ ≈ 5). For example, the
numerical simulation of Jeong et al. (1997) reported that the average streamwise extent
of quasi-streamwise vortices is approximately 250 wall units. The experiment of Jodai
& Elsinga (2016) detected quasi-vortices with tomographic particle image velocimetry,
which have a streamwise extent of 150–250 wall units. Jiménez (2012) computed the
streamwise spectra of enstrophy, the peak is located around 300 wall units. Note that here
we interpret frequency f into streamwise extent with a fixed convection speed Ub under

949 A16-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

77
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.770


W. Wang, A. Lozano-Durán, R. Helmig and X. Chu

0.4

0.2

0

10–1 100 101 10–1 100 101

0.4

0.2

0

0.4

0.2

0

10–1 100 101 10–1 100 101

0.4

0.2

0

0.4

0.2

0

10–1 100 101 10–1 100 101

0.4

0.2

0

0.4

0.2

0

10–1 100 101 10–1 100 101

0.4

0.2

0

Ub/( f H) Ub/( f H)

y ta
rg
et

/H

y s
ou
rc
e/
H

y ta
rg
et

/H

y s
ou
rc
e/
H

y ta
rg
et

/H

y s
ou
rc
e/
H

y ta
rg
et

/H

y s
ou
rc
e/
H

δT̃
0 0.005 0.010

(i) (ii)(a)

(i) (ii)(b)

(i) (ii)(c)

(i) (ii)(d )

Figure 9. The map of spectral transfer entropy. The colour contours in the left-hand side panels (a i–d i)
show the spectral transfer entropy with a frequency-specified source signal, and with a frequency-specified
target signal in right-hand side panels (a ii–d ii). Rows (a–d) represent cases C05–C08, respectively. The power
spectra Φvv , which are normalized by their respective maximum, are superimposed as isolines, whose levels
are from 0.2 to 0.8 with a step of 0.2.

Taylor’s hypothesis, which may cause an overestimation of the spatial scale of near-wall
structures. In the next section we will directly measure the spatial extent of informative
flow motions from the statistical structure.

As the porosity increases, the scale range of the information sources shifts to the
low-frequency side. For the highest porosity case C08, there is a significant contribution
from the scale range of Ub/( fH) ≈ 2.4–9.6, which is consistent with the scale of KH-type
eddies. For example, Finnigan, Shaw & Patton (2009), Kuwata & Suga (2017) and Suga
et al. (2018) reported that the wavelength of KH eddies is in the range of λx/δp = 3.4–5.5
(δp is the boundary thickness). White & Nepf (2007) reported that the most unstable mode
has a frequency of ( f θ)/Ū ≈ 0.032 (θ and Ū being the momentum thickness and mean
velocity of the whole test section), which is equivalent to Ub/( fH) ≈ 4 when normalized
with channel width and bulk velocity of the channel. The rise of the informative scale in
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the near-wall region appears to be linked with the growth of the energetic scale in the power
spectrum as the porosity increases. Moreover, the informative scale rises when the source
signal moves to a higher position, regardless of the energetic scale there. This shows that
when the source and target signals are separated by a large distance, the high-frequency
information flux in between is dissipated but the low-frequency information is preserved.

The panels on the right-hand side of figure 9(a ii–d ii) show STE in the ‘bottom-up’
direction with frequency specified v′

c, i.e. T̃v′
p→v̌′

c
. Remember that T̃v′

p→v̌′
c

shows the
amount of information received by the channel flow v′

c from the porous medium flow v′
p

at each frequency range. In accordance with the spatial map of transfer entropy in § 3.2.2,
the influential y range of the porous medium flow is restricted to the near-wall region.
For case C05, the most receptive scale in the channel is Ub/( fH) ∈ [0.6, 1.2], same as
the informative scale in T̃v′

p→v̌′
c

(figure 9a i), demonstrating that the surface/subsurface
interaction in both directions is aided by near-wall vortices. As porosity increases, the scale
range Ub/( fH) ∈ [2.4, 9.6] associated with KH-type eddies becomes more responsive
with a certain amount of information flux up to the middle of the channel.

