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Wave action flux: a physical interpretation
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Steady, gravity water waves on a constant-over-depth current, progressing over a
slowly varying bed, are studied with the purpose of connecting the wave action flux
concept with conventional energy flux considerations. The analysis is two-dimensional
and dissipation is neglected. A new relation between integral properties containing the
energy flux referred to a ‘global ’ level, the so-called mean energy level, gives the
surprising result that this flux is simply the product of absolute angular frequency and
wave action flux. An alternative, less physical, proof of this result is also presented. A
general equation for the action velocity is set out and for linear waves shown to equal
a well-known expression. Also presented are new expressions for relative phase velocity
in terms of kinetic energy and mean momentum for the wave, and the kinetic energy
in terms of the characteristic velocities for the combined wave and current motion. In
the Appendix a simple relation between energy and action fluxes for small-amplitude
waves on a linear shear current is found which resembles the irrotational theory, finite-
height result. A possible extension of this relation to finite-height waves on a general
shear current is discussed.

1. Introduction

Bretherton & Garrett (1968) introduced the wave action conservation principle for
a rather general class of small-amplitude waves in slowly varying media. The approach
was based on Whitham’s averaged Lagrangian introduced in 1965 (see Whitham 1974).
This action principle has been found to be a very useful concept for water waves on
currents, see for instance Christoffersen (1982) and Jonsson (1990). The action
conservation equation for water waves derived from a Lagrangian has for many years
been thought of as being indispensable for the calculation of the evolution of wave
heights. We will set out to show, however, that for steady gravity water waves on a
current (irrotational and plane flow assumed), we need introduce neither wave action
flux nor Lagrangian theory; using the conventional expression for the mean energy flux
with a ‘global ’ reference level for flow of potential energy, we will show that this energy
flux is in fact proportional to action flux. Thus wave action conservation for steady
water waves on a current is nothing but simple energy conservation. The result is
general, in that it applies to any phase-function-related water wave theory and there is
no restriction on the degree of nonlinearity.

In §2 a simple expression for the set-down ∆h, i.e. the depression of the mean water
surface due to a change in water depth (and thus also current velocity) is rederived. The
energy and energy flux are calculated in §3, the latter with reference to the so-called
mean energy level, which is situated a distance ∆h above the mean water surface, giving
a new relation between integral properties for periodic gravity waves. In §4 we
introduce the averaged Lagrangian from Crapper (1979), and the ensuing expressions
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156 I. G. Jonsson

for action density and action flux. The latter is compared with the energy flux from §3,
and proportionality is demonstrated. An alternative proof of this is given. New
expressions for relative phase velocity and kinetic wave energy are also introduced.
Finally, the action velocity is found and discussed in §5. In the Appendix attempts are
made to relate the wave energy flux to the wave action flux for waves on a rotational
current.

Dissipation is neglected throughout. (For small-amplitude waves on a constant-
over-depth current it is quite easy to include the bed shear and ensuing dissipation in
a wave action formulation, see the ‘wave action dissipation’ term in Christoffersen &
Jonsson 1980, steady case, Christoffersen 1982 and Jonsson 1990, unsteady case).

2. Mean energy level and set-down

When water waves propagate over a sloping bottom, the mean water surface (MWS)
is not horizontal, and so there is a difference between the still water, or undisturbed,
depth D and the actual water depth h (figure 1), the difference representing the set-
down ∆h. The level from which depth D is measured is termed the mean energy level
(MEL), for pure waves first introduced by Lundgren (1963).

The set-down is calculated in Jonsson, Skougaard & Wang (1971) and Jonsson &
Wang (1980), see also Jonsson & Arneborg (1995). The method will be briefly outlined
here. It is based on the time-mean of the Bernoulli equation which reads

z- p

ρg.
1

2g
(©u#

"
ª©u#

#
ª©w#ª)¯®

1

g-
¥φ
¥t., (1)

symbol © ª denoting time averaging over an absolute wave period. In (1), z is the height
over the datum, p the pressure, ρ the density, g the gravity acceleration, u

"
and u

#
the

horizontal velocity components, w the vertical velocity component, φ the velocity
potential, and t the time. Note that u and w are total quantities (wave plus current).

