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Phase-synchronization properties of laminar
cylinder wake for periodic external forcings
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We investigate the synchronization properties of the two-dimensional periodic flow over a
circular cylinder using the principles of phase-reduction theory. The influence of harmonic
external forcings on the wake dynamics, together with the possible synchronization of the
vortex shedding behind the cylinder to these forcings, is determined by evaluating the
phase response of the system to weak impulse perturbations. These horizontal and vertical
perturbations are added at different phase values over a period, in order to develop a linear
one-dimensional model with respect to the limit cycle that describes the high-dimensional
and nonlinear dynamics of the fluid flow via only a single scalar phase variable. This
model is then utilized to acquire the theoretical conditions for the synchronization between
the cylinder wake and the harmonic forcings added in the global near-wake region.
Valuable insights are gained by comparing the findings of the present research against
those rendered by the dynamic mode decomposition and adjoint analysis of the wake
dynamics in earlier works. The present analysis reveals regions in the flow which enable
phase synchronization or desynchronization to periodic excitations for applications such
as active flow control and fluid-structure interactions.

Key words: nonlinear dynamical systems, flow control

1. Introduction

Dynamical systems with rhythmic unsteadiness are omnipresent in engineering
problems such as structural vibrations, electric circuits, chemical reactions and robotic
locomotion (Kuramoto 1984; Pikovsky, Rosenblum & Kurths 2001). The nonlinear
dynamics of such systems is characterized by a self-sustained oscillation, when the state
of the system resides sufficiently close to its limit-cycle attractor. The rich physics of
limit-cycle oscillators can abundantly be found in periodic fluid flows as well (Huerre
& Monkewitz 1990). These unsteady flows have long been the subject of extensive
research for the purpose of prediction, control and extraction of coherent fluid structures
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(Holmes, Lumley & Berkooz 1996). In particular, the study of phase-locking between
the flow oscillation and harmonic actuations is essential in revealing the underlying
synchronization mechanisms for modifying the dominant oscillation frequency of the
flow in a mathematically rigorous and computationally inexpensive fashion (Kawamura &
Nakao 2013, 2015; Taira & Nakao 2018; Iima 2019). Within the scope of the present work,
synchronization (phase-locking) is defined as the adjustment of the natural frequency of
the flow to the frequency of the actuation. In the context of aerodynamic performance of
flyers, altering the flow frequency can in turn lead to the enhancement of lift-to-drag ratio,
e.g. by advancing or delaying the vortex shedding from the body (Nair et al. 2020). These
objectives require the development of low-dimensional models describing the nonlinear
interaction between all oscillators in the fluid system in a simplified fashion (Nair, Brunton
& Taira 2018).

Most control or reduction techniques conventionally employed for fluid flows rely
on the linearization of the flow around a steady or quasisteady state, which makes
them underperform when the deviation from the bifurcation point is relatively large
(Bewley 2001). Approaches such as Floquet theory (Herbert, Bertolotti & Santos 1987)
or phase-reduction theory (Kuramoto & Nakao 2019) enable the extension of analysis to
periodic flows, as they pave a path towards active flow control with respect to time-varying
base flows.

The present investigation provides a linear framework for the phase-based description
of temporal evolution of time-periodic flows. In particular, we analyse the response of
a two-dimensional (2-D) circular cylinder wake to harmonic actuations. The Reynolds
number of interest is adequately large so that the von Kármán vortex street forms, but
it is also low enough to ensure that the wake remains laminar. This analysis proposes
a novel and computationally tractable way to uncover the regions in the flow best
suited for the placement of external oscillatory forcing inputs, to achieve synchronization
between the vortex shedding and these actuations, and, consequently, to modify the
shedding frequency. These regions are obtained by surveying the phase properties of the
global near-wake region, significantly expanding the local study performed by Taira &
Nakao (2018). Furthermore, this methodology is capable of identifying the most sensitive
regions of the flow to control inputs at any given time, enabling an energy-optimal
control strategy, without any explicit knowledge of the governing dynamics. Additional
insights are gained by comparing the findings of the present phase-based analysis against
those of other modal- and adjoint-based methods, especially by inspecting the spatial
maps of synchronization at different harmonics. The paper is organized as follows. The
phase-based, low-dimensional description of the flow is derived in § 2. Section 3 describes
the numerical solver used to conduct the direct numerical simulations (DNS) of the
flow. Section 4 presents the results of the phase-based model, specifically the regions
optimal for synchronization and energy-efficient control, and validates the accuracy of the
model predictions for synchronization against DNS results. This section also investigates
the potential commonalities and the characteristic differences between the findings of
the present model and the widely-used dynamic mode decomposition (DMD), while
highlighting the desirable capabilities of the phase-based analysis. Section 5 summarizes
the main results and discusses the outlook for subsequent studies.

