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Abstract

We show that generically a pseudogroup generated by holomorphic diffeomorphisms
defined about 0 ∈ C is free in the sense of pseudogroups even if the class of conjugacy
of the generators is fixed. This result has a number of consequences on the topology of
leaves for a (singular) holomorphic foliation defined on a neighborhood of an invariant
curve. In particular, in the classical and simplest case arising from local nilpotent
foliations possessing a unique separatrix which is given by a cusp of the form
{y2 − x2n+1 = 0}, our results allow us to settle the problem of showing that a generic
foliation possesses only countably many non-simply connected leaves.

1. Introduction

This paper is motivated by several difficulties concerning to greater or lesser extent the ‘topology
of leaves’ that are encountered in the study of some well-known problems about (singular)
holomorphic foliations. Yet, most of these problems are essentially concerned with pseudogroups
generated by certain local holomorphic diffeomorphisms defined on a neighborhood of 0 ∈ C. For
this reason, we shall begin our discussion by stating our results in this context. First consider
the group Diff(C, 0) of germs of holomorphic diffeomorphisms fixing 0 ∈ C, where the group law
is induced by composition. Let Diff(C, 0) be equipped with the analytic topology introduced by
Takens [Tak84]. The precise definition of this topology will be given in § 2, for the time being, it
suffices to know that it possesses the Baire property. The reader is then reminded that a Gδ-dense
set, sometimes also called a residual set, is nothing but a countable intersection of open and dense
sets in a Baire space. All the ‘generic results’ stated in this part of the introduction concern Gδ-
dense sets for this topology. It is however worth pointing out that, once they are established, it
is easy to derive the ‘generic’ character in other contexts, including suitable topologies involving
the coefficients of Taylor series at 0 ∈ C and/or in the sense of measure, cf. Remark 2.8. Next,
consider a k-tuple of local holomorphic diffeomorphisms f1, . . . , fk fixing 0 ∈ C. The first theorem
proved here states that we can perturb the diffeomorphisms fi without altering their classes of
holomorphic conjugacy in Diff(C, 0) so that the group they generate is the free product of the
corresponding cyclic groups. Motivation for keeping the conjugacy class fixed will be clear when
discussing applications to singular foliations and, especially, Theorem B below. For the time
being, note only that this condition is equivalent to preserving the order of a diffeomorphism
provided that this order is finite. Also, in the case of a diffeomorphism having a hyperbolic fixed
point at 0 ∈ C, it follows from Poincaré linearization theorem that the condition of preserving
the conjugacy class amounts to fixing the corresponding multiplier. Here, it may be convenient
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to recall that a fixed point p ∈ C of a holomorphic local diffeomorphism h is said to be hyperbolic
if |h′(p)| 6= 1. More generally, the multiplier of the fixed point p of h is simply the value of the
derivative h′(p) ∈ C.

As usual, given an element f ∈Diff(C, 0), we shall denote by f j its jth-iterate, i.e. for j > 0,
f j is the element of Diff(C, 0) induced by the composition f ◦ · · · ◦ f , j-times. Also f0 = id and,
for j < 0, f j = (f |j|)−1. At the level of germs, this definition does not pose any further difficulty
whereas it requires some comments at the level of pseudogroups, as will be seen later.

Denote by Diffα(C, 0) the normal subgroup of Diff(C, 0) consisting of those germs of
diffeomorphisms that are tangent to the identity to order α ∈ N (if α= 0 then Diffα(C, 0) =
Diff(C, 0)). The subgroup Diffα(C, 0)⊆Diff(C, 0) is closed for the analytic topology (cf. § 2) in
Diff(C, 0). Besides, the analytic topology of Diff(C, 0) naturally restricts to Diffα(C, 0) and,
indeed, can directly be defined on Diffα(C, 0). Also, note that for every α ∈ N, Diffα(C, 0)
equipped with the analytic topology possesses the Baire property. Next, let (Diffα(C, 0))k denote
the product of k-copies of Diffα(C, 0), endowed with the product analytic topology and viewed
as a group for the composition law. Suppose we are given k elements f1, . . . , fk in Diff(C, 0) and
denote by Gi the cyclic group generated by fi, i= 1, . . . , k. Naturally, the group Gi may or may
not be finite and its order is the order of the germ fi which is denoted by ri. In other words, ri
is the smallest strictly positive integer for which f ri

i = id. If this integer does not exist, then we
set ri =∞ and, in this case, the group Gi turns out to be infinite and isomorphic to Z.

Consider the free group Fk on k generators a1, . . . , ak and consider the natural evaluation
morphism from Fk to Diff(C, 0) consisting of making the substitutions ai 7→ fi (and interpreting
the ‘concatenation of letters’ as composition of germs). Let N be the normal subgroup of
Fk generated by {ar1

1 , . . . , a
rk

k }, with the convention that a∞i = id. The quotient group Fk/N
is isomorphic to the free product G1 ∗ · · · ∗Gk of the groups G1, . . . , Gk. Furthermore, the
above mentioned evaluation morphism factors through the quotient Fk/N so as to induce a
homomorphism E from G1 ∗ · · · ∗Gk to Diff(C, 0).

An alternative way to construct the homomorphism E consists of using the fact that every
element in the free product G1 ∗ · · · ∗Gk is represented by a unique reduced word in the letters
a1, . . . , ak, where the empty word represents the identity (cf. § 2 for further details). Therefore,
the elements of G1 ∗ · · · ∗Gk are naturally identified to reduced words W (a1, . . . , ak). With this
notation, E(W (a1, . . . , ak)) is simply the element of Diff(C, 0) obtained by substituting ai 7→ fi
in the spelling of W (a1, . . . , ak) (where again the ‘concatenation of letters’ becomes composition
of germs). In the following, the element of Diff(C, 0) given by E(W (a1, . . . , ak)) is going to be
denoted by W (f1, . . . , fk).

To state Theorem A, recall that a local diffeomorphism f fixing 0 ∈ C is linearizable if and only
if it is conjugated to the linear map z 7→ f ′(0) · z by a local holomorphic change of coordinates,
where f ′(0) stands for the derivative of f at 0 ∈ C. This local diffeomorphism is said to have a
Cremer point (at 0 ∈ C) if it is not linearizable and f ′(0) has norm 1 but is not a root of unity.
Now, we have the following theorem.

Theorem A. Fix α ∈ N, let f1, . . . , fk be given elements in Diff(C, 0) and consider the
corresponding cyclic groups G1, . . . , Gk. Then, there exists a Gδ-dense set V ⊂ (Diffα(C, 0))k

such that, whenever (h1, . . . , hk) ∈ V, the following holds.

(1) The group generated by h−1
1 ◦ f1 ◦ h1, . . . , h

−1
k ◦ fk ◦ hk induces a group in Diff(C, 0)

that is isomorphic to the free product

G1 ∗ · · · ∗Gk.
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(2) Let f1, . . . , fk and h1, . . . , hk be identified to local diffeomorphisms defined about 0 ∈ C.
Suppose that none of the local diffeomorphisms f1, . . . , fk has a Cremer point at 0 ∈ C. Denote
by Γh the pseudogroup defined on a neighborhood V of 0 ∈ C by the mappings h−1

1 ◦ f1 ◦
h1, . . . , h

−1
k ◦ fk ◦ hk, where (h1, . . . , hk) ∈ V. Then V can be chosen so that, for every non-empty

reduced wordW (a1, . . . , ak), the element of Γh associated toW (h−1
1 ◦ f1 ◦ h1, . . . , h

−1
k ◦ fk ◦ hk)

does not coincide with the identity on any connected component of its domain of definition.

Note that the assumption that none of the fixed diffeomorphisms f1, . . . , fk has a Cremer
point at 0 ∈ C is not necessary for the first conclusion of Theorem A. This assumption is, however,
indispensable for the second item due to certain examples of dynamics near Cremer points that
were constructed by Perez-Marco, cf. § 4.

Theorem A touches on an issue previously developed in a number of works. Namely, the
realization of certain groups as subgroups of Diff(C, 0) or of D̂iff(C, 0), where the latter stands
for the group of formal diffeomorphisms of (C, 0). In this direction, the papers [BCL96, CL98]
may respectively be quoted as being the first work to realize rank 2 free groups in Diff(C, 0) and
as the first paper to realize the free product of two finite cyclic groups in Diff(C, 0). In [EV04]
several groups are realized in Diff(C, 0) and/or D̂iff(C, 0) whereas in [NY10] an interesting study
about the possibility of breaking relations at the level of formal diffeomorphisms is conducted.

It is natural to expect the preceding statement to have consequences on the topology of the
leaves of a foliation on a neighborhood of an invariant curve and/or on a neighborhood of a
singular point. Recall that a local (singular) holomorphic foliation on a neighborhood of (0, 0) ∈
C2 is nothing but the (singular) foliation induced by the local orbits of a holomorphic vector
field having isolated singularities and defined on the mentioned neighborhood. In particular, two
representatives of a same foliation differ by an invertible multiplicative holomorphic function.
A singular foliation is then said to have a nilpotent singularity if it can be represented by a vector
field whose linear part at (0, 0) ∈ C2 is nilpotent and different from zero. To abridge notation,
this situation will often be referred to by saying that the origin is a nilpotent singularity (with
the corresponding foliation being left implicit) or by saying that F is a nilpotent foliation.
In terms of applications of Theorem A to the topology of singular foliations, we shall content
ourselves with providing an answer to a long-standing question on nilpotent singularities leaving
invariant a cusp of the form {y2 + x2n+1 = 0}. By a small abuse of language, a cusp of the form
{y2 + x2n+1 = 0} will always mean a (local) curve analytically equivalent to the cusp in question.
This choice will help us to explain most of the relevant ideas without making the discussion too
technical. To begin with, consider a singular foliation F defined about (0, 0) ∈ C2 by a nilpotent
vector field y∂/∂x+ · · · with isolated singularities and possessing a cusp {y2 + x2n+1 = 0} as its
unique separatrix, i.e. the cusp in question is the only local analytic curve containing the origin
and invariant by the foliation. This much studied class of nilpotent singularities corresponds
to Arnold’s singularities of type A2n+1. Whereas several works were devoted to these nilpotent
singularities, and in particular to the description of suitable normal forms (cf. [Lor06, SZ02]
and references therein), the question about the topology of most leaves for the ‘generic foliation’
remained unsettled. Our Theorem B below states that for a generic foliation in the class A2n+1

there are only countably many non-simply connected leaves.

Generic theorems about foliations, as in the case of Theorem B, are more commonly
expressed in terms of Krull topology since the corresponding formulations automatically bear a
meaning in terms of ‘generic coefficients’ for the corresponding differential equation. This explains
why Theorem B will be stated with respect to Krull topology rather than being ‘parameterized’
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by Gδ-dense sets in Diff(C, 0) (yet a formulation in terms of Gδ-dense sets is possible, cf. § 5 for
details).

Let X ∈ X(C2,0) be a holomorphic vector field with an isolated singularity at the origin and
defining a germ of nilpotent foliation F of type A2n+1; in particular F possesses one unique
separatrix. Then, we have the following theorem.

Theorem B (Cusps). For arbitrarily large N ∈ N, there exists a vector field X ′ ∈ X(C2,0)

defining a germ of a foliation F ′ and satisfying the following conditions:

• JN0 X ′ = JN0 X (i.e. the vector fields X, X ′ are tangent to order N at the origin);

• the foliations F and F ′ have S as a common separatrix;

• there exists a fundamental system of open neighborhoods {Uj}j∈N of S, inside a closed
ball B̄(0, R), such that for all j ∈ N, the leaves of the restriction of F ′ to Uj\S are simply
connected except for a countable set of them.

To apply Theorem A to the topology of leaves of foliations in more general settings is a quite
subtle problem for which the theory developed in [MM08] becomes a powerful tool. Concerning
our Theorem B, a self-contained proof is given in § 5. This proof, however, amounts to applying
the techniques of [MM08] to an elementary case. Another comment about Theorem B is that,
though it is naturally constructed, the systems of neighborhoods Uj cannot be arbitrary. In fact,
for an arbitrary neighborhood Uj it may happen, for example, that intersections between leaves
with the boundary of Uj may create ‘holes’ in the corresponding leaves therefore making them
non-simply connected. In this regard, it is to be pointed out that a result slightly more accurate
than Theorem B will be stated and proved in § 5. This section also contains further information
and details about these foliations.

To close this introduction let us make some comments concerning the standard condition
that we have considered in Theorem A, namely the fact that the analytic conjugacy class of
the initial local diffeomorphisms is always kept fixed. For this, it is interesting to look at a
foliation F̃ defined on a neighborhood of a rational curve C (in turn embedded in some complex
surface). The singularities of F̃ in C are denoted by p1, . . . , pk and they are supposed to be
irreducible with two eigenvalues different from zero, i.e. if they are represented by a vector field
X with isolated singularities, then the linear part of X has two eigenvalues λ1, λ2 different from
zero and such that neither λ1/λ2 nor λ2/λ1 is a positive integer. It is then natural to consider
perturbations of F̃ satisfying our standard condition: the analytic class of the local holonomy
map σk defined by a small loop around pk is fixed. Since the singularities are irreducible with two
eigenvalues different from zero, this condition is equivalent to saying that the analytic types of
the singularities of F̃ are fixed. In fact, when the quotient of the eigenvalues of the corresponding
singularity belongs to C\R−, i.e. when the singularity belongs to the Poincaré domain, the last
claim follows from the Poincaré linearization theorem (note that resonances are ruled out by
the assumption that the singularities are irreducible). On the other hand, when the mentioned
quotient belongs to R∗−, i.e. when the singularity belongs to the Siegel domain, the statement
follows from a classical lemma in [MM80]. In turn, in the case of irreducible singularities belonging
to the Poincaré domain, our context becomes equivalent to the context of isospectral deformations
i.e. deformations preserving the eigenvalues of each singular point. However, for singularities in
the Siegel domain, our condition is far stronger than the isospectral one and, in fact, it is expected
to be the natural ‘good’ condition for developing a (global) moduli theory for holomorphic
foliations. Finally, when a singularity in the Siegel domain gives rise to a local holonomy of finite
order, then the condition becomes equivalent to deforming the foliation while keeping fixed the
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order of the mentioned local holonomy maps. This last case is precisely the situation that emerges
in the analysis of singularities of type A2n+1 and it will play a role in the proof of Theorem B.

