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Instability to Tollmien–Schlichting waves is one of the primary routes to transition
to turbulence for two-dimensional boundary layers in quiet disturbance environments.
Cancellation of Tollmien–Schlichting waves using surface heating was first demonstrated
in the experiments of Liepmann et al. (J. Fluid Mech., vol. 118, 1982, pp. 187–200)
and Liepmann & Nosenchuck (J. Fluid Mech., vol. 118, 1982, pp. 201–204). Here we
consider a similar theoretical formulation that includes the effects of localised (unsteady)
wall heating/cooling. The resulting problem is closely related to that of Terent’ev (Prikl.
Mat. Mekh., vol. 45, 1981, pp. 1049–1055; Prikl. Mat. Mekh., vol. 48, 1984, pp. 264–272)
on the generation of Tollmien–Schlichting waves by a vibrating ribbon, but with thermal
effects. The nonlinear receptivity problem based on triple-deck scales is formulated and
the linearised version solved both analytically as well as numerically. The most significant
result is that the wall heating/cooling function can be chosen such that there is no pressure
response to the disturbance, meaning there is no generation of Tollmien–Schlichting
waves. Numerical calculations substantiate this with an approximation based on the exact
analytical result. Previous numerical studies of the unsteady triple-deck equations have
shown difficulties in capturing the convective wave packet that develops in the initial-value
problem and we show that these arise from the choice of time steps as well as the range
of the Fourier modes taken.

Key words: boundary layer stability, instability control, transition to turbulence

1. Introduction

The classic experiments of Schubauer & Skramstad (1948) demonstrated convincingly
for the first time that small disturbances in the boundary layer could excite
Tollmien–Schlichting instability and cause transition to turbulence. One of the important
factors in their experiments was the use of a quiet wind tunnel together with controlled
disturbances introduced with a vibrating ribbon on the flat plate. This led to unstable
Tollmien–Schlichting waves that grow spatially downstream. Subsequent attempts to link
the amplitude of the instability wave generated to the forcing disturbance amplitude, the
so-called receptivity problem, encountered many difficulties and objections as noted by
Gaster (1965). The idea that a spatially growing disturbance wave could be described
by theories of temporally growing unstable waves was not something that was readily
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accepted at that time. It was not until the advent of triple-deck theory that it was possible
to provide a firm and rational mathematical foundation for describing the asymptotic
properties of the instability. In fact triple-deck theory was first introduced by Stewartson
& Williams (1969), Neiland (1969) and Messiter (1970), in connection with self-induced
separation in supersonic free interactions and to describe the boundary layer in the vicinity
of the trailing-edge of a flat plate. It is now well known that for discussing the properties
of flows with adverse pressure gradients and laminar separation, the classical Prandtl
(1904) boundary layer theory does not work. The only self-consistent mathematical
approach is based on studying interactions with the triple-deck scales, see for instance the
extensive reviews of triple-deck theory by Stewartson (1974, 1981) and Smith (1982). The
important connection between triple-deck theory and Tollmien–Schlichting instability was
first enunciated by Smith (1979) who showed how the triple-deck scaling could be used to
capture the behaviour of the lower branch of the neutral curve predicted by Lin (1955) and
others.

The work of Terent’ev (1981, 1984) provided an important and useful mathematical
model for the vibrating ribbon experiments of Schubauer & Skramstad (1948) based
on triple-deck theory. Terent’ev (1981) assumed that disturbances were generated by a
vibrator oscillating harmonically in time in the wall normal direction. In the paper of
Terent’ev (1984), the problem was modified to study the initial-value problem instead
of periodic motion. Terent’ev (1984) showed how unstable, spatially growing instability
waves could be triggered by the wall motion and the critical frequencies were in agreement
with the results of Smith (1979). More importantly the results of Terent’ev (1981, 1984)
showed how the amplitude of the resulting downstream travelling instability wave could
be calculated based on the amplitude of the forcing disturbance.

The receptivity problem studied by Terent’ev (1981, 1984) is of course somewhat
special in that Tollmien–Schlichting instability waves may be triggered by various means
including free-stream turbulence, the shape of the leading edge, wall roughness and
various other factors, and not just controlled wall motion such as that induced by a vibrator.
Ruban (1984) and Goldstein (1983, 1985) showed how the receptivity coefficients could
be calculated for waves induced by acoustic noise and leading edges. The paper by De
Tullio & Ruban (2015) summarises more recent progress in this area and highlights the
value of the asymptotic approach in problems of this type.

The use of surface heating/cooling as a means for flow control has been of considerable
interest especially in many aerospace-related applications. It was shown by Liepmann,
Brown & Nosenchuck (1982) and Liepmann & Nosenchuck (1982) that surface heating
could be used to excite Tollmien–Schlichting waves in a similar manner to using a
vibrating ribbon. More importantly, these papers were one of the earliest to demonstrate
the cancellation of Tollmien–Schlichting waves by using an array of surface heating strips.
In their experiments one heating strip was used to generate an unstable wave and another
heating strip positioned further downstream, could be used to either reinforce or cancel
the generated wave via a feedback loop.

The comprehensive review by Löfdahl & Gad-el-Hak (1999) discusses the use of
microelectromechanical system (MEMS)-type devices for controlling many different types
of turbulent flows. MEMS devices have characteristic lengths between 1 μm and 1 mm,
commensurate with boundary layer scales, and they have the requisite spatial and temporal
response characteristics suitable for use in active flow control of boundary-layer-type
instabilities. Lipatov (2006) was one of the first to try and develop a mathematical model
based on triple-deck theory to understand how localised heating elements affect flow
properties. He suggested that localised heating creates thermal humps akin to physical
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humps, which lead to an interaction with the oncoming flow. For modelling MEMS-type
devices, the choice of triple-deck scales, as opposed to other scales, is discussed in detail
in Lipatov (2006) and Koroteev & Lipatov (2009).

The ideas suggested by Lipatov (2006) have been applied to a variety of other situations
involving predominantly steady localised heating including subsonic and supersonic flows,
see Koroteev & Lipatov (2009, 2012, 2013). In a series of recent papers, Aljohani & Gajjar
(2017a,b, 2018) have investigated steady boundary layer flow with localised heating but
over hump-shaped elements to understand how localised heating can affect a separated
flow. Both two-dimensional as well as three-dimensional hump-shaped elements were
studied for an oncoming subsonic or transonic flow. It was found that localised heating
can have beneficial properties leading to more attached flow over the hump, although near
the forward and rear parts of the hump the wall shear has more pronounced minimum
values. These findings are not too dissimilar to earlier work by Koroteev & Lipatov (2012)
who studied localised heating over flat-plate elements.

One of the objectives of the current work is to investigate the stability of the flow
considered by Aljohani & Gajjar (2017a). The work in that paper is based on triple-deck
scales and so the most natural starting point is to look at unsteady effects that appear
non-trivially in the lower deck. The governing equations in this case reduce to the modified
unsteady triple-deck equations with an additional unsteady equation for the perturbation
temperature. The problem we study here is, in fact, the linear receptivity of a boundary
layer flow to a vibrator on the wall together with localised heating effects This is a
mathematical model of the experiments of Liepmann et al. (1982) and Liepmann &
Nosenchuck (1982) and is a generalisation of the vibrating ribbon problem first studied
by Terent’ev (1981, 1984).

We first formulate the initial-value problem, which is solved both analytically and
numerically. The most significant result of our work, and one which has not been identified
previously, is that an appropriate choice of unsteady temperature distribution exists that
will cancel the Tollmien–Schlichting wave that would otherwise be generated from the
wall vibrator. An exact formula is provided for the required temperature distribution
together with a simplified approximation to the cancellation function. Numerical results
confirm that significant reduction in Tollmien–Schlichting wave amplitudes can be
achieved by the simplified expression. A stabilisation of lower-branch instability waves in
the free convection flow over a heated element was also identified in the paper by Trevin̄o
& Lin̄án (1996), whereas in Seddougui, Bowles & Smith (1991) wall cooling is used to
destabilise viscous and inviscid modes in the boundary layer.

Previous studies involving numerical simulations of the unsteady triple-deck equations
have encountered difficulties and unexplained behaviour in the results. For example in
the recent paper by Logue, Gajjar & Ruban (2014) on unsteady flow past a compression
ramp the results showed the development of a wave packet that grew in amplitude and
convected downstream. The techniques used in Logue et al. (2014) to solve the unsteady
triple-deck equations utilised high-order finite differencing in the streamwise direction,
combined with Chebychev collocation in the wall-normal direction, and a variety of
time-marching schemes were tested. In grid-refinement studies, the wave packet signal
was not resolved spatially or temporally as seen in figure 6 of Logue et al. (2014). No
convincing explanation was available to explain this behaviour. The same behaviour was
also observed in related unsteady simulations of the triple-deck equations for jet and liquid
layer flows and subsonic flows, see Logue (2008), using similar numerical techniques. In
other independent simulations of unsteady compression ramp flow using very different
numerical techniques, Cassel, Ruban & Walker (1995) and Fletcher, Ruban & Walker
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(2004), observed analogous wave packet behaviour. Cassel et al. (1995) suggested that
this was linked to the Tutty & Cowley (1986) short wavelength inflexion point instability.
However, this explanation is unconvincing as the underlying base flow does not contain
inflexion points in the range of ramp angle parameters when the phenomenon is first
observed. Likewise Fletcher et al. (2004) suggest absolute instabilities of the base flow.
Such explanations are dismissed in the more careful investigations by Logue et al. (2014)
where it is noted that none of the claims have any supporting underlying evidence.