3.5. Statistical structure of informative events
In earlier sections the statistics of transfer entropy were examined in spatial and spectral
space. Here, we connect transfer entropy with specific flow motions. We will try to
depict the informative flow process by correlating local transfer entropy with flow
motions. Following the idea of local transfer entropy, the STE can also be reformulated
as the expectation value of a local variable. Without normalization, the STE with a
frequency-specified source can be reformulated as

δTY̌→X = TY→X − TY̌→X

= E
[
ζY→X − ζY̌→X

]
= E

[
δζY̌→X

]
, (3.19)

where ζY→X is the same as defined in (3.5) and ζY̌→X is the local transfer entropy
calculated with surrogate signal sets, which is defined as

ζY̌→X(t;�t) = log2
p

(
xt | xt−1, y̌t−�t

)
p (xt | xt−1)

. (3.20)

Substituting (3.5) and (3.20) into (3.19), the scale-resolved local transfer entropy δζY̌→X
can then be derived as

δζY̌→X(t;�t) = log2
p (xt | xt−1, yt−�t)

p
(
xt | xt−1, y̌t−�t

) . (3.21)

Similarly, the transfer entropy with a frequency-specified target can be written as δTY→X̌ =
E[δζY→X̌], which is defined as

δζY→X̌(t;�t) = log2
p (xt | xt−1, yt−�t) p

(
x̌t | x̌t−1

)
p

(
x̌t | x̌t−1, yt−�t

)
p (xt | xt−1)

. (3.22)

Note that we derive the local STE δζ from the non-normalized STE as we are only
concerned with the relative contribution of local events to the total amount of information
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flux, i.e. δζ/δT . Therefore, there is no need to involve the denominator in (3.17) and (3.18).
The local STE δζ can be interpreted as the contribution of instantaneous events to the total
loss in transfer entropy owing to the absence of information at a specific time scale. With
the local frequency-specified transfer entropy δζ defined, it is now possible to relate flow
motions to the causal interaction at scales of interest. To do so, we use LSE, in which the
variable to be estimated is assumed to be a linear function of the event variable. In this
case, we wish to discover the most probable flow structure under an informative event.
The predicted flow field ṽ may be obtained by multiplying the coefficient matrix C with
the amplitude of local spectra transfer entropy δζ , i.e.

C(�τ ; x, y) = v′(t − �τ ; x, y)δζ(t;�t)

σ 2
δζ

, (3.23)

ṽ(t − �τ ; x, y) = C(�τ ; x, y)δζ(t), (3.24)

where �τ is the shifted time interval between the snapshot of v′ and δζ , and �t is the
time delay between the source and target signal for the computation of δζ . When �τ = 0,
the field of v′ corresponds to the state of the target signal involved in δζ ; when �τ = �t,
the snapshot of v′ illustrates the state of the source signal. In this study, the time interval
�τ will be changed from 0 to �t to study the evolution of flow structures during the
information transfer process. The LSE of the streamwise component ũ can be acquired in
a similar approach by replacing v′ with u′ in (3.23).

Note that δζ depends on multiple variables, such as the choice of time delay �t, spatial
position of source and target signals (Y and X), specified scale range, etc. It would be
impossible to list them all in this paper, so only the most representative results are shown
here. We will fix the time delay �t to the value that corresponds to the maximum δT as in
the last section. Recall that in § 3.4.2, mainly two types of flow structures are confirmed
to be involved in the causal interaction. The most active information transfer scale for the
low porosity case (ϕ = 0.5) falls in the range Ub/( fH) ∈ [0.6, 1.2], which is assumed to
be linked to near-wall vortices. In contrast, the frequency range (Ub/( fH) ∈ [2.4, 4.8]) of
KH-type eddies gradually dominates the coupling process in higher porosity cases (ϕ =
0.7, 0.8). In the following, both of the two scenarios above will be illustrated by LSE
structures.

