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A scenario of transition to turbulence likely to occur during the development of
natural disturbances in a flat-plate boundary layer is studied. The perturbations at
the leading edge of the flat plate that show the highest potential for transient energy
amplification consist of streamwise aligned vortices. Due to the lift-up mechanism
these optimal disturbances lead to elongated streamwise streaks downstream, with
significant spanwise modulation. Direct numerical simulations are used to follow the
nonlinear evolution of these streaks and to verify secondary instability calculations.
The theory is based on a linear Floquet expansion and focuses on the temporal,
inviscid instability of these flow structures. The procedure requires integration in the
complex plane, in the coordinate direction normal to the wall, to properly identify
neutral modes belonging to the discrete spectrum. The streak critical amplitude,
beyond which streamwise travelling waves are excited, is about 26% of the free-stream
velocity. The sinuous instability mode (either the fundamental or the subharmonic,
depending on the streak amplitude) represents the most dangerous disturbance.
Varicose waves are more stable, and are characterized by a critical amplitude of about
37%. Stability calculations of streamwise streaks employing the shape assumption,
carried out in a parallel investigation, are compared to the results obtained here
using the nonlinearly modified mean fields; the need to consider a base flow which
includes mean flow modification and harmonics of the fundamental streak is clearly
demonstrated.

1. Introduction
1.1. ‘Lift-up’ effect and transient growth

For quite a long time the fluid mechanics community has recognized transition to
turbulence as a fundamental problem and has directed intense research efforts toward
its understanding. Even so, our current picture of the physical processes involved
is far from complete. The classical starting point for theoretical investigations of
transition is linear stability theory. Here, exponentially growing solutions – in time or
space – to the linearized Navier–Stokes equations are sought. If such solutions are not
found, the flow is predicted by the theory to be stable. However, experiments show
that the route to turbulence is highly dependent on the initial conditions and on the
continuous forcing that background noise can provide (see for example Morkovin &
Reshotko 1990 and Reshotko 1994 for reviews).

† Also at the Aeronautical Research Institute of Sweden (FFA), Box 11021, S-161 11 Bromma,
Sweden.
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Experiments reveal that many flows, including for example Poiseuille and boundary
layer flows, may undergo transition to turbulence for Reynolds numbers well below
the critical ones from the linear stability theory. For the case of plane Couette
flow the theory predicts stability at all Reynolds numbers (Romanov 1973) while
numerical and laboratory experiments point to a finite transitional value (Lundbladh
& Johansson 1991; Tillmark & Alfredsson 1992; Dauchot & Daviaud 1995).

The reason for this discrepancy between the theory and the experiments has been
sought in the nonlinear terms of the Navier–Stokes equations. Examples of nonlinear
theories are given by Orszag & Patera (1983), Bayly, Orszag & Herbert (1988) and
Herbert (1988). However, examining the Reynolds–Orr equation (Drazin & Reid
1981) a remarkably strong statement can be made on the nonlinear effects: the
nonlinear terms redistribute energy among disturbance frequencies but have no net
effect on the instantaneous growth rate of the energy. This implies that there must
exist a linear growth mechanism for the energy of a disturbance of any amplitude to
increase (Henningson & Reddy 1994; Henningson 1996). The apparent need for an
alternative growth mechanism based on the linearized equations has recently led to
intense re-examination of the classical linear stability theory.

The first convincing alternative was proposed by Ellingsen & Palm (1975). By
introducing an infinitesimal disturbance without streamwise variation in a shear
layer, they showed that the streamwise velocity component can increase linearly with
time, within the inviscid approximation, producing alternating low- and high-velocity
streaks in the streamwise velocity component. Landahl (1975, 1980) extended this
result to the linear evolution of localized disturbances and supplied the physical
insight to the linear growth mechanism with what he denoted the lift-up effect. He
argued that vortices aligned in the streamwise direction advect the mean velocity
gradient towards and away from the wall, generating spanwise inhomogeneities.

It is now clear that since the linearized Navier–Stokes operator is non-normal for
many flow cases (e.g. shear flows) a significant transient growth of a given perturbation
might occur, before the subsequent exponential behaviour. Such an algebraic growth
involves non-modal perturbations and can exist for subcritical values of the governing
parameters.

Indeed, early investigators of the lift-up and transient growth mechanisms found
considerable linear energy amplification before the viscous decay (Hultgren & Gus-
tavsson 1981; Boberg & Brosa 1988; Gustavsson 1991; Butler & Farrell 1992; Reddy
& Henningson 1993; Henningson, Lundbladh & Johansson 1993). An overview of
recent work can be found in the review articles by Trefethen et al. (1993) and Hen-
ningson (1995). The initial disturbance that yields the maximum spatial transient
growth in a non-parallel flat-plate boundary layer flow was determined independently
by Andersson, Berggren & Henningson (1999a) and Luchini (2000) to consist of vor-
tices aligned in the streamwise direction. These vortices leave an almost permanent
scar in the boundary layer in the form of long-lived, elongated streaks of alternating
low and high streamwise speed.