Another motivation for the current work is therefore to examine a much simplified
problem involving just the linearised unsteady triple-deck equations, with the base flow
being the linear shear profile. By doing this we can study the evolution of the perturbations
using a similar numerical technique to that of Logue et al. (2014) to see whether anything
new can be learnt about the wave packets that arise in the simulations, and whether the
unexplained difficulties can be resolved. The Terent’ev (1984) vibrator problem, or the
generalisation of it with localised heating as adopted here, is one such simpler problem
where it is also possible to obtain a solution using analytical means. Here we use a
Fourier–Laplace transform to solve the initial-value problem and obtain the analytical
results in addition to solving the same equations numerically. The results presented in
the current work demonstrate that a wave packet, emanating from the forced response,
grows to large amplitudes very quickly, as indeed also seen in the experiments of Gaster
& Grant (1975). The numerical difficulties in resolving the wave packet occur because of
the time steps used in the numerical solution were too large, as well as from the number of
Fourier modes taken. By reducing the time steps used and working with a restricted range
of wavenumbers in Fourier space, the signal can be resolved both spatially and temporally.

In § 2 we derive the governing unsteady equations starting from the compressible
Navier–Stokes equations and using the scalings appropriate to the lower-branch. The full
motivation for using the chosen scalings and the inclusion of localised heating effects is
given in other papers, see Koroteev & Lipatov (2009) and Aljohani & Gajjar (2017b)
for instance, and so is not repeated here. The adoption of the scalings appropriate to
the lower-branch instability of the boundary layer is linked to the objectives discussed
previously. The problem formulation for flow over localised heating with upper-branch
scalings can be obtained as a special case of the problem formulation by Gajjar (1996).
In § 3 we discuss the analytical solution to the linearised unsteady equations using
Fourier–Laplace transforms. In § 4 a numerical solution of the linearised unsteady
equations is obtained via a time-stepping algorithm combining spectral collocation in the
wall normal direction and solving for the individual wavenumbers in Fourier space. The
numerical techniques used are very similar to those of Logue et al. (2014). Finally, in § 5
we finish with some additional comments and conclusions.

2. Problem formulation

The problem we study here is a modified version of one first studied by Terent’ev (1981).
Consider the subsonic flow past a flat plate containing a vibrator at a distance L from
the leading edge of the plate, see figure 1. The plate also contains a localised heating
element whose dimensions are small compared with the thickness of the boundary layer.
We assume that the Reynolds number Re is large (where Re = ρ∞U∞L/μ∞). At large
distances from the plate the flow is uniform with speed U∞ parallel to the plate and
with density ρ∞ and μ∞ is the dynamic viscosity coefficient. We assume that the flow
is two-dimensional and neglect any variations in the spanwise direction.
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L

b

aUB

x∗

y∗

U∞

Heating

FIGURE 1. Boundary layer flow over a flat plate with speed U∞ at large distances from the plate.
A vibrator is located at a distance L from the leading edge and with an oncoming boundary layer
flow represented by UB.

We non-dimensionalise the variables and flow quantities with respect to a lengthscale
L, velocity U∞, and free-stream density ρ∞ so that

x = x∗

L
, y = y∗

L
, t = U∞

L
t∗, u = u∗

U∞
, v = v∗

U∞
, T = T∗

T∞
,

p = p∗ − p∞
ρ∞U2∞

, μ = μ∗

μ∞
and ρ = ρ∗

ρ∞
.

⎫⎪⎪⎬
⎪⎪⎭ (2.1a–i)

The superscript asterisk quantities are dimensional, (x, y) are the coordinates in the
streamwise and wall normal direction with corresponding velocity components (u, v), t
is time, T is the temperature, p the pressure, μ the dynamic viscosity, ρ is the density and
p∞ is the free-stream pressure.

In addition to the Reynolds number Re we have the Prandtl number Pr, the specific
gas constant R and M∞ the free-stream Mach number. Here, M∞ = U∞/c∞ where c∞ =√
γ p∞/ρ∞ is the speed of sound in the undisturbed flow and γ is the ratio of specific

heats, and T∞ = U2
∞/(M

2
∞Rγ ).

We assume that the vibrator oscillates with a frequency Ω and has a maximum
amplitude b in the transverse direction. The vibrator is confined to a distance a in the
streamwise direction. Although it is possible to consider different scenarios, we restrict
our attention to the case when b = O(Re−5/8) and a = O(Re−3/8). These are precisely the
triple-deck scalings which, as shown by Smith (1979), capture the asymptotic properties of
the dominant Tollmien–Schlichting wave instability in the boundary layer. With this choice
of scales it is possible to make further progress using analytical techniques. Starting with
the triple-deck structure also allows other distinguished limits to be studied as limiting
cases of the current problem. Lipatov (2006) has suggested additional possibilities which
arise from choosing different scalings for a and b when localised surface heating is present.

We need additionally to decide on the time scale to be used in the analysis. Choosing
the time scale such that the unsteady terms appear at the same time as nonlinearity in the
wall layer would appear to the most natural starting point. Other distinguished scales may
then be deduced via limiting cases. Suppose Δu denotes the perturbation to the oncoming
flow, and Δx = O(Re−3/8) is the streamwise extent of the perturbation. If we balance the
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unsteady and inertial terms in the wall layer we find that

∂u
∂t

∼ u
∂u
∂x

(2.2)

gives

Δu
Δt

∼ u
Δu
Δx

, (2.3)

where Δt denotes the scale of the unsteady variations in the wall layer. The streamwise
velocity perturbation in the lower deck is u ∼ Δu = O(Re−1/8).

Hence,

Δt ∼ Δx

u
∼ Re−3/8

Re−1/8
= Re−1/4. (2.4)

With the scalings given previously, the vibrator is situated near x = 1 and, hence, we
may set x = 1 + Re−3/8x∗ where x∗ is O(1) in the region occupied by the vibrator. We
model the vibrator by some function y = yw(t, x) with

y = yw(t, x) = Re−5/8f (t∗, x∗), (2.5)

and the function f (t∗, x∗) describes the spatial distribution of the localised disturbance
caused by the vibrator. Specific forms of f (t∗, x∗) are considered later, but it is assumed
that f (t∗, x∗) is zero apart from a small interval in the vicinity of the vibrator.

The presence of the vibrator means that at the wall we require that

u = 0, v = ∂yw

∂t
on y = yw(t, x). (2.6)

In view of the earlier comments regarding scalings we set the frequency of oscillation
Ω = ω∗

0Re1/4, where ω∗
0 is taken to be an O(1) scaled frequency parameter. Let t =

Re−1/4t∗ and t∗ is O(1).
Next we assume that there is also a localised heating element on the flat plate co-located

with the vibrator. This is modelled by the wall temperature profile being given by T =
Tw(t∗, x∗) on y = yw.

Unsteady effects notwithstanding, the analysis leading to the reduced governing
equations follows closely that of the steady problem of subsonic flow over a localised
heated element as in Aljohani & Gajjar (2017b) and so are not repeated here. The
fundamental problem reduces to solving the triple-deck equations in the lower deck, see
figure 2, where (with y = Re−5/8 y3) the flow quantities are expanded as

u(t, x, y; Re) = Re−1/8u∗(t∗, x∗, y3)+ . . . , (2.7a)

v(t, x, y; Re) = Re−3/8v3(t∗, x∗, y3)+ . . . , (2.7b)

p(t, x, y; Re) = Re−1/4p∗(t∗, x∗, y3)+ . . . , (2.7c)

ρ(t, x, y; Re) = ρ∗(t∗, x∗, y3)+ . . . , (2.7d)

T(t, x, t; Re) = T∗(t∗, x∗, y3)+ . . . . (2.7e)
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U∞ UB(x, y)

L

4

Re–3/8

1 Re–3/8

2 Re–1/2

3 Re–5/8

FIGURE 2. Schematic diagram showing the vibrator, triple-deck region and oncoming
boundary layer flow. Region 1 with y = Re−3/8 y1 is the upper deck, region 2 with y = Re−1/2 y2

is the main part of the boundary layer and region 3 with y = Re−5/8 y3 the lower deck. The
oncoming boundary flow just ahead of the vibrator is represented by region 4.

Substitution into the Navier–Stokes, the continuity equation, the energy equation and
the equation of state gives

∂ρ∗
∂t∗

+ ∂(ρ∗u∗)
∂x∗

+ ∂(ρ∗v3)

∂ y3
= 0 (2.8a)

ρ∗

(
∂u∗
∂t∗

+ u∗
∂u∗
∂x∗

+ v3
∂u∗
∂ y3

)
= −∂p∗

∂x∗
+ ∂

∂y3

(
μ∗
∂u∗
∂y3

)
, (2.8b)

0 = −∂p∗
∂ y3

, (2.8c)

ρ∗

(
∂T∗
∂t∗

+ u∗
∂T∗
∂x∗

+ v3
∂T∗
∂ y3

)
= 1

Pr
∂

∂y3

(
μ∗
∂T∗
∂y3

)
, (2.8d)

ρ∗T∗ = (γM2
∞)

−1. (2.8e)

The boundary conditions are

v3(t∗, x∗, y3) = ∂f
∂t∗

on y3 = f (t∗, x∗), (2.9a)

u∗(t∗, x∗, y3) = 0 on y3 = f (t∗, x∗), (2.9b)

T∗(t∗, x∗, y3) = Tw(t∗, x∗) on y3 = f (t∗, x∗), (2.9c)

u∗(t∗, x∗, y3) = λy3 as x∗ → −∞, (2.9d)

A∗(t∗, x∗) = 0 as x∗ → −∞, (2.9e)

T∗(t∗, x∗, y∗) = (γM2
∞)

−1 as x∗ → −∞, (2.9f )

u∗(t∗, x∗, y3) = λ( y3 + A∗(t∗, x∗)) as y3 → ∞, (2.9g)

T∗(t∗, x∗, y∗) = (γM2
∞)

−1 as y3 → ∞, (2.9h)
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with λ = ∂UB(1, y)/∂y|y=0 being the reduced shear of the oncoming boundary layer flow
u = UB(x∗,Re1/2 y), and A∗ is an unknown displacement function. Note that even though
the boundary conditions (2.9 f ) and (2.9h) suggest that the temperature is constant when
merging with oncoming flow, the temperature does vary in the lower-deck interaction
region as governed by (2.8d) and is also not constant in region 4 where there is a thermal
boundary layer.