Figure 10 shows the first scenario where the velocity fields are associated with local
STE δζ/σδζ = 1 at the frequency range Ub/( fH) ∈ [0.6, 1.2] for case C05. The upper
row (figure 10a i–a iii) shows the ‘top-down’ coupling process with the target and source
signals picked from y = −rc and y = 0, respectively. The results of the opposite coupling
direction are obtained by switching the source and target, which is shown in the bottom
row (figure 10b i–b iii). From left to right, statistical flow motions shown in the three
columns correspond to a time shift �τ of �t , �t/2 and 0, respectively. To put it more
clearly, the leftmost column shows the initial state of the causal event, the rightmost
column depicts the final state and the centre column depicts the intermediate state. For
both coupling directions, the whole causal process shows essentially the passage of a Q2
motion (ũ < 0, ṽ > 0) over the interface, with up- and down-welling motions at the gap
between cylinders (�x = 0). However, there is a few subtle differences. The vertical flux
at the cylinder gap (�x = 0) for the ’top-down’ coupling is originally oriented towards
the porous medium, but due to the influence of the Q2 structure coming from upstream,
it turns positive. The flux at �x = 0 for the ’bottom-up’ coupling is towards the channel,
which transports low-speed fluids from the porous medium up to the interface, enhancing
the Q2 events above. Despite the fact that scale selection is only done in the computation
of δζ , the statistical structure’s streamwise scale correctly restores the scale we chose.
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Figure 10. The LSE of velocity field over local casual events for a low porosity porous medium (C05,
Ub/( fH) ∈ [0.6, 1.2]). The coloured contour shows the ṽ, and the isolines indicate ũ with positive and negative
levels denoted by solid and dashed lines, respectively. The levels are from −0.1 to 0.1 with a step of 0.05.
Panels (a i–a iii) denote the ‘top-down’ process, and panels (b i–b iii) denote the ‘bottom-up’ process. Rows
1–3 correspond to the flow motions that are �t, �t/2 and 0 ahead of the local informative event, �t being the
time delay of the transfer entropy. The configuration above also applies for figure 11.

To quantify the spatial extents of these information events, the distance between the
positive and negative peaks of ṽ is measured at yp+ = 17, which corresponds to the
wall-normal position of maximum σv′ (figure 1b). The y extent of the ejection motions
is also identified. An illustrative sketch of the spatial extent is shown in figure 10(a i,b i).
For the top-down coupling, the distance between the two peaks is Lp+

x = 130, which
corresponds to a wavelength of λp+

x = 2Lp+
x = 260, and the wall-normal extent is Lp+

y =
55. As a comparison, Kuwata & Suga (2017) investigated permeable wall-bounded flow at
Rep+

τ = 177–399 with permeability
√

K
p+ = 5.5–11.6. They reported that the streamwise

wavelength of v′ is λp+
x = 200–300 at yp+ = 13. As discussed in the last section, this scale

is consistent with the quasi-streamwise vortices (Jeong & Hussain 1995; Jodai & Elsinga
2016). The structures for bottom-up coupling are smaller with Lp+

x = 79 (λp+
x = 158) and

Lp+
y = 37. The shortened range is expected since the ‘bottom-up’ event under the influence

extent of one single pore unit is limited in both streamwise and wall-normal dimensions.
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Figure 11. The LSE of velocity field over local casual events for a high porosity porous medium (C08,
Ub/( fH) ∈ [2.4, 4.8]). For the plotting configuration, see figure 10.