In any event, in a suitable sense, a generic foliation as above will still have all but countably
many leaves simply connected. This assertion may be justified by a construction similar to the
construction carried out in § 5. Alternatively, we can resort to more general results obtained
in [MM08]. In particular, the preceding theorems can be viewed as a step towards Anosov’s
conjecture stating a global result about the existence of only countably many non-simply
connected leaves for a generic foliation of the projective plane.

Concerning foliations on the projective plane leaving a projective line invariant, Il’yashenko
and Pyartli [IP94] proved that, in the class of foliations with degree d of the projective plane
leaving the line at infinity invariant, those for which the holonomy group of (the regular part of)
the line at infinity is free are generic. This very interesting result has a different nature if compared
to statements provided in this work and deserves further comments. Whereas Il’yashenko and
Pyartli do not worry about how the singular points change in their considerations about ‘generic
foliations’, one of the main differences between the two works stems from the fact that their
theorem is stated for global foliations whose space of parameters is far more restrictive and of
finite dimension. Therefore, their result does not apply in a singular context, for example in the
study of foliations leaving a cusp invariant, not only because the ‘parameter space’ is totally
different but also because singularities are often ‘deformed’ in their procedure. Similarly, our
construction does not apply in their global context since it is unclear whether our ‘perturbations’
can be realized within the natural parameter space associated to (global) foliations of degree d.
Another issue that needs to be pointed out is that, unfortunately, Il’yashenko and Pyartli’s
theorem works only at the ‘infinitesimal’ level of the group of germs of diffeomorphisms fixing
0 ∈ C. Due to the reasons explained above (cf. also § 4), it therefore does not imply the existence
of simply connected leaves (apart from a countable set) in a fixed neighborhood of the line at
infinity. In this respect, Firsova [Fir06] has obtained interesting results about simply connected
leaves for generic foliations in C2 by exploiting convexity properties of Stein manifolds. In fact,
she introduced a method to ‘split’ a dead-loop in a chosen leaf. Though this clearly goes in
the same direction as Theorem A, again new difficulties arise from fixing the analytic type of
singularities. Other issues related to Firsova’s method and the problems discussed in this paper
involve the ‘localization’ of the convexity techniques in the context of singularities (i.e. the choice
of ‘preferred’ neighborhoods Uj as above) and the countable character of dead-loops. In view of
the interest of this type of question and given the several links among these different approaches,
it is natural to wonder whether a suitable blend of ideas in these papers may lead us to fill in
some of the gaps mentioned above and provide further insight into the general case of Anosov’s
conjecture.

Finally a word about the structure of the paper. In § 2, the analytic topology is introduced in
the context adapted to our needs and it is also proved that the analytic topology is associated to a
structure of complete metric space. Some relevant additional properties of the analytic topology
are also put forward since they play a role in the subsequent discussion. The second part of
§ 2 contains the general lines of our approach to Theorem A as well as a detailed discussion
of reduced words and of the use of the Baire property. By building in this material, the first
conclusion of Theorem A, namely the generic nature of free products at germ level, is established
in § 3. Since some potential readers of this paper might primarily be interested in this result, we
felt it was useful to single it out in the presentation. The argument is then naturally continued
in § 4, with a suitable discussion of pseudogroups of maps and of the size of their corresponding
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domains of definitions. Note that, in both §§ 3 and 4, we deal exclusively with the case where
the corresponding groups are generated by only two local diffeomorphisms (i.e. k = 2 in the
statements of Theorem A). This serves only to abridge notation since the general case does not
offer additional difficulties. Finally, in § 5, some consequences of these theorems to the topology
of leaves of foliations are discussed, and Theorem B is proved.

2. General set up

2.1 The Analytic topology and some of its properties
In the following, let Diff(C, 0) stand for the group of local holomorphic diffeomorphisms fixing
0 ∈ C whereas Diffα(C, 0) stands for its normal subgroup consisting of elements tangent to the
identity to order α (for α= 0, the group Diff(C, 0) is recovered). The group of formal series∑∞

i=1 cix
i, ci ∈ C, is going to be denoted by D̂iff(C, 0) while D̂iffα(C, 0) is the corresponding

normal subgroup of series tangent to the identity to order α. There is an obvious injection of
Diff(C, 0) in D̂iff(C, 0) (respectively Diffα(C, 0) in D̂iffα(C, 0)) which associates its Taylor series
about 0 ∈ C to an element of Diff(C, 0) (respectively Diffα(C, 0)) . Also, let Hol(C, 0) denote the
space of (germs of) holomorphic functions defined about 0 ∈ C. Clearly Diff(C, 0)⊂Hol(C, 0)
and an element f ∈Hol(C, 0) belongs to Diff(C, 0) if and only if f ′(0) 6= 0.

Let us begin by defining the so-called analytic topology (or Cω-topology) in either Hol(C, 0)
or Diff(C, 0). To the best of our knowledge, this type of topology was first considered by
Takens [Tak84] in the general situation of groups of real analytic diffeomorphisms where he
also observed that it possesses the Baire property. The definition, however, can immediately be
adapted to Hol(C, 0) or to Diff(C, 0). Besides, Diff(C, 0) naturally becomes an open and dense
subset of Hol(C, 0). Also, we are going to show that, in Hol(C, 0), this topology is induced by a
metric turning Hol(C, 0) into a complete metric space, cf. Proposition 2.1 below. Proposition 2.1
also ensures that, for α> 1, Diffα(C, 0) is a closed subgroup of Diff(C, 0) and, therefore, it is
itself a complete metric space with the induced metric (topology).

Given r > 0, let B(r)⊂ C denote the open disc of radius r about 0 ∈ C. Consider a
holomorphic function h defined about 0 ∈ C and taking values in C. If h possesses a holomorphic
extension (still denoted by h) to B(r), then set ‖h‖r = supz∈B(r) |h(z)|. Otherwise, we pose
‖h‖r = +∞.

Next for r, ε > 0 and f ∈Hol(C, 0) (respectively f ∈Diff(C, 0)) chosen, let (f + Uεr )⊆
Hol(C, 0) (respectively f ∈Diff(C, 0)) be the set defined by

(f + Uεr ) = {g ∈Hol(C, 0) ; ‖g − f‖r < ε}

(respectively (f + Uεr ) = {g ∈Diff(C, 0) ; ‖g − f‖r < ε} where, in any event, (g − f) is interpreted
simply as a holomorphic function that need not be a local diffeomorphism at 0 ∈ C). The quickest
way to define the analytic topology on Hol(C, 0) (respectively Diff(C, 0)) consists of declaring
that the analytic topology is the topology generated by the sets (f + Uεr ). In other words, the sets
(f + Uεr ) form a basis of open sets for the analytic topology. An immediate consequence of this
definition is that a sequence {fi}i∈C ⊂Hol(C, 0) (respectively {fi}i∈C ⊂Diff(C, 0)) is convergent
in the analytic topology if and only if, to every pair r, ε > 0, there corresponds N ∈ N such that
‖fi − fj‖r < ε whenever both i, j are greater than N .

Note that, if needed, when defining the basis of neighborhoods for the identity, the value of ε
can be set equal to 1/r so as to have only ‘one parameter’ to deal with. Nonetheless we preferred
to allow for ‘free’ r and ε, as done by Takens, since it makes the definition somehow closer to the
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most commonly used definitions of basis of neighborhoods for standard topologies in functional
spaces.

The preceding definition deserves some comments. First, it is immediate to check that the
analytic topology in Diff(C, 0) coincides with the topology induced from the analytic topology
in Hol(C, 0) through the embedding Diff(C, 0)⊂Hol(C, 0). It is also clear that Diff(C, 0) is then
identified to an open dense subset of Hol(C, 0).

Another point that should be made about Diff(C, 0) endowed with this analytic topology
is that the composition map is not continuous. In other words, Diff(C, 0) is not a topological
group with the analytic topology. More precisely the mapping from Diff(C, 0) to Diff(C, 0)
that associates to a chosen h ∈Diff(C, 0) the element f ◦ h, where f ∈Diff(C, 0) is fixed, is not
continuous in general. In fact, a sequence {hi} ⊂Diff(C, 0) converges in the analytic topology to
h if and only if hi = h+ ri where ri ∈ Uεr for every fixed r, ε > 0 and sufficiently large i. However,
if f has a bounded domain of definition, this does not guarantee that f ◦ (h+ ri)− f ◦ h admits
a holomorphic extension to arbitrarily large discs. This remark was once communicated to the
second author by L. Lempert, whom we wish to thank.

A direct proof that Diff(C, 0) endowed with the analytic topology is a Baire space can be
obtained by applying to Diff(C, 0) the argument given in [Tak84]. This result can, however,
be recovered through the classical theorem of Baire since we are going to show that the analytic
topology in Hol(C, 0) is induced by a structure of complete metric space. Hence Hol(C, 0)
possesses the Baire property and so does Diff(C, 0) since Diff(C, 0) is an open and dense subset
of Hol(C, 0) (so that every open and dense subset U of Diff(C, 0) is automatically an open
and dense subset of Hol(C, 0)). As to Diffα(C, 0), α> 1, it will be seen that these groups also
become complete metric spaces (with the restriction of the metric) and therefore possess the
Baire property as well.

Following a suggestion made by the anonymous referee, let us first show that the analytic
topology in Hol(C, 0) is metrizable i.e. it is induced by a certain metric ‘dA’. To define the metric
dA, suppose that f, g in Hol(C, 0) are given and consider the holomorphic function f − g which
is defined on a neighborhood of 0 ∈ C. Denote by c1x+ c2x

2 + · · · the Taylor series of f − g at
0 ∈ C. Finally, set

dA(f, g) = sup
k∈N
‖ck‖1/k.

Note that dA is a well-defined metric on Hol(C, 0). Formally speaking, we clearly have dA(f, g) >
0 and dA(f, g) = dA(g, f). Also dA(f, g) = 0 if and only if f = g, thanks to analytic continuation.
Nonetheless, it remains to show that dA(f, g) is well-defined or, equivalently, that the supremum
considered in its definition is actually finite. For this, observe first that the radius of convergence
of the power series c1x+ c2x

2 + · · · is strictly positive. Since this radius is precisely given by
1/lim supn→∞ ‖cn‖1/n, it follows that dA(f, g)<∞. Finally, to conclude that dA is a metric on
Hol(C, 0), it only remains to check the triangle inequality. This is however an easy consequence
of the well-known inequality (a+ b)1/n 6 a1/n + b1/n for positive reals a, b and n ∈ N∗ (to check
the inequality just raise both sides to the nth-power).

We can now show that Hol(C, 0) endowed with the metric dA is complete.

Proposition 2.1. When endowed with the metric dA, Hol(C, 0) becomes a complete metric
space. Moreover dA induces the analytic topology in Hol(C, 0).

Proof. Let us first show that dA induces the analytic topology in Hol(C, 0). For this, it suffices
to check that a sequence of elements fi in Hol(C, 0) converges to a certain f ∈Hol(C, 0) in the
analytic topology if and only if dA(f, fi) goes to zero as i→∞. To begin with, let us suppose
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that fi→ f in the analytic topology. Thus, for positive r and ε < 1, and up to taking i large
enough, the difference fi − f possesses a holomorphic extension (still denoted by fi − f) to the
disc B(r) of radius r about the origin and, besides, this extension satisfies

sup
z∈B(r)

‖fi(z)− f(z)‖6 ε. (1)

Denote by
∑∞

n=1 c
i
nz

n the Taylor series of fi − f based at 0 ∈ C. Thanks to (1), Cauchy estimates
applied to the Taylor coefficients cin show that ‖cin‖6 ε/rn. Since ε < 1, we conclude that
‖cin‖1/n 6 1/r for every n ∈ N∗. Next, by choosing r arbitrarily large, it follows that dA(fi, f)→ 0
as desired. To show the converse, again let (fi − f)(z) =

∑∞
n=1 c

i
nz

n. Given ε > 0, up to choosing
i very large, we have supn∈N ‖cin‖1/n < ε. In particular, the radius of convergence of the series∑∞

n=1 c
i
nz

n is at least 1/ε. Therefore, as i increases, the functions fi − f admit holomorphic
extensions to arbitrarily large discs. It remains to show that, given a fixed radius r0, the
holomorphic extension of fi − f to B(r0) converges uniformly to zero. This, however, is easy:
note that, for ‖z‖< r0, we have ‖fi(z)− f(z)‖6

∑∞
n=1 ‖cin‖rn0 . Setting dA(fi, f) = τi, it follows

that τi→ 0 and that ‖cin‖6 τni . Therefore, for ‖z‖< r0,

‖fi(z)− f(z)‖6
∞∑
n=1

(τir0)n 6
τir0

1− τir0
.

The claim follows since τi→ 0.
To finish the proof, we still need to check that the metric space (Hol(C, 0), dA) is complete.