These equations are coupled with the following upper-deck (region 1) problem, which
is the same as in the steady case (see, for example, Stewartson 1974):

(1 − M2
∞)
∂2p1

∂x2∗
+ ∂2p1

∂y2
1

= 0, (2.10a)

with y = Re−3/8 y1 and the pressure has been expanded as

p = Re−1/4p1(t∗, x∗, y1)+ · · · . (2.10b)

The problem for p1 is to be solved together with the matching conditions

p1(t∗, x∗, y1 = 0) = p∗(t∗, x∗),
∂p1

∂y1

∣∣∣∣
y1=0

= ∂2A∗(t∗, x∗)
∂x2∗

, (2.10c)

and far-field conditions

p∗(t∗, x∗, y1) → 0 as x2
∗ + y2

1 → ∞. (2.10d)

We first make use of the combined unsteady Dorodnitsyn–Howarth transform followed
by the Prandtl transposition given by

t∗, x∗, y∗ → t∗, x∗, y∗(t∗, x∗, y3) =
∫ y3

f (t∗,x∗)
ρ(t∗, x∗, y3) dy3, (2.11a,b)

and

ρ∗v3 = v∗ − ∂y∗
∂t∗

− u∗
∂y∗
∂x∗

. (2.12)

The form of the transform given previously with the lower limit non-zero is an extension
of the usual unsteady Dorodnitsyn–Howarth transform, which is discussed in van Dyke
(1952) for the one-dimensional case and Neiland et al. (2007) for the two-dimensional
case. The equations (2.8) and boundary conditions (2.9) reduce (see appendix A for
details) to

∂u∗
∂x∗

+ ∂v∗
∂ y∗

= 0 (2.13a)

∂u∗
∂t∗

+ u∗
∂u∗
∂x∗

+ v∗
∂u∗
∂ y∗

= −T∗(γM2
∞)
∂p∗
∂x∗

+ ∂

∂y∗

(
ρ∗μ∗

∂u∗
∂y∗

)
, (2.13b)

0 = −∂p∗
∂ y∗

, (2.13c)

∂T∗
∂t∗

+ u∗
∂T∗
∂x∗

+ v∗
∂T∗
∂ y∗

= 1
Pr

∂

∂y∗

(
ρ∗μ∗

∂T∗
∂y∗

)
, (2.13d)

ρ∗T∗ = (γM2
∞)

−1. (2.13e)
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The boundary conditions are

v∗(t∗, x∗, y∗) = 0 on y∗ = 0, (2.14a)

u∗(t∗, x∗, y∗) = 0 on y∗ = 0, (2.14b)

T∗(t∗, x∗, y∗) = Tw(t∗, x∗) on y∗ = 0, (2.14c)

u∗(t∗, x∗, y∗) = λy∗ as x∗ → −∞, (2.14d)

u∗(t∗, x∗, y∗) = λ( y∗ + K∗(t∗, x∗)) as y∗ → ∞, (2.14e)

where

K∗(t∗, x∗) = f (t∗, x∗)+
∫ ∞

0
(γM2

∞T∗ − 1) dy∗ + A∗(t∗, x∗). (2.14f )

The term involving the integral in the expression for K∗ in (2.14 f ) represents the additional
displacement effect produced by the wall heating.

In what follows, we use the Chapman viscosity law expressed by μ∗ = CT∗ for
some constant C. This and additional constants such as λ, γ,M∞ appearing in the
equations given previously may be effectively removed with the aid of the following affine
transformation:

t∗ = β1/2λ−3/2C−1/2(γM2
∞)

1/2τ, x∗ = β3/4λ−5/4(γM2
∞)

1/4C−1/4X,

y∗ = λ−3/4β1/4C1/4(γM2
∞)

−1/4Y, y1 = λ−5/4β7/4C−1/4(γM2
∞)

1/4Ȳ,

u∗ = λ1/4β1/4C1/4(γM2
∞)

−1/4U, v∗ = λ3/4C3/4β−1/4(γM2
∞)

−3/4V,

p∗ = β1/2λ1/2C1/2(γM2
∞)

−1/2P, T∗ = (γM2
∞)

−1θ, p1 = β1/2λ1/2C1/2(γM2
∞)

−1/2P1,

A∗ = λ−3/4β1/4C1/4(γM2
∞)

−1/4A, K∗ = λ−3/4β1/4C1/4(γM2
∞)

−1/4K,

f = λ−3/4β1/4C1/4(γM2
∞)

−1/4F, Tw = (γM2
∞)

−1θw,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)
and we have put β = (1 − M2

∞)
−1/2. After using the transformation in (2.13)–(2.14) in

conjunction with the Chapman viscosity law and the equation of state the resulting
equations are given by

∂U
∂X

+ ∂V
∂Y

= 0, (2.16a)

∂U
∂τ

+ U
∂U
∂X

+ V
∂U
∂Y

= −θ ∂P
∂X

+ ∂2U
∂Y2

, (2.16b)

0 = −∂P
∂Y
, (2.16c)

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
= 1

Pr
∂2θ

∂Y2
. (2.16d)
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V(τ,X,Y) = 0 on Y = 0, (2.17a)

U(τ,X,Y) = 0 on Y = 0, (2.17b)

θ(τ,X,Y) = θw(τ,X) on Y = 0, (2.17c)

U(τ,X,Y) = Y as X → −∞, (2.17d)

U(τ,X,Y) = Y + K(τ,X), as Y → ∞. (2.17e)

Here K is given by

K(τ,X) = F(τ,X)+
∫ ∞

0
(θ(τ,X,Y)− 1) dY + A(τ,X). (2.17f )

The transformed upper-deck problem is

∂2P1

∂X2
+ ∂2P1

∂Ȳ2
= 0, (2.18a)

with the boundary conditions

P1 → 0 as (X2 + Ȳ2) → ∞,

P1(τ,X, Ȳ = 0) = P(τ,X),
∂P1

∂Ȳ
= ∂2A
∂X2

on Ȳ = 0.

⎫⎪⎬
⎪⎭ (2.18b)

Here F represents the transformed wall shape and θw is the prescribed heating profile and
both these functions are assumed to be given.

The initial-value problem is supplemented with the initial conditions

U = Y, θ = θw = 1, V,P,P1,A,F = 0 for τ � 0. (2.19)

The nonlinear initial-value problem requires a numerical solution in general, but for small
amplitudes of the vibrator we can find a linearised solution.

We assume that the wall motion and localised heating profiles are given by

F(τ,X) = εFa(τ,X) = εh(X) sin(ω0τ), τ > 0,

θw(τ,X) = 1 + εg(τ,X), τ > 0,

}
(2.20)

where ε represents the maximum amplitude of the oscillation and ω0 is some prescribed
frequency. If g = 0, then it reduces to the problem studied by Terent’ev (1984).

2.1. Fourier–Laplace solution for small ε
For 0 < ε � 1 we may expand the flow quantities as

U(τ,X,Y) = Y + εUa(τ,X,Y)+ O(ε2), (2.21a)

V(τ,X,Y) = εVa(τ,X,Y)+ O(ε2), (2.21b)

θ(τ,X,Y) = 1 + εθa(τ,X,Y)+ O(ε2), (2.21c)

P(τ,X) = εPa(τ,X)+ O(ε2), (2.21d)

P1(τ,X, Ȳ) = εPu(τ,X, Ȳ)+ O(ε2), (2.21e)

A(τ,X) = εAa(τ,X)+ O(ε2), (2.21f )

K(τ,X) = εKa(τ,X)+ O(ε2). (2.21g)
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Substituting (2.21) into (2.16)–(2.18b) and linearising for small ε leads to the following
linearised initial-value problem

∂Ua

∂X
+ ∂Va

∂Y
= 0, (2.22a)

∂Ua

∂τ
+ Y

∂Ua

∂X
+ Va = −∂Pa

∂X
+ ∂2Ua

∂Y2
, (2.22b)

0 = −∂Pa

∂Y
, (2.22c)

∂θa

∂τ
+ Y

∂θa

∂X
= 1

Pr
∂2θa

∂Y2
, (2.22d)

Ka = h(X) sin(ω0τ)+ Aa +
∫ ∞

0
θa dY, (2.22e)

where

Ua(τ,X,Y = 0) = 0, (2.23a)

Va(τ,X,Y = 0) = 0, (2.23b)

θa(τ,X,Y = 0) = g(τ,X), (2.23c)

Ua = Va = θa = Ka = Pa = Aa = 0 for τ � 0, (2.23d)

Ua(τ,X,Y) = 0 as X → −∞, (2.23e)

Ua(τ,X,Y) = Ka(τ,X) as Y → ∞, (2.23f )

and
∂2Pu

∂X
+ ∂2Pu

∂Ȳ2
= 0, (2.24a)

with the boundary conditions

Pu → 0 as (X2 + Ȳ2) → ∞,

Pu(τ,X, Ȳ = 0) = Pa(τ,X),
∂Pu

∂Ȳ
= ∂2Aa

∂X2
on Ȳ = 0.