2. Phase-based analysis of periodic flows

Consider a periodic flow whose dynamics is governed by

q̇ = F (q), (2.1)
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Synchronization of cylinder wake to periodic forcings

where q is the state vector of the flow with a stable limit cycle q0 such that q0(x, t + T) =
q0(x, t). Here, T denotes the periodicity, through which the natural frequency ωn can be
calculated as ωn = 2π/T . The periodic nature of the flow allows for phase θ to satisfy

θ̇ = ωn, θ ∈ [−π, π]. (2.2)

Note that q0(θ(t)) describes the full flow field at time t corresponding to phase θ(t). In
the vicinity of the limit cycle, and in the basin of the attractor, the phase dynamics can be
captured via the phase function Θ(q), so that θ = Θ(q). Consequently, we find that

θ̇ = Θ̇(q) = ∇qΘ(q) · q̇ = ∇qΘ(q) · F (q) = ωn, (2.3)

which provides a one-dimensional, linear framework for describing the originally
nonlinear and high-dimensional dynamics of (2.1) with respect to the limit cycle q0.

The flow dynamics of (2.1) can then be weakly perturbed in the following fashion:

q̇ = F (q) + εf (t), (2.4)

where ε � 1 and ‖ f ‖2 = 1. This equation can be expressed in terms of the phase variable
and function to arrive at

θ̇ = Θ̇(q) = ∇qΘ(q) · q̇ = ∇qΘ(q) · [F (q) + εf (t)]. (2.5)

Equations (2.5) and (2.3) can then be combined to obtain

θ̇ = ωn + ε∇qΘ(q)
∣∣
q=q0

· f (t). (2.6)

Here, the higher-order terms have been neglected, assuming that the perturbation is
sufficiently small. Hereafter, we denote ∇qΘ(q)|q=q0 by Z(θ), and refer to it as the
phase-sensitivity function.

We find the phase-sensitivity function via a direct method by applying weak impulse
perturbations in the form Iδ(t − t0)êj at different phase values over a period by changing
t0, where I, δ(t − t0) and êj represent the perturbation amplitude, the Dirac delta function
centred at t0 and the unit vector specifying the impulse direction, respectively. In this
research, δ(t − t0) is modelled as a narrow Gaussian function given by

δ(t − t0) = 1√
2πσ

exp

[
−1

2

(
t − t0

σ

)2
]

, (2.7)

where σ is taken as 10Δt, with Δt indicating the DNS time step (see § 3).
The introduction of impulse perturbation results in an asymptotic phase advancement or

delay. This asymptotic phase shift, known as the phase-response function g(θ; Iêj), can be
measured experimentally or numerically for a certain phase value and location at which the
perturbation is added. Given that I � 1, the phase-sensitivity function can be evaluated as

Zj(θ) = lim
I→0

g(θ; Iêj)

I
≈ g(θ; Iêj)

I
. (2.8)

The phase-sensitivity functions can be computed for various phase values and locations,
to obtain the 2π-periodic phase-sensitivity functions of the entire flow field. One can
alternatively integrate the adjoint equations of the dynamical system backward in time
to obtain Z (Ermentrout & Terman 2010; Nakao 2016). This adjoint-based approach relies
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on the calculation of Jacobi matrix of F (q) at each time, which requires explicit knowledge
of the governing equations and, as a result, cannot be implemented experimentally.

Once Z is available, the linear model of (2.6) can be used for designing optimal open- or
closed-loop controls (Nair et al. 2020). It can also be utilized to study the synchronization
of the periodic flow to an external actuation such as εf (t) with the frequency Ω , assuming
that |Ω − ωn| � 1. We define the relative phase between the actuation and the flow
oscillation as φ(t) = ωn − Ωt. This definition can be combined with (2.6) to calculate
the temporal rate of change of φ,

φ̇ = ε[Δ + Z(φ + Ωt) · f (t)], (2.9)

where Δ = (ωn − Ω)/ε = O(1).
The synchronization or phase-locking between the flow oscillation and harmonic forcing

occurs when φ̇ → 0. As a consequence, and after many cycles, the flow adjusts its
frequency, so that it oscillates with the new frequency Ω . Since Ωt changes much
more rapidly than the relative phase (|Ω − ωn| � 1), the right-hand side of (2.9) can be
estimated by taking its average over one period (Kuramoto 1984; Ermentrout & Terman
2010). Hence, (2.9) can be simplified to

