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Abstract

An iterated perturbed random walk is a sequence of point processes defined by the birth
times of individuals in subsequent generations of a general branching process provided
that the birth times of the first generation individuals are given by a perturbed random
walk. We prove counterparts of the classical renewal-theoretic results (the elementary
renewal theorem, Blackwell’s theorem, and the key renewal theorem) for the number

of jth-generation individuals with birth times ≤ t, when j, t → ∞ and j(t) = o
(

t2/3
)

.

According to our terminology, such generations form a subset of the set of intermediate
generations.
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1. Introduction

Let (ξi, ηi)i∈N be independent copies of a random vector (ξ, η) with arbitrarily dependent
and almost surely (a.s.) strictly positive components. Let S := (Si)i≥0 denote the zero-delayed
random walk with increments ξi for i ∈N, that is, S0 := 0 and Si := ξ1 + · · · + ξi for i ∈N.
Define

Ti := Si−1 + ηi, i ∈N.

The sequence T := (Ti)i∈N is called a perturbed random walk (PRW for short).
Classical renewal theory is an area of applied probability dealing with non-decreasing

random walks S and various derived processes such as the following.

• The renewal process (R(t))t≥0 defined by

R(t) :=
∑
i≥1

1{Si≤t}, t ≥ 0.
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FIGURE 1. A general branching process generated by T . Superscripts indicate generation numbers. The
shifts of birth times of the second generation individuals with respect to their mothers’ birth times are
distributed according to independent copies of T . For instance, T(2)

7 − T(1)
2 , T(2)

9 − T(1)
2 , and T(2)

8 − T(1)
2

are distributed as the first three smallest elements of T . Note that, in general, T = (Tk)k∈N is not monotone
due to the perturbations. For example, T2 > T3 because η2 > ξ2 + η3.

• The first passage time process (ν(t))t≥0 defined by

ν(t) := inf{i ∈N : Si > t}, t ≥ 0. (1.1)

• The undershoot t − Sν(t)−1, the overshoot Sν(t) − t, and others.

A good overview of renewal theory can be found in [2], [12], and [25] and the more recent
accounts [14] and [20]. A survey of various results for PRWs T (with not necessarily positive
ξ and η) and, in particular, counterparts of some renewal-theoretic results can be found in the
book [14]. An incomplete list of more recent papers addressing various aspects of the PRWs
includes [1], [9], [17], [22], [23], and [24].

We proceed by recalling the construction of a general branching process (a.k.a. a Crump–
Mode–Jagers branching process) in the special case in which it is generated by T . At time 0
there is one individual, the ancestor. The ancestor produces offspring (the first generation) with
birth times given by the points of T . The first generation produces second-generation individu-
als. The shifts of birth times of the second generation individuals with respect to their mothers’
birth times are distributed according to copies of T , and for different mothers these copies
are independent. The second generation produces the third one, and so on. All individuals act
independently of each other. See Figure 1 for an illustration.

Clearly the random sequence T (j) defined by the birth times in the jth generation of the
process (j ≥ 2) is much more complicated than the perturbed random walk T (1) = T defining
the birth times in the first generation. It is natural to call (T (j))j≥2 an iterated perturbed random
walk on a general branching process tree. If η = ξ a.s., in which case T = S a.s., the term
iterated random walk on a general branching process tree may be used for the corresponding
sequence (S(j))j≥2. This should not be confused with iterated renewal processes treated in [27].
In this paper we initiate a systematic study of T (j) for j ≥ 2 and its derived processes, our
primary purpose being to obtain counterparts of the classical renewal-theoretic results.

Now we introduce notation to be used throughout the paper. Put N(t) := ∑
i≥1 1{Ti≤t} and

V(t) := EN(t) for t ∈R. As usual, we shall write x+ for max (x, 0). Since ηi is independent of
Si−1, it is clear that

V(t) =EU((t − η)+) = (U ∗ G)(t) =
∫

[0, t]
U(t − y) dG(y), t ≥ 0. (1.2)
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where, for t ∈R, U(t) := Eν(t) = ∑
i≥0 P{Si ≤ t} is the renewal function and G(t) = P{η ≤ t}.

Note that U(t) = V(t) = G(t) = 0 for t < 0. Here and in what follows, we let u ∗ v denote the
Lebesgue–Stieltjes convolution of two functions u and v of locally bounded variation. We also
use the notation u∗(j), j ∈N, for the jth convolution power of u.

For t ≥ 0 and j ∈N, we let Nj(t) denote the number of jth-generation individuals with birth
times ≤ t and put Vj(t) := ENj(t). Then N1(t) = N(t), V1(t) = V(t) and

Vj(t) = (Vj−1 ∗ V)(t) =
∫

[0, t]
Vj−1(t − y) dV(y), j ≥ 2, t ≥ 0.

For example, in Figure 1 we have N1(t) = N(t) = 3 and N2(t) = 7. For r ∈N, let N(r)
j−1(t) be the

number of successors in the jth generation with birth times within [Tr, t + Tr] of the first gen-
eration individual with birth time Tr. By the branching property,

(
N(1)

j−1(t)
)

t≥0,
(
N(2)

j−1(t)
)

t≥0, . . .

are independent copies of Nj−1 that are also independent of T . The basic decomposition that
sheds light on the properties of Nj := (Nj(t))t≥0 and also demonstrates its recursive structure is

Nj(t) =
∑
r≥1

N(r)
j−1(t − Tr)1{Tr≤t}, j ≥ 2, t ≥ 0.

Further, let T (j−1) := (
T (j−1)

r
)

r≥1 be some enumeration of birth times in the (j − 1)th gen-
eration; let N(r)

1,j(t) be the number of children in the jth generation with birth times within[
T (j−1)

r , t + T (j−1)
r

]
of the (j − 1)th-generation individual with birth time T (j−1)

r . Again, by
the branching property,

(
N(1)

1,j (t)
)

t≥0,
(
N(2)

1,j (t)
)

t≥0, . . . are independent copies of (N(t))t≥0

that are also independent of T (j−1). With these ingredients we can write another recursive
decomposition of Nj as follows:

Nj(t) =
∑
r≥1

N(r)
1,j

(
t − T (j−1)

r

)
1{T(j−1)

r ≤t}, j ≥ 2, t ≥ 0.

Note that, for j ≥ 2, Nj is a particular instance of a random process with immigration at random
times (the term was introduced in [8]; see also [15]).

Our motivation for introducing the iterated perturbed random walks is at least threefold.

(1) For each integer j ≥ 2, the sequence T (j) and the process Nj are a natural generalization
of the perturbed random walk T and the counting process (N(t))t≥0. It is interesting
to investigate the extent to which the renewal-theoretic properties of T and (N(t)) are
inherited by T (j) and Nj. Thus the activity undertaken in the present article can be thought
of as the development of renewal theory for the iterated perturbed random walks.

(2) The sequence
(
T (j)

)
j∈N is a particular instance of a branching random walk in which

the first generation point process is (N(t))t≥0, the counting process of a perturbed ran-
dom walk. Alternatively – and this is our preferred viewpoint – for j ∈N, T (j) can be
interpreted as the sequence of birth times in the jth generation of a general branching
process. Therefore the results of the present article contribute towards better understand-
ing of how the births occur within a particular generation. Being of intrinsic interest for
the theory of general branching processes, this information also sheds light on the orga-
nization of levels (the sets of vertices located at the same distance from the root) of
some random trees (e.g. random recursive trees and binary search trees) that can be
constructed as family trees of general branching processes stopped at suitable random
times. We refer to [13] for more details and examples of embeddable random trees.
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(3) Renewal theory for perturbed random walks is an inevitable ingredient for investiga-
tion of nested occupancy scheme in random environment generated by stick-breaking.
Referring to [6] and [16] for more details, we only mention that the latter scheme is a
generalization of the classical Karlin infinite balls-in-boxes occupancy scheme [11, 19].
Unlike the Karlin scheme, in which the collection of boxes is unique, there is a nested
hierarchy of boxes, and the hitting probabilities of boxes are defined in terms of iterated
stick-breaking. Assuming that n balls have been thrown, let Kn(j) denote the number
of occupied boxes in the jth level, which is the basic object of interest. It turns out that
whenever j = jn = o

(
( log n)1/2

)
(the case of fixed j is included), the distributional behav-

ior of Kn(j) as n → ∞ is the same as that of Nj( log n), when the underlying perturbed
random walk T is appropriately chosen.