1.2. ‘Secondary’ instability of streamwise streaks

If the amplitude of the streaks grows to a sufficiently large value, instabilities can
develop which may provoke early breakdown and transition despite the theoretically
predicted modal decay. In the remainder of the paper we will refer to the instability
of the streak as a ‘secondary’ instability, to differentiate it from the ‘primary’ growth
mechanism responsible for the formation of these flow structures. A (secondary)
instability can be induced by the presence of inflection points in the base flow velocity
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profile, a mechanism which does not rely on the presence of viscosity. Controlled
experiments on the breakdown of periodically arranged (along the span) streaks
produced by an array of roughness elements have been conducted by Bakchinov
et al. (1995). It was shown that the instability of the streaks causes transition in a
similar manner as do the Görtler and cross-flow cases, i.e. via amplification of the
secondary wave up to a stage where higher harmonics are generated, and on to a
destruction of the spanwise coherence of the boundary layer. Alfredsson & Matsubara
(1996) considered the case of transition induced by streaks formed by the passage
of fluid through the screens of the wind-tunnel settling chamber. They report on the
presence of a high-frequency ‘wiggle’ of the streak with a subsequent breakdown into
a turbulent spot.

Today, the description of the establishment of steady streaky structures is well
captured by the theory. The work presented here aims at understanding the instability
of these streaks on the path to boundary layer turbulence. Parenthetically, we note
also that streamwise vortices and streaks are an essential ingredient of the near-wall
turbulent boundary layer and that the instability of streaky structures is one crucial
feature of the near-wall cycle which is thought to lie at the heart of the genesis
and dynamics of turbulent coherent structures (Jimenez & Pinelli 1999; Schoppa &
Hussain 1997, 1998).

Some work has recently appeared in the literature on the instability of streaks
in channel flows (Waleffe 1995, 1997; Reddy et al. 1998) and, among the findings
reported, it is interesting to note that slip and no-slip boundaries do not display
significant differences in the instability scenario (Waleffe 1997). The present study
focuses on the linear, inviscid breakdown of boundary layer streaks. It is believed
that the inviscid approximation captures the essential features of the breakdown.
This is supported primarily by the controlled experiments of Bakchinov et al. (1995),
who demonstrate unambiguously the role of the critical layer in the development of
the instability. The measurements conducted by Boiko et al. (1997) on the instability
of a vortex in a boundary layer and the very carefully controlled experiments on
the breakdown of streaks in channel flow conducted by Elofsson, Kawakami &
Alfredsson (1999) further attest to the inflectional nature of the breakdown. The
latter authors generated elongated streamwise streaky structures by applying wall
suction, and triggered a secondary instability by the use of earphones. The growth
rate of the secondary instability modes was unaffected by a change of the Reynolds
number of their flow, over a subcritical range, and the regions of (sinuous-type)
oscillations of the streaks in cross-stream planes were reasonably well correlated with
the spanwise shear of the main flow. The numerical/theoretical comparative viscous–
inviscid investigations on the linear breakdown of longitudinal vortices in a curved
channel (Randriarifara 1998) and the numerous studies on the secondary instability
of Görtler vortices (Hall & Horseman 1991; Yu & Liu 1991; Bottaro & Klingmann
1996), show that the inviscid approach captures correctly the dominant features of the
instability with viscosity playing mainly a damping role. These secondary instability
studies bear a close resemblance to the present one.

1.3. Mean field with optimal streaks and linear stability analysis

The equations governing the streak evolution are obtained by applying the boundary
layer approximations to the three-dimensional steady incompressible Navier–Stokes
equations and linearizing around the Blasius base flow. After defining the distur-
bance energy density as the integral, in the wall-normal direction, of the square of
the disturbance velocity components, techniques commonly employed when solving
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Figure 1. Comparison between the streamwise velocity component of the downstream response to
an optimal perturbation, and the u-r.m.s. data in a flat-plate boundary layer subject to free-stream
turbulence (—–, Reynolds-number-independent theory). The symbols represent experiments from
Westin et al. (1994) (◦, Reδ = 203; +, Reδ = 233; ×, Reδ = 305; ∗, Reδ = 416; �, Reδ = 517).
Here y has been made non-dimensional – and the Reynolds number is defined – using the Blasius
length scale δ = (Lν/U∞)1/2.

optimal control problems are used to determine the optimal disturbance (streamwise
oriented vortices) and its downstream response (streamwise streak). The output streak
predicted by the theory of Andersson et al. (1999a) and Luchini (2000) is remarkably
similar to that measured in the laboratory (see figure 1). The measurements were
performed in a pre-transitional flat-plate boundary layer, where the largest amplitude
of the streamwise velocity was 11% of the free-stream velocity. The streak is, in fact,
a ‘pseudo-mode’ triggered in a flat-plate boundary layer subject to significant outside
disturbances.

The instability of these optimal streaks is studied here with different levels of
approximation. Two different representations are used for the mean field: the simpler
shape assumption, where the shape of the streak obtained from the linearized equa-
tions is considered unmodified even at large amplitudes, and the complete nonlinear
development of the streak.