φ̇ = ε[Δ + Γ (φ)], (2.10)

where the 2π-periodic phase-coupling function Γ (φ) is formulated as

Γm(φ) = Ω

2π

∫ 2π/Ω

0
Z(φ + Ωt′/m) · f (t′) dt′ = 1

2π

∫ 2π

0
Z(φ + ϕ/m) · f (ϕ) dϕ,

(2.11)
while Ω = mωn with m ∈ N. Stable phase-locking between the external forcing and the
periodic flow can be achieved if and only if

εΓmin < Ω − ωn < εΓmax, (2.12)

where Γmax and Γmin are respectively the maximum and minimum values of the
phase-coupling function at a certain point. The region of synchronization in the
frequency–amplitude plane, also called the Arnold tongue (Arnold 1997), is thus bounded
by two lines with the slopes −1/Γmin and 1/Γmax, both passing through the point
(Ω/ωn, ε) = (1, 0) (e.g. see figure 5). Evidently, as the difference between Γmax and Γmin
becomes larger, the area of the synchronization region grows as well. We therefore define
the parameter synchronizability S ≡ Γmax − Γmin as a measure for the convenience of
phase-locking. While the above derivations assume ε � 1, the synchronization criterion
(2.12) often holds for moderate values of ε.

3. Numerical simulations

Let us consider the application of the phase-reduction analysis to characterize the
synchronization properties of the circular cylinder wake. The governing equations for this
2-D incompressible flow are

∂u
∂t

+ u · ∇u = 1
Re

∇2u − ∇p + εf and ∇ · u = 0, (3.1a,b)

where u = uêx + vêy, p and f represent dimensionless velocity, pressure and external
forcing, respectively. Equations (3.1a,b) are non-dimensionalized by taking the cylinder
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FIGURE 1. (a) Set-up of impulse perturbations and harmonic actuations used for calculating
the phase properties of the fluid flow. The quantities α and r denote the angular position of the
perturbation and its distance from the centre of the cylinder, respectively. Horizontal and vertical
black arrows indicate the position and orientation of impulse perturbations used for developing
the linear, phase-based model, while the red arrows show example arrangements of top and
bottom actuators used to study the synchronization properties of the wake flow. (b) Limit-cycle
attractor of the flow depicted in the ĊL–CL plane, along with the definitions of the phase variable
θ and the phase function Θ .

diameter d and the freestream velocity U as the characteristic length and velocity
(figure 1a). Here, we study the flow at a Reynolds number of Re ≡ Ud/ν = 100, where
ν denotes the kinematic viscosity. For the cylinder flow under consideration, the state of
the flow is determined by measuring the lift coefficient CL and its temporal derivative ĊL
(figure 1b), whose asymptotic changes in response to the impulse perturbations give the
phase response and, subsequently, the phase-sensitivity function of the wake flow.

A filter in the form of the three-point discrete delta function of Roma, Peskin & Berger
(1999) is multiplied by the forcing f of (3.1a,b) to ensure its spatial compactness. This is
enforced in the DNS solver by the following integral over the entire domain:

f (x, t) =
nf∑

j=1

∫
x′

δx(x′ − xj)êjT(t) dx′, (3.2)

where nf , δx and xj respectively show the number of forcings, the discrete delta function
and the location at which the forcings are applied. The temporal part of the forcing T(t)
represents the impulse perturbations Iδ(t − t0) of § 2 or the periodic forcings of the next
section. Such impulsive, point forces are placed at different angular positions α and
distances r from the centre of the cylinder, to map out the phase-sensitivity function
for the entire flow field (figure 1a). The perturbation amplitudes are selected so that
I ∈ [0.01, 0.02], making them adequately small to satisfy the linearity assumption.

The DNS of governing equations (3.1a,b) is carried out using the immersed boundary
projection method of Taira & Colonius (2007). The far-field boundary conditions are
handled via the multi-domain technique of Colonius & Taira (2008), while each domain
is discretized uniformly. The computational domain is chosen as x/d ∈ [−39.5, 40.5] and
y/d ∈ [−40, 40] with the cylinder located at the origin. The first domain, which is the
nearest to the cylinder, lies within the area [−2, 3] × [−2.5, 2.5] and has the grid spacing
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FIGURE 2. Phase-sensitivity function at different phases θ , given by impulse perturbations in
(a) êx and (b) êy directions.

