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Abstract It is universally agreed that efforts to improve quality benefit from the analysis of outcomes. Yet, it is
challenging to compare results across institutions because factors other than performance also impact outcomes. Two
factors that complicate the analysis of outcomes after congenital cardiac surgery are case-mix and random statistical
variation. Case-mix refers to differences in the mix of patients and their risk-factors at different institutions that may
cause some centres to have more frequent complications and lower survival regardless of their true performance.
Random statistical variation refers to fluctuations in outcomes that occur at random and follow the laws of proba-
bility. A variety of statistical methods exist to address these issues and make provider comparisons more fair. We
explain a few common approaches including stratification, regression analysis, and confidence intervals. Concepts are
illustrated using artificial data from two hypothetical hospitals, as well as real data from a multi-institution registry.
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T
HIS ARTICLE INTRODUCES READERS TO METHODO-

logical issues that complicate reporting of
outcomes for congenital cardiac surgery. Issues

include the need for adjustment for case-mix,
uncertainty due to the small size of samples, and
methods of summarizing performance across a wide
spectrum of procedures. Concepts are illustrated using
artificial data from two hypothetical hospitals, as well
as real data from a multi-institutional registry.

Background

It is widely recognized that performance in healthcare
is reflected in the outcomes experienced by patients.
Whether surgical patients have a successful outcome
or die following their procedure is at least partly a
result of the care they receive during the operation and
throughout their stay in the hospital. By analyzing the

collective outcomes of a group of patients, it is often
possible to gain insight regarding the quality of care
provided to them. The analysis of outcomes can
identify gaps in quality, focus resources for initiatives
to improve quality, and serve as a basis for comparing
institutions.

Although the analysis of outcomes can provide
information about performance in healthcare, it is
inherently challenging to compare outcomes across
institutions because factors other than performance
can impact these results. Factors such as the case-
mix of patients and random statistical variation can
cause perturbations that obscure a centre’s true
performance. Failure to account for these contribut-
ing factors can lead to spurious inferences when
comparing different providers.

Case-mix

While many hospitals perform congenital cardiac
surgery, not all perform the same types of operations.
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Hospitals with many high-risk or complex operations
(such as the Norwood Stage 1 operation) may have
higher rates of mortality than hospitals with a greater
proportion of relatively low-risk procedures (such as
closure of an interatrial communication within the
oval fossa, in other words, repair of a secundum atrial
septal defect). Furthermore, even for the same diag-
nosis, different patients can differ in their presentation
and risk-factors. Hospitals that perform surgery on
patients with more severe disease and/or comorbidities
may have more frequent complications compared
to hospitals that perform the same operations in
comparatively healthier patients.

Hypothetical example: Hospital A Versus Hospital B

To illustrate these issues, consider the data on in-
hospital mortality for congenital cardiac operations
performed by two hypothetical hospitals presented in
Table 1 below. Although each hospital treated the
same number of patients, ‘‘Hospital A’’ experienced 68
deaths (6.8% mortality) while ‘‘Hospital B’’ experi-
enced 36 deaths (3.6% mortality). On the surface,
these data may seem to suggest that Hospital B has
better performance than Hospital A. However, before
drawing any conclusions, it is important to investigate
whether the observed difference in rates of mortality
might be explained by differences in the case-mix of
the patients.

In Table 2 below, we report the data from Table 1
separately for three groups of patients: neonates
(age , 30 days); infants (age 1 to 11 months); and
children (age 1 to 17 years). In each age group,
Hospital B had a higher rate of mortality than
Hospital A; a larger percentage of patients died in-
hospital. Yet, paradoxically, when the three age
groups are combined, Hospital B has the lower
overall rate of mortality (3.6% versus 6.8%, Table 1).

The paradox is resolved by observing that Hospital
A performed four times as many operations on
neonates (a group with relatively high mortality)
compared to Hospital B, and half as many operations
on older children (a group with relatively low
mortality). The overall mortality percentage is
misleading because it does not account for the fact
that Hospital A performed surgery on riskier patients.