Let {fi} be a Cauchy sequence for dA and set fi =
∑∞

n=1 a
i
nz

n. Given a small τ ∈ (0, 1), there is
N such that dA(fi, fj)< τ provided that i, j > N . The definition of the metric dA then implies
that

‖ain − ajn‖< τn 6 τ (2)

whenever i, j > N . Therefore, for every n ∈ N fixed, the sequence {ain}i∈N is a Cauchy sequence
and, hence, it converges towards a certain bn ∈ C. In particular, the limit of {fi} must be unique,
provided that it exists. Then consider the power series

∑∞
n=1 bnz

n and denote by ρ its convergence
radius. Assume for the time being that ρ > 0 (strictly) so that

∑∞
n=1 bnz

n defines an element
f ∈Hol(C, 0). By considering estimate (2) and letting j→∞, we conclude that

‖ain − bn‖6 τn

for every n ∈ N∗ as long as i > N . Thus dA(fi, f) 6 τ for i > N and, since τ > 0 can be chosen
arbitrarily small, it follows that {fi} converges to f proving that the metric dA is complete.

It only remains to check that the convergence radius ρ of
∑∞

n=1 bnz
n is strictly positive. For

this, we proceed as follows. Since {fi} is Cauchy, the definition of dA implies the existence of
i0 ∈ N such that for every i, j > i0 and all n ∈ N, the estimate

‖ain − ajn‖1/n 6 1

holds. In particular, ‖ai0n − bn‖1/n 6 1 and thus ‖bn‖6 ‖ai0n ‖+ 1 for every n. The (possibly null)
radius of convergence of

∑∞
n=1 bnz

n being given by (lim supn→∞ ‖bn‖1/n)−1, it follows that

1
lim supn→∞ ‖bn‖1/n

>
1

lim supn→∞ ‖ai0n + 1‖1/n
>

1
1 + lim supn→∞ ‖ai0n ‖1/n

.

Since f i0 ∈Diff(C, 0), lim supn→∞ ‖ai0n ‖1/n is finite so that the radius of convergence of∑∞
n=1 bnz

n is strictly positive. The proposition is proved. 2
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It is immediate from the definition of the metric dA that Diffα(C, 0) is a closed subset of
Hol(C, 0) provided that α> 1. In particular, for α> 1, Diffα(C, 0) is a complete metric space
and hence possesses the Baire property itself.

Remark 2.2. A curious phenomenon involving the analytic topology is the fact that, given
f ∈Diff(C, 0) with finite convergence radius (about 0 ∈ C), every other element g ∈Diff(C, 0)
sufficiently close to f must have the same convergence radius. This may be seen by directly
comparing the convergence radii of the Taylor series of f, g by means of the definition of dA
or, alternatively, by resorting to the definition of the analytic topology in terms of basis of
neighborhoods. Indeed, for a sequence {gi} to converge to f , the difference f − gi must admit
a holomorphic extension to arbitrarily large discs provided that i is large as well. Thus, for i
very large, f − gi becomes holomorphic on a disc of radius greater than the convergence radius
of the Taylor series of f at 0 ∈ C. It then follows that the Taylor series at 0 ∈ C of these local
diffeomorphisms gi must have the same convergence radius as f .

For an additional useful property of the analytic topology, let Jm denote the vector space
consisting of the m-jets of holomorphic functions at 0 ∈ C, for m ∈ N given. The space Jm can
naturally be identified to the quotient C{z}/(zm+1) of the ring of convergent power series C{z}
by the principal ideal generated by zm+1. Given a holomorphic function f defined about 0 ∈ C,
viewed as an element of C{z}, let jmf denote its projection on C{z}/(zm+1). Conversely, this
projection admits a natural set consisting of the map σ : Jm→ C{z}, defined on jm(Hol(C, 0)),
that assigns to a m-jet its unique representative consisting of a polynomial of degree (at most) m.
In other words, σ(jm(

∑∞
i=1 ciz

i)) =
∑m

i=1 ciz
i. The space Jm is naturally identified to Cm and

it is endowed with the standard topology. Nonetheless let us consider on Jm the norm defined
by ‖jm(

∑∞
i=1 ciz

i)‖= maxi=1,...,m{|ci|1/i} instead of the more common Euclidean norm. Finally
let Hol(C, 0) be equipped with the distance dA associated to the analytic topology.

Proposition 2.3. The map jm : Hol(C, 0)→ Jm is continuous and open. Besides, the
section σ yields an isometric embedding of Jm in Hol(C, 0) in the sense that it satisfies
dA(σ(jmf), σ(jmg)) = ‖jmf − jmg‖.

Proof. The fact that σ is an isometry as indicated is clear from the definitions of dA and of ‖ ‖.
Also, these same definitions provide the general estimate

‖jmf − jmg‖6 dA(f, g) (3)

for every pair f, g ∈Hol(C, 0). The continuity of jm follows at once whereas the continuity of
σ follows from its isometric nature. It only remains to check that jm is an open map. For
this let f ∈Hol(C, 0) and R ∈ (0, 1) be given and denote by BdA

(f, R)⊂Hol(C, 0) the (open)
ball of center f and radius R (with respect to the metric dA). Estimate (3) then shows that
jm(BdA

(f, R)) is contained in the ball B‖ ‖(jmf, R)⊂ Jm of center jmf and radius R (with
respect to the metric associated to the norm ‖ ‖). Conversely, the isometric nature of σ ensures
that σ(B‖ ‖(jmf, R))⊂BdA

(f, R) so that jm(BdA
(f, R)) =B‖ ‖(jmf, R) showing that jm is open

as desired. 2

Remark 2.4. For α> 1 given, the same proof above also shows that the restriction of jm to
Diffα(C, 0)⊂Hol(C, 0) is clearly continuous. Moreover this map takes values on the subset of
Jm consisting of those jets that are tangent to the identity to order α (assuming that m> α
for otherwise the map is constant). The latter set can, in turn, be identified to Jm−α and the
restriction of jm to Diffα(C, 0) will still admit an isometric section defined on Jm−α. In particular,
with these identifications, the map jm from Diffα(C, 0) to Jm−α is also open.
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2.2 Strategy of proof
In this section, we shall briefly describe our strategy for proving the statement of Theorem A at
germ level. The argument will be developed further in the next section. The structure of the proof
will also be followed, to a good extent, to settle the remainder of the statement of Theorem A. Let
then f1, . . . , fk be elements in Diff(C, 0) and denote by Gi the cyclic group generated by fi. As
previously mentioned, § 3 will be devoted to showing that, for a generic choice of h1, . . . , hk,
the subgroup of Diff(C, 0) (viewed as germs of holomorphic diffeomorphisms) generated by
h−1

1 ◦ f1 ◦ h1, . . . , h
−1
k ◦ fk ◦ hk is isomorphic to the free product G1 ∗ · · · ∗Gk. The part of

Theorem A involving pseudogroups will be deferred to § 4 since it requires a more detailed
discussion which may be skipped by readers who are only interested in groups of converging
power series. Also, in both §§ 3 and 4, we shall content ourselves with dealing with the case k = 2
to avoid needlessly cumbersome notation. The passage from k = 2 to the general case does not
pose any new difficulty as the reader will not fail to notice.

This said, let f, g ∈Diff(C, 0) be two holomorphic diffeomorphisms fixing the origin of C and
assume that both f, g are distinct from the identity. Denote by r (respectively s) the order of
f (respectively g), namely r ∈ N∗ (respectively s ∈ N∗) is the smallest strictly positive integer
for which f r = id ∈Diff(C, 0) (respectively gs = id ∈Diff(C, 0)). If r (respectively s) does not
exist, then the order of f (respectively g) is said to be ∞. We shall write r =∞ (respectively
s =∞) to refer to the latter case and r<∞ (respectively s<∞) to indicate the former one. If r
(respectively s) equals ∞, then, by convention, Z/rZ (respectively Z/sZ) is isomorphic to Z.

With the previous notation, let us consider the free product Z/rZ ∗ Z/sZ between Z/rZ and
Z/sZ. In terms of presentation, this group is isomorphic to the group defined by 〈a, b ; ar = bs =
id〉, where the relation ar = id (respectively bs = id) is understood to be void if r =∞ (respectively
s =∞). In other words, we keep the convention a∞ = b∞ = id. In terms of the mentioned
presentation, a reduced word in the letters a, b (sometimes also said in the letters a, a−1, b, b−1)
is a word W (a, b) whose spelling has the form ϑrl

l ∗ · · · ∗ ϑ
r1
1 with the following rules being

respected:

(1) ϑi takes on the values {a, b};
(2) if ϑi0 takes on the value a (respectively b) then ϑi0−1 and ϑi0+1 take on the value b

(respectively a) provided that i0 − 1 and i0 + 1 are defined;
(3) if ϑi takes on the value a, then ri takes values in the set {1, . . . , r− 1} provided that

r<∞. If r =∞, then ri takes values in Z∗ (it is understood that, for ri < 0, ari means (a−1)|ri|);
(4) similarly, if ϑi takes on the value b, then ri takes values in the set {1, . . . , s− 1} provided

that s<∞. If s =∞, then ri takes values in Z∗ (where bri means (b−1)|ri| whenever ri < 0).

Remark 2.5. With the above definitions, note that talking about reduced words only makes sense
with a previously fixed (finitely presented) group in the background.

As mentioned in the introduction, the interest of considering reduced words lies in the fact
that every element in the free product 〈a, b ; ar = bs = id〉 is represented by a unique reduced
word W (a, b) (by convention the neutral element corresponds to the empty word).

Now let us go back to the initially chosen local diffeomorphisms f, g ∈Diff(C, 0) generating
a subgroup of Diff(C, 0) denoted by G. Every (reduced) word W (a, b) induces an element of G
by means of the substitutions f 7→ a and g 7→ b. If W (a, b) is fixed, the element of G obtained
through these substitutions is going to be denoted by W (f, g). Furthermore, the assignment
of W (f, g) to W (a, b) actually induces a homomorphism from 〈a, b ; ar = bs = id〉 to Diff(C, 0)
which was denoted by E .
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In the following, with the group Z/rZ ∗ Z/sZ = 〈a, b ; ar = bs = id〉 fixed, every word W (a, b)
considered is supposed to be non-empty and reduced unless otherwise stated. Recall from the
introduction that this group is also isomorphic to the quotient of the free group F2 on two
generators a, b by the normal subgroup generated by ar, bs, where it is understood that both
a∞ = b∞ = id, in other words, there is not ‘a’ (respectively ‘b’) if r =∞ (respectively s =∞).

The problem that needs to be considered is as follows. Assume we are given two holomorphic
diffeomorphisms f, g and a (non-empty reduced, as will always be the case) word W (a, b) such
thatW (f, g) = id (at the level of germs). Recalling that Diffα(C, 0)×Diffα(C, 0) = (Diffα(C, 0))2

is equipped with the product analytic topology, we want to show the existence of an open
dense set UW ⊂ (Diff(C, 0))2 so that, whenever (h1, h2) ∈ UW , the pair h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2

satisfies W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) 6= id, where W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) stands for the

element of Diff(C, 0) obtained through the substitutions a±1 = h−1
1 ◦ f±1 ◦ h1 and b±1 = h−1

2 ◦
g±1 ◦ h2. In the next section, the following will be proved.

Proposition 2.6. Suppose that W (a, b) is a (non-empty reduced) word in a, b. Suppose also
that f, g are given elements of Diff(C, 0) of orders respectively equal to r, s ∈ N∗ ∪ {∞}. Then,
for all α ∈ N, there exists an open dense set UW ⊂ (Diffα(C, 0))2 such that W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦

g ◦ h2) 6= id ∈Diff(C, 0) for every (h1, h2) ∈ UW .

The above proposition holds at germ level or, equivalently, in terms of power series based at
0 ∈ C. A version of it for pseudogroups, which is required for the full statement of Theorem A,
will be worked out in § 4. Proposition 2.6 also yields the following result.

Theorem 2.7. Suppose we are given f, g ∈Diff(C, 0) of orders respectively equal to r, s ∈
N∗ ∪ {∞} (with the preceding terminology). Given α ∈ N let (Diffα(C, 0))2 be endowed with
the product analytic topology. Then there exists a Gδ-dense set U ⊆ (Diffα(C, 0))2 such that,
whenever (h1, h2) ∈ U , the pair of diffeomorphisms h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2 generates a subgroup

of Diff(C, 0) isomorphic to the free product 〈a, b ; ar = bs = id〉.

Proof. Let α ∈ N be fixed. In particular Diff(C, 0) corresponds to α= 0. Consider a word W (a, b)
in the letters a, b. According to Proposition 2.6, there is an open dense set UW ⊂ (Diffα(C, 0))2

such that W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) 6= id ∈Diff(C, 0) whenever (h1, h2) ∈ UW . Next, let us

form the intersection

U =
⋂

W (a,b);W (a,b) non-empty
and reduced

UW .

Since there are only countably many reduced words W (a, b) in the letters a, b, the Baire property
of the analytic topology guarantees that U is dense (in particular, it is not empty). Besides, if
(h1, h2) ∈ U , then for every reduced word W (a, b) as above the germ of the diffeomorphism
induced by W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) at 0 ∈ C is different from the identity. In other words,

the kernel of the homomorphism E from 〈a, b ; ar = bs = id〉 to Diff(C, 0) that associates the
element W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ f ◦ h2) to a (non-empty, reduced) word W (a, b) is trivial. The

statement then follows at once. 2

Remark 2.8. The analytic topology considered in this section is certainly very strong. Rather
than a drawback, this becomes an advantage for the statement of Theorem A since it allows us
to derive the ‘generic’ character of the corresponding local diffeomorphisms h1, . . . , hk in several
other contexts. In particular, a general useful remark concerning Proposition 2.6 is as follows.
Note that when a formal relation in D̂iff(C, 0) is broken, this fact can be read off from a finite (and
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thus converging) part of the corresponding series. Fix a large K and consider the corresponding
equation in the first K coefficients a1z + · · ·+ aKz

K . Identifying a1z + · · ·+ aKz
K to CK in

the obvious way, it follows that the set of coefficients (a1, . . . , aK) that do break the relation
in question is a non-empty Zariski-open set of CK . In particular, it is automatically dense and is
also large in the sense of measure (its complement has zero Lebesgue measure). It is by exploiting
this idea that the generic character of the k-tuples (h1, . . . , hk) in the sense of Baire (for the
analytic topology) yields their generic character in other natural settings as well. These issues
will be detailed further in the next section, cf. Lemma 3.1.