Δx/d = Δy/d = 0.025. The time step Δt is set to satisfy Δt < 0.5Δx/U. When the
impulse perturbations are located too close to the boundaries of the first domain or fall
outside of it, the domain is sufficiently enlarged. The natural frequency, the time series
of lift and drag coefficients, and the velocity and vorticity fields rendered by the present
computational approach are in agreement with those of earlier studies such as Munday &
Taira (2013) and Taira & Nakao (2018), validating the overall set-up.

4. Results

In this section, we discuss the results regarding the maps of phase-sensitivity functions
and synchronizability for the entire flow field. Such findings reveal valuable information
about designing optimal control strategies for the frequency or phase modification of
the wake dynamics. The accuracy of the model predictions for the synchronizability are
validated against DNS results. We furthermore study the connections and differences
between the present method and the DMD-based analysis of the flow, in order to illustrate
the distinctive features of the phase-reduction analysis.

The spatial maps of phase-sensitivity functions demonstrated in figure 2 exhibit a
symmetry condition between the upper and lower halves of the flow, so that for horizontal
impulses Zx(θ; x/d, α) = Zx(θ + π; x/d, −α), and for the vertical ones Zy(θ; x/d, α) =
−Zy(θ + π; x/d, −α). In accordance with the findings of Luchini, Giannetti & Pralits
(2009) and Iima (2019), we observe that the sensitivity to the forcing inputs is typically the
largest downstream of the cylinder and in its vicinity. In addition, a horizontal perturbation
in the positive direction and placed upstream of the cylinder either does not change
the phase θ (Zx = 0) or causes phase advancement (Zx < 0), as also reported by Iima
(2019). The maps of figure 2 indicate that an energy-efficient control strategy for shifting
the phase of the flow requires placing the control inputs around the separation point
(π/3 � |α| � π/2 and 0.6 � x/d � 0.8) when they are oriented horizontally, and much
closer to the wake (π/12 � |α| � π/4 and 0.6 � x/d � 0.8) when they are vertical. The
stated regions correspond to the peaks of Zx and Zy.

In this study, we consider the synchronization of the wake to two sinusoidal forcing
inputs in the form f = 0.5ε[1 + sin(Ωt)], placed at the top and bottom of the cylinder, as
shown in figure 1. Note also that there is a phase difference π between the two actuators.
The symmetric distributions of synchronizability S with respect to the wake centreline are

904 R1-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

77
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.772


Synchronization of cylinder wake to periodic forcings

0

A
BC

D

1.5
3.0
4.5
6.0
7.5
9.0

0

0.5

1.0

1.5

0

0.5

1.0

1.5

0
1.5
3.0
4.5
6.0

0

1

2

3

4

0

0.9

1.8

2.7

3.6

0

0.6

1.2

1.8

2.4

0

1

2

3

0

2

−2

0

2

−2

0

2

−2

0

2

−2

0

2

−2

0

2

−2

0

2

−2

0

2

−2
0
x

y

y

x x x
2−2 0 2−2 0 2−2 0 2−2

0 2−2 0 2−2 0 2−2 0 2−2

(a) (b)

Ω =wn

Ω = 3wn Ω = 4wn

Ω = 2wn Ω =wn

Ω = 3wn Ω = 4wn

Ω = 2wn

A
BC

D

FIGURE 3. (a) Synchronizability fields at different harmonics for horizontal periodic actuators.
The green point in each panel indicates the position at which S for a certain value of Ω/ωn is
maximized. (b) Same as (a), except harmonic actuators are directed vertically.