We call the jth generation early, intermediate, or late depending on whether j is fixed,
j = j(t) → ∞ and j(t) = o(t) as t → ∞, or j = j(t) is of order t. In view of Proposition 2.1 below,
there are no other regimes because Nj(t) = 0 a.s. for large enough t whenever j = j(t) grows
faster than t. Assume for the time being that j is a late generation and that T is a collection of
random points, not necessarily the perturbed random walk. Nevertheless we retain the notation
Nj and Vj. In this case the asymptotic behavior of Vj and Nj is well understood. For instance,
a delicate counterpart of the key renewal theorem for Vj, which includes both a version of the
elementary renewal theorem and a version of Blackwell’s theorem, can be found in Theorem A
of [4]. For the corresponding a.s. result for Nj, see Theorem B of the same paper and Theorem
4 of [5]. A strong law of large numbers for Nj(bj) for appropriate b > 0 is given in formula
(1.1) of [4]. From these and other results of this flavor it follows that Nj forgets what was
happening in the early history and particularly in the first generation. The behavior of Nj is
universal for a wide class of input processes (responsible for the first generation). It is driven by
limit theorems available for general branching processes, such as convergence of the Biggins
martingales, large deviations, etc.

While the present paper deals with some intermediate generations, the early generations,
which admit a much simpler analysis, are treated in a separate paper [18]. The behavior of
the iterated perturbed random walks in the early and intermediate generations is very different
from that in the late generations. When j is a non-late generation, the process Nj inherits, for
the most part, the properties of N, in a modified form. This statement is confirmed by coun-
terparts of the elementary renewal theorem (Theorems 2.1 and 2.2), the key renewal theorem
(Theorem 2.3), and Blackwell’s theorem (Corollary 2.1), which are our main results. As far as
early generations are concerned, the claim is justified by results obtained in [18].

The remainder of the paper is structured as follows. Our main findings are formulated in
Section 2 and then proved in Section 3. Also, Section 2 contains two previously known results
concerning Nj and Vj. To our knowledge, all the results presented in this paper form the state
of the art as far as the intermediate generations of the iterated perturbed random walks are
concerned. Finally, the Appendix collects the proofs of some auxiliary results.

2. Results

2.1. Height of a confined general branching process tree

For t ≥ 0, put

H(t) := inf{j ∈N : Nj(t) = 0}
and note that Nj(t) = 0 a.s. for all j ≥ H(t). We call the variable H(t) the height of a general
branching process tree generated by a perturbed random walk T and confined to the strip [0, t].
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Proposition 2.1. For each t ≥ 0, H(t) < ∞ a.s. Furthermore,

lim
t→∞

H(t)

t
= 1

γ
∈ (0, ∞) a.s., (2.1)

where γ := sup{z > 0: μ(z) < 1} and

μ(z) := inf
s>0

(
ezs Ee−sη

1 −Ee−sξ

)
for z > 0.

Proof. By assumption, P{η = 0} = 0. This entails

lim
s→∞

Ee−sη

1 −Ee−sξ
= 0

and thereupon

lim
z→0+ μ(z) = 0.

Also,

lim
z→∞ μ(z) = lim

s→0+
Ee−sη

1 −Ee−sξ
= ∞.

This shows that γ ∈ (0, ∞).
Recall that, for n ∈N,

(
T (n)

r
)

r∈N denotes some enumeration of birth times in the nth gener-

ation of the general branching process. Put B(n) := infr≥1 T (n)
r . By the famous Biggins result

[3, corollary on p. 635],

lim
n→∞

B(n)

n
= γ a.s. (2.2)

Since, for n ∈N and t > 0, {H(t) > n} = {B(n) ≤ t} and, according to (2.2), limn→∞ B(n) =
+∞ a.s., we infer H(t) < ∞ a.s.

Finally, we have B(H(t)) > t ≥ B(H(t) − 1) a.s. The left-hand inequality ensures that
limt→∞ H(t) = +∞ a.s., which together with (2.2) proves (2.1) with the help of a standard
sandwich argument. �

Proposition 2.1 implies, in particular, that if

lim inf
t→∞

j(t)

t
> γ −1,

then there exists an a.s. finite t0 > 0 such that Nj(t)(t) = 0 for all t ≥ t0. This observation justifies
our classification of generations (early, intermediate, late). Furthermore, the analysis of Nj for
the late generations can be restricted to the range in which j = j(t) grows no faster than γ −1t as
t → ∞.

It is seldom possible to find the constant γ explicitly. Here is one happy exception. Let
(ξ, η) = (|log W|, |log (1 − W)|), where W has a uniform distribution on [0, 1]. The distribu-
tion of the sequence

(
e−Ti

)
i∈N is known as the Griffiths–Engen–McCloskey distribution with

parameter 1. In this case, μ(z) = ez for z > 0, which gives γ = e−1.
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2.2. Counterparts of the elementary renewal theorem for intermediate generations

The simplest result of renewal theory, called the elementary renewal theorem, tells us that

U(t) =
∑
i≥0

P{Si ≤ t} ∼ t

m
, t → ∞,

where m := Eξ < ∞; see for instance Theorem 3.3.3 of [25]. Here and below, the notation
f (t) ∼ g(t) means that the ratio f (t)/g(t) tends to 1 as t → ∞.

From (1.2) it follows that, without any assumptions on η,

V(t) ∼ t

m
, t → ∞.

This is a counterpart of the elementary renewal theorem for the perturbed random walks.
In this section we state two results on the first-order behavior of the convolution powers

Vj of V . Our first result, Theorem 2.1, deals with ‘early intermediate’ generations satisfy-
ing j = j(t) → ∞ and j(t) = o(t1/2) as t → ∞, as well as early generations. At this point we
stress that even though both Theorem 2.1 and Theorem 2.2 hold true for early generations, the
assumptions of these theorems are too restrictive as far as early generations are concerned. We
refer to the companion article [18] for a proper version of the elementary renewal theorem in
early generations. Recall the standard notation x ∧ y = min (x, y) for x, y ∈R.

Theorem 2.1. Assume that either

(i) Eξ2 < ∞ and Eη < ∞ or

(ii) Eξ2 = ∞, P{ξ > t} = O(t−r) and E(η ∧ t) = O
(
t2−r

)
for some r ∈ (1, 2), as t → ∞.

Then, for any integer-valued function j = j(t) satisfying j(t) = o
(
t(r−1)/2

)
as t → ∞, where

we put r = 2 if conditions (i) prevail,

Vj(t) ∼ tj

mjj! , t → ∞.

Here m=Eξ < ∞.

Remark 2.1. The condition Eξ r < ∞ for some r ∈ (1, 2) is clearly sufficient for P{ξ > t} =
O(t−r). Further, the condition Eηr−1 < ∞ is sufficient for E(η ∧ t) = O

(
t2−r

)
, t → ∞. This

follows from

E(η ∧ t) =
∫ t

0
P{η > y} dy

≤
∫ t

0

(
t

y

)2−r

P{η > y} dy

≤ t2−r
∫ ∞

0
yr−2

P{η > y} dy

= (r − 1)−1
Eηr−1t2−r.