The spatial derivatives of the right-hand side of (1) are (ignoring the constant)

¥
¥x

i

-¥φ
¥t.¯- ¥

¥x
i

¥φ
¥t.¯- ¥

¥t
¥φ
¥x

i

. , i¯ 1, 2, 3. (2)

Since the wave motion is assumed periodic, the last term of (2) vanishes, and thus
©¥φ}¥tª is shown to be a global constant. Therefore in (1) the sum of the geometrical
height, the mean pressure height, and the mean velocity height is seen to be a constant
for the entire flow. So, denoting this constant C (¯®©¥φ}¥tª}g), we have the MEL
situated a distance C above our datum, see figure 1. At the bed (1) reads

z
b
-p

b

ρg.
1
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(©u#
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ª©u#

#b
ª©w#

b
ª)¯C. (3)

Since for progressive waves over a gently sloping bed we have h¯©p
b
ª}ρg, and the set-

down from figure 1 equals C®(z
b
h) (z

b
representing the position of the bed), we find

from (3) that

∆h¯
1

2g
(©u#

"b
ª©u#

#b
ª©w#

b
ª). (4)

So, for a steady, progressive wave on a current over a gently sloping bed, the set-down
(irrotational flow assumed) simply equals the mean velocity head at the bed. This was
first pointed out by Jonsson et al. (1971).
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MEL
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©¦φ/¦tª

g

F 1. The mean water surface MWS, the mean energy level MEL, and the set-down ∆h.
Quantity D is still water depth, h is actual depth, c

a
is absolute wave phase velocity, and q is the mean

volume flux.

For plane flow, (4) then gives the following simple relation (ignoring the small last
term):

∆h¯
1

2g
©u#

b
ª. (5)

At infinite water depth the fluid velocity at the bed vanishes, and so by (5) the set-down
is zero here. Therefore the MEL in fact equals the ‘still water level ’, and this explains
the phrase ‘still water depth’ for D in figure 1.

Strictly speaking (2) is only valid below wave trough level. However, this does not
contest the validity of (5), which is crucial for the calculations in the next section.

3. Energy and energy flux

The energy flux per unit length of the wave front with the MWS as the datum is

F
MWS

¯-&
η

−h

(ρgzp"

#
ρ(u#w#)) udz. (6)

in which η is the surface elevation measured from the MWS. Sobey et al. (1987,
equation 93) and Klopman (1990, equation 23) found this to be

F
MWS

¯ c
a
(3T®2V )"

#
©u#

b
ª (Iρc

a
h)®2c

a
U

E
I. (7)

In (7), c
a

is the absolute wave phase velocity, T and V are kinetic and potential
energy per unit horizontal area, I is the mean mass flux

I¯-&
η

−h

ρudz.3 ρU
S
h (8)

and U
E

is the mean current velocity below wave trough level, the mean Eulerian
velocity. Quantity U

S
in (8) is the mass transport velocity, so that the mean volume flux

in figure 1 is q¯ hU
S

(¯ I}ρ).
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In the study of wave shoaling on a current, a ‘global ’ datum for the energy flux
should be used rather than the MWS. Choosing the MEL as such a datum, we find the
energy flux as

F
MEL

¯F
MWS

®ρgh∆hU
S
¯F

MWS
®"

#
©u#

b
ª I (9)

using (5) and (8). Introducing (7) in (9) leaves us with a new relation between integral
properties for periodic gravity waves on a current

F
MEL

¯ (3T®2V"

#
ρh©u#

b
ª®2U

E
I ) c

a
. (10)

It should again be remembered that quantities in (10) are total ones (wave plus
current).

Potential energy is as usual
V¯ "

#
ρg©η#ª (11)

with η measured from the MWS. From Longuet-Higgins (1975, equation (2.3)), kinetic
energy is found as

T¯ "

#
(c

a
I®U

E
Q), (12)

where Q is the mean mass flux in the opposite direction to wave propagation in a frame
where the wave is stationary, i.e.

Q¯ ρc
a
h®I. (13)

4. Action and action flux

For plane flow we have the averaged Lagrangian from equation (35) in Crapper
(1979) as

,¯ ρ(γ®"

#
U#

E
) h®"

#
ρg(b#®d#)Tw®Vw, (14)

where ®γ is the factor to time t in the pseudo-phase function in the velocity potential
(see (35) later), and b is the height of the MWS over the datum (i.e. z

b
h from figure

1; and ®∆h with the datum at the MEL). Quantity d is the height of the datum over
the sea bed (i.e. ®z

b
from figure 1; and h∆h with the datum at the MEL). The term

"

#
ρgd# does not contribute to any of the Euler–Lagrange equations of the variational

principle, and can thus be ignored (Crapper 1979). Superscript ‘w ’ in (14) denotes
‘wave’, which here means that the energy is related to a reference frame in which the
mean Eulerian velocity U

E
vanishes.