Figure 11 shows the second scenario, in which the informative flow motions for the
high porosity case C08 are approximated with local STE δζ/σδζ = 1 in the frequency
range Ub/( fH) ∈ [2.4, 4.8]. The configuration of figure 11 is the same as in figure 10. The
flow fields for ‘top-down’ coupling (figure 11a i–a iii) depict the passage of a large Q4
structure (ũ > 0, ṽ < 0) over the detecting point �x = 0. This leads to a variation of flux
at the cylinder gaps. The spatial extent of the structures in the ‘top-down’ events is a bit
challenging to determine as it varies in the y direction. Close to the permeable wall (y/H <

0.4), the streamwise wavelength of the local sweep/ejection motions is about λx/H ≈ 1.
As y further elevates, the wavelength increases to λx/H ≈ 2–4. The increase of informative
scale in the y direction is consistent with the result of STE in figure 9(d i). On the other
hand, the ’bottom-up’ coupling process (figure 11b i–b iii) depicts fluid being ejected from
underneath the interface and mixed with the large-scale Q2 motion (ũ < 0, ṽ > 0) in the
channel. The ũ and ṽ structures have a streamwise wavelength of λx/H ≈ 2–4 and occupy
the whole channel region. As discussed in § 3.4.2, this scale is consistent with those of KH
eddies reported by previous researchers (White & Nepf 2007; Suga et al. 2020). However,
it is noted that the up-welling motion at the interface only slightly changes the shape of the
front line of the Q2 structure above the cylinders. This is in line with the prior observations
in § 3.2.2 that the ’bottom-up’ coupling mainly affects the near-interface region.

3.6. Application of causal inference in remote sensing
The variation of spatial and spectral statistics related to transfer entropy illustrates the
underlying causal properties of the coupling process at the interface. The turbulent motions
in the channel, including near-wall vortices and KH-type eddies, have a significant causal
influence on the up- and down-welling motions between cylinders, suggesting that it is
possible to estimate the mass flux across the interface with information from the channel
region. In fact, predicting variables at the wall using remote probes is a widely applied
strategy in the modelling of wall-bounded flows (Hosseini, Martinuzzi & Noack 2016;
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Encinar & Jiménez 2019; Kim & Lee 2020; Guastoni et al. 2021). In previous works, the
configuration of the input of the models, such as the placement and temporal resolution
of the probes, is largely empirical and relies on posterior results. In this section we will
demonstrate that transfer entropy can be used as a metric to evaluate the quality of input
signals for a neural network model. On the other hand, the performance of a neural network
provides a solid validation of the statistical results of transfer entropy in earlier sections.

The architecture of a neural network used in the current study is shown in figure 12(a),
which is a nonlinear autoregressive exogenous neural network (McCulloch & Pitts 1943;
Lozano-Durán et al. 2020). The target signal X(t) to be predicted is set as the fluctuation
v′(t) in the midst of the top-layer cylinders (y = −rc). The input signals consist of both the
feedback of X, which is the past state of X at time t − 1, and the exogenous input Y(t − 1),
which is the history state of v′(t) with wall-normal position y > −rc. Here we only use
one time step from the history of X and external input Y so that it is consistent with the
embedding dimension of transfer entropy defined in (3.1). Note that this set-up is only
adopted merely for the purpose of allowing it to be directly compared with the definition
of transfer entropy. One might choose to include more history steps of X and Y to improve
prediction performance. The number of exogenous input n may also vary depending on the
requirement. In the current study, both single and multiple exogenous inputs will be tested.
The activation function for the hidden layers is the hyperbolic tangent sigmoid transfer
function. The neural network is trained using Levenberg–Marquardt backpropagation with
three hidden layers. The time sequences are randomly divided into three groups, training
(80 %), validation (10 %) and test sets (10 %). The training is terminated when the damping
factor of the Levenberg–Marquardt algorithm exceeds 1010 or the gradient of performance
falls below 10−7.