Note that part (i) of Theorem 2.1 has already been obtained via a slightly different argument in
formula (4.6) of [6].
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Next we give a fairly surprising result which shows that the convolution power Vj exhibits
a phase transition in the generations j satisfying j = j(t) ∼ const. · t1/2 as t → ∞. Here further
moment and smoothness assumptions seem to be indispensable. In particular, we assume that
the distribution of ξ is spread out, which means that some convolution power of the distribution
function t 
→ P{ξ ≤ t} has an absolutely continuous component.

Theorem 2.2. Assume that the distribution of ξ is spread out, that Eξ3 < ∞ and Eη2 < ∞.
Then, for any integer-valued function j = j(t) satisfying j(t) = o(t2/3) as t → ∞,

Vj(t) ∼ tj

mjj! exp

(
γ0mj2

t

)
, t → ∞,

where

γ0 :=
∫

[0, ∞)
d(V(y) − m−1y) = lim

t→∞ (V(t) − m−1t) = Eξ2

2m2
− Eη

m
(2.3)

may be positive, negative, or zero.

Remark 2.2. Assume that (ξ, η) = (|log W|, |log (1 − W)|), where W is a random variable hav-
ing uniform distribution on [0, 1]. Then both ξ and η have the exponential distribution of unit
mean. Therefore

V(t) =
∑
i≥1

P{Si−1 + ηi ≤ t} =
∑
i≥1

P{Si ≤ t} = U(t) − 1 = t, t ≥ 0,

where the last equality follows from U(t) = t + 1 for t ≥ 0; see for instance the bottom of page
211 of [25]. Thus V(t) = t for t ≥ 0 and

Vj(t) =
∫ t

0
Vj−1(y) dy = tj

j! , j ≥ 2, t ≥ 0,

where the last equality follows by induction. This is in line with the asymptotics provided by
Theorem 2.2, for, in this case, γ0 = 0 and m= 1.

2.3. Counterparts of the key renewal theorem and Blackwell’s theorem for intermediate
generations

We start by recalling a few standard notions of renewal theory.
Let d > 0. The distribution of ξ is d-lattice if it is concentrated on the set (dn)n∈N0 and not

concentrated on the set (d1n)n∈N0 for any d1 > d, where N0 := N∪ {0}. The distribution of ξ

is non-lattice if it is not d-lattice for any d > 0.
A function f : [0, ∞) → [0, ∞) is called directly Riemann integrable (dRi) on [0, ∞) if

(a) σ (h) < ∞ for each h > 0, and

(b) limh→0+
(
σ (h) − σ (h)

) = 0, where

σ (h) := h
∑
n≥1

sup
(n−1)h≤y<nh

f (y) and σ (h) := h
∑
n≥1

inf
(n−1)h≤y<nh

f (y).
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Blackwell’s theorem is the most important and complicated result of renewal theory. Here
is its formulation (see e.g. Theorem 1.10 of [20]). Recall that U denotes the renewal function.

Proposition 2.2. Let m=Eξ < ∞. If the distribution of ξ is non-lattice, then, for any fixed
h > 0,

lim
t→∞ (U(t + h) − U(t)) = h

m
.

If the distribution of ξ is d-lattice, then, for any fixed positive integer n,

lim
t→∞ (U(t + dn) − U(t)) = dn

m
.

If m= ∞, then both limits are equal to 0.

Thus Blackwell’s theorem reads a bit differently for non-lattice and lattice distributions,
which justifies the necessity of distinguishing between these types of distribution. The same
dichotomy is also needed for the key renewal theorem; see for instance Theorem 1.12 of [20].

In renewal theory the key renewal theorem is usually obtained as a corollary to Blackwell’s
theorem; see for instance [25, pp. 241–242]. We proceed differently by first proving a counter-
part of the key renewal theorem (Theorem 2.3) and then obtain a counterpart of Blackwell’s
theorem (Corollary 2.1) as a corollary.

Theorem 2.3. Let f : [0, ∞) → [0, ∞) be a directly Riemann integrable function on [0, ∞).
Assume that either (a) or (b) below holds true.

(a) The distribution of ξ is non-lattice, the conditions of Theorem 2.1 hold and j(t) =
o
(
t(r−1)/2

)
as t → ∞, with the same r ∈ (1, 2] as in Theorem 2.1.

(b) The conditions of Theorem 2.2 hold and j(t) = o(t2/3) as t → ∞.

Then

(f ∗ Vj)(t) =
∫

[0, t]
f (t − y) dVj(y) ∼

(
1

m

∫ ∞

0
f (y) dy

)
Vj−1(t), t → ∞,

where m=Eξ < ∞, and Vj−1(t) on the right-hand side can be replaced with tj−1/(mj−1(j −
1)!) in the case (a), or with tj−1/(mj−1(j − 1)!) exp (γ0mj2/t) in the case (b).

Remark 2.3. In part (b) of Theorem 2.3, one of the assumptions, coming from Theorem 2.2, is
that the distribution of ξ is spread out. We note that every spread out distribution is non-lattice
but not vice versa. To justify the second claim, observe that the distribution concentrated at
points 1 and

√
2 is non-lattice but not spread out.

Upon taking f (y) = 1[0, h)(y) in Theorem 2.3, we immediately obtain the following.

Corollary 2.1. Let h > 0 be fixed. Under the assumptions of Theorem 2.3,

Vj(t + h) − Vj(t) ∼ h

m
Vj−1(t), t → ∞.

2.4. Some previously known results

In this section we collect two previously known facts concerning the asymptotic behav-
ior of Nj in the intermediate generations. They are borrowed from [16] and stated here for
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completeness and the reader’s convenience. We write
f.d.d.−→ to denote weak convergence of

finite-dimensional distributions.

Theorem 2.4. (Multivariate central limit theorem for (Nj(t))t≥0.) Assume that s2 = Var ξ ∈
(0, ∞) and Eη < ∞. Let j = j(t) be any positive integer-valued function satisfying j(t) → ∞
and j(t) = o(t1/2) as t → ∞. Then, as t → ∞,( 
j(t)�1/2(
j(t)u� − 1)!

(s2m−2
j(t)u�−1t2
j(t)u�−1)1/2

(
N
j(t)u�(t) − V
j(t)u�(t)

))
u>0

f.d.d.−→
(∫

[0, ∞)
e−uydB(y)

)
u>0

,

(2.4)
where (B(v))v≥0 is a standard Brownian motion.

According to Proposition 3.1 and Theorems 3.2 and 3.3 of [6], the centering V
j(t)u�(t) in
(2.4) can be replaced by its leading term

t
j(t)u�/
(
(
j(t)u�)!m
j(t)u�),

provided that j(t) = o(t1/3). For functions t 
→ j(t) which grow faster, this is not always the
case. Plainly, the possibility/impossibility of such a replacement is justified by the second-
order behavior of Vj. It should come as no surprise that second-order results for Vj require
more restrictive assumptions on the distributions of ξ and η than the corresponding first-order
results. The following proposition, which is concerned with the rate of convergence in the
elementary renewal theorem for Vj, was proved in Proposition 8.1 of [16].

Proposition 2.3. Assume that the distribution of ξ has an absolutely continuous component,
that Eeβ1ξ < ∞, Eeβ2η < ∞ for some β1, β2 > 0, and

γ0 = Eξ2

2m2
− Eη

m
> 0.

Then

Vj(t) − tj

j!mj
∼ γ0jtj−1

(j − 1)!mj−1
, t → ∞, (2.5)

whenever j = j(t) = o
(
t1/2

)
as t → ∞ (j is allowed to be fixed).

Formula (2.5) can be thought of as a generalization of formulae (2.3) and (3.2). These
provide the second-order behavior of the functions V and U, respectively.