From (14) we can, following Crapper, define the ‘wave Lagrangian’ as

,w¯Tw®Vw, (15)

where ,w¯,w (ω
r
,k, a, h). (16)

Here ω
r
is the relative angular frequency, k is the wavenumber, and a is a measure of

the wave amplitude. Moreover, frequency ω
r
is related to the wavenumber through the

Doppler relation
ω
r
¯ω

a
®kU

E
, (17)

where ω
a

is the absolute angular frequency.
Since in this paper we are only interested in action conservation, it suffices when

using the Whitham method to look at the variation of , with respect to the phase
function θ¯kx®ω

a
t, quantity x being the coordinate in the direction of wave

propagation. From (14)–(17) we then get, cf. Crapper (1979, equation (42))

¥
¥t 0

¥,w

¥ω
r

1 ¥
¥x 0UE

¥,w

¥ω
r

®
¥,w

¥k 1¯ 0, (18)
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noting that , does not depend explicitly on θ, but only on its derivatives. From (18)
we have wave action A and total wave action flux B as

A¯
¥,w

¥ω
r

, (19)

B¯U
E

¥,w

¥ω
r

®
¥,w

¥k
. (20)

From mass conservation Crapper finds (his equations (5) and (41), cf. (44)),

A¯
Iw

k
, (21)

where Iw is the mean wave momentum (from Crapper, equation (7))

Iw¯ ρh(U
S
®U

E
). (22)

Thus, as noted by Stiassnie & Peregrine (1979), apart from a factor 1}2π wave action
is the momentum per wave relative to the mean current velocity U

E
. (Alternatively A

can be written as 2Tw}ω
r
, Crapper 1979, equation (75), top. This gives a new expression

for the relative phase velocity, c
r
¯ c

a
®U

E
¯ 2Tw}Iw using that c

r
¯ω

r
}k together

with (21)).
Further Crapper finds, comparing two results for the radiation stress (his (47) and

(74)) that

®
¥,w

¥k
¯

1

k
(3Tw®2Vw"

#
ρh©(uw

b
)#ª), (23)

cf. his (75), middle. Here uw
b

is the wave particle velocity at the bed, i.e.

uw
b

¯ u
b
®U

E
. (24)

From (19), (20), (21), and (23), we finally find

B¯
1

k
(U

E
Iw3Tw®2Vw"

#
ρh©(uw

b
)#ª) (25)

which agrees with Stiassnie & Peregrine (1980, equation 2) ; see also the second
parenthesis in equation (9) in Stiassnie & Peregrine (1979).

We will now rewrite (25) in terms of ‘ total ’ quantities like those appearing in (10).
From (8) and (22) we have readily

Iw¯ I®ρU
E

h (26)

and from (24), since we consider steady waves, that

©(uw
b
)#ª¯©u#

b
ª®U#

E
. (27)

It follows immediately that
Vw¯V. (28)

Finally, from Klopman (1990, equation (17)) we get

Tw¯T®U
E

I"

#
ρhU#

E
. (29)

(Alternatively Tw can be written

Tw¯T®"

#
ρhU#

S
"

#
ρh (U

S
®U

E
)#. (30)
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This form is better suited for physical interpretation. Yet another form can be found
by introducing (8), (12), and (13) in (29) giving

Tw¯ "

#
ρh (U

S
®U

E
) (c

a
®U

E
). (31)

This new form is particularly interesting, since the term in the first parentheses is the
so-called ‘return current velocity ’ – the difference between Stokes’ first and second
definition of phase velocity – and the term in the second parentheses is the relative
phase velocity.)