⎫⎪⎬
⎪⎭ (2.24b)

Let us introduce the Fourier–Laplace transform

U††
a (ω, k,Y) =

∫ ∞

0

∫ ∞

−∞
Ua(τ,X,Y) exp(−ωτ − ikX) dX dτ (2.25)

and the corresponding inverse by

Ua(τ,X,Y) = 1
4π2i

∫ ∞

−∞

∫
L

U††
a (ω, k,Y) exp(ωτ + ikX) dω dk, (2.26)

with similar expressions for the other quantities. The double superscript denotes the
Fourier–Laplace transform and the single superscript the Fourier transform. In addition,
L is a vertical line in the complex ω plane to the right of all singularities of the transform
functions to satisfy causality.
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Taking transforms of (2.22) and (2.23) gives

ikU††
a + ∂V††

a

∂Y
= 0, (2.27a)

(ikY + ω)U††
a + V††

a = −ikP††
a + ∂2U††

a

∂Y2
, (2.27b)

(ikY + ω)θ ††
a = 1

Pr
∂2θ ††

a

∂Y2
. (2.27c)

The equation (2.27c) for the temperature perturbation may be solved in terms of Airy
functions to obtain the solution

θ ††
a = D0Ai(Pr1/3ξ)+ D1Bi(Pr1/3ξ), (2.28)

where
ξ = (ik)1/3Y + ξ0, ξ0 = ω(ik)−2/3. (2.29a,b)

We take a branch cut along the positive imaginary axis so that −3π/2 < arg(k) < π/2.
Then the function Bi(ξ) grows exponentially when Y → ∞ and, hence, D1 must be zero.
Application of the boundary conditions yields

θ ††
a = g††(k, ω)

Ai(Pr1/3ξ)

Ai(η0)
, (2.30)

where we have written
η0 = Pr1/3ξ0. (2.31)

Next differentiating (2.27b) with respect to Y and using the continuity equation shows
that

∂3U††
a

∂Y3
− (ikY + ω)

∂U††
a

∂Y
= 0. (2.32)

This has the solution
∂U††

a

∂Y
= C0Ai(ξ)+ C1Bi(ξ). (2.33)

The Airy function Bi(ξ) grows exponentially for large Y and so we must take C1 = 0.
Setting Y = 0 in (2.27b) and using (2.33) gives

(ik)1/3C0Ai′(ξ0) = ikP††
a . (2.34)

We can further integrate (2.33) to obtain

U††
a = C0(ik)−1/3

∫ ξ

ξ0

Ai(ξ) dξ. (2.35)

Letting Y → ∞ in (2.35) and using the transformed boundary conditions from (2.23)
shows that

K††
a = C0(ik)−1/3

∫ ∞

ξ0

Ai(ξ) dξ. (2.36)
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TS wave cancellation via localised heating 909 A16-13

We also have from (2.22e)

K††
a = A††

a +
∫ ∞

0
θ ††

a dY + h†(k)ω0

(ω2 + ω2
0)
, (2.37)

which after using the solution for θ ††
a becomes

K††
a = A††

a + g††(ikPr)−1/3
∫ ∞

η0

Ai(η)
Ai(η0)

dη + h†(k)ω0

(ω2 + ω2
0)
. (2.38)

The equations for Pu do not involve τ explicitly and, therefore, taking Fourier–Laplace
transforms of (2.24a) and applying the boundary conditions gives the usual relation,

P††
a = k2

|k|A††
a . (2.39)

Finally, eliminating C0 and solving for P††
a from (2.34), (2.36) and (2.39) gives

P††
a (k, ω) = P††

± (ω, k) = H††(k, ω)ω0|k|Ai′(ξ0)

(ω2 + ω2
0)D±(ξ0, k)

, (2.40)

where ξ0 is defined in (2.29a,b) and

D±(ξ0, k) = −Ai′(ξ0)± k(ik)1/3
∫ ∞

ξ0

Ai(ξ) dξ, (2.41)

with the plus sign in D± corresponding to k positive and the minus sign for k negative. In
this expression we have defined

H††(k, ω) = h†(k)+ g††(k, ω)
(ω2 + ω2

0)(ikPr)−1/3
∫ ∞
η0

Ai(η) dη

ω0Ai(η0)
. (2.42)

The disturbed pressure Pa(τ,X) is calculated by formally inverting (2.40).
A number of results are immediately apparent from (2.40). Note that if we have no

localised heating and set g†† to be zero, then (2.40) reduces to the expression obtained by
Terent’ev (1984). Somewhat more interesting is that, even without a vibrator, localised
heating is also able to excite Tollmien–Schlichting waves (as also discussed in the
following). With a vibrator present, if the localised heating profile is chosen such that
H†† = 0, then the response P††

a is zero, which means no Tollmien–Schlichting waves. In
fact, the required localised heating profile is given by g††(ω, k) = g††

TC where

g††
TC(ω, k) = −h†(k)ω0Ai(η0)(ikPr)1/3

(ω2 + ω2
0)

∫ ∞
η0

Ai(η) dη
. (2.43)

The expression (2.43) is significant and potentially gives a means by which it is possible
to control instabilities in the boundary layer. Some typical results emanating from this
formula are shown later in the paper.
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2.2. Inverse transform to find the pressure Pa(τ,X)
Applying the inverse transform to P††

a given by (2.40) shows that

Pa(τ,X) = P(τ,X) = 1
4π2i

[∫ 0

−∞

∫
L

P††
− (k, ω) exp(ikX + ωτ) dω dk (2.44)

+
∫ ∞

0

∫
L

P††
+ (k, ω) exp(ikX + ωτ) dω dk

]
. (2.45)

We further write

P††
± = P(V)††

± + P(H)††
± (2.46)

with

P(V)††
± = h†(k)ω0|k|Ai′(ξ0)

(ω2 + ω2
0)D±(ξ0, k)

, P(H)††
± =

Ai′(ξ0)|k|(ikPr)−1/3g††(k, ω)
∫ ∞
η0

Ai(η) dη

Ai(η0)D±(ξ0, k)
.

(2.47a,b)
The superscripts (V) and (H) separate out the effects due to the vibrator and localised
heating. Consider first

P(V)− (τ,X) = 1
4π2i

∫ 0

−∞

∫
L

P(V)††
− (k, ω) exp(ikX + ωτ) dω dk. (2.48)

2.3. Inversion of the pressure P(V)− the vibrator contribution
In the complex ω plane the integrand has poles at ω = ±iω0 and at the zeros of
D−(ξ0, k) = 0. In figure 3(a) the first few zeros are shown for k varying from −∞ to
zero. Suppose that we label the roots ω1,j (j = 1, 2, . . . ), then for j = 2, 3, . . . the roots
have the property that Re(ω1,j) < 0. Only the root ω1,1 crosses the imaginary axis into
the first quadrant when k = k∗ and with ω1,1(k∗) = iω∗. The properties of the roots of the
dispersion relation D±(ξ0, k) = 0 have been studied in many papers including Terent’ev
(1981, 1984), Walker, Fletcher & Ruban (2006) and Ruban, Bernots & Kravtsova (2016).
In order to evaluate the inner integral in (2.48) we deform the contour L into the left-hand
ω plane as shown in figure 4. Using Cauchy’s theorem

1
2πi

(∫
L
+

∫
C1+C2+CR

)
P(V)††

− exp(ikX + ωτ) dω

=
∑

[Residues of P(V)††
− exp(ikX + ωτ) inside the contour L + C1 + C2 + CR].

(2.49)
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FIGURE 3. Locus of the roots (a) ω1,j of D−(ξ0, k) = 0 for k varying from (−∞, 0) and (b)
ω2,j of D+(ξ0, k) = 0 with k varying from (0,∞). The labels correspond to the different roots
ω1,j, ω2,j, j = 1, 2, . . ..

The residues arise from poles at ω = ±iω0 and when ω = ω1,j. Hence,

1
2πi

(∫
L
+

∫
C1+C2+CR

)
P(V)††

− exp(ikX + ωτ) dω

= |k|h†(k)Ai′(ξ0(iω0, k))
2iD−(ξ0(iω0, k), k)

exp(iω0τ + ikX)

− |k|h†(k)Ai′(ξ0(−iω0, k))
2iD−(ξ0(−iω0, k), k)

exp(−iω0τ + ikX)

+
∑

j

|k|ω0h†(k)Ai′(ξ0(ω1,j, k))

(ω2
0 + ω2

1,j)
∂D−

∂ω
(ξ0(ω1,j, k), k)

exp(ω1,jτ + ikX). (2.50)

The integrals
∫

C1
,
∫

C2
,
∫

CR
can be shown to tend to zero when R → ∞. Hence,

P(V)− (τ,X) = 1
2π

∫ 0

−∞

|k|h†(k)Ai′(ξ0(iω0, k))
2iD−(ξ0(iω0, k), k)

exp(iω0τ + ikX) dk

− 1
2π

∫ 0

−∞

|k|h†(k)Ai′(ξ0(−iω0, k))
2iD−(ξ0(−iω0, k), k)

exp(−iω0τ + ikX) dk

+ 1
2π

∑
j

∫ 0

−∞

|k|ω0h†(k)Ai′(ξ0(ω1,j, k))

(ω2
0 + ω2

1,j)
∂D−

∂ω
(ξ0(ω1,j, k), k)

exp(ω1,j(k)τ + ikX) dk.