Methods of adjusting for case-mix:
stratification

Stratification is a method of analysis in which patients
at each hospital are divided into relatively homo-
geneous groups called ‘‘strata’’. Comparisons between
hospitals are then made separately within each
‘‘stratum’’. The goal is to ensure that comparisons
between different centres are always performed on
comparable patients. If patients within a stratum have
a similar risk of adverse outcomes, then patients in
the same stratum at different hospitals should be
comparable and the comparison of outcomes valid.

The mechanics of stratification are similar to the
analysis that was described in the discussion of
Tables 1 and 2 above. Data were stratified into three
age groups. By comparing patients within the same
age group, a different picture of performance
emerged than if we ignored age and simply assessed
performance based on all ages combined.

Although stratification is simple to explain and
interpret, important issues limit its ability to adjust
for case-mix. First, the categorization of continuous
variables (such as age) is arbitrary. If only a few broad
categories are used, individuals with very different risk
may be placed in the same category, resulting in bias.
This problem can be avoided by making a greater
number of more narrow categories, but there may be
too few patients available within any single category
to reliably estimate performance. Second, stratification
can only adjust for a small number of confounding
variables. If we attempt to group patients based on the
combination of several variables (such as age, weight,
gender, and diagnosis), this strategy would require a
large number of strata; the size of the sample within
any single stratum is likely to be small. Finally, it is

Table 1. Rates of mortality for two hypothetical hospitals.

Hospital
Number of
patients

Number of
deaths

Mortality
rate

Hospital A 1000 68 6.8%
Hospital B 1000 36 3.6%

Table 2. Rates of mortality within age subgroups for two hypothetical hospitals.

Age subgroup Hospital Number of patients Number of deaths Mortality rate

Neonates Hospital A 400 56 14.0%
Hospital B 100 15 15.0%

Infants Hospital A 300 9 3.0%
Hospital B 300 12 4.0%

Children Hospital A 300 3 1.0%
Hospital B 600 9 1.5%
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important to note that stratification only controls for
differences in the variables that were used to create
the strata (age, in the example above). Differences
between hospitals may reflect confounding due to
other risk-factors.

Methods of adjusting for case-mix: direct
standardization

Although it is useful to compare outcomes of similar
patients, analyzing each stratum separately can be
unwieldy when the number of strata is large. One way
to simplify reporting is to calculate the stratum-
adjusted standardized rate of mortality. This statistic
combines multiple individual stratum-specific esti-
mates into a single number. The standardized rate of
mortality has the following interpretation: it is the rate
of mortality that would be observed at a hospital if all
of the hospital’s stratum-specific rates of mortality
remained the same but the proportion of patients in
each stratum was altered to reflect a ‘‘standard’’ case-
mix in some reference population. A standard case-mix
can be defined in many ways; a common approach is to
pool data across several hospitals and use the totals in
each stratum in the pooled sample.

Example: using a national registry as the reference
population

In this example, the ‘‘standard’’ case-mix is based on
all patients who underwent surgery during the time
period 1998–2006 at the 59 hospitals participating
in The Society of Thoracic Surgeons Congenital
Heart Surgery Database. Standardized rates of
mortality are calculated for hypothetical Hospitals
A and B using the stratum-specific data about
mortality from Table 2.

Direct standardization shows what each hospital’s
outcomes would be if they performed surgery on
the entire population in the database while their
stratum-specific rates of mortality remained the same.
As can be seen in Table 3, Hospital A would have

2,083 deaths in neonates, 588 deaths in infants, and
260 deaths in children. In total, they would experience
2,931 deaths in 60,494 patients, for a rate of mortality
of 4.8%. This percentage is the standardized rate of
mortality for Hospital A. Similar calculations show
that Hospital B would experience 3,406 total
deaths for a rate of mortality of 5.6%. Compared to
Hospital B, Hospital A has a higher unadjusted rate
of mortality (6.8% versus 3.6%; Table 1), but a
lower adjusted rate of mortality (4.8% versus 5.6%;
Table 3). Thus, Hospital A has better overall mortality
when differences in age are taken into consideration.