Introducing (26), (27), (28) and (29) in (25) yields

B¯
1

k
(3T®2V"

#
ρh©u#

b
ª®2U

E
I). (32)

Comparing (10) and (32), and using that c
a
¯ω

a
}k, we find the following simple, yet

fundamental, relation for steady waves on a current :

F
MEL

¯ω
a
B. (33)

This result is a generalization of the similar relation to second order for Stokes waves
on a current found by Jonsson (1978) ; see also Jonsson et al. (1971). From this it can
be seen that for steady waves on a current, the more abstract requirement of wave
action conservation (dB}dx¯ 0) in shoaling water waves is nothing more than stating
the simple physical requirement that the total energy flux related to the MEL (or any
other fixed datum for that matter) be constant. This is not surprising. But only one of
these datums yields the simple relation (33).

Note that (33) is a general result for steady waves on a current, independent of wave
theory and wave height. An analogy to (33) for rotational flow is discussed in the
Appendix.

It turns out that the mean energy level concept can be combined directly with
Whitham’s method to provide an alternative – yet less physical – proof of (33). Going
back to Whitham (1965) we find the energy equation from his equation (39) in the
steady state and for plane flow as

d

dx
(®ω

a
,

k
®γ,

UE

)¯O, (34)

where γ comes from the velocity potential

φ¯Φ(θ)U
E

x®γt. (35)

Here Φ(θ) represents the periodic part (θ is still the phase function), and U
E

x®γt is
the so-called pseudo-phase function ψ.

Since the term in parentheses in (34) is the energy flux we have

F¯®ω
a
,

k
®γ,

UE

. (36)

Bearing (33) in mind we shall first inspect the second term on the right-hand side of
(36). From (iii) on p. 19 in Crapper (1979) (variation with respect to ψ) we have
immediately that for steady flow ,

UE

is a constant, which we will find here for
completeness. From (41) in Crapper we have

®,
UE

¯ ρhU
E
k

¥,w

¥ω
r

(37)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

16
08

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098001608


Wa�e action flux: a physical interpretation 161

which also can be seen to stem from (14), (15) and (17) in the present paper. Then from
(19), (21) and (22) we readily get

®,
UE

¯ ρhU
S
, (38)

i.e. the mean mass flux, which indeed is a constant in our case.
The quantity γ in (36) is determined by again looking at the time-averaged Bernoulli

equation. For plane flow and a small bed slope we have from (1), evaluated at the bed
(with ©p

b
ª}ρg¯ h), and (5) that

®
1

g-
¥φ
¥t.¯ z

b
h∆h (39)

omitting suffix ‘b ’ on φ, since ©¥φ}¥tª is the same everywhere. This is illustrated in
figure 1. From (35) we have further

-¥φ
¥t.¯®γ, (40)

which with (39) yields
γ¯ g(z

b
h∆h). (41)

Thus we have a simple relation between quantity γ in the pseudo-phase function and
position of datum through z

b
. From (41) (see also figure 1) it follows that with the

datum situated at the mean energy level, γ is zero, and so the second term on the right-
hand side of (36) vanishes. As a result (33) follows, since ,

k
equals ®B, see (20).

In analogy to the comment at the end of §2 it can be stated that while (39) and (40)
are only valid below the wave trough level, (41) is general since γ must be the same
constant everywhere in the fluid.

It may prove useful to round off the discussion with a few general remarks. Wave
action conservation is an elegant and extremely useful tool for the study of waves
progressing over varying depths and currents. By comparing with a ‘classical ’
approach, where one deals with conservation equations for mass, momentum and
energy (see e.g. equations 3.6.4, 3.6.11 and 3.6.18 in Phillips 1977), it is seen that
radiation stress and position of mean water surface are both eliminated in this
formulation. (How this is done to second order for Stokes waves on a current can be
studied in detail in Christoffersen 1982; see also Jonsson 1990). And further, in more
general situations (unsteady flow), the energy formulation of the present paper
naturally cannot replace wave action conservation. However, the apparent simplicity
of this principle is at the expense of a higher level of abstraction; how can one get a
physical ‘ feel ’ of what are wave action and wave action flux? The present paper
represents an attempt to improve on this by presenting a direct interpretation of the
latter concept for steady waves ; this is believed to give some new insight and
understanding, especially to those who are not familiar with Lagrangians and the wave
action concept.