As an example, figure 12(b) compares a target time series from the test group with
the one predicted by the neural network. External input here is v′ at the crest height y =
0. Due to the limited information input, the output of the neural network recovers the
target sequence’s major peaks but also has numerous deviations from the original signal.
We measure the performance of the neural network quantitatively by mean squared error
(MSE) ε, which is defined as

ε = 〈(X − X′)2〉
σ 2

X
, (3.25)

where X′ is the predicted time series and σX is the standard deviation of the target signal
X. We extend our test by replacing the exogenous input as v′ at different wall-normal
positions. Figure 13(a) shows the variation of ε as a function of the wall-normal distance
�y between the exogenous input and the target signal. The prediction error approaches
zero when the input signal is chosen to be very close to the cylinder gap, and increases
as the elevation of the wall-normal position of the input signal. This is consistent with
the spatial map of transfer entropy in figure 6(a i–a iv), where the magnitude of transfer
entropy from channel to the porous medium decreases monotonously with increasing y.

The spectral component of the input may also affect the neural network’s performance,
which can be assessed using a similar surrogate technique as in § 3.4.2. Instead of using
only one series of v′, we expand the number n of the exogenous input to 10, which are v′
sequences extracted from 10 wall-normal positions that are evenly distributed in the range
0 < y/H < 0.5. Note that we avoid taking the points that are not ‘remote’ enough from the
target as inputs in this remote sensing model. Furthermore, in § 3.4.2 the spectrum transfer
entropy indicates weak dependence on the y location, so we employ fluctuations at multiple
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Figure 12. (a) The architecture of the nonlinear auto-regressive exogenous neural network used in the current
study; (b) comparison between the target signal (C05, v′ fluctuation at y = −rc) and the output of one of the
trained neural network.
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Figure 13. The mean squared prediction error of the neural network as functions of the (a) source-target
distance �y, and (b) spectral component of exogenous input signal.

y levels as input to achieve a moderate predicting performance. The surrogate input Y̌ is
constructed by disrupting the temporal order of a certain MODWT mode of these input
signals while keeping the other modes intact, as described in § 3.4.2. After the training is
complete, the MSE for altered input εY̌ is compared with the error level using the original
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Y signals, i.e. εY , and the rise of the MSE owing to the destructed modes δε = εY̌ − εY
represents the target signal’s dependence on specific scale ranges. The result of δε is shown
in figure 13(b). For ϕ = 0.5, the MSE has a peak at Ub/( fcH) ≈ 1.2, which falls exactly in
the informative frequency range indicated by ‘top-down’ STE in figure 9(a i). For higher
porosity cases ϕ ≥ 0.6, the peaks move toward the larger-scale side Ub/( fcH) ≥ 2.4,
suggesting the influence of outer-scale eddies (e.g. KH-type eddies) starting to dominate.
This is also consistent with the trend illustrated by the STE in figure 9(a ii–a iv).

The performance of a neural network-based remote sensing model is a straightforward
indicator of how causal the input signal is to the target signal. Despite the fact that the
model is simply data driven and lacks physical interpretation, the information included in
the external input is exploited by the neural network to generate the output. As a result, the
prediction error reflects, to a certain extent, the missing information from the exogenous
input about the target, which is the counterpart of the information flux represented by
the definition of transfer entropy. In this sense, the prediction performance of the neural
network provides a validation of the theoretical conclusions of transfer entropy. Inferring
causal relationships merely based on the performance of a data-driven model, on the other
hand, is not as robust and efficient as explicitly analysing the transfer entropy, because
the results may depend on the choice of model types and the training procedure can be
time consuming. Therefore, statistical results of transfer entropy might be employed as
an auxiliary metric for screening ideal qualities of input signals, such as spatial location
or temporal step, etc. In this way, one could more directly narrow down to the optimized
inputs with maximum information flux to the target signal, thus accelerating the trial and
error process and avoiding unnecessary computation costs.