Because direct standardization relies on stratified
data, limitations of this method are the same as
those for stratification: categorization of continuous
variables is arbitrary; only a small number of
confounding variables can be adjusted for; and this
technique only controls for differences in the
variables used to create the strata.

Methods of adjusting for case-mix: regression
analysis

Regression analysis is commonly used instead of strati-
fication or direct standardization when it is necessary
to adjust for several confounder variables simulta-
neously. The goal of regression modelling is to develop
a mathematical equation that predicts an individual
patient’s risk of experiencing an event, such as
mortality, based on clinically relevant variables, such
as age, weight, and cardiac diagnosis. The choice of
clinically relevant variables may be based on judgment
or may be determined empirically from a large data
set. Key differences between stratification and regres-
sion analysis are summarized in Table 4.

There are different ways of using regression
analysis to adjust for confounding when comparing
outcomes across different hospitals. One common
method, called indirect standardization, involves
calculating a predicted probability of the outcome
for each patient within a hospital, summing these

Table 3. Standardized rates of mortality for two hypothetical hospitals, calculated using the Method of Direct Standardization.

Observed
mortality rate

Number of patients in
reference population

Projected number of deaths if hospital
treated reference population

Standardized
mortality rate

Hospital A
Neonates 14.0% 14,877 2,083 (514.0% 3 14,877)
Infants 3.0% 19,595 588 (53.0% 3 19,595)
Children 1.0% 26,022 260 (51.0% 3 26,022)
Total 6.8% 60,494 2,931 2,931/60,494 5 4.8%

Hospital B
Neonates 15.0% 14,877 2,232 (515.0% 3 14,877)
Infants 4.0% 19,595 784 (54.0% 3 19,595)
Children 1.5% 26,022 390 (51.5% 3 26,022)
Total 3.6% 60,494 3,406 3,406/60,494 5 5.6%
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probabilities to determine the hospital’s expected
number of outcomes, and finally comparing the
observed number of outcomes to the expected number.
The ratio of the observed to expected numbers of
outcomes is often called the ‘‘observed-to-expected
ratio’’, and is commonly termed the ‘‘O/E ratio’’. This
ratio is calculated with the following formula:

Observed-to-expected ratio

¼ Observed number of outcomes=

Expected number of outcomes:

Observed-to-expected ratios are frequently used
for analysing mortality. If a hospital’s observed-
to-expected ratio for mortality is significantly greater
than 1, this implies that its rate of mortality is worse
than would be expected given its case-mix. If the
observed-to-expected ratio for mortality is signifi-
cantly less than 1, this implies that the hospital’s rate
of mortality is better than expected given its case-mix.
For presentation purposes, observed-to-expected ratios
are sometimes converted into standardized rates of
mortality. Standardized rates of mortality have the
same interpretation as described in the section on
direct standardization. The following formula is used:

Standardized mortality rate

¼ Observed-to-Expected Ratio�Overall

mortality rate for all hospitals

being compared:

Because regression analysis can adjust for multiple
confounder variables simultaneously, it is frequently
used in fields such as adult cardiac surgery that have a
large number of well-established risk-factors. For
example, The Society of Thoracic Surgeons uses
regression analysis to calculate observed-to-expected
ratios, standardized rates of mortality, and other
measures of performance for hospitals participating in
The Society of Thoracic Surgeons National Adult
Cardiac Database.1

Unlike stratification, regression analysis requires
making simplifying assumptions in order to
determine the relationship between clinical factors
and patient-risk. For example, continuous variables
are often assumed to have a linear relationship with

the outcome being analyzed. Such assumptions are
difficult to verify in practice. Also, most regression
analyses produce only a single statistic summarizing
a hospital’s overall outcomes. However, due to the
wide spectrum of procedures performed, a single
overall summary may not always be informative.
Good outcomes in low-complexity procedures can
mask relatively poor outcomes in high-complexity
procedures, and vice versa. Finally, like stratifica-
tion, regression analysis only adjusts for risk-factors
that are explicitly included in the model. Observed
differences in outcomes might still be explained by
factors that were either not measured or not
included in the regression analysis.