depicted at different harmonics in figure 3, when f is directed horizontally and vertically.
As can be seen in this figure, for the odd-harmonic forcings, i.e. when Ω = (2k − 1)ωn
(k ∈ N), horizontal actuations give much larger values for S in comparison with vertical
actuations, suggesting that for these forcings, phase-locking to horizontal actuations can
take place with much lower forcing amplitudes. For the even-harmonic forcings, however,
the opposite holds, meaning that synchronization to vertical actuations at these harmonics
requires lower values for ε. Furthermore, the regions with large synchronizability in the
first harmonic mainly overlap with those of the associated phase-sensitivity map. In fact,
the location of maximum synchronizability for horizontal (vertical) actuations at Ω = ωn
is found to be at x/d = 0.6 and α = 5π/12 (x/d = 0.6 and α = π/4), marked by the
green point of the corresponding map. For vertical periodic forcings, the general shape
of synchronizability maps does not change substantially for different harmonics, and the
maximum value of S appears at the same location for all. In contrast, when the forcings are
horizontal, the pattern of S can significantly differ among different harmonics. Specifically,
when Ω = 2kωn, S in the centreline of the wake increases from approximately zero at
the first harmonic to some fairly large values in O(1). This can be attributed to the
π-periodicity of Zx along the centreline of the wake, leading to the orthogonality of
the phase-sensitivity function to f , and nearly zero values for both Γmax and Γmin when
Ω = ωn. At Ω = 2ωn or other higher harmonics, this orthogonality no longer holds, as
can be understood from the formulation for the phase-coupling function (2.11), resulting
in relatively large values for S at α = 0. In fact, the maximum value of S occurs at α = 0
and x/d = 1.2 (x/d = 1.4) for Ω = 2ωn (Ω = 4ωn). The synchronization of actuations
placed at the coloured points shown in the synchronizability maps of the first harmonic
are compared against DNS results in figure 5.

The comparison between the findings of the present phase-based approach, particularly
for synchronizability maps, and the DMD analysis of the wake flow underlines the
characteristic differences between the two methods. Most distinctively, the phase-based
model finds the optimal location for the synchronization fairly close to the cylinder, while
the peaks of DMD modes fall at least two diameters away from the cylinder, as can be
seen for the velocity modes of figure 4. We should emphasize that the phase-reduction and
DMD analyses are employed for different objectives. The former identifies the optimal
location for an oscillatory control input capable of modifying the phase or oscillation
frequency of the flow, whereas the latter aims to extract the most dynamically relevant
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FIGURE 4. Magnitude of DMD modes for (a) horizontal and (b) vertical velocity fields, with
the frequency of mode m being mωn.

0

0.02

0.04

0.06

0.08

0.10

0

ε

ε

0.5 1.51.0

Ω/wn Ω/wn Ω/wn Ω/wn
0.5 1.51.0 0.5 1.51.0 0.5 1.51.0

0.5 1.51.0

Point (A)

Point (C)

Point (B)

Point (D)

Point (A)

Point (C)

Point (B)

Point (D)

0.5 1.51.0 0.5 1.51.0 0.5 1.51.0

0.02

0.04

0.06

0.08

0.10

0

0.02

0.04

0.06

0.08

0.10

0

0.02

0.04

0.06

0.08

0.10

0

0.02

0.04

0.06

0.08

0.10

0

0.02

0.04

0.06

0.08

0.10

0

0.02

0.04

0.06

0.08

0.10

0

0.02

0.04

0.06

0.08

0.10

(a) (b)

FIGURE 5. Synchronization of vortex shedding to harmonic actuations for (a) horizontal and
(b) vertical forcing inputs, located at points A to D of figure 3. The phase-based analysis suggests
that only cases falling inside the areas bounded by the solid black lines meet the theoretical
criteria for phase-locking. The numerically found boundaries of synchronization are also marked
by the blue crosses.

structures of the flow field. The comparison also exhibits some commonalities between
the two. Most noticeably, it shows that the patterns identified by DMD modes are typically
strong along the same directions in which S is large. For instance, the structures in DMD
modes of the horizontal velocity field are vanishing at α = 0 for the first and third modes,
but are the strongest for the second and fourth modes. In addition, for the odd modes of
vertical velocity, it is observed that the dominant structures emerge closer to the wake
centre in comparison with those of u-modes. These findings are in line with the results of
the present analysis for synchronizability fields.

The present phase-based model reveals the necessary conditions for the synchronization
of the vortex shedding to external actuations. The theoretically calculated Arnold tongues
corresponding to the points A to D of figure 3 (solid lines in figure 5) are compared against
the numerically obtained boundaries of synchronization in the frequency–amplitude plane
for the same cases (blue crosses in the same figure). The numerical boundaries for a
prescribed value of ε are found by locating the largest value of |Ω − ωn| for which the
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FIGURE 6. (a) The vector field represents the optimal orientation of forcing inputs at different
locations in the flow field, in order to acquire the maximum synchronizability. The length of each
vector is proportional to the synchronizability achieved by applying the perturbation in the same
direction and at the same location as the vector. The red vectors correspond to the actuations
leading to the maximum value of S. (b) Synchronizability field at Ω = ωn, when the periodic
actuations are aligned with the top red vector of panel (a).