(2.51)
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y
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R C1
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CR

FIGURE 4. Deformed contour for inversion of the integral in the ω-plane.

The calculation can be repeated for the inversion of P(V)††
+ and the details are very similar

to those described previously and give

P(V)+ (τ,X) = 1
2π

∫ ∞

0

|k|h†(k)Ai′(ξ0(iω0, k))
2iD+(ξ0(iω0, k), k)

exp(iω0τ + ikX) dk

− 1
2π

∫ ∞

0

|k|h†(k)Ai′(ξ0(−iω0, k))
2iD+(ξ0(−iω0, k), k)

exp(−iω0τ + ikX) dk

+ 1
2π

∑
j

∫ ∞

0

|k|ω0h†(k)Ai′(ξ0(ω2,j, k))

(ω2
0 + ω2

2,j)
∂D+

∂ω
(ξ0(ω2,j, k), k)

exp(ω2,j(k)τ + ikX) dk.

(2.52)

In (2.52) we have labelled ω2,j(k) as the zeros of D+(ξ0, k) = 0 for k positive.

2.4. Inversion of the pressure P(H)− the localised heating contribution

As P(H)− involves the function g††(ω, k) many profiles could be chosen, but suppose we
take a localised heating profile of the form

g(τ, x) = ĝ(x) sin(ω0τ), (2.53)

giving

g††(ω, k) = ĝ†(k)ω0

ω2 + ω2
0
. (2.54)

Then

P(H)††
± =

Ai′(ξ0)|k|(ikPr)−1/3ĝ†(k)ω0
∫ ∞
η0

Ai(η) dη

(ω2 + ω2
0)Ai(η0)D±(ξ0, k)

. (2.55)

In inverting the transform P(H)††
± in addition to the poles discussed when inverting P(V)††

± we
also have additional poles, which we label as ω = ω3,j(k), ω4,j(k), arising from the zeros
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of Ai(η0) in the denominator of (2.55). The Airy function Ai(η0) has zeros on the negative
real axis and we can write

η0 = −|aj| (j = 1, 2, . . . ) (2.56)

where aj is a zero of the Airy function Ai(η). Using the definition of η0 from (2.29a,b)
and (2.31) we obtain

ω(k) = ω3,j = |ajk2/3|
Pr1/3

exp(−4iπ/3) (k < 0), (2.57)

and

ω(k) = ω4,j = |ajk2/3|
Pr1/3

exp(−2iπ/3) (k > 0). (2.58)

As the real part of ω3,j(k), ω4,j(k) is negative these do not contribute to any additional
unstable modes. The inversion follows a similar argument to that already given and it can
be shown that

2πP(H)− (τ,X)

=
∫ 0

−∞

ĝ†(k)|k|2/3 eiπ/6(Pr)−1/3Ai′(ξ0(iω0, k))
∫ ∞
η0(iω0,k)

Ai(η) dη

2iAi(η0(iω0, k))D−(ξ0(iω0, k), k)
exp(iω0τ + ikX) dk

−
∫ 0

−∞

ĝ†(k)|k|2/3 eiπ/6(Pr)−1/3Ai′(ξ0(−iω0, k))
∫ ∞
η0(−iω0,k)

Ai(η) dη

2iAi(η(−iω0, k))D−(ξ0(−iω0, k), k)

× exp(−iω0τ + ikX) dk

+
∑

j

∫ 0

−∞

ω0ĝ†(k)|k|2/3 eiπ/6(Pr)−1/3Ai′(ξ0(ω1,j, k))
∫ ∞
η0(ω1,j,k)

Ai(η) dη

(ω2
0 + ω2

1,j)Ai(η0(ω1,j, k))
∂D−

∂ω
(ξ0(ω1,j, k), k)

× exp(ω1,j(k)τ + ikX) dk

+
∑

j

∫ 0

−∞

ω0ĝ†(k)Ai′(ξ0(ω3,j, k))|k|4/3 e−iπ/6(Pr)−2/3
∫ ∞
η0(ω3,j,k)

Ai(η) dη

(ω2
0 + ω2

3,j)Ai′(η0(ω3,j, k))D−(ξ0(ω3,j, k), k)

× exp(ω3,j(k)τ + ikX) dk. (2.59)

An expression for P(H)+ may be derived in a similar manner.
Finally,

P(τ,X) = P−(τ,X)+ P+(τ,X). (2.60)

To interpret the findings, we need the following additional results.
First note that if we write k = |k| eiθk where θk is the argument of k, then ξ0(ω, k) can be

written as
ξ0(ω, k) = ω(ik)−2/3 = ω|k|−2/3 exp(−2iθk/3) exp(−iπ/3). (2.61)

Hence, the complex conjugate of ξ0(ω, k) is

[ξ0(ω, k)](c) = ω(c)|k|−2/3 exp(2iθk/3) exp(iπ/3). (2.62)
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However, note that

ξ0(ω
(c), k(c) exp(−iπ)) = ω(c)|k|−2/3 exp(2i(θk + π)/3) exp(−iπ/3)

= ω(c)|k|−2/3 exp(2iθk/3) exp(iπ/3). (2.63)

This shows that

[ξ0(ω, k)](c) = ξ0(ω
(c), k(c) e−iπ). (2.64)

Using this, we observe that if D−(ξ0(ω, k)) = 0, then taking the complex conjugate

[D−(ξ0(ω, k), k)](c) = −Ai′(ξ (c)0 )− |k|4/3 exp
(

−4
3

iθk

)
exp(−iπ/6)

∫ ∞

ξ
(c)
0

Ai(ξ) dξ,

= −Ai′(ξ (c)0 )+ |k| exp
(

i
(

4
3

)
(−π − θk)

)
exp(iπ/6)

∫ ∞

ξ
(c)
0

Ai(ξ) dξ,

= D+(ξ0(ω
(c), k(c) exp(−iπ)), k(c) exp(−iπ)). (2.65)

Thus, if (ω, k) is a root of D− = 0, then (ω(c), k(c) e−iπ) is a root of D+ = 0; figure 3
confirms this observation. We can use these results to rewrite the inverted pressure as

P(τ,X) = 1
π

Re
[∫ 0

−∞

|k|h†(k)Ai′(ξ0(iω0, k))
2iD−(ξ0(iω0, k), k)

exp(iω0τ + ikX) dk

−
∫ 0

−∞

|k|h†(k)Ai′(ξ0(−iω0, k))
2iD−(ξ0(−iω0, k), k)

exp(−iω0τ + ikX) dk

+
∑

j

∫ 0

−∞

|k|ω0h†(k)Ai′(ξ0(ω1,j, k))

(ω2
0 + ω2

1,j)
∂D−

∂ω
(ξ0(ω1,j, k), k)

exp(ω1,j(k)τ + ikX) dk

+
∫ 0

−∞

ĝ†(k)|k|2/3 eiπ/6(Pr)−1/3Ai′(ξ0(iω0, k))
∫ ∞
η0(iω0,k)

Ai(η) dη

2iAi(η0(iω0, k))D−(ξ0(iω0, k), k)

× exp(iω0τ + ikX) dk

−
∫ 0

−∞

ĝ†(k)|k|2/3eiπ/6(Pr)−1/3Ai′(ξ0(−iω0, k))
∫ ∞
η0(−iω0,k)

Ai(η) dη

2iAi(η(−iω0, k))D−(ξ0(−iω0, k), k)

× exp(−iω0τ + ikX) dk

+
∑

j

∫ 0

−∞

ω0ĝ†(k)|k|2/3 eiπ/6(Pr)−1/3Ai′(ξ0(ω1,j, k))
∫ ∞
η0(ω1,j,k)

Ai(η) dη

(ω2
0 + ω2

1,j)Ai(η0(ω1,j, k))
∂D−

∂ω
(ξ0(ω1,j, k), k)

× exp(ω1,j(k)τ + ikX) dk
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+
∑

j

∫ 0

−∞

ω0ĝ†(k)|k|4/3 e−iπ/6(Pr)−2/3Ai′(ξ0(ω3,j, k))
∫ ∞
η0(ω3,j,k)

Ai(η) dη

(ω2
0 + ω2

3,j)Ai′(η0(ω3,j, k))D−(ξ0(ω3,j, k), k)

× exp(ω3,j(k)τ + ikX) dk

]
. (2.66)

Note that the integrals in (2.66) (with terms multiplied by exp(±iω0τ)) represent the
response due to the forcing at the vibrator frequency. The other terms are the response due
to the excited modes of the boundary layer. For large time τ all the terms in the summations
except that with j = 1 corresponding to the root ω1,j decay rapidly. If j = 1, the integrands
proportional to exp(ω1,jτ) have a simple pole at k = k1 when ω1,1(k1) = iω0. The locus
of the root ω1,1(k) = iω0 in the complex k plane for varying ω0 is shown in figure 5.
When ω0 = ω∗ = 2.298 and k = k∗ = −1.005 the root crosses from the second quadrant
into the third quadrant in the k plane giving rise to unstable waves. In fact, we can estimate
the terms by making use of Laplace’s method and noting that the major contribution to
the integrals come from the vicinity of k = 0. The details of the lengthy calculation are
omitted but are similar to those given by Terent’ev (1984) and Ruban et al. (2016) for
instance. It is found that for large τ we can approximate (2.66) by