Specialized case-mix adjustment methods for
congenital cardiac surgery

Congenital cardiac defects are characterized by
substantial anatomic diversity. Although certain
diagnoses are encountered relatively frequently, varia-
tions on the ‘‘typical’’ anatomy are commonplace. To
overcome this difficulty, methods of risk-adjustment
have been developed to allow comparisons across an
institution’s entire case-mix.

The Aristotle complexity adjustment method

In 2004, Lacour-Gayet and colleagues2 proposed
that an institution’s performance can be expressed as
a function of two quantities:

> the institution’s rate of mortality, and
> the average complexity of the cases performed.

In order to quantify ‘‘complexity’’, the investiga-
tors convened an expert panel of surgeons from 23
countries. The panel considered 145 congenital
procedures and scored each one on three dimensions:

> potential for mortality,
> potential for morbidity, and
> technical difficulty.

The sum of these three components is called the
‘‘Aristotle Basic Complexity Score’’. The Aristotle
Basic Complexity Score ranges from 0.5 to 15
with larger numbers implying higher complexity.
Examples of procedures and their associated Aristotle
Basic Complexity Scores are shown in Table 5,

Table 4. Differences between Stratification and Regression Analysis.

Stratification Regression Analysis

Results are simple to calculate and interpret Interpretation is more complicated
No assumptions Requires assumptions; May be difficult to verify them
Can produce a single summary measure or separate estimates for each stratum Produces a single summary measure
Can only adjust for a small number of confounder variables Useful when there are many confounder variables
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column A. The Aristotle Basic Complexity Score
reflects the baseline complexity of a procedure and
does not adjust for patient-specific factors such as
age and comorbidities. In addition to the ‘‘Basic
Score’’, the investigators also proposed the ‘‘Aris-
totle Comprehensive Complexity Score’’, which
accounts for over 100 patient risk-factors and
concomitant procedures. Beyond quantifying com-
plexity, Lacour-Gayet and colleagues also proposed a
mathematical formula for combining an institu-
tion’s rate of mortality and average complexity of
cases into an overall summary of performance.

Although Lacour-Gayet and colleagues proposed a
novel mathematical formula to determine perfor-
mance, Aristotle scores can also be incorporated into
widely used traditional methods of adjustment for
case-mix, such as stratification and regression analysis.
For example, The Society of Thoracic Surgeons
Congenital Heart Surgery Database produces annual
feedback reports for database participants in which
procedures are stratified by grouping on the Aristotle
Basic Complexity Score. When used as a stratification
variable, the Aristotle Basic Complexity Score is often
grouped into four standard categories which are
known as the ‘‘Aristotle Basic Complexity Levels’’, as
shown in Table 5, column B.

The Risk Adjustment for Congenital Heart Surgery
(RACHS-1) method

The Risk Adjustment for Congenital Heart Surgery
Method, which has been named the ‘‘RACHS-1’’
method, allows patients with a wide array of defects
to be grouped together for analysis.3,4 More than
100 types of surgical procedures are grouped into
one of six risk categories based on a similar risk for
in-hospital death, where category 1 has the lowest
risk for death and category 6 the highest. Some
examples are shown in Table 5. This grouping of
cardiac surgical procedures simplifies the analysis of
anatomically diverse cases.

To derive the RACHS-1 risk categories, Jenkins
and colleagues convened an 11-member expert panel

consisting of pediatric cardiologists and cardiac
surgeons.4 Experts initially used clinical judgment
to assign procedures to risk categories. This allocation
of procedures was subsequently refined using empiri-
cal data from two multi-institution registries.