3. Proofs

3.1. Preparatory results

Recall that U denotes the renewal function for (Sn)n∈N0 . According to Lorden’s inequality,
which holds whenever Eξ2 < ∞,

U(t) − m−1t ≤ c0, t ≥ 0, (3.1)

where c0 := Eξ2/m2 and m=Eξ < ∞. See [7] for an elegant proof. We also note that

lim
t→∞ (U(t) − m−1t) = Eξ2

2m2
(3.2)
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provided that the distribution of ξ is non-lattice and Eξ2 < ∞; see for instance Example 3.10.3
of [25]. Further, by Wald’s identity (see [2, Proposition A10.2(a)]) and the definition of ν(t)
given in (1.1), t ≤ESν(t) = mEν(t) = mU(t). Thus

U(t) ≥ m−1t, t ≥ 0. (3.3)

Since V(t) ≤ U(t) for t ≥ 0, we infer that

V(t) − m−1t ≤ c0, t ≥ 0.

On the other hand, assuming that Eη < ∞ (whereas the assumption Eξ2 < ∞ is not needed
here),

V(t) − m−1t =
∫

[0, t]
(U(t − y) − m−1(t − y)) dG(y) − m−1

∫ t

0
(1 − G(y)) dy

≥ −m−1
∫ t

0
(1 − G(y)) dy

≥ −m−1
Eη, (3.4)

using U(t) ≥ m−1t. Thus we have shown that, under the assumptions Eξ2 < ∞ and Eη < ∞,∣∣V(t) − m−1t
∣∣ ≤ cL, t ≥ 0,

where cL = max (c0, m−1
Eη).

Let u, v, w : R 
→R be functions of locally bounded variation. Since the Lebesgue–Stieltjes
convolution u ∗ v(t) = ∫

R
u(t − y) dv(y) for t ∈R will be used frequently in what follows, we

recall its elementary properties, which follow immediately from the definition.

Commutativity. u ∗ v = v ∗ u.

Associativity. (u ∗ v) ∗ w = u ∗ (v ∗ w).

Distributivity. (u + v) ∗ w = (u ∗ w) + (v ∗ w).

Existence of the identity. If z(t) = 1[0,∞)(t), then u ∗ z = z ∗ u = u. Thus the function z is the
identity with respect to the Lebesgue–Stieltjes convolution.

Further properties of the convolution operation can be found in Section 3.2 of [25] or Section
1.3.1 of [26].

3.2. Results on convolution powers of functions of linear growth and proofs of Theorems
2.1 and 2.2

The results presented here are concerned with the following purely analytic problem.
Assume that a non-decreasing function f exhibits linear growth, that is, f (t) ∼ at as t → ∞
for some a > 0. Then, for fixed j ∈N,

f ∗(j)(t) ∼ ajtj

j! , t → ∞.
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Imposing various assumptions on the behavior of f (t) − at, we shall extend these asymptotics
to the case when j = j(t) diverges to infinity as t → ∞.

Proposition 3.1. Let f : R→ [0, ∞) be a non-decreasing right-continuous function vanishing
on the negative half-line and satisfying

f (t) = at + O(tα), t → ∞ (3.5)

for some a > 0 and α ∈ [0, 1). Then, for any integer-valued function j = j(t) such that j(t) =
o(t(1−α)/2) as t → ∞,

fj(t) := f ∗(j)(t) ∼ ajtj

j! , t → ∞.

Proof. According to (3.5) there exists C ≥ 1 such that

−C(t + 1)α ≤ f (t) − at ≤ C(t + 1)α, t ≥ 0. (3.6)

For j ∈N and t ≥ 0, put

rj(t) :=
∫

[0, t]
fj(t − y) d(f (y) − ay) =

∫
[0, t]

(f (t − y) − a(t − y)) dfj(y)

and note that

fj(t) = rj−1(t) + a
∫ t

0
fj−1(y) dy, j ≥ 2, t ≥ 0.

By virtue of (3.6), we conclude that

|rj(t)| ≤ C(t + 1)αfj(t), j ∈N, t ≥ 0.

Using this bound and mathematical induction, we obtain

W−
j (t) ≤ fj(t) ≤ W+

j (t), j ∈N, t ≥ 0, (3.7)

where W±
j is defined recursively by W±

0 (t) := 1 and

W±
j (t) =

(
±C(t + 1)αW±

j−1(t) + a
∫ t

0
W±

j−1(y) dy

)
+
, j ∈N, t ≥ 0.

Here we recall that x+ = max (x, 0), and note that taking the non-negative part is only relevant
for W−

j ensuring its non-negativity, whereas it can be omitted for W+
j .

It remains to show that

W±
j (t) ∼ ajtj

j! , t → ∞. (3.8)

To this end, we first prove by induction that

W+
j (t) ≤ ajtj

j! +
j−1∑
i=0

(
j

i

)
aiCj−i(t + 1)α(j−i)+i

i! , j ∈N, t ≥ 0. (3.9)
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Whereas for j = 1 this follows immediately because W+
1 (t) = C(t + 1)α + at, the induction step

works as follows:

W+
j+1(t)

≤ C(t + 1)α
(

ajtj

j! +
j−1∑
i=0

(
j

i

)
aiCj−i(t + 1)α(j−i)+i

i!
)

+ a
∫ t

0

(
ajyj

j! +
j−1∑
i=0

(
j

i

)
aiCj−i(y + 1)α(j−i)+i

i!
)

dy

≤
j∑

i=0

(
j

i

)
aiCj+1−i(t + 1)α(j+1−i)+i

i! + aj+1tj+1

(j + 1)! +
j−1∑
i=0

(
j

i

)
ai+1Cj−i

i!
(t + 1)α(j−i)+i+1

α(j − i) + i + 1

≤ aj+1tj+1

(j + 1)! +
j∑

i=0

(
j

i

)
aiCj+1−i(t + 1)α(j+1−i)+i

i! +
j−1∑
i=0

(
j

i

)
ai+1Cj−i

(i + 1)! (t + 1)α(j−i)+i+1

= aj+1tj+1

(j + 1)! +
j∑

i=0

(
j

i

)
aiCj+1−i(t + 1)α(j+1−i)+i

i! +
j∑

i=1

(
j

i − 1

)
aiCj+1−i

i! (t + 1)α(j+1−i)+i

= aj+1tj+1

(j + 1)! +
j∑

i=0

(
j + 1

i

)
aiCj+1−i(t + 1)α(j+1−i)+i

i! ,

using the binomial identity
(j

i

) + ( j
i−1

) = (j+1
i

)
for the last step. Further, using j(t) = o(t), we

obtain

j!
ajtj

j−1∑
i=0

(
j

i

)
aiCj−i(t + 1)α(j−i)+i

i! ∼ j!
aj(t + 1)j

j−1∑
i=0

(
j

i

)
aiCj−i(t + 1)α(j−i)+i

i!

≤
j−1∑
i=0

(
j!
i!

)2(C

a

)j−i

(t + 1)(1−α)(i−j)

≤
j−1∑
i=0

(
jj−i)2(

Ca−1)j−i(t + 1)(1−α)(i−j)

≤
∑
i≥1

(
Ca−1j2

(t + 1)1−α

)i

= Ca−1j2

(t + 1)1−α

(
1 − Ca−1j2

(t + 1)1−α

)−1

.