3. Destroying relations for groups of germs

The purpose of this section is to prove Proposition 2.6. As mentioned, this proposition concerns
the case of only two generators in the statement of Theorem A. The adaptations to larger
numbers of generators being straightforward, they will be left to the reader. In what follows, we
therefore consider a pair of local diffeomorphisms f, g as in the statement of Proposition 2.6.

Recall that, unless otherwise stated, all words W (a, b) are supposed to be non-empty and
reduced with respect to the group 〈a, b ; ar = bs = id〉. Let a word W (a, b) be fixed once and
for all. Following the notation of § 2, we let W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 according to the rules (1)

through (4) in § 2. In view of the definition of the orders r, s of f, g, respectively, there is nothing
to be proved if l = 1. Therefore, we assume without loss of generality that l > 2. In other words,
if ϑ is thought of as taking on the values {a, b} (where negative exponents are allowed when r
or s equals ∞), then both sets {a} and {b} effectively appear in the spelling of W (a, b).

Consider the context of Proposition 2.6. We have a fixed word W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 , l > 2.

Also α ∈ N is fixed and (Diffα(C, 0))2 is endowed with the (product) analytic topology. Let
UW ⊂ (Diffα(C, 0))2 be the set of pairs (h1, h2) ∈ (Diffα(C, 0))2 for which W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦

g ◦ h2) 6= id ∈Diff(C, 0) (i.e. at germ level). The lemma below provides a rather convenient
reduction in the proof of Proposition 2.6 and goes along with the ideas proposed in Remark 2.8.

Lemma 3.1. With the above notation, the set UW ⊂ (Diffα(C, 0))2 is either empty or open and
dense in (Diffα(C, 0))2.

Proof. Let us consider the case α= 0. Recall that f, g are fixed. Given N > 0, the N -jet of
W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) at 0 ∈ C depends solely on the N -jets of h1, h2 at 0 ∈ C. Therefore

the map from (Diff(C, 0))2 to JN that assigns the N -jet at 0 ∈ C of W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2)

to a pair (h1, h2) ∈ (Diff(C, 0))2 induces a well-defined map TNW : JN × JN → JN by means of
the formula

TNW (jNh1, j
Nh2) = jN (W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2)).

Moreover the map TNW has polynomial coordinates. Hence, the pre-image (TNW )−1[JN\{jNz}]
of the complement in JN of the N -jet associated to the identity is a Zariski-open subset of
JN × JN . In particular, (TNW )−1[JN\{jNz}] is either empty or open and dense in JN × JN .

Suppose now that UW ⊂ (Diff(C, 0))2 is not empty. Thus, for sufficiently large N ,
(TNW )−1[JN\{jNz}] 6= ∅. From now on, let N be a fixed integer for which (TNW )−1[JN\{jNz}] 6= ∅.
Therefore (TNW )−1[JN\{jNz}] is open and dense in JN × JN . However, in view of Proposition 2.3
the map j̃N : (Diff(C, 0))2→ JN × JN defined by

j̃N (h1, h2) = (jNh1, j
Nh2)

is continuous and open. Being continuous the pre-image (j̃N )−1((TNW )−1[JN\{jNz}])⊂
(Diff(C, 0))2 is open since (TNW )−1[JN\{jNz}] is open in JN × JN . Furthermore, since j̃N
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is an open map and (TNW )−1[JN\{jNz}] is dense in JN × JN , it follows that the pre-image
(j̃N )−1((TNW )−1[JN\{jNz}]) is also dense in (Diff(C, 0))2. The lemma is proved for α= 0.

The general case is totally analogous with slightly heavier notation, cf. Remark 2.4. Details
are left to the reader. 2

Remark 3.2. In the above lemma, the assumption that UW is not empty was exploited to conclude
that UW is, actually, dense. In other words, assuming that a ‘relation’ is not always satisfied,
then it can be broken by elements in an open and dense set. Whereas our assumption was
the existence of a pair of elements in Diff(C, 0) ‘breaking’ the relation in question, the reader
will easily check that the existence of a pair of merely formal diffeomorphisms would suffice.
This seems to indicate that another possible use of the analytic topology, not developed in this
work, concerns the possibility of turning (faithful) representations of groups in D̂iff(C, 0) into
(faithful) representations in Diff(C, 0). In other words, when it is possible to ‘break up’ a relation
at the formal level, it should also be possible to do it with convergent power series. Moreover, the
elements of Diff(C, 0) breaking the relation must also form a dense set for the analytic topology.
Though this remark will not be exploited in this paper, it may have non-trivial implications in
view of the papers [EV04, NY10] and their interesting results about representations of groups
in D̂iff(C, 0).

Thanks to Lemma 3.1, the proof of Proposition 2.6 is reduced to show that UW ⊂
(Diffα(C, 0))2 is not empty whenever W (a, b) is a word as in the statement of the proposition in
question. In fact, a word W (a, b) for which UW ⊂ (Diffα(C, 0))2 = ∅ may be named a universal
relation (with respect to α). Hence, the preceding can be rephrased by saying that the proof of
Proposition 2.6 amounts to showing that there is no universal relation W (a, b) regardless of the
fixed value of α. Reminding the reader that all words are supposed to be non-empty and reduced,
we state the following lemma.

Lemma 3.3. With the preceding notation, and for arbitrarily given α ∈ N, no word W (a, b)
represents a universal relation in Diffα(C, 0).

To begin the discussion, consider the spelling of W (a, b) in the form ϑrl

l ∗ · · · ∗ ϑ
r1
1 , l > 1, as

indicated at the end of § 2. The proof that UW 6= ∅ will be carried out by finding an element in UW
having either the form (h, id) or the form (id, h), depending on the spelling of W (a, b) (where h
belongs to Diffα(C, 0)). Recall that every element different from the identity in 〈a, b ; ar = bs = id〉
has a unique representative in the form of a word W (a, b). The value of l > 1 in the spelling
W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 is going to be called the length of W (a, b).

Before starting the proof of Lemma 3.3, let us indicate some normalizations that will be
assumed to hold throughout the rest of the section. These conditions will be developed further
in § 4 where we shall deal with pseudogroups defined on a fixed open set.

Let W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 be a fixed word and consider, for every j ∈ {1, . . . , l} and every

e(j) ∈ {1, . . . , rj}, the word W
e(j)
j (a, b) = ϑ

e(j)
j ∗ ϑrj−1

j−1 ∗ · · · ∗ ϑ
r1
1 along with the corresponding

local diffeomorphism W
e(j)
j (f, g). Up to re-scaling coordinates and choosing a sufficiently small

connected neighborhood U of 0 ∈ C, the following conditions necessarily hold:

(C.1) f, g and their inverses are one-to-one maps defined on the unit disc B(1)⊂ C;

(C.2) for every j and every e(j) as above, the local diffeomorphism W
e(j)
j (f, g) is defined on U ;

(C.3) for every j and every e(j) as above, W e(j)
j (f, g)(U)⊂B(1).
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The proof of Lemma 3.3 will be carried out by induction on the length l of the words
W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 . Clearly no universal relation of length 1 may exist since identities of

the form fm = id or gm = id are codified in the very definition of the orders r and s, and hence
are automatically considered in the definition of the group 〈a, b ; ar = bs = id〉. The next lemma
shows the non-existence of universal relations with length 2. Note that this statement is not
formally indispensable in the sense that the induction argument can be initialized with words
of length 1. It appears, however, that working out the details in the case of words with length 2
helps to clarify the ideas which can then quickly be generalized to handle words of arbitrary
length.

Lemma 3.4. No word of length 2, W (a, b) = ϑr22 ∗ ϑ
r1
1 , is a universal relation in Diffα(C, 0).

Proof. Let us consider the element of Diff(C, 0) defined by W (f, g). Subject to permuting
the roles of f, g and also permuting them with their inverses, there is not loss of generality
in supposing that W (a, b) = gr2 ◦ f r1 with r1, r2 > 0. In fact, as just indicated, the remaining
combinations are totally analogous. By assumption r1 < r and r2 < s. In particular, for n ∈
{1, . . . , r1}, the local diffeomorphism fn does not coincide with the identity in Diff(C, 0).
Similarly, for m ∈ {1, . . . , r2}, gm does not coincide with the identity in Diff(C, 0).

Let a neighborhood U as in conditions C.1, C.2 and C.3 be fixed. Let h be a local holomorphic
diffeomorphism, tangent to the identity to order α and yielding an one-to-one map defined on the
disc B(2) of radius 2. Set g̃ = h−1 ◦ g ◦ h ∈Diff(C, 0) and set g̃j(z) = (h−1 ◦ g ◦ h)j(z) for points
z for which the local diffeomorphism h−1 ◦ g ◦ h can be iterated in the natural sense (more details
on these notions, reminiscent to general pseudogroups, can be found in § 4). Suppose also that
supz∈B(2) ‖h(z)− z‖< ε. Then, if ε is sufficiently small, the following holds.

• For every j ∈ {1, 2} and e(j) ∈ {1, . . . , rj}, W e(j)
j (f, g̃) is defined on U .

• For every j ∈ {1, 2} and e(j) ∈ {1, . . . , rj}, W e(j)
j (f, g̃)(U)⊂B(1).

• Both h, h−1 are defined and are one-to-one on B(1).

Suppose that h as above is such that g̃r2 ◦ f r1(p) 6= p for some point p ∈ U . Then g̃r2 ◦ f r1 does
not coincide with the identity on U . Recalling that U is connected, it then follows that g̃r2 ◦ f r1
does not represent the identity in Diff(C, 0) (i.e. at the level of germs). Thus W (a, b) is not a
universal relation in Diffα(C, 0) since the pair (id, h) belongs to the corresponding set UW .

Summarizing what precedes, to prove the lemma, it suffices to find an element h ∈Diffα(C, 0),
arbitrarily close to the identity on B(2) and such that, whenever defined, g̃r2 ◦ f r1 does not
coincide with the identity on U . To do this, we can suppose that gr2 ◦ f r1 does coincide with the
identity on U , otherwise simply take h= id.

To ‘break up’ the relation gr2 ◦ f r1 = id ∈Diff(C, 0), we proceed as follows. Let z0 ∈ U be
such that f r1(z0) = z1 6= z0. Note that z0 exists, for f r1 cannot coincide with the identity on U
since r1 ∈ {1, . . . , r− 1}. Thus gr2(z1) = z0. We are going to construct a local diffeomorphism
h ∈Diffα(C, 0), arbitrarily close to the identity on B(2), and such that g̃r2 ◦ f r1(z0) 6= z0, where
g̃ = h−1 ◦ g ◦ h. The lemma will then follow immediately. To construct h consider a polynomial
P such that P (z0) = 0 and P (z1) 6= 0. Next for t ∈ (0, 1), let ht(z) = z + tzα+1P (z). In particular
ht(0) = 0 for every t ∈ [0, 1] and, in fact, for every t ∈ [0, 1], ht lies in Diffα(C, 0). Besides, for t
sufficiently small, ht is one-to-one on a neighborhood of B(1) since it is close to the identity map.
From this we conclude that the inverse h−1

t of ht is also defined and one-to-one on a neighborhood
of B(1) (subject to reducing t). Furthermore it is also clear that, indeed, ht converges uniformly
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to the identity on B(2) as t→ 0. Setting g̃t = h−1
t ◦ g ◦ ht, the lemma is reduced to proving the

following claim.

Claim. For t > 0 sufficiently small g̃r2t ◦ f r1(z0) 6= z0.

Proof of the claim. Clearly g̃r2t ◦ f r1(z0) = g̃r2t (z1). However, for t small enough, g̃r2t (z1) = h−1
t ◦

gr2 ◦ ht(z1) and, on the other hand, ht(z1) 6= z1. Besides, subject to reducing t, ht(z1) and
z̃ = gr2 ◦ ht(z1) lie in B(1). However, z̃ 6= z0. Indeed, since ht(z1) 6= z1 are both contained in B(1)
where gr2 is one-to-one, it follows that z̃ = gr2 ◦ ht(z1) 6= z0 = gr2(z1). Thus, to deduce the claim,
it suffices to check that h−1

t (z̃) 6= z0. For this, recall again that both z0, z̃ belong to B(1) where
h−1
t is one-to-one. Therefore we have h−1

t (z̃) 6= h−1
t (z0) since z̃ 6= z0. Finally, by construction,

h−1
t (z0) = z0 so that we obtain h−1

t (z̃) 6= h−1
t (z0) = z0, implying the claim. 2

The proof of the lemma is also complete. 2

The preceding lemma contains the basic ideas that will be used in the general proof of
Lemma 3.3, and hence of Proposition 2.6. Given Lemma 3.3, let us suppose by induction that no
word of length 1, 2, . . . , l − 1 represents a universal relation in Diffα(C, 0) (where α is fixed). By
relying on this assumption, we must conclude that no word of length l may represent a universal
relation in Diffα(C, 0) either.