5. Action velocity

From (21), (26) and (32) we can find the wave action velocity c
A

as

c
A

3
B

A
(42)

¯
1

I®ρU
E

h
(3T®2V"

#
ρh©u#

b
ª®2U

E
I). (43)
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The third term in the parentheses can by (5) be replaced by ρgh∆h. In terms of ‘wave
quantities ’ (42) can further be written, using (21) and (25)

c
A

¯U
E


1

Iw
(3Tw®2Vw"

#
ρh©(uw

b
)#ª) (44)

thus introducing a ‘carrier velocity ’ U
E
. Note that the second term on the right-hand

side of (44) is simply

®
¥,w

¥k 5
¥,w

¥ω
r

cf. (19) and (20).
For small-amplitude waves (44) gives

c
A

¯U
E
"

#
cl
r 01

2kh

sinh 2kh1 (45)

as it should, since the second term on the right-hand side equals the linear, relative
group velocity, cl

r
¯ ((g}k) tanhkh)"/# being linear, relative phase velocity.

From (21) and (42), we can write (33), using also that ω
a
¯kc

a
, as

F
MEL

¯ c
a
c
A

Iw. (46)

The physical interpretation – if any – of this simple result is yet unclear.

Emeritus Professor Gordon D. Crapper, The University of Liverpool, is gratefully
acknowledged for enlightening me on a couple of questions regarding his 1979 paper
as well as on some general problems concerning averaged Lagrangians. Professor Erik
B. Hansen, The Technical University of Denmark, and Dr Gareth P. Thomas,
University College Cork, gave useful advice. And one of the referees is thanked for
suggesting that I take a look at one of my older, co-authored papers (Jonsson et al.
1978) on current–wave interaction to try to widen the scope of the present investigation,
cf. the Appendix.

Appendix. Waves on a rotational current

The preceding deliberations were all founded on the assumption of irrotational flow;
without a velocity potential we cannot define a mean energy level and thus introduce
an energy flux F

MEL
, nor can we apply an averaged Lagrangian in the conventional

sense. For rotational flow it would therefore immediately seem meaningless to seek a
relation in a manner similar to (33). It turns out to be possible to do so, however, for
the special case of steady small-amplitude waves on a linear shear current (constant
vorticity). Here a wave potential can still be defined, and in the study by Jonsson,
Brink-Kjær & Thomas (1978), an (incomplete) averaged Lagrangian obtained by
heuristic arguments from Clebsch potentials (see for instance Luke 1967) was found for
steady waves to second order in wave steepness, and so also a wave action conservation
equation. Comparing this with conventional energy conservation lead – again by
heuristic arguments and thereafter indirectly proved – to the following simple result in
Jonsson et al. (1978) (cf. their equation (37)) :

F
b
¯ω

a
Bconst. (A 1)

Here F
b
is the energy flux for a reference level so defined that the MWS is at a height

b above it, see figure 1 (subscript ‘b ’ not to be confused with ‘bed’ as used previously).
For details of action flux, etcetera, see the paper cited.
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Now (A 1) has indeed a similarity to (33) ; and for irrotational flow and the datum
situated at the MEL (in which case b¯®∆h), the constant is zero as demonstrated in
this paper. However, (A 1) was only shown to be correct at second order, whereas (33)
has no such restriction. It remains to be proved whether (A 1) is in fact a general result
for finite-height irrotational waves on a linear shear current.

This could perhaps be so, even for an arbitrary current profile. If the appropriate
Clebsch potentials can be found, and if the Whitham approach is assumed to be valid
here, an averaged Lagrangian can be constructed, and wave action will exist as also an
associated conservation principle, including wave action flux. If further the
conventional energy flux can be found, the following two ‘energy transport equations’
in conservation form (steady waves still assumed) can be set up:

dF
b

dx
¯ 0,

dB

dx
¯ 0. (A 2a, b)

It is hereafter plausible to assume, following Jonsson et al. (1978), that the quantities
under the differential operators are equal, apart from a constant factor and an
arbitrary constant as in (A 1).

Assuming this, it can be seen that the factor to B in such a relation must have the
dimension of s−". And the most obvious constant factor at hand with this characteristic
is the absolute angular frequency, leading again to (A 1). This is still speculation,
however, and has to be proved rigorously – if possible at all ! One might start with
finite-height waves on a linear current profile. The speculation is supported by the fact
that in the two special cases, irrotational finite-height wave and current flow (present
paper), and irrotational small-amplitude waves on a linear shear current (Jonsson et al.
1978), the factor in such a relation is indeed ω

a
.
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