Thus, in view of the assumption j(t) = o(t(1−α)/2), we have

lim sup
t→∞

j!
ajtj

W+
j (t) ≤ 1. (3.10)

We use similar reasoning to prove that

W−
j (t) ≥

(
ajtj

j! −
j−1∑
i=0

(
j

i

)
aiCj−i(t + 1)α(j−i)+i

i!
)

+
, j ∈N, t ≥ 0. (3.11)
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While (3.11) is obviously true for j = 1, we obtain with the help of induction, for j ≥ 2,

W−
j+1(t) ≥ −C(t + 1)αW−

j (t) + a
∫ t

0
W−

j (y) dy

≥ −C(t + 1)αW+
j (t) + a

∫ t

0
W−

j (y) dy

≥ −C(t + 1)αW+
j (t) + a

∫ t

0

(
ajyj

j! −
j−1∑
i=0

(
j

i

)
aiCj−i(y + 1)α(j−i)+i

i!
)

dy

≥ −C(t + 1)α
(

ajtj

j! +
j−1∑
i=0

(
j

i

)
aiCj−i(t + 1)α(j−i)+i

i!
)

+ a
∫ t

0

(
ajyj

j! −
j−1∑
i=0

(
j

i

)
aiCj−i(y + 1)α(j−i)+i

i!
)

dy

≥ aj+1tj+1

(j + 1)! −
( j∑

i=0

(
j

i

)
aiCj+1−i(t + 1)α(j+1−i)+i

i!

+
j−1∑
i=0

(
j

i

)
ai+1Cj−i

i!
∫ t

0
(y + 1)α(j−i)+idy

)

≥ aj+1tj+1

(j + 1)! −
j∑

i=0

(
j + 1

i

)
aiCj+1−i(t + 1)α(j+1−i)+i

i! .

We have used (3.7) and (3.9) for the second and fourth inequalities, respectively. Since W−
j+1

is non-negative, we arrive at (3.11). Thus

lim inf
t→∞

j!
ajtj

W−
j (t) ≥ 1. (3.12)

Combining (3.10) and (3.12) yields (3.8), thereby finishing the proof of Proposition 3.1. �

Proof of Theorem 2.1. It is enough to show that the function V satisfies all the assumptions
of Proposition 3.1 with a = m−1 and α = 2 − r, where r = 2 in case (i). We first prove that

U(t) = m−1t + O(t2−r), t → ∞. (3.13)

Case (i). In this case (3.13) follows from (3.3) and Lorden’s inequality (3.1).
Case (ii). Let S∗

0 be a random variable with distribution

P{S∗
0 ∈ dx} = m−1

P{ξ > x}1(0,∞)(x) dx.

Note that, by formula (2) of [7],

EU(t − S∗
0) = m−1t, t ≥ 0. (3.14)

Then

U(t) − m−1t =
∫

[0, t]
P{S∗

0 > t − y} dU(y) ∼ m−1
∫ t

0
P{S∗

0 > y} dy, t → ∞,
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where the equality is simply (3.14), and the asymptotic relation follows from Theorem 4 of
[28]. The cited theorem applies because Eξ2 = ∞ entails ES∗

0 = ∞. Observe that

P{S∗
0 > t} = m−1

∫ ∞

t
P{ξ > y} dy = O

(
t−(r−1)) as t → ∞,

as a consequence of P{ξ > t} = O(t−r). In view of this we infer that

U(t) − m−1t ∼ m−1
∫ t

0
P{S∗

0 > y} dy = O
(
t2−r), t → ∞,

and thereupon (3.13).
It remains to check that under the assumption E(η ∧ t) = O

(
t2−r

)
as t → ∞,

V(t) = m−1t + O
(
t2−r), t → ∞. (3.15)

Since
∫ t

0 (1 − G(y)) dy =E(η ∧ t), an equivalent form of the equality in (3.4) is

V(t) − m−1t =
∫

[0, t]

(
U(t − y) − m−1(t − y)

)
dG(y) − m−1

E(η ∧ t).

With this relation at hand, (3.15) follows because each summand is O(t2−r) by (3.13) and the
assumption of the theorem, respectively. �

The next result provides asymptotics of convolution powers f ∗(j) for j = j(t) which may grow
faster than t1/2 under the assumption that the function |f (t) − at| has a finite total variation and
satisfies an additional integrability assumption. We shall use the convention that, for a function
x : R→R, x∗(0)(t) = 1[0,∞)(t), t ∈R. Also, we shall write VI(x) for the total variation of x on
the (possibly infinite) interval I. Finally, if x is a function of a finite total variation on [a, b],
−∞ ≤ a < b ≤ ∞ and y is a measurable function on I, we stipulate that∫

[a, b]
y(t)|dx(t)| =

∫
[a, b]

y(t) d(V[a, t](x)),

where the integral on the right-hand side is understood in the Lebesgue–Stieltjes sense.

Proposition 3.2. Let f : R 
→ [0, ∞) be a non-decreasing right-continuous function vanishing
on the negative half-line. Assume that the function ε defined by

ε(t) := f (t) − at, t ≥ 0, (3.16)

for some a > 0, satisfies ∫
[0, ∞)

y|dε(y)| < ∞. (3.17)

Then, for any integer-valued function j = j(t) such that j(t) = o
(
t2/3

)
as t → ∞,

fj(t) := f ∗(j)(t) ∼ ajtj

j! exp

(
γ0j2

at

)
, t → ∞, (3.18)

where

γ0 :=
∫

[0, ∞)
dε(y) = lim

t→∞ (f (t) − at).

https://doi.org/10.1017/jpr.2021.60 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.60


Renewal theory for iterated perturbed random walks 435

Proof. The function ε, as the difference of two non-decreasing functions, has a finite total
variation on every finite interval. In particular, (3.17) entails∫

[0, ∞)
|dε(y)| ≤

∫
[0, 1)

|dε(y)| +
∫

[1, ∞)
y|dε(y)| < ∞.

Thus ε has a finite total variation on [0, ∞). Write∫ ∞

0
|ε(y) − γ0|dy =

∫ ∞

0

∣∣∣∣
∫

(y, ∞)
dε(z)

∣∣∣∣dy ≤
∫ ∞

0

∫
(y, ∞)

|dε(z)|dy =
∫

[0, ∞)
y|dε(y)| < ∞,

using integration by parts for the last equality. Hence (3.17) implies that∫ ∞

0
|ε(y) − γ0|dy < ∞. (3.19)

Now we modify (3.16) in a neighborhood of the origin, so that the essential properties of ε

given by (3.17) and (3.19) are preserved. Put

f (t) = (at + γ0)+ + ε̃(t) −: 
(t) + ε̃(t), t ∈R. (3.20)

Note that both summands can be non-zero in a bounded left neighborhood of the origin, yet∫
R

|̃ε(y)|dy < ∞ and
∫
R

|y||d̃ε(y)| < ∞

because t 
→ ε(t) − γ0 − ε̃(t) has a bounded support. The advantage of (3.20) is justified by two
facts:

(i) a simple formula for the convolution powers of 
, namely


∗(j)(t) = (at + γ0j)j
+

j! , j ∈N, t ∈R, (3.21)

(ii) the function ε̃ decays sufficiently fast and, as such, is asymptotically negligible in the
sense that 
∗(j)(t) ∼ f ∗(j)(t) as t → ∞.

To check (3.21) we use mathematical induction. Whereas the formula is trivial for j = 1, the
induction step works as follows: for t ≥ −a−1γ0(j + 1),


∗(j+1)(t) =
∫
R

(a(t − y) + γ0j)j
+

j! d
(y)

= a
∫ t+jγ0a−1

−γ0a−1

(a(t − y) + γ0j)j

j! dy

=
∫ at+γ0(j+1)

0

zj

j! dz

= (at + γ0(j + 1))j+1

(j + 1)! ,

and 
∗(j+1)(t) = 0 for t < −a−1γ0(j + 1).
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As far as point (ii) is concerned, using (3.20), commutativity and distributivity of the
Lebesgue–Stieltjes convolution yields

f ∗(j)(t) = 
∗(j)(t) +
j−1∑
k=0

(
j

k

)
(
∗(k) ∗ ε̃∗(j−k))(t), t ∈R.