To perform institutional comparisons, Jenkins
and colleagues propose two methods:3

> stratification based on RACHS-1 risk categories;
and

> regression analysis using RACHS-1 categories as
explanatory variables along with three additional
clinical factors: age at operation, prematurity,
and presence of major non-cardiac structural
anomalies.

Procedures during which more than one opera-
tion is performed simultaneously are placed in the
risk category of the highest risk procedure, and an
additional correction factor for multiple procedures
is included in the regression model.

Chance variation

It is commonly known that rates of mortality have
limited precision when the size of the sample is
small. Yet, even with a moderate size of the sample,
rates of mortality are still less reliable than is often
realized. To illustrate, consider rolling a pair of dice
and counting how often both dice show the number
‘‘1’’. Mathematically, this will occur with prob-
ability of 2.8%. However, in a finite number of
rolls, say 100, it would not be unusual to observe as
many as five occurrences of a pair of 1 s (5/
100 5 5%) or as few as zero (0/100 5 0%). To put
this into context, the probability of in-hospital
mortality after congenital cardiac surgery is about
3.8%. Due to random sampling variation, even if
the probability of mortality for a particular hospital
is 1% less than the national average (that is 2.8%,
the same probability that both dice show the
number ‘‘1’’), it would not be unusual for the actual
observed rate of mortality of this hospital to exceed
the national average. In fact, if the hospital operates

Table 5. Examples of congenital cardiac surgery procedures classified by Aristotle Basic Complexity Score, Aristotle Basic Complexity
Level, and Risk Adjustment for Congenital Heart Surgery-1 Risk Category.

(A) Aristotle Basic
Complexity Score

(B) Aristotle Basic
Complexity Level

(C) ‘‘RACHS-1’’ Risk
Category

Patent arterial duct closure, Surgical 3.0 1 1
Atrial septal defect repair – Patch 3.0 1 1
Ventricular septal defect repair – Patch 6.0 2 2
Tetralogy of Fallot repair – Ventriculotomy,

Transanular patch
8.0 3 2

Norwood (Stage 1) operation 14.5 4 6

Note: ‘‘RACHS-1’’ denotes the ‘‘Risk Adjustment for Congenital Heart Surgery’’ risk stratification system.
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on 100 patients, there is a 30% chance that its
actual calculated rate of mortality will exceed the
national average of 3.8%. If the institution treats
200 patients, there is still a 19% chance that its
actual calculated rate of mortality will exceed the
national average. This actual rate of mortality would
not be a reflection of poor quality, but simply the
play of sampling variability or chance.

Methods of accounting for chance variation:
confidence intervals

A confidence interval is a range of numbers that is
likely to include the true value of the quantity
being estimated, such as a rate of mortality. For
instance, it is impossible to know the true value
of a hospital’s underlying rate of mortality due to
sampling variability; there is always some degree
of error in measurement involved. A confidence
interval indicates the likely magnitude of this
variability or error in measurement.

The likelihood that the true value of a parameter is
contained within any particular interval depends in
part on the width of the interval. In general, one can
be relatively confident that the true value lies in an
extremely wide interval, and less confident that it lies
in a narrow interval. Confidence intervals are typically
made wide enough to ensure that they will have a
specified probability of including the true value of the
population. A 95% confidence interval has the
property that it will include the true value of the
parameter about 95% of the time. Similarly, a 99%
confidence interval will include the true value about
99% of the time. By definition, a 99% confidence
interval is wider than a 95% confidence interval.

The width of a confidence interval is also directly
related to the size of the sample. As the number of
patients increases, the estimated rate of mortality
becomes more precise; equivalently, we can be
confident that the true value is contained within a

shorter interval. For example, if 1 death occurs in 10
patients, the estimated rate of mortality is 10% and
the 95% confidence interval extends from 0.3% to
44.5%. If 10 deaths occur in 100 patients, the
estimated rate of mortality is still 10% but the 95%
confidence interval is narrower, extending from
4.7% to 17.6%.