Let W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 be a (reduced as always) word of length l. The local

diffeomorphism W (f, g) will then be denoted by W (f, g) = F rl

l ◦ · · · ◦ F
r1
1 , where Fi takes

on the value f (respectively g) if ϑi takes on the value a (respectively b). Assume that
W (f, g) = id ∈Diff(C, 0). Let us also suppose for a contradiction that W (a, b) represents a
universal relation in Diffα(C, 0). Given a point z ∈ C sufficiently close to 0 ∈ C, the itinerary
of z under W (f, g) means the sequence of points z = z0, z1, . . . , zl obtained as follows: first
z0 = z. Besides, if zi is defined for i= 0, . . . , l − 1, then zi+1 = F

ri+1

i+1 (zi). This sequence of points
is clearly well defined for z sufficiently close to 0 ∈ C. Moreover, the fact that W (f, g) represents
the identity in Diff(C, 0) ensures that zl = z0. Now we have the following lemma.

Lemma 3.5. Without loss of generality, we can assume that the points z0, . . . , zl−1 are pairwise
distinct provided that z0 6= 0.

Proof. Consider the local diffeomorphisms associated to the sub-words Wj1,j2(f, g) = F
rj2
j2
◦ · · · ◦

F
rj1
j1

with j1 6 j2 and j1, j2 in {1, . . . , l − 1}. Since all these words have length at most l − 1,
the induction assumption allows us to suppose that none of them represents the identity in
Diff(C, 0). In fact, to check the claim, note that W (f, g) must be a universal relation for every
pair (f̃ , g̃) having the form f̃ = h−1

1 ◦ f ◦ h1 and g̃ = h−1
2 ◦ f ◦ h2, with h1, h2 ∈Diffα(C, 0). On

the other hand, none of the previously considered words are universal relations for (f, g) so
that, for each of them, we can find an open and dense subset of (Diffα(C, 0))2 whose elements
break the corresponding word. By intersecting these finitely many open dense sets, we find
elements (h̃1, h̃2) ∈ (Diffα(C, 0))2 so that none of the above words Wj1,j2(h̃−1

1 ◦ f ◦ h̃1, h̃
−1
2 ◦

f ◦ h̃2) represents the identity in Diff(C, 0). Finally, all that need to be done is to substitute f, g
by f̃ = h̃−1

1 ◦ f ◦ h̃1, g̃ = h̃−1
2 ◦ f ◦ h̃2. In other words, we can suppose without loss of generality

that no sub-word Wj1,j2(f, g) represents the identity in Diff(C, 0).
Next, subject to reducing U in the normalizations C.1, C.2 and C.3, all these maps are defined

on U . Thus the solutions of Wj1,j2(f, g)(z) = z in U are isolated points. Hence, if V ⊂ U is very
small, then Wj1,j2(f, g)(z) 6= z for every z 6= 0 in V . It is now clear that every point z0 6= 0 in V
has itinerary z0, . . . , zl−1, zl where the points z0, . . . , zl−1 are pairwise distinct as desired. 2
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We are now ready to prove Lemma 3.3, which, in turn, completes the proof of Proposition 2.6.

Proof of Lemma 3.3. Let W (f, g) be obtained as before by means of a word W (a, b) = ϑrl

l ∗ · · · ∗
ϑr11 of length l. To fix notation, we assume without loss of generality that ϑl takes on the value b.

Recall that conditions (C.1), (C.2) and (C.3) are supposed to be verified. By using Lemma 3.5,
every point z0 ∈ U\{0} sufficiently close to 0 ∈ C has itinerary z0, . . . , zl−1, zl such that the points
z0, . . . , zl−1 are pairwise distinct (naturally zl = z0, otherwise there is nothing to be proved). Let
one of these points z0 be fixed.

Again, given a local diffeomorphism h ∈Diffα(C, 0), defined on B(2), set g̃ = h−1 ◦ g ◦ h.
There is ε > 0 such that, whenever supB(2) ‖h(z)− z‖< ε, the following conditions hold.

(C′.1) For every j, e(j) as before, W e(j)
j (f, g̃) is defined on U .

(C′.2) For every j, e(j) as before, W e(j)
j (f, g̃)(U)⊂B(1).

(C′.3) Both h, h−1 are defined and are one-to-one on B(1).

Now consider a polynomial P such that P (z0) = P (z1) = · · ·= P (zl−2) = 0 and P (zl−1) 6= 0.
Again, for t ∈ [0, 1], let ht be defined by ht(z) = z + tzα+1P (z) so that ht ∈Diffα(C, 0) for every
t ∈ [0, 1] (and in particular ht(0) = 0). For sufficiently small t > 0, it is clear that supB(2) ‖ht(z)−
z‖< ε so that conditions (C′.1), (C′.2) and (C′.3) will be satisfied for g̃t = h−1

t ◦ g ◦ ht. As before,
to finish the proof of the lemma, it suffices to prove the following claim.

Claim. For sufficiently small t > 0, we have W (f, g̃t)(z0) 6= z0.

Proof of the claim. Consider the itinerary of z0 under W (f, g) written as z0, z1 . . . , zl−1, zl = z0.
The construction of P makes it clear that the itinerary of z0 under W (f, g̃t) can similarly be
written under the form z0, . . . , zl−1, (g̃t)rl(zl−1). Therefore, it suffices to prove that (g̃t)rl(zl−1) 6=
z0. For this recall that, concerning W (f, g), we have zl = z0 = grl(zl−1). Now for t very small, the
points ht(zl−1) and grl ◦ ht(zl−1) belong to B(1) where h−1

t is injective. Thus, since h−1
t (z0) = z0,

to conclude that (g̃t)rl(zl−1) 6= z0 it suffices to check that grl ◦ ht(zl−1) 6= z0. However, grl is still
one-to-one on B(1). Since both zl−1 and ht(zl−1) belong to B(1), the fact that zl−1 6= ht(zl−1)
ensures that grl ◦ ht(zl−1) 6= grl(zl−1) = z0. The claim is proved. 2

The proofs of Lemma 3.3 and of Proposition 2.6 are now completed. 2

4. Proof of Theorem A

The proof of Theorem A is going to be completed in this section. The fundamental object involved
in the subsequent discussion is the notion of a pseudogroup generated by local diffeomorphisms f
and g about 0 ∈ C. In fact, an intrinsic difficulty already arising from dealing with pseudogroups,
as opposed to groups of germs, has to do with the following fact: while in the proof of
Proposition 2.6 we were allowed to reduce neighborhoods and choose z0 very close to 0 ∈ C,
in what follows all neighborhoods will be fixed and we shall need to work with points that are
‘far from 0 ∈ C’ in a sense to be made accurate. It is then natural to use the setting provided by
pseudogroups.

Let us begin by recalling the notion of pseudogroup as it will be needed for our discussion.
Consider local diffeomorphisms f, f−1, g, g−1 that are defined and one-to-one on an open disc D
of 0 ∈ C. We want to consider the pseudogroup Γ = Γ(f, g, D) generated by f, f−1, g, g−1 on D
(in the following this pseudogroup will be referred to as being generated by f, g and their inverses,
or simply by f, g, when no confusion is possible). Let us make the definition of Γ precise. Recall
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that r ∈ N∗ ∪ {∞} (respectively s ∈ N∗ ∪ {∞}) stands for the order of f (respectively g) and that
words are always reduced with respect to the group 〈a, b ; ar = bs = id〉, with the conventions of
§ 3 if r or s equals ∞. Consider a fixed word W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 . In the cases where r or

s equals ∞, the exponents rj can be negative so that we also consider the spelling of W (a, b)
resulting from splitting the components ϑri

i . More precisely, if both r, s equal ∞, then we also
consider W (a, b) under the form θs ∗ · · · ∗ θ1, where:

• θj takes on one of the values a, b, a−1, b−1;

• if θj takes on the value a (respectively a−1) then, whenever defined, neither θj−1 nor θj+1

takes on the value a−1 (respectively a). A similar rule applies to b, b−1.

In the cases where both r, s<∞, θj only takes on the values a, b and every sequence θi, θi+1, . . .
of ‘θi’ with the same value is contained in the split of some ϑrj

j in the natural sense. Adaptations
to the mixed cases r<∞, s =∞ or r =∞, s<∞ are straightforward and left to the reader.
In any event, we obtain s=

∑l
i=1 |ri|. Now, consider the corresponding local diffeomorphism

W (f, g) written under the form Hs ◦ · · · ◦H1 where each Hi, i ∈ {1, . . . , s}, belongs to the set
{f±1, g±1}. In other words, Hi replaces θi by means of the substitutions f±1 7→ a±1, g±1 7→ b±1.
The domain of definition of W (f, g) =Hs ◦ · · · ◦H1 as an element of Γ can be introduced by
recursively defining the domains of definitions of each element Hi ◦ · · · ◦H1 of Γ, i= 1, . . . , s,
as follows.

• The domain of definition of H1 is all of D and, for every z ∈D, H1(z) is defined in the
obvious way.

• Suppose that the domain of definition DomHi◦···◦H1 of Hi ◦ · · · ◦H1 is already known
along with the points Hi ◦ · · · ◦H1(z), for z ∈DomHi◦···◦H1 . Then the domain of definition
DomHi+1◦···◦H1 of Hi+1 ◦ · · · ◦H1 is obtained by setting

DomHi+1◦···◦H1 = {z ∈DomHi◦···◦H1 ; Hi ◦ · · · ◦H1(z) ∈D}.

In particular, DomHi+1◦···◦H1 ⊆DomHi◦···◦H1 and hence the domain of definition of every element
in Γ is naturally contained in D. Besides, for z ∈DomHi+1◦···◦H1 , the value of Hi+1 ◦ · · · ◦H1(z)
is defined by setting Hi+1 ◦ · · · ◦H1(z) =Hi+1 ◦ [Hi ◦ · · · ◦H1](z).

Now consider the local diffeomorphisms f, g and a small open disc D about 0 ∈ C such that all
the elements f, g, f−1, g−1 yield one-to-one maps defined on an open neighborhood of D. Here D
denotes the closure of D whereas ∂D will stand for the boundary of D. With the notation of § 3,
consider a word W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 = θs ∗ · · · ∗ θ1 which, as always, is supposed to be non-

empty and reduced (with respect to the group 〈a, b ; ar = bs = id〉). Denote by Γ the pseudogroup
generated by f, g on D. The domain of definition of W (f, g) as an element of Γ is going to be
denoted by DomW (D). To be able to take advantage of the Baire property, we would like to have
a statement such as ‘for an open dense set of local diffeomorphisms (h1, h2) ∈ (Diff(C, 0))2, the
element W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) of the pseudogroup generated by h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2

does not coincide with the identity on any connected component of DomW (D)’. This statement,
however, makes no sense since the domain of definition of the given local diffeomorphisms h1, h2

may be smaller than D so that the pseudogroup generated by h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2 does not

naturally act on the whole D. This is the main reason why a more careful formulation of our
statements is needed.

Consider local diffeomorphisms f̃ , g̃ having the form f̃ = h−1
1 ◦ f ◦ h1 and g̃ = h−1

2 ◦ g ◦ h2.
The corresponding elements of the pseudogroup they generate (on some suitable open set)
will then be denoted by W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2). The point to be made here concerns
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the domain of definition of f̃ , g̃ and, therefore, the domains of definition of all elements
W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) in the pseudogroup generated by f̃ , g̃ on an open neighborhood

of 0 ∈ C to be fixed later. With the preceding notation, we have the following definition.

Definition 4.1. (1) The domain of definition of h1 is defined as follows: let ρ be the radius of
the maximal open disc about 0 ∈ C in which h1 is defined and injective. Then the open domain
of definition of h1 is defined to be the open disc of radius 9ρ/10. The closed domain of
definition of h1 will also be considered and this will be nothing but the closed disc of radius
9ρ/10. Analogous definitions apply to each of the local diffeomorphisms: h−1

1 , h2, h
−1
2 .

(2) The domain of definition of f̃ = h−1
1 ◦ f ◦ h1 consists of those points p verifying all the

following conditions: p belongs to the open domain of definition of h1, h1(p) belongs to the domain
of definition of f , i.e. to D. Besides, f ◦ h1(p) must belong to the open domain of definition of h−1

1 .
Analogous considerations apply to the domain of definition of g̃ = h−1

2 ◦ g ◦ h2 and to f̃−1, g̃−1.

(3) Finally, considering the pseudogroup generated by f̃ , g̃ on some suitable open set, the
domain of definition of its element W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) =W (f̃ , g̃) is obtained according

to the above general definitions concerning pseudogroups, with f̃ , g̃ in the place of f, g.

Concerning the second item above, we shall have occasion to consider closed domains of
definition not only for h1, h

−1
1 , h2, h

−1
2 but also for more general elements in the pseudogroup

generated by f̃ , g̃ as above. When doing so, the domains of definition for both f, g will be
understood to be the closed disc D. Then the domains of definition of f̃ , g̃ will be obtained as in
item (2) above, except that each corresponding domain of definition will be closed. Finally, the
closed domain of definition of a general element W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) =W (f̃ , g̃) will be

obtained by means of the closed domains of f̃ , g̃ by following the general pseudogroup rules.
Since 0 ∈ C is fixed by f, g, we conclude that every word has a non-empty domain of definition

as an element of Γ. Similarly, for every h1, h2 as before, every word in the pseudogroup generated
by f̃ , g̃ has a non-empty domain of definition. Furthermore, since non-constant holomorphic maps
are open maps, the domains of definition of general elements in this pseudogroup will be an open
set provided that we start with open domains of definition for h1, h2 and f, g (as mentioned,
later closed domains of definition will also be considered). They may, however, be disconnected.
Therefore, Proposition 2.6 only applies to the connected component containing 0 ∈ C of these
domains. More precisely, suppose that f, g are given as above. Then, subject to conjugating f, g
by generic elements h1, h2 ∈Diff(C, 0), it can be assumed that the element W (f̃ , g̃) is different
from the identity on the connected component containing 0 ∈ C of its domain of definition, for
every word W (a, b). Since the domain of definition of W (f̃ , g̃) may have more than one connected
component, the preceding results do not rule out the possibility of having an element W (f̃ , g̃)
coinciding with the identity on some non-empty open set. In particular, if we are dealing with the
pseudogroup associated to a foliation, we cannot yet derive the conclusions about the topology
of the leaves stated in Theorem B.