difference between the oscillation frequency of the flow and Ω is below 1 %. Except for
the case with horizontal actuation at x/d = 0.6 and α = π/2 (point C in figure 3a), in
which model predictions slightly deviate from DNS results, all other cases show excellent
agreement between the two. The linearity of the phase-based model requires a careful
parametric study for the perturbation amplitude I, to ensure that I is adequately small so
that its further decrease does not change the phase-sensitivity function noticeably. This
step has significant impact on the overall accuracy of the model predictions. Furthermore,
as the amplitude of the excitation grows, the state of the flow moves farther from its stable
limit cycle, and as a consequence, nonlinear effects become gradually more pronounced;
however, the results of figure 5 evidence that the model remains accurate for a broad range
of forcing amplitudes. Consistent with the observations of Rigas, Morgans & Morrison
(2017) and Herrmann et al. (2020), we also find that subharmonic synchronization (i.e.
when the vortex shedding oscillates with the frequency Ω/m instead of Ω) can commonly
arise at higher harmonics. However, since the smaller values of S at these harmonics
(especially at the even harmonics of the horizontal synchronizability fields) make them
difficult to achieve, phase-locking at higher harmonics is not shown here.

Once the maps of Zx and Zy are available, the phase-sensitivity function for any
arbitrarily-oriented impulse perturbation at any point can be calculated as Z(β) =
Zx cos(β) + Zy sin(β), where β is the angle between the forcing direction and êx.
Subsequently, other phase properties such as Γ and S can also be computed for all
possible locations and directions of forcing inputs, following the formulations of § 2. The
optimal orientation of actuations leading to the maximum synchronizability for different
points in the flow field are shown in figure 6. The length of each vector is proportional
to the magnitude of S, when a harmonic forcing in the same direction and at the same
location is introduced. The optimal orientation for the periodic actuations in the near wake
(x/d � 1.5) is found to be nearly tangential to the cylinder. This is of practical significance,
since tangential forcings can result in a more streamlined and stabilized wake, causing
substantial drag reduction (Munday & Taira 2013). It is also seen that actuations tangential
to the cylinder and placed at x/d = 0.6 and α = ±5π/12 (red arrows of figure 6a) yield
the largest value possible for S. Therefore, a harmonic actuation at the same location as the
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red vectors and parallel to them results in phase-locking with the smallest amplitude ε, in
comparison with all other actuations at any other locations and with any other orientations.
The synchronizability field corresponding to periodic forcings parallel to the top red arrow
of figure 6(a), and with Ω = ωn, is remarkably similar to the synchronizability map of
horizontal forcings at the same harmonic (compare figures 6b and 3a), except the values
of S in figure 6(b) are around 5 % larger.

The capabilities of the present phase-based analysis in modifying the oscillation
frequency of the flow can give insights into the physics of the vortex shedding process,
as well as the interaction mechanisms of vortical structures in the wake flow, such as
vortex splitting and merging. Furthermore, this method proposes a novel approach for
controlling the unsteady dynamics of periodic flows through changing their oscillation
frequency or phase by finding the optimal strategy for the placement of forcing inputs.
Such a strategy can in turn enable substantial drag reduction and/or lift enhancement. The
current framework of the phase-reduction theory holds promise for its application to a
variety of engineering problems, such as biological swimmers and flyers, vortex-induced
vibration and fluid-structure interactions.

5. Concluding remarks

We performed a phase-based analysis on the 2-D periodic flow past a cylinder at
Re = 100. Weak impulse perturbations were introduced at different locations in the flow
field and at various times over a period, in order to uncover the important phase properties
of the periodic wake. The present direct method does not need a priori knowledge
of the underlying dynamics, is computationally tractable, and can be straightforwardly
implemented in experimental set-ups. The maps of the phase-sensitivity function and
synchronizability identified by the phase-based model of (2.6) reveal optimal strategies
for altering the wake dynamics via modification of the phase or frequency of the flow.
The present method accurately predicts the necessary conditions for the synchronization
of the wake flow to external harmonic actuations, as confirmed by comparing the model
predictions against DNS results. Furthermore, the comparison between the phase- and
DMD-based analyses of the flow shows that, despite some interesting similarities, the
optimal positioning of forcing inputs required for changing the frequency or the phase
of the flow is better determined using the present phase-based approach. This should not
come across as surprising, as the two approaches have been developed for vastly different
objectives. In subsequent studies, the authors aim to investigate the commonalities and
discrepancies between the two methods in detail, consider more complex physics such as
the interactions between the periodic wakes of multiple bodies, and extend the current
approach to quasiperiodic flows, e.g. via cluster-based techniques.
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