P(τ,X) = Re
[

1
π

∫ 0

−∞

|k|h†(k)Ai′(ξ0(iω0, k))
2iD−(ξ0(iω0, k), k)

exp(iω0τ + ikX) dk

− 1
π

∫ 0

−∞

|k|h†(k)Ai′(ξ0(−iω0, k))
2iD−(ξ0(−iω0, k), k)

exp(−iω0τ + ikX) dk

+ 1
π

∫ 0

−∞

ĝ†(k)Ai′(ξ0(iω0, k))|k|2/3 eiπ/6(Pr)−1/3
∫ ∞
η0(iω0,k)

Ai(η) dη

2iAi(η0(iω0, k))D−(ξ0(iω0, k), k)

× exp(iω0τ + ikX) dk

− 1
π

∫ 0

−∞

ĝ†(k)Ai′(ξ0(−iω0, k))|k|2/3 eiπ/6(Pr)−1/3
∫ ∞
η0(−iω0,k)

Ai(η) dη

2iAi(η(−iω0, k))D−(ξ0(−iω0, k), k)

× exp(−iω0τ + ikX) dk

− |k1|h†(k1)Ai′(ξ0(iω0, k1))

∂D−

∂ω
(ξ0(iω0, k1), k1)

dω1,1

dk
(k1)

exp(ω1,1(k1)τ + ik1X)H(ω0 − ω∗)

−
ĝ†(k1)|k|2/3 eiπ/6(Pr)−1/3Ai′(ξ0(iω0, k1))

∫ ∞
η0(iω0,k1)

Ai(η) dη

Ai(η0(iω0, k1))
∂D−

∂ω
(ξ0(iω0, k1), k1)

dω1,j

dk
(k1)

× exp(ω1,1(k1)τ + ik1X)H(ω0 − ω∗),
]

(2.67)

where H(θ) is the Heaviside function. The result (2.67) shows that for frequencies larger
than the critical frequency ω∗ = 2.298 the vibrator as well as localised heating is able to
excite an unstable wave in the boundary layer whose shape and amplitude is given by the
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–2 –1 0

Re(k)

FIGURE 5. Locus of the root ω1,1(k) = iω0 with ω0 varying from 0 to ∞. The arrow indicates
the direction of ω0 increasing.

last two terms in (2.67). If we write the expression for the unstable wave in the form

J(ω0, k1) exp(ω1,1(k1)τ + ik1X), (2.68)

then

J(ω0, k1) = JV(ω0, k1)+ JH(ω0, k1) (2.69)

with

JV(ω0, k1) = −Re

⎡
⎢⎣ |k1|h†(k1)Ai′(ξ0(iω0, k1))

∂D−

∂ω
(ξ0(iω0, k1), k1)

dω1,1

dk
(k1)

⎤
⎥⎦ , (2.70a)

JH(ω0, k1) = −Re

⎡
⎢⎣ ĝ†(k1)|k|2/3 eiπ/6(Pr)−1/3Ai′(ξ0(iω0, k1))

∫ ∞
η0(iω0,k1)

Ai(η) dη

Ai(η0(iω0, k1))
∂D−

∂ω
(ξ0(iω0, k1), k1)

ω1,1

dk
(k1)

⎤
⎥⎦ .

(2.70b)

The terms JV , JH in (2.70) give the respective amplitudes of the generated
Tollmien–Schlichting wave due to the vibrator and heating, respectively.

3. Numerical solution of the linearised triple-deck initial-value problem

As an alternative to the analytical solution of the previous section, here we focus
on obtained results using a numerical approach to solving the initial-value problem.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.928


TS wave cancellation via localised heating 909 A16-21

Consider the linearised triple-deck problem governed by (2.22), (2.23) and (2.27):

∂Ua

∂X
+ ∂Va

∂Y
= 0, (3.1a)

∂Ua

∂τ
+ Y

∂Ua

∂X
+ Va = −∂Pa

∂X
+ ∂2Ua

∂Y2
, (3.1b)

∂θa

∂τ
+ Y

∂θa

∂X
= 1

Pr
∂2θa

∂Y2
, (3.1c)

for |X| < ∞, Y > 0 and τ > 0. The boundary and initial conditions are

Ua,Va, θa,Pa,Aa,Ka,Fa, θw = 0 τ < 0, (3.1d)

Ua(τ,X,Y = 0) = Va(τ,X,Y = 0) = 0, (3.1e)

Ka(τ,X) = Fa(τ,X)+ Aa(τ,X)+
∫ ∞

0
θa(τ,X,Y) dY, for τ > 0, (3.1f )

Ua(τ,X,Y → ∞) = Ka(τ,X), (3.1g)

Ua,Va,Pa,Aa, θa,Ka,→ 0 as |X| → ∞. (3.1h)

We also allow for more general wall-shape and heating functions, defined by

Fa(τ,X) = h(X)q(τ ), θaw = g(τ,X) 0 < τ. (3.2)

The function h(X) is a smooth Gaussian hump given by h(X) = e−X2/4. Note that this is
different from the triangular-shaped bump employed by Terent’ev (1984), which was given
by

h(X) =

⎧⎪⎨
⎪⎩

0 X < 0 or X > 2,
X for 0 < X < 1,
2 − X for 1 < X < 2.

(3.3)

As we discuss later, the use of (3.3) makes resolving the resulting flow substantially
more challenging owing to the slow (algebraic) decay of the Fourier spectrum at high
wavenumbers. For the function q(τ ) the work of Terent’ev (1984) and the analytical results
given previously use q(τ ) = sinω0τ . For the numerical work we have used q(τ ) = sinω0τ
as well as a smoother initial start given by

q(τ ) = (1 − e−aτ 2
) sin(ω0τ), (3.4)

with a = 1/10. The choice of the wall heating functions g(τ,X) used is discussed in the
following.

We also have the relationship

Pa(τ,X) = 1
π

−
∫ ∞

−∞

1
X − ξ

∂Aa(τ, ξ)

∂ξ
dξ. (3.5)

To solve the set (3.1)–(3.5) and, in particular, to find the pressure Pa(X,T)we performed
a numerical study of the equations using the following method. First define a Fourier
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transform of Ua(τ,X,Y) by

U†
a(τ, k,Y) = 1√

2π

∫ ∞

−∞
Ua(τ,X,Y) e−ikX dX. (3.6)

The inverse is given by

Ua(τ,X,Y) = 1√
2π

∫ ∞

−∞
U†

a(τ, k,Y) eikX dX. (3.7)

Then equations (3.1)–(3.5) become

ikU†
a + ∂V†

a

∂Y
= 0, (3.8a)

∂U†
a

∂τ
+ ikYU†

a + V†
a = −ikP†

a + ∂2U†
a

∂Y2
, (3.8b)

∂θ †
a

∂τ
+ ikYθ †

a = 1
Pr
∂2θ †

a

∂Y2
, (3.8c)

U†
a(τ, k,Y = 0) = Va(τ, k,Y = 0) = 0, θa(τ, k,Y = 0) = g†(τ, k), (3.8d)

K†
a(τ, k) = q(τ )h†(k)+ A†

a(τ, k)+
∫ ∞

0
θ †

a (τ, k,Y) dY for τ > 0. (3.8e)

U†
a(τ, k,Y → ∞) = K†

a(τ, k), (3.8f )

P†
a(τ, k) = k2

|k|A†
a(τ, k). (3.8g)

We use a second-order fully implicit time-differencing scheme with time step dτ and
(3.8b) for example replaced by

3U†(n+1)
a − 4U†(n)

a + U†(n−1)
a

2dτ
+ ikYU†(n+1)

a + V†(n+1)
a = −ikP†(n+1)

a + ∂2U†(n+1)
a

∂Y2
, (3.9)

and from (3.8a) V†
a is given by

V†(n+1)
a = −ik

∫ Y

0
U†(n+1)

a dY. (3.10)

Here, for example, U†(n)
a = U†

a(τn) where τn = n dτ . For the first time step we use a
first-order fully implicit scheme. For a given time level n we solve the system of equations
for U†

a,P†
a, θ

†
a by using Chebychev collocation at the collocation points

Y = Yj = Ymax

2

(
1 − cos

(
jπ
N

))
, j = 0, . . . ,N (3.11)

with the approximate outer boundary Ymax chosen suitably. Let u†(n) = (u†(n)
j ) with u†(n)

j =
U†(n)

a (Y = Yj), and similarly θ †(n) = (θ
†(n)
aj ). Then (3.9) leads to a linear system of the form

G

⎛
⎝ u†(n+1)

A†(n+1)
a

θ †(n+1)

⎞
⎠ = R(n), (3.12)
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where G is a square matrix of order (2N + 3) and R(n) is the right-hand side of the linear
system. To accommodate the boundary conditions we replace the first row of G with the
condition from (3.8d)

u†(n+1)(Y0) = 0. (3.13)

Row (N + 1) of G is replaced by the boundary condition

u†(n+1)(YN)− A†(n+1)
a −

∫ ∞

0
θ †(n+1)

a dY = q(τn)h†(k), (3.14)

making use of (3.8e). Row (N + 2) of G is replaced by the condition stemming from the
equation

∂U†
a

∂Y
(Y = YN) = 0. (3.15)

Finally, in row (N + 3) and the last row of G we use the remaining conditions on θ † at
Y = 0 and Y = YN , respectively.