Example: analyzing rates of mortality in The Society
of Thoracic Surgeons Congenital Heart Surgery
Database

To illustrate the combination of adjustment for
case-mix, and confidence intervals, we analyzed in-
hospital mortality among 28,140 pediatric surgical
cases at 48 hospitals participating in The Society of
Thoracic Surgeons Congenital Heart Surgery Data-
base during 2002–2006. Results are reported for
three selected hospitals.

Table 6 column A shows unadjusted rates of
mortality for the three hospitals as well as the
combined rate of mortality for all 48 hospitals. The
rate of mortality is greater than the overall average
in the database for Hospitals A and C, and less than
the overall average in the database for Hospital B. For
Hospital A, the 95% confidence interval for the
unadjusted rate of mortality extends from 2.7% to
5.3%. Since the confidence interval includes the
overall average rate in the database of 3.7%, the
hospital’s rate of mortality is not statistically different
from average. In other words, the excess mortality
might easily be explained by chance variation or
sampling variability. For Hospital B, the upper limit
of the 95% confidence interval, 3.1%, is less than the
overall average value in the database. This implies that
Hospital B’s rate of mortality is statistically lower than
the average in the database. Finally, for Hospital C, the
lower limit of the 95% confidence interval lies above
the average in the database value, indicating that the
excess mortality observed in this hospital is statistically
significant and not likely to occur by chance alone.

Table 6. Unadjusted and adjusted rates of mortality for three selected hospitals in The Society of Thoracic Surgeons Congenital Heart
Surgery Database.

(A) (B) (C)

Unadjusted Adjusted for Aristotle Level
Adjusted for Aristotle Level
1 Additional Risk Factors

Hospital Mortality % 95% CI Mortality % 95% CI Mortality % 95% CI

A 3.8% 2.7%–5.3% 3.9% 2.7%–5.1% 4.0% 2.8%–5.2%
B 1.5% 0.6%–3.1% 1.5% 0.0%–3.2% 1.4% 0.0%–3.0%
C 7.2% 4.0%–11.8% 6.9% 4.3%–9.4% 5.9% 3.6%–8.2%

Benchmark: Overall rate of mortality in database population (n 5 28,140)
3.7% – 3.7% – 3.7% –
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Table 6 column B presents standardized (risk-
adjusted) rates of mortality calculated by stratifying
patients into four groups based on the Aristotle
Basic Complexity Score. Results for the three
selected hospitals are similar to the unadjusted
results. The rate of mortality for Hospital A is not
statistically different from average. For Hospitals B
and C, the 95% confidence intervals still exclude
the average rate of mortality in the database. Thus,
the observed differences in mortality at these
hospitals – where B is below average and C is
above average – are not explained by variation in the
complexity of the case-mix as captured by the
Aristotle Basic Complexity Levels alone.

Table 6 column C presents standardized (risk-
adjusted) rates of mortality calculated using regression
analysis. The statistical model adjusts for Aristotle
category plus three additional risk-factors: age group
(neonate; infant; child); presence of preoperative
ventilatory support (yes/no); and preoperative stay in
the hospital greater than 2 days (yes/no). After this
adjustment for case-mix, the 95% confidence intervals
for both Hospitals A and C include the average value
in the database. For Hospital B, however, the upper
limit of the 95% confidence interval still lies below
the average value in the database. Hence, strong
evidence exists that Hospital B’s true risk-adjusted
rate of mortality is lower than the average in the
database. In other words, Hospital B’s rate of mortality
is better than would be expected given its case-mix.

Summary

The assessment of outcome and performance is an
integral part of efforts to improve quality, yet such

assessments need to be interpreted cautiously. Case-
mix and sampling variation can both have a large
impact on outcomes, and should both be considered
as possible explanations whenever outcomes differ
between hospitals. An understanding of statistical
tools including risk-adjustment and confidence
intervals will help users to correctly interpret
measures of performance and avoid pitfalls when
making comparisons between providers.
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