We are going to show that the second summand is asymptotically negligible with respect
to 
∗(j)(t) whenever j(t) = o

(
t2/3

)
. Assume this has already been done. Then (3.18) follows

immediately because, for large enough t,

f ∗(j)(t) = 
∗(j)(t) = ajtj

j!
(

1 + γ0j

at

)j

= ajtj

j! exp

(
j log

(
1 + γ0j

at

))
.

The right-hand side is asymptotically equivalent to

ajtj

j! exp

(
γ0j2

at

)

whenever j = j(t) = o
(
t2/3

)
as t → ∞.

Passing to the analysis of

Rj(t) :=
j−1∑
k=0

(
j

k

)
(
∗(k) ∗ ε̃∗(j−k))(t), t ≥ 0,

we first check that

VR(
 ∗ ε̃) ≤ C̃ < ∞ (3.22)

for an absolute constant C > 0. For t ∈R,

(
 ∗ ε̃)(t) =
∫
R

ε̃(t − y) d
(y) = a
∫ ∞

−a−1γ0

ε̃(t − y) dy = a
∫ t+a−1γ0

−∞
ε̃(y) dy.

Thus (3.22) holds with C̃ := a
∫
R

|̃ε(y)|dy. Put

gi,j(t) := V(−∞, t]
(

∗(i) ∗ ε̃∗(j)), i, j ∈N0, t ∈R.

Then, for i, j ∈N, taking into account commutativity of the Lebesgue–Stieltjes convolution,
we infer that

gi,j(t) = V(−∞, t]((

∗(i−1) ∗ ε̃∗(j−1)) ∗ (
 ∗ ε̃))

≤ V(−∞, t](

∗(i−1) ∗ ε̃∗(j−1))V(−∞, t](
 ∗ ε̃)

≤ V(−∞, t](

∗(i−1) ∗ ε̃∗(j−1))VR(
 ∗ ε̃)

≤ C̃gi−1,j−1(t), t ∈R.
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Here we have used the fact that the total variation of the convolution of two functions is
bounded by the product of their total variations; see Theorem 1.3.2(c) of [26]. Iterating this
inequality, we conclude that

|Rj(t)| ≤
j−1∑
k=0

(
j

k

)
gk,j−k(t)

≤
∑

k≤j/2

(
j

k

)
C̃kg0,j−2k(t) +

∑
j/2<k<j

(
j

k

)
C̃j−kg2k−j,0(t), t ∈R. (3.23)

Note that

g0,j−2k(t) ≤ VR

(̃
ε∗(j−2k)) ≤ (VR (̃ε)

)j−2k ≤ C̃j−2k
1 for C̃1 :=

∫
R

|d̃ε(y)| < ∞.

Therefore the first sum on the right-hand side of (3.23) satisfies

∑
k≤j/2

(
j

k

)
C̃kg0,j−2k(t) ≤

∑
k≤j/2

(
j

k

)
C̃kC̃j−2k

1

≤ (
C̃C̃−1

1 + C̃1
)j

= o

(
ajtj

j!
(

1 + γ0j

at

)j)
, t → ∞,

for bj = bj(t) grows more slowly than

ajtj

j!
(

1 + γ0j

at

)j

as t → ∞

for an arbitrary finite constant b > 0. Now we analyze the second sum on the right-hand side
of (3.23):

∑
j/2<k<j

(
j

k

)
C̃j−kg2k−j,0(t) =

∑
j/2<k<j

(
j

k

)
C̃j−kV(−∞, t]

(

∗(2k−j))

=
∑

j/2<k<j

(
j

k

)
C̃j−k
∗(2k−j)(t)

=
∑

j/2<k<j

(
j

k

)
C̃j−k (at + γ0(2k − j))2k−j

(2k − j)!

=
∑

1≤k<j/2

(
j

k

)
C̃k (at + γ0(j − 2k))j−2k

(j − 2k)! .

Here the second equality follows from monotonicity of 
 and the third equality holds for t large
enough. It is important for what follows that, for k < j/2 and t > 0,

(at + γ0(j − 2k))j−2k

(j − 2k)! ≤ aj−2ktj−2k

(j − 2k)! exp

(
γ0(j − 2k)2

at

)
.
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Case γ0 ≥ 0. We obtain, for t > 0,

∑
1≤k<j/2

(
j

k

)
C̃k (at + γ0(j − 2k))j−2k

(j − 2k)! ≤ exp

(
γ0j2

at

) ∑
1≤k<j/2

(
j

k

)
C̃k aj−2ktj−2k

(j − 2k)!

= ajtj

j! exp

(
γ0j2

at

) ∑
1≤k<j/2

(j!)2

(j − k)!(j − 2k)!
1

k!
C̃k

a2kt2k

≤ ajtj

j! exp

(
γ0j2

at

) ∑
k≥1

j3k 1

k!
C̃k

a2kt2k

= ajtj

j! exp

(
γ0j2

at

)(
exp

(
C̃j3

a2t2

)
− 1

)
.

The last factor converges to zero whenever j = j(t) = o
(
t2/3

)
, whence the claim.

Case γ0 < 0. Arguing in the same vein, it is enough to check that

∑
1≤k<j/2

1

k!
(

C̃j3

a2t2

)k

exp

(
γ0(j − 2k)2

at

)
= o

(
exp

(
γ0j2

at

))
, t → ∞,

which is equivalent to

It :=
∑

1≤k<j/2

1

k!
(

C̃j3

a2t2

)k

exp

(
4|γ0|k(j − k)

at

)
= o(1), t → ∞.

Invoking the inequality

exp

(
4|γ0|k(j − k)

at

)
≤ exp (4|γ0|a−1k)

for 1 ≤ k < j and large enough t, we infer that

It ≤
∑

1≤k<j/2

1

k!
(

C̃j3 exp (4|γ0|a−1)

a2t2

)k

≤ exp

(
C̃j3

a2t2
exp (4|γ0|a−1)

)
− 1 → 0, t → ∞.

The proof of Proposition 3.2 is complete. �

Proof of Theorem 2.2. We intend to apply Proposition 3.2 with f = V , a = m−1. To this end,
it is enough to check that, under the assumptions of Theorem 2.2,∫

[0, ∞)
y
∣∣d(V(y) − m−1y)

∣∣ < ∞.

Recall that V = U ∗ G, and let Id denote the identity function on [0, ∞), that is, Id(t) := t+ =
t1[0,∞)(t) for t ∈R. Then

V − m−1Id = (U − m−1Id) ∗ G − m−1(Id ∗ (1 − G)).
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Using this and integration by parts yields∫
[0, ∞)

y|d(V(y) − m−1y)| = −
∫

[0, ∞)
ydV[y, ∞)(V − m−1Id)

=
∫

[0, ∞)
V[y, ∞)(V − m−1Id) dy

≤
∫

[0, ∞)
V[y, ∞)(U − m−1Id) dy + m−1

∫
[0, ∞)

V[y, ∞)(Id ∗ (1 − G)) dy

=
∫

[0, ∞)
y|d(U(y) − m−1y)| + m−1

∫ ∞

0

∫ ∞

y
(1 − G(z)) dz dy.

The first summand is finite by Remark 3.1.7(ii) of [10], and the second is finite in view of the
assumption Eη2 < ∞.

The explicit form of γ0 follows from the decomposition

V(t) − m−1t =
∫

[0, t]
(U(t − y) − m−1(t − y)) dG(y) − m−1

∫
[0, t]

ydG(y) − m−1t(1 − G(t)),

in which the first summand converges to (2m2)−1
Eξ2 by the dominated convergence theorem,

(3.1) and (3.2), the second converges to −m−1
Eη, and the third tends to zero as t → ∞. �

Finally, we give a general result on the behavior of f ∗(j) for arbitrary j = j(t) = o(t).
Unfortunately, this result can seldom be applied to the counting function V but is of indepen-
dent interest and has at least two merits. On the one hand, it gives a probabilistic explanation
of a rather mysterious appearance of the exponent in (3.18). On the other hand, it may be used
for guessing the behavior of Vj for j = j(t) growing at least as fast as t2/3.