For a given k, we can solve the linear system (3.12) to find the unknown variables and, in
particular, P†(n)

a (k). This is then inverted using the discrete inverse fast Fourier transform
to obtain Pa(τn,X) and other quantities as required.

4. Results

Results are presented at various time intervals and for different frequencies. For the
numerical work we have taken the Prandtl number Pr = 1. Figures 6, 7 and 8 show the
pressure perturbation for ω = 2, ω = 2.298 and ω = 2.5, respectively, for the case when
there is no heating. Unless otherwise specified, the values shown correspond to taking
a time step dτ = Tper/256 (with Tper = 2π/ω0), N = 32, Ymax = 40 and 2048 Fourier
modes. The wall motion is described by Fa(τ,X) = h(X)q(τ ) and q(τ ) = sin(ω0τ).

When ω = 2 the analysis predicts a stable wave, when ω = 2.298 the wave is neutrally
stable and when ω = 2.5 an unstable wave growing downstream with X is generated. The
numerical solutions in figures 6–8 are in accord with the predictions.

In figures 9–11 we present similar results but this time when there is no vibrator and only
localised (unsteady) heating taking Fa = 0 and g(τ,X) = h(X)q(τ ) and q(τ ) = sin(ω0τ).
The analytical results predict stable, neutral and unstable waves as before and as shown in
the numerical results.

In figure 12 we present the temperature perturbation θa(τ,X,Y = Yj) for the unstable
case of ω = 2.5 at various times and with no vibrator (Fa = 0) using the same localised
heating function as in figure 11. Even though the frequency corresponds to the case
of an unstable spatially (downstream) growing wave, the instability is confined to just
the velocity and pressure field and not the temperature perturbation as predicted by the
analysis.

4.1. Tollmien–Schlichting wave cancellation
In this section we present results showing Tollmien–Schlichting wave cancellation taking
place with appropriately chosen localised temperature forcing. The analysis suggests that
cancellation will take place provided that the wall forcing is chosen according to (2.43).
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FIGURE 6. Results for the pressure perturbation with ω0 = 2 (stable) at times
τ = (K + 1

4 )Tper, K = 3, 4, 5, 6, 7, 8, with g(τ,X) = 0 (no heating).
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FIGURE 7. Results for the pressure perturbation with ω0 = 2.298 (neutral) at times
τ = (K + 1

4 )Tper, K = 3, 4, 5, 6, 7, 8, with g(τ,X) = 0 (no heating).
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FIGURE 8. Results for the pressure perturbation with ω0 = 2.5 (unstable) at times
τ = (K + 1

4 )Tper, K = 3, 4, 5, 6, 7, 8, with g(τ,X) = 0 (no heating).
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FIGURE 9. Results for the pressure perturbation with ω0 = 2 (stable) at times
τ = (K + 1

4 )Tper, K = 3, 4, 5, 6, 7, 8 and no vibrator, forced by unsteady heating.
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FIGURE 10. Results for the pressure perturbation with ω0 = 2.298 (neutral) at times
τ = (K + 1

4 )Tper, K = 3, 4, 5, 6, 7, 8 and no vibrator, forced by unsteady heating.
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FIGURE 11. Results for the pressure perturbation with ω0 = 2.5 (unstable) at times
τ = (K + 1

4 )Tper, K = 3, 4, 5, 6, 7, 8 and no vibrator, forced by unsteady heating.
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FIGURE 12. Temperature profile θ(X,Yj, τ ) with g(X, τ ) = h(X)q(τ ), h(x) = 0 and ω = 2.5
with Yj ≈ 7.759 at times τ = (K + 1

4 )Tper, K = 3, 4, 5, 6, 7, 8.

We can formally invert this to find

gTC(τ,X) = − 1
4π2i

∫ ∞

−∞

∫
L

h†(k)ω0Ai(η0)(ikPr)1/3

(ω2 + ω2
0)

∫ ∞
η0

Ai(η) dη
exp(ωτ + ikX) dω dk, (4.1)

where L is a contour to the right of all singularities of the integrand in the complex ω plane.
As far as the integral with respect to ω is concerned the integrand has poles at ω = ±iω0
and when ∫ ∞

η0

Ai(η) dη = 0. (4.2)

The function
∫ ∞

z
Ai(ξ) dξ is the generalised Airy function and it is known that the zeros

of this function form an infinite countable set and arise as complex conjugate pairs with
negative real values. The first few such values are tabulated in table 1. If we label these
zeros as bj = |bj| exp(−iπ + iψj), then from the definition η0 we find that

ω = ω6j =
|bj| exp

(
−2πi

3
+ iψj

)
(ik)2/3

Pr1/3
. (4.3)

Importantly we note from (4.3) that the real part of ω6j remains negative for j = 1, 2, . . . .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.928


909 A16-28 G. S. Brennan, J. S. B. Gajjar and R. E. Hewitt

j bj
1 −4.10700 − 1.14416i
2 −4.10700 + 1.14416i
3 −6.79815 − 1.03516i
4 −6.79815 + 1.03516i
5 −9.03091 − 0.96941i
6 −9.03091 + 0.96941i

TABLE 1. First few zeros of
∫ ∞
ξ

Ai(t) dt denoted by bj. Note that these arise as complex
conjugate pairs with negative real parts.

Hence, inverting the inner integral in (4.1) gives

gTC(τ,X) = − 1
2π

∫ ∞

−∞

h†(k)Ai(η(iω0(k), k))(ikPr)1/3

2i
∫ ∞
η0(iω0,k)

Ai(η) dη
exp(iω0τ + ikX) dk

+ 1
2π

∫ ∞

−∞

h†(k)Ai(η(−iω0(k), k))(ikPr)1/3

2i
∫ ∞
η0(−iω0,k)

Ai(η) dη
exp(−iω0τ + ikX) dk

+
∞∑

j=1

∫ ∞

−∞

h†(k)(ik)ω0

(ω2
0 + ω2

6j)Pr1/3
exp(ω6jτ + ikX) dk. (4.4)

However, for the numerical computations, instead of the exact cancellation function given
by (4.4) an approximation gTCN(τ,X) was used, which is obtained by ignoring the terms
in the summation. In the Fourier transform space the function g†

TCN(τ, k) is given by

g†
TCN(τ, k) = h†(k)

(ikPr)1/3Ai(η0(−iω0, k))
2i

∫ ∞
η0(−iω0,k)

Ai(η) dη
exp(−iω0τ)

− h†(k)
Ai(η0(iω0, k))(ikPr)1/3

2i
∫ ∞
η0(iω0,k)

Ai(η) dη
exp(iω0τ). (4.5)

In figure 13 we show the result of wave cancellation in action. The wall motion is taken
to be the same as that for figure 8.

In figure 14 we have compared wave cancellation with and without localised heating.
Figures 14(a) and 15(a) show the effect on the amplitude of the wave at two instants in
time, by choosing g(τ,X) according to (4.5). In figures 14(b) and 15(b) the comparison is
over an extended range of X. In the earlier figures only a restricted range of X is shown and
this corresponds to the developing Tollmien–Schlichting wave. Over the extended range,
the full response including a faster growing convective wave packet is clearly visible. This
arises from the transient part of the signal and is present for all the cases (stable, neutral
and unstable) studied, and it can be seen that the amplitude of the wave packet is orders of
magnitude larger than the Tollmien–Schlichting wave amplitude. With wave cancellation
using (4.5), the amplitude of this wave packet is diminished but remains significant as
figure 14(b) shows.

In figure 16 the comparisons are also shown for the stable case with ω0 = 2 and in
figure 17 for the neutral case with ω = 2.298.
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FIGURE 13. The pressure perturbation Pa(τ,X) with ω = 2.5 and Tollmien–Schlichting
cancellation in action using the heating function given by (4.5) at times τ = (K + 1

4 )Tper,
K = 3, 4, 5, 6, 7, 8.
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FIGURE 14. Comparisons of the pressure perturbation with ω = 2.5 at T = (4 + 1/4)Tper with
and without wave cancellation using (4.5): (a) for the restricted range in x and in (b) over an
extended range showing the wave packet.
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FIGURE 15. Comparison of the pressure perturbations with ω = 2.5 at T = (8 + 1/4)Tper with
and without wave cancellation using (4.5): (a) for restricted range in x and in (b) over an extended
range showing the wave packet.
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FIGURE 16. Comparison of the pressure perturbations at T = (8 + 1/4)Tper with and without
wave cancellation using (4.5) for the stable case with ω0 = 2. (a) for restricted range in x and in
(b) over an extended range showing the wave packet.
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FIGURE 17. Comparison of the pressure perturbations at T = (8 + 1/4)Tper with and without
wave cancellation using (4.5) for the neutral case with ω0 = 2.298 (a) for restricted range in X
and in (b) over an extended range showing the wave packet.

The formula given by (4.4) predicts a complete cancellation of the signal, as seen in
figures 15(a), 16(a), 17(a) for instance. However, on using the approximate formula in
(4.5) although the Tollmien–Schlichting wave amplitude is reduced significantly, as seen
by a comparison of figures 13 and 8, the wave packet amplitude is still very large, as
figures 15(b), 16(b), 17(b) show.