Considering the pseudogroup Γ, there is already a point to be made about the above defined
powers f j , gj , of f, g, which should themselves be understood as elements of Γ defined on some
fixed neighborhood of 0 ∈ C. More generally, given F ∈Diff(C, 0) and a fixed neighborhood W
of 0 ∈ C where F is defined, the notation F j , where j ∈ Z∗, refers to the element F j viewed as
an element of the pseudogroup generated by F on W .

Recall also that F ∈Diff(C, 0) is said to have a Cremer point (at 0 ∈ C) if F is not linearizable
at 0 ∈ C and verifies F ′(0) = e2π

√
−1β with β ∈ R\Q. The lemma below concerns the behavior of

the powers of an element F ∈Diff(C, 0) on sufficiently small neighborhoods of 0 ∈ C.
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Lemma 4.2. Suppose that F ∈Diff(C, 0) is a local diffeomorphism that does not have a Cremer
point at 0 ∈ C. Then there is a neighborhood W of 0 ∈ C where F j has no fixed point, for every
j ∈ Z∗, unless F j coincides with the identity on all of its domain of definition. In particular, if
F j , j ∈ Z, coincides with the identity on some connected component of its domain of definition,
then it coincides with the identity on all of its domain of definition.

Proof. The statement clearly holds if F is linearizable about 0 ∈ C. In particular, it holds
provided that |F ′(0)| 6= 1 thanks to the linearization theorem of Poincaré. Thus, we can assume
that |F ′(0)|= 1 and that F is not linearizable. Since, by assumption, F does not have a Cremer
point at the origin, it follows that F ′(0) = e2π

√
−1β with β ∈Q. Therefore the local dynamics of

F at 0 ∈ C are closely related to the special case of the ‘Leau flower’ corresponding to α= 0.
These dynamics are well understood and their topological description, cf. for example [CG93],
ensures that the statement of the lemma holds. 2

Remark 4.3. According to Yoccoz and Perez-Marco, cf. [Yoc95], the assumption that F does not
have a Cremer point is, indeed, necessary for the statement of Lemma 4.2 to hold. In fact, there
are local diffeomorphisms F ∈Diff(C, 0) exhibiting a Cremer point at 0 ∈ C for which there exists
a sequence of points {qi} accumulating to 0 ∈ C along with a sequence of periods {ni}, ni 6= 0,
going to infinity such that Fni(qi) = qi for every i ∈ N. Moreover, the dynamics of Fni about its
fixed point qi may arbitrarily be fixed: in particular, it can be chosen so that Fni coincides with
the identity on some (very small) neighborhood of qi.

Note however that this type of phenomenon cannot play any role at an infinitesimal level:
given a fixed n ∈ Z∗, and assuming that F ′(0) = e2π

√
−1β with β ∈ R\Q, there always exists a

sufficiently small neighborhood of 0 ∈ C on which Fn has no fixed point other than the origin
itself. This explains why the first conclusion of Theorem A does not require any additional
condition concerning Cremer points.

Whereas the previous lemma will only be used later, we assume from now on that neither f
nor g has a Cremer point at 0 ∈ C. Therefore, subject to reducing the radius of the disc D, the
statement of Lemma 4.2 can be supposed to hold for both f, g on a neighborhood of D. In the
following D is fixed and the reader is reminded that f, g and their inverses yield one-to-one maps
defined on a neighborhood of D. Given h1, h2 with (open and closed) domains of definition as in
Definition 4.1, set f̃ = h−1

1 ◦ f ◦ h1, g̃ = h−1
2 ◦ g ◦ h2, where the domains of definition of f̃ , g̃ are

again as in Definition 4.1. Now, we have the following definition.

Definition 4.4. With the preceding notation, the pseudogroup generated by f̃ , g̃ on the closed
disc D is the pseudogroup of maps between subsets of D where the domains of definition for
f̃±1, g̃±1 are obtained by considering closed domains of definition for h1, h

−1
1 , h2, h

−1
2 and by

setting the domains of definition of both f±1, g±1 equal to D.
Similarly the pseudogroup generated by f̃ , g̃ on the open disc D is the pseudogroup of maps

between subsets of D where the domains of definition for f̃±1, g̃±1 are obtained by considering
open domains of definition for h1, h

−1
1 , h2, h

−1
2 and by setting the domain of definition of both

f±1, g±1 equal to D.

Recalling that non-constant holomorphic maps are open maps, it follows from the above
definition that the domain of definition of W (f̃ , g̃) as an element of the pseudogroup generated
by f̃ , g̃ on the open disc D (respectively on the closed disc D) is an open set (respectively closed
set).
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Next choose and fix once and for all a sequence {pj}j∈N ⊂ C dense in C and such that no
point pj lies in ∂D. Also let α ∈ N be fixed. For a chosen point pj and a given word W (a, b), let
U (j)
W,α denote the set formed by those pairs of local diffeomorphisms (h1, h2) ∈ (Diffα(C, 0))2 for

which one of the two possibilities below is verified:

(1) pj does not belong to the domain of definition of W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) viewed as an

element of the pseudogroup generated by f̃ , g̃ on the closed disc D;

(2) pj belongs to the domain of definition of W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) viewed as an element

of the pseudogroup generated by f̃ , g̃ on the open disc D. FurthermoreW (h−1
1 ◦ f ◦ h1, h

−1
2 ◦

g ◦ h2) is required not to coincide with the identity on a neighborhood of pj .

Lemma 4.5. For every word W (a, b) as above, the set U (j)
W,α ⊂ (Diffα(C, 0))2 is open for the

(product) analytic topology in (Diff(C, 0))2.

Proof. The set U (j)
W,α is open as a consequence of the fact that domains of definition move

‘continuously’ with respect to the analytic topology. To be more precise, suppose that (h1, h2)
lies in U (j)

W,α. Then one possibility is that pj does not belong to the domain of definition of
W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) =W (f̃ , g̃) viewed as an element of the pseudogroup generated on

D by f̃ , g̃. In this case, the domain of definition of W (f̃ , g̃) is a closed set and therefore
pj lies at a strictly positive distance from it. Because convergence in the analytic topology
implies uniform convergence on fixed domains, it then follows that, for (h1, h2) ∈ (Diffα(C, 0))2

sufficiently close to (h1, h2), pj will still belong to the complement of the domain of definition of
W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2). Hence (h1, h2) ∈ U (j)

W,α and (h1, h2) is an interior point of U (j)
W,α.

The other possibility for having (h1, h2) ∈ U (j)
W,α is to have pj in the domain of definition

of W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) =W (f̃ , g̃) viewed as an element of the pseudogroup generated

on D by f̃ , g̃. In this case, the domain of definition of W (f̃ , g̃) is an open set but W (f̃ , g̃)
cannot coincide with the identity on a neighborhood of pj . Since the domain of definition of
W (f̃ , g̃) is open, it follows from the preceding discussion that pj belongs to the domain of
definition of W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) provided that (h1, h2) ∈ (Diffα(C, 0))2 is close enough

to (h1, h2). Subject to taking (h1, h2) closer to (h1, h2) it can similarly be ensured that
W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) does not coincide with the identity on a neighborhood of pj since

convergence in the analytic topology implies convergence of Taylor coefficients (at every a priori
fixed order). Therefore every pair (h1, h2) ∈ (Diffα(C, 0))2 sufficiently close to (h1, h2) belongs
to U (j)

W,α and this shows that U (j)
W,α is an open set. 2

The following lemma is a useful tool that will enable us to prove that U (j)
W,α ⊂ (Diffα(C, 0))2

is, in addition, ‘almost’ dense.

Lemma 4.6. With the preceding notation, consider the element W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) =

W (f̃ , g̃) viewed as an element of the pseudogroup generated on D by f̃ , g̃, where (h1, h2) ∈
(Diffα(C, 0))2. Suppose that q, lying in the domain of definition of W (f̃ , g̃), satisfies W (f̃ , g̃)(q)
= q. Then, there is (h1, h2) ∈ (Diffα(C, 0))2 arbitrarily close to (h1, h2) and such that the
following holds:

• q lies in the domain of definition of W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) viewed as an element of

the pseudogroup generated by h
−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2 on D;

• W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2)(q) 6= q.
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Proof. What precedes shows that the first condition above is always satisfied provided that
(h1, h2) is very close to (h1, h2). Thus we only need to prove that (h1, h2) ∈ (Diffα(C, 0))2 can
be obtained so as to satisfy, in addition, W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2)(q) 6= q.

Let the word W (a, b) be given by W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 . The proof of the existence of

(h1, h2) satisfying the second condition above and arbitrarily close to (h1, h2) is going to be
carried out by induction on l. Suppose first that l equals 1. In this case, the statement follows
at once from Lemma 4.2, where it is shown that a local diffeomorphism as in the corresponding
statement does not have periodic points.

By inducting on the length of the words, the proposition can be assumed to hold for words
of length 1, . . . , l − 1. We need to show it also holds for words of length l. First consider the
itinerary q = q0, . . . , ql−1, ql of q under W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) and suppose that q = q0 = ql

for otherwise there is nothing to be proved. The induction assumption allows us to suppose
that the points q0, . . . , ql−1 are pairwise distinct. Indeed, given 0 6 i1 < i2 < l, we have that
qi2 =W ′(h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2)(qi1) where W ′(a, b) is a word whose length is at most l − 1.

Thus, by the induction assumption, (h1, h2) can be perturbed into (h1,∗, h2,∗) ∈ (Diffα(C, 0))2 so
as to satisfy qi2 =W ′(h−1

1,∗ ◦ f ◦ h1,∗, h
−1
2,∗ ◦ g ◦ h2,∗)(qi1) 6= q1. Since, once obtained, the condition

qi2 =W ′(h−1
1,∗ ◦ f ◦ h1,∗, h

−1
2,∗ ◦ g ◦ h2,∗)(qi1) 6= q1 is open, the fact that there are only finitely many

words W ′(a, b) that need to considered allows us to construct a first perturbation (h1,∗, h2,∗) ∈
(Diffα(C, 0))2 of (h1, h2) so that the itinerary of q = q0 by W (h−1

1,∗ ◦ f ◦ h1,∗, h
−1
2,∗ ◦ g ◦ h2,∗)

satisfies the required condition. In other words, we can assume without loss of generality that
the itinerary q = q0, . . . , ql−1, ql of q under W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) is such that the points

q0, . . . , ql−1 are pairwise distinct.

Let us now construct pairs of local diffeomorphisms (h1, h2) ∈ (Diff(C, 0))2 arbitrarily close to
(h1, h2) and such that W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2)(q) 6= q. First, since W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 ,

with l > 2, we shall assume that ϑ1 takes on the value a (with r1 > 0) and that ϑl takes on the
value b (with rl > 0). The purpose of this assumption is only to abridge notation since the other
cases are analogue and can be handled by a very straightforward adaptation of the discussion
below. In particular, if the word W (a, b) is such that ϑ1, ϑl take on the same value (a or b),
then W (f, g) is conjugate to a word of smaller length and the desired conclusion can quickly be
derived.

As in § 3, let P be a polynomial such that P (q0) = · · ·= P (ql−2) = 0 and P (ql−1) 6= 0. Since
ϑl takes on the value b, we set

h1,t = h1 and h2,t = h2 + tzα+1P

where t ∈ [0, 1]. Clearly h2,t converges to h2 in the analytic topology when t→ 0 and h2,t ∈
Diffα(C, 0) for every t ∈ [0, 1]. Therefore, to conclude the proof, it suffices to show that (h1,t, h2,t)
lies in U (j)

W,α for arbitrarily small t > 0 (strictly). As already observed, for t sufficiently small
q belongs to the domain of definition of W (h−1

1,t ◦ f ◦ h1,t, h
−1
2,t ◦ g ◦ h2,t) viewed as of the

pseudogroup generated on the open disc D by h−1
1,t ◦ f ◦ h1,t, h

−1
2,t ◦ g ◦ h2,t. The corresponding

itinerary is going to be denoted by q = q0,t, . . . , ql−2,t, ql−1,t and qll,t = h−1
2,t ◦ grl ◦ h2,t(ql−1,t). By

construction, it follows that qi = qi,t for i= 0, 1, . . . , l − 1. However, h2,t(ql−1) = h2,t(ql−1,t) 6=
h2(ql−1,t). Now the assumption concerning the injective character of both h±1

2 , g±1 on the
domains in question allows us to conclude that q = q0 = ql =W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2)(q0) 6=

W (h−1
1,t ◦ f ◦ h1,t, h

−1
2,t ◦ g ◦ h2,t)(q0) for every t > 0 sufficiently small. The lemma is proved. 2
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Again, consider a word W (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 and choose a point pj in the dense sequence

fixed at the beginning. If ϑ1 takes on the value a, let C
(j)
W,α be defined as the subset of

(Diffα(C, 0))2 consisting of those pairs (h1, h2) for which pj lies in the boundary of the domain
of definition of h1 in the sense of Definition 4.1. Similarly, if ϑ1 takes on the value b, then C

(j)
W,α

is constituted by those pairs (h1, h2) ∈ (Diffα(C, 0))2 such that pj lies in the boundary of the
domain of definition of h2 in the sense of Definition 4.1. With this definition we can state the
following proposition.