4. Concluding remarks

In the current study the causal relationship between surface and subsurface flow is
investigated with interface-resolved DNS data. Using turbulent fluctuations as the source
and target signal, we calculate the transfer entropy between the top-layer pores and a
wide range of positions in the channel. The maps of the spatial distribution of transfer
entropy illustrate that the information flux from the porous medium to the free flow is
limited to the near-wall region, even for the highest porosity case. On the other hand,
the causal interaction in the ‘top-down’ direction is significantly stronger, and there is
still observable causality between a higher layer of the channel flow (up to y/H = 0.2)
and flow motions at top-layer pores. Based on the spatial map of transfer entropy, a path
is illustrated connecting the optimal information transfer positions at each y layer. The
path from channel to porous medium connects the gap between cylinders with upstream
locations in the channel, while the ‘bottom-up’ path is leaning towards the downstream.
This is an intuitive conclusion that the up- and down-welling motions at the interface are
influenced by the upstream flow motions in the channel, and affect downstream locations.
However, the spatial transfer entropy map and the optimal path proved this conclusion in a
quantitative way, which could help establish predictive models for the surface/subsurface
flow system.

The dependency of transfer entropy on frequency range is also explored with a
surrogate strategy. We measure the drop of information flux using surrogate signals, which
are generated by replacing the original fluctuations at a certain frequency range with
non-informative noise. This strategy is more robust than the band-filtering method against
phase distortion error. The turbulent kinetic energy of the subsurface flow mainly resides
in very-low-frequency modes, so we only inspected the dependency of transfer entropy
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on the scales of channel flow. For the low porosity case (C05), the frequency range of the
strongest contribution to transfer entropy appears at Ub/( fH) ∈ [0.6, 1.2], which conforms
with the peak of the power spectrum Φvv at the near-wall region, and is associated with
the near-wall vortices. As porosity increases, the role of larger-scale structures begins to
dominate. The scale range of Ub/( fH) ∈ [2.4, 9.6] is significant for the highest porosity
case (ϕ = 0.8), indicating the important role of KH-type eddies.

To further identify the flow motions associated with causal interaction, the concept of
local transfer entropy is introduced, which measures the contribution of transient events.
The cumulative spectra of local transfer entropy show that the predictive events tend to be
those with a strong source signal Y , and a relatively weak target X (figure 3). Furthermore,
we computed the LSE of the velocity field with respect to the local predictive events.
For the ‘top-down’ coupling, the statistical flow motion shows the passage of sweeping
or ejection motions over the reference pore unit. For the ‘bottom-up’ direction, the flow
structure indicates mass flux across the interface due to up/down-welling motions. The
scale of the structures has a direct correspondence with the selected frequency range of
the STE.

The statistics of transfer entropy reveal that the channel flow plays a driving force in
surface/subsurface interaction. This lays a theoretical foundation for remote sensing the
up/down-welling motions at the interface with the information from the channel. On the
other hand, constructing such predictive models may help consolidate the conclusions
from transfer entropy. In the current study we use a nonlinear exogenous neural network
to build test models, in which the prediction of the target signal relies on the information
from the external input. The test result shows that the prediction accuracy of the same
model decreases monotonously with the y positions of the input signal, which is consistent
with the spatial map of transfer entropy in § 3.2.2. In addition, the scale dependence
of input signals is evaluated by masking a certain frequency range of the input signal.
The deterioration of the prediction performance in the absence of a certain mode reveals
the amount of information carried by the corresponding frequency range, and the result
conforms to that of STE.

To summarize, we inspected the interaction between the channel and porous medium
flow using information-theoretic tools. The dependence of causal relations on the spatial
location and spectral component of the turbulent fluctuations is measured quantitatively
and validated by a test based on a neural network. In the current study we investigated the
causality among the most basic flow variables, i.e. turbulent fluctuations. Previous studies
(Kim & Lee 2020; Guastoni et al. 2021) also considered pressure and wall-shear stress as
important variables in modelling the permeable interface. In addition, advanced network
architecture, such as physics-informed neural networks (Raissi, Perdikaris & Karniadakis
2019), provide an architecture that allows the physics of a flow to be integrated into the
network. Therefore, future research may focus on causal analyses of higher-order flow
variables and the development of causality-informed neural networks.
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