It is possible that taking more terms in the expansion may help in reducing the
amplitude of the wave packet but limitations arise because of numerical precision and
roundoff errors. This is also one of the reasons why we chose the wall function to
be a smooth Gaussian hump. With a triangular hump as used by Terent’ev (1984)
and given in (3.3), the computations were particularly sensitive to the growth of the
high-wavenumber components affecting the wave packet amplitude. This can be seen in
figure 18, which shows the Fourier transform amplitude as a function of the wavenumber
at two times, comparing the results for the Gaussian hump with the triangular hump (3.3).
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FIGURE 18. Plots of the function |P†(τ, k)| against k at times τ = 2Tper (dotted line)
and τ = 4Tper (solid line) for the Gaussian hump (labelled G) and triangular hump shape
(labelled Tr).

Figure 18 initially shows two peaks, one near k = 1 corresponding to the
Tollmien–Schlichting wave, and the other near k = 2.5 in accordance with figure 3.
For a triangular hump, the growth of the high-wavenumber components meant that
computations and, in particular, the behaviour of the wave packet could not be adequately
resolved after a short time. We restrict attention in these results to |k| � 2π; the inclusion
of a larger wavenumber range would require even further decreases of the temporal step in
the numerical calculations.

Extensive grid size and other checks were carried out as documented in the
accompanying supplementary material available at https://doi.org/10.1017/jfm.2020.928.
It is noted that the wave packet amplitude is most sensitive to changes in the time steps
dτ and when using other integration schemes. Other parts of the signal including the
Tollmien–Schlichting wave appear to be fully resolved when varying the grid parameters
and time steps.

5. Conclusions

The most significant finding in this study is that we have shown that it is possible
to chose a localised temperature profile that is able to cancel out Tollmien–Schlichting
waves. A modified version of the exact heating profile was shown to be effective in
radically reducing the amplitude of the unstable Tollmien–Schlichting wave generated.
Although the analysis performed is linear and thus restricted to small amplitudes, it
would be interesting to try applying the idea for a full nonlinear simulation. In principle,
the same idea may be extended also for other situations including three-dimensional
effects as well as Tollmien–Schlichting wave generation by other means. However, in a
real flow Tollmien–Schlichting waves can be excited through multiple mechanisms and
to be able to predict wave-cancellation profiles for a more general situation is a much
more complex task. A number of problems for further study are suggested by the results
presented here and in the first instance it would be interesting to revisit the experiments
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of Liepmann et al. (1982) and Liepmann & Nosenchuck (1982) using Navier–Stokes
simulations, and incorporating the analytic formula for wave cancellation wall heating
functions given here.

We have also calculated the receptivity coefficients due to Tollmien–Schlichting waves
generated by the effects of wall vibration as well as localised heating for a special case of
sinusoidal temporal forcing as given by the expressions (2.70a) and (2.70b).

The original motivation for the current study was the desire to fully understand the
wave packets that caused difficulties in simulations of the unsteady triple-deck equations
for nonlinear mean flows as in the work of Logue et al. (2014) where also the wave packet
was not fully resolved. By choosing to focus on a linear system where it is possible to
proceed analytically as with the equations studied here, we have found that in order to
resolve the wave packet in our linear system, extremely small time steps are required. The
time steps used in Logue et al. (2014) are much larger in comparison. We also found that
the high-frequency spatial components are amplified because of the numerical techniques
used, and the growth of these also leads to difficulties in performing long-time accurate
computations.

Finally one other observation arising from the numerical results presented here
is that the transient part of the signal leading to the formation of the downstream
travelling wave packet has an order of magnitude larger amplitude as compared with the
Tollmien–Schlichting wave amplitude. This is not too dissimilar to what is observed in
the experimental studies by Gaster & Grant (1975) where disturbances were introduced
by impulsively injecting at some upstream location on the flat plate. This initiated a wave
packet that propagated downstream. The frequency power spectrum in figure 2 of Gaster
& Grant (1975) shows two peaks as in our figure 18, and in the signal traces in figure
4 of Gaster & Grant (1975), only the wave packet can be seen. The amplitude of the
Tollmien–Schlichting wave excited is an order of magnitude smaller as their figure 2 also
shows.

Acknowledgements

J.S.B.G. would like to thank Professor P. Hall (Monash University), Professor A. Ruban
(Imperial College), Professor F.T. Smith (UCL) and Dr Y. Bhumkar (IIT Bhubaneshwar)
for helpful suggestions and discussions on the work and the results presented in this paper.
J.S.B.G. is also grateful to the Sydney Mathematics Research Institute (SMRI) at the
University of Sydney for hosting a visit in 2019 where part of this work was completed.
G.S.B. acknowledges the support provided by the EPSRC Centre for Doctoral Training in
Industrially Focused Mathematical Modelling (EP/L015803/1). We would like to thank the
referees for their useful and helpful comments which helped to improve the manuscript.
One of the referees kindly directed us to the work of van Dyke (1952) and the relevant
page in Neiland et al. (2007) that helped us in improving the appendix when discussing
the combined Prandtl–Dorodnitsyn–Howarth transformation.

Declaration of interests

The authors report no conflict of interest.

Supplementary material

Supplementary material is available at https://doi.org/10.1017/jfm.2020.928.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.928
https://doi.org/10.1017/jfm.2020.928


TS wave cancellation via localised heating 909 A16-33

Appendix A. Combined Prandtl–Dorodnitsyn–Howarth transform

Following van Dyke (1952) and Neiland et al. (2007), we introduce the change of
variables (t∗, x∗, y3) → (T∗,X∗, y∗) where

T∗ = t∗, X∗ = x∗, y∗(t∗, x∗, y3) =
∫ y3

f (t∗,x∗)
ρ∗(t∗, x∗, y) dy, (A 1a–c)

and

ρ∗v3 = v∗ − ∂y∗
∂t∗

− u∗
∂y∗
∂x∗

. (A 2)

Note that we have introduced the independent variables T∗ = t∗,X∗ = x∗ for extra clarity
in the following discussion, although in the main text we have retained t∗ and x∗ only.

The combined Prandtl–Dorodnitsyn–Howarth transformation given by (A 1a–c) and
(A 2) and as used in the text, is a generalisation of the more familiar Dorodnitsyn–Howarth
transform, see van Dyke (1952) and Neiland et al. (2007), in which the lower limit in the
integral for y∗ is zero. Details of how this transform reduces the continuity equation to one
without ρ∗, and how the boundary conditions at the wall y3 = f are satisfied, are given in
the following.

Using the transformation we have

∂

∂t∗
= ∂

∂T∗
+ ∂y∗
∂t∗

∂

∂y∗
, (A 3a)

∂

∂x∗
= ∂

∂X∗
+ ∂y∗
∂x∗

∂

∂y∗
, (A 3b)

∂

∂y3
= ρ∗

∂

∂y∗
. (A 3c)

Next integrating the continuity equation (2.8a) and making use of the boundary conditions

u∗ = 0, v3 = ∂f
∂t∗
, on y3 = f (t∗, x∗), (A 4)

we obtain

ρ∗v3 = −
∫ y3

f

∂ρ∗
∂t∗

dy3 −
∫ y3

f

∂

∂x∗
(ρ∗u∗) dy3 + ρ(t∗, x∗, f )

∂f
∂t∗
(t∗, x∗). (A 5)

Next we make use of the Leibniz’s rule for differentiation under the integral sign in (A 5)
together with the boundary conditions in (A 4) to give

ρ∗v3 = −
[
∂

∂t∗

(∫ y3

f
ρ∗ dy3

)
+ ρ∗(t∗, x∗, f )

∂f
∂t∗
(t∗, x∗)

]

−
[
∂

∂x∗

(∫ y3

f
ρ∗u∗ dy3

)
+ ρ∗(t∗, x∗, f )u∗(t∗, x∗, f )

∂f
∂x∗

(t∗, x∗)
]

+ ρ(t∗, x∗, f )
∂f
∂t∗
(t∗, x∗)

= −∂y∗
∂t∗

− ∂

∂x∗

(∫ y3

f
ρ∗u∗ dy3

)
. (A 6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.928


909 A16-34 G. S. Brennan, J. S. B. Gajjar and R. E. Hewitt

We now introduce

u∗ = ∂Ψ

∂y∗
(A 7)

and making use of the definition of y∗, from (A 6) we have

ρ∗v3 = −∂y∗
∂t∗

− ∂

∂x∗

(∫ y∗

0
u∗ dy∗

)

= −∂y∗
∂t∗

− ∂Ψ

∂x∗
,

= −∂y∗
∂t∗

− ∂Ψ

∂X∗
− u∗

∂y∗
∂x∗

. (A 8)

Combining (A 2) with the last result we find that

v∗ = − ∂Ψ
∂X∗

. (A 9)

This now shows that the transformed continuity equation

∂u∗
∂X∗

+ ∂v∗
∂y∗

= 0, (A 10)

is satisfied. The definition of v∗ in (A 2) also implies that v∗ = 0 on y3 = f or y∗ = 0. Next
the momentum equation (2.8b) together with the transformations (A 3) yields

ρ∗

(
∂u∗
∂T∗

+ ∂y∗
∂t∗

∂u∗
∂y∗

+ u∗

(
∂u∗
∂X∗

+ ∂y∗
∂x∗

∂u∗
∂y∗

)
+ ρ∗v3

∂u∗
∂y∗

)

= − ∂p∗
∂X∗

− ∂y∗
∂x∗

∂p∗
∂y∗

+ ρ∗
∂

∂y∗

(
μ∗ρ∗

∂u∗
∂y∗

)
(A 11)

which after using (A 2), (A 3c), (2.8c) and (2.8e) and noting that ∂p∗/∂y∗ = 0 reduces to
(2.13b). The equation (2.8d) for T∗ is handled similarly.
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