Proposition 4.7. For every word W (a, b) as above, the set U (j)
W,α ⊂ (Diffα(C, 0))2 is dense for

the (product) analytic topology in (Diffα(C, 0))2\C(j)
W,α.

To prove Proposition 4.7 it only remains to check that U (j)
W,α is dense in (Diffα(C, 0))2\C(j)

W,α.
The structure of this proof is similar to the structure of the proof of Lemma 3.3 but with a more
direct argument.

Proof of Proposition 4.7. LetW (a, b) = ϑrl

l ∗ · · · ∗ ϑ
r1
1 as above be fixed along with a point pj . We

already know that the set U (j)
W,α ⊂ (Diffα(C, 0))2 is open so that it only remains to check it is also

dense. Consider a pair of local diffeomorphisms (h1, h2) ∈ (Diffα(C, 0))2 lying in the complement
of U (j)

W,α. Since (h1, h2) 6∈ U (j)
W,α, it follows from the construction of U (j)

W,α that pj belongs to the
domain of definition of W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) viewed as an element of the pseudogroup

generated on the closed disc D by f̃ = h−1
1 ◦ f ◦ h1 and g̃ = h−1

2 ◦ g ◦ h2. Furthermore one of the
following possibilities must hold:

• there is a point P in the itinerary of pj by W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) that satisfies one

of the following conditions:

– h1(P ) or h2(P ) lies in the boundary ∂D of D (the choice between h1(P ) or h2(P )
depends on whether a power of h−1

1 ◦ f ◦ h1 or of h−1
2 ◦ g ◦ h2 is applied next);

– P lies in the boundary of the domain of definition of h1 or of h2;
– f ◦ h1(P ) lies in the boundary of the domain of definition of h−1

1 or g ◦ h2(P ) lies in
the boundary of the domain of definition of h−1

2 . However, in this case, the possibility
of having P = pj lying in the boundary of the domain of h1 (respectively h2) provided
that ϑ1 takes on the value a (respectively b) is ruled out by the fact that we are working
in the complement of C(j)

W,α.

• pj belongs to the domain of definition of W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2) viewed as an element

of the pseudogroup generated on the open disc D and, in addition, W (h−1
1 ◦ f ◦ h1, h

−1
2 ◦

g ◦ h2) coincides with the identity on a neighborhood of pj .

Assume the first alternative holds. To prove the statement it then suffices to find a sequence
of elements {(h1,k, h2,k})k∈N ⊂ (Diffα(C, 0))2 converging to (h1, h2) and such that pj does not
belong to the domain of definition of W (h−1

1,k ◦ f ◦ h1,k, h
−1
2,k ◦ g ◦ h2,k), viewed as an element

of the pseudogroup generated by h
−1
1,k ◦ f ◦ h1,k, h

−1
2,k ◦ g ◦ h2,k on the closed disc D. Indeed, by

construction, all the pairs (h1,k, h2,k) in this sequence belong to U (j)
W,α so that the proposition

follows in this first case. On the other hand, note that, to construct the desired sequence is
enough to slightly perturb the local diffeomorphisms h1, h2 by using some easy version of the
transversality principle, which can be done without changing their domains of definition. For
just this reason, it is important to rule out the case where pj itself belongs to the boundary
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of the domain of definition of h1 or h2 (depending on the value of ϑ1) since, to eliminate this
condition, we would need to change the domain of definition of the corresponding hi, which is
much harder due to the phenomenon pointed out in Remark 2.2.

On the other hand, if the second case above occurs, then the conclusion follows immediately
from Lemma 4.6. This ends the proof of Proposition 4.7. 2

Theorem A is now essentially reduced to Theorem 4.8 below.

Theorem 4.8. Assume that neither f nor g has a Cremer point at 0 ∈ C. Then there is
a Gδ-dense set Uα of (Diffα(C, 0))2 such that, for every pair (h1, h2) ∈ Uα and for every
reduced word W (a, b), the element W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) of the pseudogroup generated by

h−1
1 ◦ f ◦ h1, h

−1
2 ◦ g ◦ h2 on D does not coincide with the identity on any connected component

of its domain of definition.

Proof. Fix a word W (a, b) and a point pj . It follows from Proposition 4.7 and from Lemma 4.5
that the only obstruction for the open set U (j)

W,α to be dense is the set C(j)
W,α to have non-empty

interior Int[C(j)
W,α]. Therefore, letting V(j)

W,α = U (j)
W,α ∪ Int[C(j)

W,α], it becomes clear that V(j)
W,α is an

open and dense subset of (Diffα(C, 0))2. Therefore, recalling that a countable union of countable
sets is itself countable, the intersection

Uα =
⋂

W (a,b) ;W (a,b) non-empty
and reduced

[ ∞⋂
j=1

V(j)
W,α

]

is a Gδ-dense subset of (Diffα(C, 0))2.
Now, suppose we are given (h1, h2) ∈ Uα and consider the pseudogroup generated on open

subsets of D by f̃ = h−1
1 ◦ f ◦ h1 and by g̃ = h−1

2 ◦ g ◦ h2 (according to Definitions 4.1 and 4.4).
This pseudogroup may be denoted by Γh1,h2 .

Given a word W (a, b), consider the element W (f̃ , g̃) of Γh1,h2 whose domain of definition will
be denoted by DomWh1,h2

(D). Then, note that DomWh1,h2
(D) is clearly an open set and so are its

connected components. Let U1 be one of these connected components. Since {pj} is dense in C,
there exists j1 such that pj1 ∈ U1. Furthermore, pj1 can be chosen away from the boundaries of
the domains of definition of h1, h2 so that (h1, h2) 6∈ C(j1)

W,α. Because (h1, h2) belongs to Uα, it also

belongs to V(j1)
W,α and, hence, to U (j1)

W,α. It follows that W (f̃ , g̃) does not coincide with the identity
on a neighborhood of pj1 . Therefore W (f̃ , g̃) does not coincide with the identity on U1. Since U1

is an arbitrary connected component of DomWh1,h2
(D), the statement follows at once. 2

Proof of Theorem A. The statement follows at once from assembling Theorems 2.7 and 4.8. 2

5. An application to nilpotent foliations

As indicated in the introduction, the problem of perturbing the generators of a subgroup of
Diff(C, 0) inside their conjugacy classes arises naturally in the study of germs of singular
foliations at the origin of C2. Probably the most typical example where this situation can
be found corresponds to the class of nilpotent foliations of type A2n+1. More precisely, these
are local foliations FX defined by a (germ of) vector field X having nilpotent linear part,
i.e. X = y∂/∂x+ · · · , and a unique separatrix S that happens to be a curve analytically
equivalent to {y2 − x2n+1 = 0}. In other words, there are local coordinates where S is given by
the equation {y2 − x2n+1 = 0}. For this type of foliation, the desingularization of the separatrix
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–2 –2 –3 –2–1

C1 C2 Cn Cn + 1 Cn + 2

Figure 1. The desingularization diagram of the foliation.

coincides with the reduction of the foliation itself. More precisely, the map associated to the
desingularization of the separatrix ES :M → C2 also reduces the foliation FX . The corresponding
exceptional divisor D = E−1

S (0) consists of a chain of n+ 2 rational curves whose dual graph is
as in Figure 1.

The vertices of this graph correspond to the irreducible components of D. The weight of
each irreducible component equals its self-intersection. In turn, the edges correspond to the
intersection of two irreducible components whereas the arrow corresponds to the intersection
point of the (unique) component Cn+1 of self-intersection −1 with the transform S̃ of S. The
component Cn+1 contains three singular points s0, s1 and s2 where s0 is the point determined
by the intersection of Cn+1 with S̃. Finally s1 (respectively s2) is the intersection point of Cn+1

with Cn+2 (respectively Cn).
Denote by F̃ the transform of FX and note that the singular points of F̃ are the intersection

points of two consecutive components in the chain C1, . . . , Cn+2 along with the point s0. All
these singular points are simple in the sense that they possess two eigenvalues different from zero.
The corresponding eigenvalues can be precisely determined by using the weights of the various
components of the exceptional divisor. In particular, it follows that the holonomy associated
to the component Cn+2, i.e. the holonomy map associated to the regular leaf Cn+2\{s1} of F̃ ,
coincides with the identity since this leaf is simply connected. Therefore the germ of F̃ at
s1 admits a holomorphic first integral. Since the corresponding eigenvalues are 1, 2, we conclude
that the local holonomy map g associated to a small loop around s1 and contained in Cn+1, has
order equal to 2. A similar discussion applies to the component C1 and leads to the conclusion that
the local holonomy map f associated to a small loop around s2 and contained in Cn+1 has order
equal to 2n+ 1. Since Cn+1\{s0, s1, s2} is a regular leaf of F̃ , we conclude that the (image of the)
holonomy representation of the fundamental group of Cn+1\{s0, s1, s2} in Diff(C, 0) is nothing
but the group generated by f, g. Note that this conclusion depends only on the configuration
of the reduction tree which, in turn, is determined by some finite order jet of X. Hence, if
the coefficients of Taylor series of the vector field X are perturbed starting from a sufficiently
high order, the new resulting vector field X ′ will still give rise to a foliation whose singularity
is reduced by the same blow-up map associated to the divisor of Figure 1. In particular, the
holonomy representation of the fundamental group of Cn+1\{s0, s1, s2} in Diff(C, 0), obtained
from this new foliation, is still generated by two elements of Diff(C, 0) having finite orders
respectively equal to 2 and to 2n+ 1. Since every local diffeomorphism of finite order is conjugate
to the corresponding rotation, it follows that the mentioned perturbations are made inside the
conjugacy classes of f and g. This also justifies the fact that in Theorem A only perturbations
of local diffeomorphisms that do not alter the corresponding conjugation classes were allowed.

Conversely, given two local diffeomorphisms f, g of orders respectively 2, 2n+ 1, they can
be realized (up to simultaneous conjugation) as the holonomy of the corresponding component
Cn+1 for some local foliation FX (or F̃). This is done through a well-known gluing procedure
for which precise references will be provided later. Therefore, the set of all foliations FX , up to
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conjugation, can also be ‘parameterized’ by the pair of elements h−1
1 ◦ f ◦ h1 and h−1

2 ◦ g ◦ h2 for
some (h1, h2) ∈ (Diff(C, 0))2. In what follows this procedure will be refined in order to preserve
finite order jets .

We can now state a sharper version of Theorem B.

Theorem 5.1. Let X ∈ X(C2,0) be a vector field with an isolated singularity at the origin and
defining a germ of nilpotent foliation F of type A2n+1. Then, for each N ∈ N, there exists a
vector field X ′ ∈ X(C2,0) defining a germ of foliation F ′ and satisfying the following conditions:

(a) JN0 X
′ = JN0 X;

(b) F and F ′ have S as a common separatrix;

(c) There exists a fundamental system of open neighborhoods {Uj}j∈N of S, inside a closed ball
B̄(0, R), such that the following holds for every j ∈ N:

(c1) The leaves of the restriction of F ′ to Uj\S, F ′|(Uj\S) are simply connected except for
a countable number of them;

(c2) All leaves of F ′|(Uj\S) are incompressible, i.e. their fundamental groups inject in the
fundamental group of Uj\S;

(c3) The morphism π1(Uj\S, .)→ π1(B̄(0, R)\S, .) induced by the inclusion map is an
isomorphism.

The proof of the above theorem will follow from Theorem A combined to two specific lemmas.
However, before stating these lemmas, let us make the construction of the relevant holonomy
maps accurate.

Suppose we are given a nilpotent foliation F with separatrix S = {y2 − x2n+1} which is
defined by a vector field X = y∂/∂x+ · · · . Then fix a germ of (smooth) transverse section
(Σ, t0)' (C, 0) through a point t0 ∈ Cn+1, with t0 6∈ {s0, s1, s2}. Choose conformal open discs
Dk ⊂ Cn+1 containing sk and such that their closures Dk are pairwise disjoint, k = 0, 1, 2. The
next step consists of constructing two paths γ1, γ2 issued from t0, contained in

C∗n+1 = Cn+1\(D0 ∪D1 ∪D2)

and such that their homotopy classes generate the fundamental group of C∗n+1. To do this, let
us choose, for k = 1, 2, the following objects:

• a simple path θk going from t0 to a point θk(1) ∈ ∂D0, where ∂D0 stands for the boundary
of D0;

• a simple path σk going from θk(1) to some point in ∂Dk;

• a simple loop δk based at σk(1) and contained in ∂Dk.

All the above paths are chosen to be differentiable and such that their pairwise intersections are
contained in the corresponding endpoints (these choices are summarized by Figure 2). Finally
we set

γk = θ−1
k σ−1

k δkσkθk, k = 1, 2. (4)

Let ξ : T 7→ Cn+1 denote a locally trivial C∞-fibration whose fibers are discs, where T stands
for an open neighborhood of Cn+1. The main difficulty involved in deriving Theorem B from
Theorem A lies in the following issue: if µ is a loop contained in ξ−1(Cn+1) and in a leaf of
F̃ , a homotopy (ζt)t∈[0,1], contained in Cn+1 and beginning at ζ0 = ξ ◦ µ, may fail to lift (for
every value of the parameter) in a homotopy (µt)t∈[0,1], beginning at µ0 = µ and contained in
the corresponding leaf of F̃ .
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s1

t0

s2

s0

D0

Figure 2.