Proposition 3.3. Let (̃Sj)j∈N0 be a non-decreasing zero-delayed random walk with K(t) :=
P{̃S1 ≤ t} for t ∈R. Assume that, for some a > 0,

f (t) = at −
∫ t

0
(1 − K(y)) dy, t ≥ 0.

Then

f ∗(j)(t) = E
(
at − S̃j

)j
+

j! , j ∈N, t ≥ 0.

In particular, if ẼS2
1 < ∞ and j = j(t) = o(t2/3) as t → ∞, then (3.18) holds with γ0 = −ẼS1.

Remark 3.1. In the setting of Proposition 3.3, assume that ẼS3
1 < ∞ and j = j(t) = o

(
t3/4

)
as

t → ∞. Without going into details (which become rather technical), we state that

E
(
at − S̃j

)j
+ ∼ ajtj exp

(
γ0j2/t + (

γ1/2 − γ 2
0

)
j3/t2

)
, t → ∞,

where γ0 = −ẼS1 and γ1 := ẼS2
1.

The proof of Proposition 3.3 will be given in Appendix A.
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3.3. Proof of Theorem 2.3

Our proof of Theorem 2.3 relies on counterparts for perturbed random walks of some stan-
dard renewal-theoretic results. We start by recalling that the renewal function U is subadditive,
which means that

U(x + y) ≤ U(x) + U(y), x, y ∈R.

This follows, for instance, from formula (5.7) of [12]. The counterpart of this inequality for the
function V defined by

V(x) =EN(x) =
∑
i≥1

P{Si−1 + ηi ≤ x}, x ∈R,

is
V(x + y) − V(x) ≤ U(y), x, y ∈R. (3.24)

Indeed, for x, y ≥ 0,

V(x + y) − V(x) =E(U(x + y − η) − U(x − η))1{η≤x} +EU(x + y − η)1{x<η≤x+y}
≤ U(y)(P{η ≤ x} + P{x < η ≤ x + y})
≤ U(y), (3.25)

using subadditivity and monotonicity of U for the penultimate inequality. If x, y < 0, then
both sides of (3.24) are zero. Finally, we use monotonicity of V to obtain the following: if
x < 0 and y ≥ 0, then V(x + y) − V(x) = V(x + y) ≤ V(y) ≤ U(y), and if x ≥ 0 and y < 0, then
V(x + y) − V(x) ≤ 0 = U(y).

Lemmas 3.1 and 3.2 below are counterparts for the function V of Blackwell’s theorem and
the key renewal theorem, respectively. Observe that the presence of the ηi plays no role, and
the results are of the same form as for renewal function U.

Lemma 3.1. Let h > 0 be any fixed number.

(a) Assume that the distribution of ξ is non-lattice and m=Eξ < ∞. Then

lim
t→∞ (V(t + h) − V(t)) = m−1h.

(b) Assume that m= ∞ (the assumption that the distribution of ξ is non-lattice is not
needed). Then

lim
t→∞ (V(t + h) − V(t)) = 0. (3.26)

Lemma 3.2. Let f : R→R be a dRi function on R.

(a) Assume that m< ∞ and that the distribution of ξ is non-lattice. Then

lim
t→∞

∫
[0, ∞)

f (t − y) dV(y) = m−1
∫
R

f (y) dy.

(b) Assume that m= ∞ (the assumption that the distribution of ξ is non-lattice is not
needed). Then

lim
t→∞

∫
[0, ∞)

f (t − y) dV(y) = 0.

If f is dRi on [0, ∞) or ( − ∞, 0], then the ranges of integration [0, ∞) and R should
be replaced with [0, t] and [0, ∞) or [t, ∞) and ( − ∞, 0], respectively.

https://doi.org/10.1017/jpr.2021.60 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.60


Renewal theory for iterated perturbed random walks 441

The proofs of Lemmas 3.1 and 3.2 are postponed to Appendices B and C, respectively.
In some cases the precision of Lemma 3.2 is not needed. In this situation the following

‘light’ version, borrowed from Lemma 9.1 of [16], may suffice.

Lemma 3.3. Let f : R→ [0, ∞) be a dRi function on R. Then, for some r > 0 and all x ∈R,∫
[0, ∞)

f (x − y) dV(y) ≤ r. (3.27)

If f is dRi on [0, ∞) or ( − ∞, 0], then the range of integration [0, ∞) should be replaced with
[0, x] or [x, ∞) and then (3.27) holds for all x ≥ 0 or all x ≤ 0, respectively.

Having Lemmas 3.1, 3.2, and 3.3 at our disposal, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. For t ≥ 0, put

g(t) :=
∫

[0, t]
f (t − y) dV(y) and I := m−1

∫ ∞

0
f (y) dy.

By Lemma 3.2(a), given ε > 0 there exists t0 > 0 such that |g(t) − I| ≤ ε whenever t ≥ t0. Also,
by Lemma 3.3, g(t) ≤ J for some J > 0 and all t ≥ 0. Hence, for t ≥ t0, by the associativity

(f ∗ Vj)(t) = (f ∗ (V ∗ Vj−1))(t)

= (g ∗ Vj−1)(t)

=
∫

[0, t]
g(t − y) dVj−1(y)

=
∫

[0, t−t0]
g(t − y) dVj−1(y) +

∫
(t−t0, t]

g(t − y) dVj−1(y)

≤ (I + ε)Vj−1(t) + J(Vj−1(t) − Vj−1(t − t0)). (3.28)

We claim that

lim
t→∞

Vj(t)−1(t) − Vj(t)−1(t − t0)

Vj(t)−1(t)
= 0. (3.29)

Note that (3.29) is not a direct consequence of the elementary renewal theorem, for the theorem
provides the asymptotics of Vj(t−t0)−1(t − t0) rather than Vj(t)−1(t − t0) which is actually needed
for (3.29). To prove (3.29), with the help of (3.24) we write

0 ≤ Vj(t)−1(t) − Vj(t)−1(t − t0)

=
∫

[0, t]
(V(t − y) − V(t − t0 − y)) dVj(t)−2(y)

≤ U(t0)Vj(t)−2(t)

for all t ≥ 0. Thus (3.29) follows from

lim
t→∞

Vj(t)−2(t)

Vj(t)−1(t)
= 0,

which is a consequence of Theorems 2.1 and 2.2 applied with j = j(t) − 1 and j = j(t) − 2.
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Combining (3.28) and (3.29), we obtain

lim sup
t→∞

(f ∗ Vj)(t)

Vj−1(t)
≤ I.

The converse inequality for the limit inferior follows analogously. The remaining statements
of Theorem 2.3 are secured by Theorems 2.1 and 2.2. �

Appendix A. Proof of Proposition 3.3

Proof. Replacing K with t 
→ K(at), we can and do assume that a = 1, that is, f (t) =∫ t
0 K(y) dy or, for short, f = K ∗ Id. Then, by the commutativity of the convolution,

f ∗(j)(t) = (
(Id)∗(j) ∗ K∗(j))(t) =

∫
[0, t]

(t − y)j

j! dK∗(j)(y) = E
(
t − S̃j

)j
+

j! , t ≥ 0.

If ẼS2
1 < ∞, then j = j(t) = o

(
t2/3

)
as t → ∞ implies that

E
(
t − S̃j

)j
+ ∼ tj exp

(
γ0j2

t

)
, t → ∞.