Now consider a fundamental system of neighborhoods {Uj}j for S satisfying properties (c2)
and (c3) of Theorem 5.1. Note that the existence of {Uj}j is guaranteed by the main theorem
in [MM08]. More precisely, Uj is nothing but the open set that was constructed in the proof
of the mentioned theorem. Apart from properties (c2) and (c3), the construction of the open
sets Uj ensures that they also satisfy certain additional conditions. To state these conditions,
we set Ũj = E−1

S (Uj)⊂M and denote by |γ1| (respectively |γ2|) the image of the path γ1

(respectively γ2). With this notation, we have the following.
(i) The intersection Ũj ∩ Σ is a closed conformal disc. Moreover f, g are defined and

holomorphic on a neighborhood of Ũj ∩ Σ and, in addition, for every p ∈ Ũj ∩ Σ, the
points p, f(p) (respectively p, g(p)) are the endpoints of a unique path λ1 (respectively
λ2) contained in L ∩ ξ−1(|γ1| ∪ |γ2|) and such that ξ ◦ λ1 = γ1 (respectively ξ ◦ λ2 = γ2),
where L denotes the leaf through p.

(ii) Every leaf of the restriction of F̃ to Ũj not contained in the total transform E−1
S (S) intersects

Σ.
(iii) Every loop based at a point in Ũj ∩ Σ and contained in a leaf L of the restriction of F̃ to

Ũj is homotopic inside L to a loop contained in ξ−1(|γ1| ∪ |γ2|).
(iv) Every loop µ contained in the intersection of ξ−1(|γ1| ∪ |γ2|) with a leaf L of the restriction

of F̃ to Ũj is homotopic inside L to a point provided that ξ ◦ µ is equivalent to γ2
1 or to

γ2n+1
2 .

Lemma 5.2. Let µ be a loop contained in the intersection of ξ−1(|γ1| ∪ |γ2|) with a leaf L of the
restriction of F̃ to Ũj . Then the following hold.

(1) If µ is not homotopic to a point inside L, then it is homotopic inside L to a loop µ̃
contained in ξ−1(|γ1| ∪ |γ2|) and such that ξ ◦ µ̃=W (γ1, γ2) where W (a, b) is a reduced word in
two letters in the sense of § 2.

(2) If ξ ◦ µ̃=W (γ1, γ2), where W (a, b) is a word as above, then the initial point of µ belongs
to the domain of definition Dom(W, Σ) of W (f, g) in the sense of pseudogroups introduced in
§ 4. Moreover this initial point is actually a fixed point of the element W (f, g) in question.

Proof. The loop µ⊂ ξ−1(|γ1| ∪ |γ2|) is a concatenation of paths µl, l = 1, . . . , m such that each
ξ(|µl|) is contained in the image |ζ| of a path ζ coinciding with one of the paths θi, σi, δi or with
their inverses (where as usual |µl| stands for the image of µl). Furthermore ξ(µl(0)) and ξ(µl(1))
are endpoints of ζ. It is then clear that each µl is homotopic, inside its own image |µl|, to a certain
(one-to-one) path µ′l verifying ξ ◦ µ′l = ζ so long as ξ(µl(0)) 6= ξ(µl(1)). Note that, in this case, ζ
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coincides with one of the paths θi, σi, θ−1
i , σ−1

i . In the case where ξ(µl(0)) = ξ(µl(1)), it follows
that µl is always homotopic to a constant except when ξ(|µl|) is contained in δi and ξ ◦ µl has
winding number around si equal to ±1. Therefore µ is homotopic to µ′ = µ′m ∗ · · · ∗ µ′1. Subject
to performing homotopies supported in |µ|, all successive concatenations of the form µl+1 ∗ µl
with µl+1 = µ−1

l can be eliminated from the previous expression. Similarly, all constant paths
µ′l can be eliminated as well. Having eliminated all these terms and performed the appropriate
re-groupings, we obtain a decomposition µ′ = νm ∗ · · · ∗ ν1 where each νi is a path contained in
|µ| and such that ξ ◦ νi coincides with either γa1 , γ

a
2 or with their inverses, where γa1 , γ

a
2 stand for

the ath-power of γ1, γ2, for certain a ∈ Z∗. Finally, by using property (iv), we perform all needed
homotopies in the leaf L to eliminate terms of the form ν2

i , with ξ ◦ νi = γ1, as well as terms of
the form ν2n+1

i with ξ ◦ νi = γ2. Continuing this procedure, we shall eventually obtain a loop µ̃
in L ∩ ξ−1(|γ1| ∪ |γ2|) homotopic inside L to µ and possessing a decomposition ξ ◦ µ̃=W (γ1, γ2)
such that W (γ1, γ2) verifies one of the following conditions: W (γ1, γ2) is empty, in which case
µ̃ is a constant loop, or W (γ1, γ2) is a reduced word (as in § 2) spelled out in two letters a, b.
The latter possibility, however, cannot occur since µ is not homotopic to a point inside L. This
establishes the first conclusion in the statement. In turn, the proof of the second conclusion
follows at once from properties (i) and (iv). The lemma is proved. 2

Next we have the following lemma.

Lemma 5.3 (Tangential realization). There is a constant K ∈ N such that, for every integer
r > 1 and every pair (h1, h2) ∈ (Diffr+K(Σ, t0))2 of diffeomorphisms tangent to the identity to
order r +K, the following holds: there exists a foliation F ′ whose separatrix is exactly the curve
S, which is defined by a nilpotent vector field X ′ satisfying the conditions below:

• Jr0X = Jr0X
′;

• the local diffeomorphisms arising as holonomy maps associated to the transform F̃ ′ = E∗SF ′
over the loops γ1 and γ2 are given by h−1

1 ◦ f ◦ h1 and h−1
2 ◦ g ◦ h2.

Proof. The proof relies on the techniques developed in [MS04] and, more precisely, in
Theorem (2.3.7) and Theorem (6.2.2) which also appear, in conditions similar to those used
here, in [LeF98]. We shall only provide the corresponding main steps.

Consider a divisor D in a manifold M and suppose that D contains at most nodal singular
points. Two holomorphic foliations G and G′ defined on an open set Ω of M are said to be
r-tangent over the divisor D if, for every point p ∈ Ω ∩ D, they can be represented locally by
respective vector fields Y and Y ′ having isolated singularities and such that the following holds:
in suitable local coordinates (z1, z2) the divisor D is given by u= 0 where u is either z1 or z1z2.
Furthermore, the vector field Y ′ − Y must take on the form ur+1Y ′′, where Y ′′ is holomorphic.
The following is well-known:

(∗) there exists K1 ∈ N such that whenever the transforms E∗SG′ and E∗SG′′ of two germs G′
and G′′ of nilpotent foliations at (0, 0) ∈ C2 are (r +K1)-tangent over D, then the initial
foliations G′ and G′′ are defined by 1-forms sharing the same r-jet at the origin.

On the other hand, fix a simple loop δ0 going around s0 exactly once, i.e. with winding number
around s0 equal to ±1, and based at t′0 ∈ Cn+1, ‘near to s0’. The loop δ0 can be thought to be the
boundary of D0. Then choose a path β starting at t0 and ending at t′0. Assuming δ0 to be ∂D0,
then β may be supposed to be contained in C∗n+1. Subject to reversing the orientation of δ0,
there is no loss of generality in assuming that the loop γ0 = β−1 ∗ δ0 ∗ β is homotopic in C∗n+1
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to γ2 ∗ γ1. Also let a local transverse section (Σ′, t′0) through t′0 be fixed. We shall then proceed
as follows. Consider a covering Λ of D constituted by the following open sets.

(a) The ‘large open sets’ Uj , j = 1, . . . , n+ 2, whose closures Uj are equal to Cj , that are
the connected components of the complement of the singular set of F̃ in D.

(b) The ‘small open sets’ Us, where s is in natural correspondence with the singularities of
F̃ on D, obtained by intersecting D with open balls Ωs ⊂M about s. These balls are chosen to
be small enough to ensure that their closures are pairwise disjoint.

Let us fix K ∈ N.

Step 1 (Realization over the punctured divisor). Over an open neighborhood Ξn+1 of Un+1,
we construct a holomorphic foliation Hn+1, (r +K − 1)-tangent to F̃ over Un+1 and
whose holonomy diffeomorphisms f̃ , g̃ : (Σ, t0)→ (Σ, t0) induced by the loops γ1, γ2 coincide
respectively with h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2.

Step 2 (Realization at s0). On the open ball Ωs0 , the results of [MR83] allow us to construct
a (reduced) holomorphic foliation Hs0 having an isolated singularity at s0 and satisfying the
conditions below:

(c) Hs0 is (r +K − 1)-tangent to F̃ , and hence to Hn+1, at every point of Un+1 ∩ Us0 ;

(d) the local holonomy diffeomorphisms H0, F0 : (Σ′, t′0)→ (Σ′, t′0) induced by the loop δ0 for
respectively Hs0 and F̃ are conjugate, H0 = h

−1
0 ◦ F0 ◦ h0 by a diffeomorphism h0 tangent to the

identity to order r +K at the origin.

Step 3 (Gluing procedure). Consider the intersections Un+1 ∩ Usk
, k = 1, 2. Over these

intersections the foliations F̃ and Hn+1 are conjugate by a germ Φn+1,sk
of automorphism

of (M, Un+1 ∩ Usk
), i.e. Φ∗n+1,sk

F =Hn+1. On Un+1 ∩ Us0 the foliations Hs0 and Hn+1 are
also conjugate by a germ Φn+1,s0 of automorphism i.e. Φ∗n+1,s0Hs0 =Hn+1. In addition, the
conjugating automorphisms Φn+1,sk

, k = 0, 1, 2 are all tangent to the identity to order r +K − 1
at every point of Un+1 ∩ Usk

, k = 0, 1, 2. They define a Čech cocycle on a suitable sheaf. Denote
by Gv, v > 1, the sheaf of groups with base D such that Gv(U), U ⊂D, is the group of germs of
holomorphic diffeomorphisms defined on open neighborhoods Ω⊂M of U which, furthermore,
are tangent to the identity to order v at every point of D. Finally if, for m 6= n+ 1 and s
being a singular point of F̃ on Cm, we let Φm,s to be the identity, then we obtain a 1-cocycle
Φ = (Φn,s) ∈ Z1(Λ,Gr+K−1). However, there is an integer K2 > 0 such that, for every v ∈ N, the
natural map between non-commutative Čech cohomologies

H1(Λ; Gv+K2)−→H1(Λ; Gv)

is a constant equal to the cocycle constituted by the identity maps. This fact is a version (without
parameters) of the ‘Théorème de détermination finie (1.4.8)’ in [MS04]. For K >K1 +K2,
this result applied to the cohomology class of Φ yields germs of holomorphic automorphisms
Φ% : (M, U%)→ (M, U%), (r +K1)-tangent to the identity over D, such that Φ%1,%2 = Φ%1 ◦ Φ−1

%2
,

and where % ∈ {1, . . . , n+ 2} ∪ Sing(F̃). Therefore over the intersections U%1 ∩ U%1 6= ∅, we have

Φ∗n+1Hn+1 = Φ∗s1F̃ , Φ∗n+1Hn+1 = Φ∗s2F̃ , Φ∗n+1Hn+1 = Φ∗s0Hs0 ,
Φ∗j F̃ = Φ∗sF̃ for j 6= n+ 1 and s ∈ Cj ∩ Sing(F̃).

The foliations Φ∗j F̃ with j 6= n+ 1, Φ∗n+1Hn+1, Φ∗si
F̃ with i 6= 0 and Φ∗s0Hs0 can then be glued

together. This gluing yields a global foliation F̃ ′ defined on a neighborhood of D which, by
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construction, is (r +K1)-tangent to the foliation F̃ . Naturally F̃ ′ is the pull-back by ES of a
foliation F ′ defined about (0, 0) ∈ C2. In turn, condition (∗) ensures that the latter foliation is
tangent to F to order r. The lemma is proved. 2

Proof of Theorem 5.1. We shall keep the preceding notation. In particular S = {y2 − x2n+1 = 0}
is the (unique) separatrix of the foliation F . Similarly f, g denote the holonomy maps associated
to the foliation F̃ = E∗sF over the manifold M arising from the desingularization of S. Finally
r and K will stand for certain integers to be chosen later on. Thanks to Theorem A, there is a
pair (h1, h2) ∈ (Diffr+K(C, 0))2 such that, on every sufficiently small neighborhood V ⊂ Σ of t0,
the map W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) : Dom(V, W )→ Σ has only isolated fixed points, provided

that W (a, b) is a reduced word as in § 2. Subject to choosing K sufficiently large, Lemma 5.3
yields a nilpotent foliation F ′ having S as separatrix and such that the holonomy maps
associated to its transform F̃ ′ = E∗SF ′ over the loops γ1, γ2 are given by the local diffeomorphisms
f̃ = h−1

1 ◦ f ◦ h1, g̃ = h−1
2 ◦ g ◦ h2, respectively. Besides, the vector field X ′ defining F ′ has the

same r-jet as X at the origin.
Now let the fundamental system {Uj}j be chosen by applying to F ′ the main result in [MM08].

Also consider the statement of Lemma 5.2 applied to F ′. Thus all the points in Σ ∩ Uj that
happen to be the base point of a loop contained in a leaf L of the restriction F ′|Uj

of F ′ to
Uj that is not homotopic to a point inside L are necessarily fixed by one application of the
form W (h−1

1 ◦ f ◦ h1, h
−1
2 ◦ g ◦ h2) : Dom(Σ ∩ Un, w)→ Σ, where W (a, b) is a suitable reduced

word. The set formed by all fixed points of this application is countable since Theorem A asserts
that each of these fixed points is isolated. Since the set of possible (reduced) words W (a, b)
is countable as well, it follows that only countably many non-simply connected leaves of F ′|Uj

may intersect Σ. Nonetheless every leaf of F ′|Uj
intersects Σ thanks to property (ii) of Uj above.

Therefore property (iii) allows us to conclude the statement. 2
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