This can be justified as follows. We first note that γ0 < 0. Further, in the decomposition

E

(
1 − S̃j

t

)j

+
=E

(
ej log

(
1−S̃j/t

)
1{̃Sj≤t/2}

)
+E

(
1 − S̃j

t

)j

+
1{̃Sj∈(t/2, t)}, (A.1)

the second summand is bounded by 2−j and

2−j = o

(
exp

(
γ0j2

t

))
as t → ∞

for j2/t = o(j). The first summand in (A.1) can be bounded with the help of the inequalities

−x − x2 ≤ log (1 − x) ≤ −x, x ∈ [0, 1/2] and 1 − x ≤ e−x, x ∈R.

Indeed, we obtain, for j ≥ 4,

Ee−j̃Sj/t
(

1 − j̃S2
j

t2

)
≤Ee−j̃Sj/t

(
1 − j̃S2

j

t2

)
1{̃Sj≤t/2}

≤Ee−j̃Sj/te−j̃S2
j /t21{̃Sj≤t/2}

≤E(ej log (1−S̃j/t)1{̃Sj≤t/2})

≤Ee−j̃Sj/t1{̃Sj≤t/2}
≤Ee−j̃Sj/t.

For λ ≥ 0, put φ(λ) := Ee−λ̃S1 . In view of ẼS2
1 < ∞, we infer that

Ee−j̃Sj/t = φj(j/t) =
(

1 + γ0j

t
+ O

(
j2

t2

))j

.
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The right-hand side is asymptotically equivalent to exp
(
γ0j2/t

)
as t → ∞ under the assump-

tion j = j(t) = o
(
t2/3

)
. Finally, the relation

Ee−j̃Sj/t
( j̃S2

j

t2

)
= o

(
Ee−j̃Sj/t

)
, t → ∞,

can be checked using the equality

Ee−j̃Sj/t̃S2
j = ∂2

∂λ2
(φj(λ))

∣∣∣∣
λ=j/t

in conjunction with the assumptions j = j(t) = o
(
t2/3

)
and ẼS2

1 < ∞. �

Appendix B. Proof of Lemma 3.1

Proof of part (a). According to Blackwell’s theorem (Proposition 2.2),

lim
t→∞ (U(t + h) − U(t)) = m−1h. (B.1)

In view of (B.1),

lim
t→∞ (U(t + h − η) − U(t − η))1{η≤t−t1/2} = m−1h a.s.

Recalling (3.24), we infer that

lim
t→∞ E(U(t + h − η) − U(t − η))1{η≤t−t1/2} = m−1h

by Lebesgue’s dominated convergence theorem. Another appeal to (3.24) yields

E(U(t + h − η) − U(t − η))1{t−t1/2<η≤t} ≤ U(h)P
{
t − t1/2 < η ≤ t

}
,

and the right-hand side converges to 0 as t → ∞. Finally, by monotonicity,

EU(t + h − η)1{t<η≤t+h} ≤ U(h)P{t < η ≤ t + h},

and the right-hand side converges to 0 as t → ∞. Invoking the first equality in (3.25) with x = t
and y = h completes the proof of part (a).

Proof of part (b). If the distribution of ξ is non-lattice, then, by Blackwell’s theorem,

lim
t→∞ (U(t + h) − U(t)) = 0. (B.2)

If the distribution of ξ is d-lattice, then, by Blackwell’s theorem (Proposition 2.2), (B.2) holds
for h = nd, n ∈N. However, using monotonicity of U we can ensure that (B.2) holds for any
fixed h > 0 in both non-lattice and lattice cases. With this at hand, repeating the proof of part
(a) verbatim, we arrive at (3.26). �
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Appendix C. Proof of Lemma 3.2

Proof of part (a). We only prove the claim under the assumption that f is dRi on R, which
is equivalent to the fact that f+ and f− (non-negative and non-positive parts of f ) are dRi on R.
Thus we can and do assume that f ≥ 0 on R. Obviously it is enough to show that

lim
t→∞

∫
[0, t]

f (t − y) dV(y) = m−1
∫ ∞

0
f (y) dy

and

lim
t→∞

∫
(t, ∞)

f (t − y) dV(y) = m−1
∫ 0

−∞
f (y) dy.

The proof of the first relation with U replacing V can be found in [25, pp. 241–242]. We only
check the second limit relation by closely following the aforementioned proof. We proceed via
three steps, successively complicating the structure of f .

Step 1. First suppose that

f (t) = 1[(n−1)h, nh)(t), t < 0,

for fixed non-positive integer n and h > 0. Then f (t − y) = 1 if and only if y ∈ (t − nh, t − (n −
1)h], which entails ∫

(t, ∞)
f (t − y) dV(y) = V(t − (n − 1)h) − V(t − nh).

By Lemma 3.1(a), the last difference tends to m−1h as t → ∞, thereby proving that

lim
t→∞

∫
(t, ∞)

f (t − y) dV(y) = m−1h = m−1
∫ 0

−∞
f (y) dy.

Step 2. Now suppose that

f (t) =
∑
n≤0

cn1[(n−1)h, nh)(t), t < 0,

where (cn)n≤0 is a sequence of non-negative numbers satisfying
∑

n≤0 cn < ∞. An argument
similar to that used in the previous step enables us to assert that∫

(t, ∞)
f (t − y) dV(y) =

∑
n≤0

cn(V(t − (n − 1)h) − V(t − nh)).

Using Lemma 3.1(a) in combination with (3.24), with the help of Lebesgue’s dominated
convergence theorem, we infer that

lim
t→∞

∫
(t, ∞)

f (t − y) dV(y) = m−1h
∑
n≤0

cn = m−1
∫ 0

−∞
f (y) dy.

Step 3. Now let f be an arbitrary non-negative dRi function on R (in fact for the present
proof it is enough for it to be dRi on ( − ∞, 0)). For each h > 0, put

f h(t) :=
∑
n≤0

sup
(n−1)h≤y<nh

f (y)1[(n−1)h, nh)(t), t < 0,
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and
f

h
(t) :=

∑
n≤0

inf
(n−1)h≤y<nh

f (y)1[(n−1)h, nh)(t), t < 0.

By the definition of direct Riemann integrability,∑
n≤0

sup
(n−1)h≤y<nh

f (y) < ∞ and
∑
n≤0

inf
(n−1)h≤y<nh

f (y) < ∞

for each h > 0. Thus the functions f h and f
h

have the same structure as the functions discussed
in Step 2. According to the result of Step 2,

lim
t→∞

∫
(t, ∞)

f h(t − y) dV(y) = m−1h
∑
n≤0

sup
(n−1)h≤y<nh

f (y) −: m−1σ (h)

and

lim
t→∞

∫
(t, ∞)

f
h
(t − y) dV(y) = m−1h

∑
n≤0

inf
(n−1)h≤y<nh

f (y) −: m−1σ (h)

for all h > 0. Since, for each h > 0,

f
h
(t) ≤ f (t) ≤ f h(t), t < 0,

it follows that

m−1σ (h) = lim inf
t→∞

∫
(t, ∞)

f
h
(t − y) dV(y)

≤ lim inf
t→∞

∫
(t, ∞)

f (t − y) dV(y)

≤ lim sup
t→∞

∫
(t, ∞)

f (t − y) dV(y)

≤ lim sup
t→∞

∫
(t, ∞)

f h(t − y) dV(y)

= m−1σ (h).

We have limh→0+ (σ (h) − σ (h)) = 0 by the definition of direct Riemann integrability. Also, it
is known that limh→0+ σ (h) = ∫ 0

−∞ f (y) dy. Letting h → 0+ in the last chain of inequalities
completes the proof of part (a).

Proof of part (b). Use part (b) of Lemma 3.1 in place of part (a) and proceed as above. This
finishes the proof of Lemma 3.2. �
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