In both formulations the linear secondary stability calculations are carried out on
the basis of the boundary layer approximation, i.e. the mean field to leading order will
consist only of the streamwise velocity component (here denoted U), consistent with
the scaling hypothesis which led to the definition of the streak. Such a mean field varies
on a slow streamwise scale, whereas the secondary instability varies rapidly in the
streamwise direction x, as observed in the visualizations by Alfredsson & Matsubara
(1996). Hence, our leading-order stability problem is the parallel flow problem, with
perturbation mode shapes dependent only on the cross-stream coordinates y (wall-
normal) and z (spanwise). The same approximation was made previously for the case
of the Görtler flow (Hall & Horseman 1991; Yu & Liu 1991; Bottaro & Klingmann
1996).
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Due to the spanwise periodicity of the base flow – consisting of streamwise aligned
streaks superimposed on a flat-plate Blasius flow – a temporal Floquet analysis is
employed with the objective of determining which disturbance pattern shows the
highest potential for temporal growth. In particular we are interested in determining
if the maximum disturbance growth occurs for a sinuous or a varicose disturbance, and
whether it is of fundamental or subharmonic type. In addition, the critical threshold
amplitude of the streak for the onset of the secondary instability is determined.

In § 2 the two-dimensional eigenvalue problem arising from the governing partial
differential equation is formulated and the numerical methods adopted are described.
In § 3 a scaling property of the mean field calculated by nonlinear simulations
is introduced; this property allows a reduced number of simulations to cover a
wide range of spanwise scales of the disturbance. Numerical experiments on streak
instability are also carried out using DNS and the results are compared with the linear
stability calculations. In § 4 a parametric study of the sinuous modes is presented and
some comparisons with the shape assumption calculations are discussed. The main
conclusions of the work are summarized in § 5.

2. Governing equations and numerical methods
2.1. Inviscid stability equations

The dimensionless, incompressible Euler equations linearized around the mean field
(U(y, z), 0, 0) are

ux + vy + wz = 0, (2.1)

ut +Uux +Uyv +Uzw = −px, (2.2)

vt +Uvx = −py, (2.3)

wt +Uwx = −pz, (2.4)

and the system is closed by slip boundary conditions at the solid wall and by
decaying disturbances in the free stream; (u, v, w) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))
are the perturbation velocities in the streamwise, wall-normal and spanwise directions,
respectively, t is time and p = p(x, y, z, t) is the disturbance pressure. All velocities
have been scaled with the free-stream speed U∞ and the pressure with ρU2∞, where
ρ is the fluid density. The length scale is δ = (Lν/U∞)1/2, with ν kinematic viscosity
and L distance from the leading edge. For later use we define two Reynolds numbers
using the two different length scales, Reδ = U∞δ/ν and Re = U∞L/ν, which relate as
Re = Re2

δ .
The presence of both wall-normal and spanwise gradients in the mean field makes

it impossible to obtain an uncoupled equation for either of the velocity components.
It is, however, possible to find an uncoupled equation for the pressure by taking
the divergence of the momentum equations, introducing continuity and then ap-
plying equations (2.3) and (2.4) (Henningson 1987; Hall & Horseman 1991). These
manipulations yield (

∂

∂t
+U

∂

∂x

)
∆p− 2Uypxy − 2Uzpxz = 0. (2.5)

We consider perturbation quantities consisting of a single wave component in the
streamwise direction, i.e.

p(x, y, z, t) = Re {p̃(y, z)eiα(x−ct)},
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where α is the (real) streamwise wavenumber and c = cr + ici is the phase speed. The
equation governing the pressure reduces to

(U − c)
(
∂2

∂y2
+

∂2

∂z2
− α2

)
p̃− 2Uyp̃y − 2Uzp̃z = 0; (2.6)

this constitutes a generalized eigenproblem with c in the role of eigenvalue and needs
to be solved for given mean field and streamwise wavenumber. Once the pressure
eigenfunctions are computed, the velocity components can be obtained from the
explicit expressions

iα(U − c)ṽ = −p̃y, (2.7)

iα(U − c)w̃ = −p̃z , (2.8)

iα(U − c)ũ+Uyṽ +Uzw̃ = −iαp̃. (2.9)

The pressure component p̃ is expanded in an infinite sum of Fourier modes

p̃(y, z) =

∞∑
k=−∞

p̂k(y)ei(k+γ)βz, (2.10)

where β is the spanwise wavenumber of the primary disturbance field and γ is the
(real) Floquet exponent. We note two symmetries: first, to within renumbering of
the Fourier coefficients γ and γ ± n yield identical modes for any integer n, and
second, equation (2.6) is even under the reflection z → −z. These symmetries make it
sufficient to study values of γ between zero and one half, with γ = 0 corresponding
to a fundamental instability mode, and γ = 0.5 corresponding to a subharmonic mode
(see Herbert 1988 for a thorough discussion on fundamental and detuned instability
modes). The mean field is also expanded as a sum of Fourier modes

U(y, z) =

∞∑
k=−∞

Uk(y)eikβz (2.11)

and these expansions are introduced into equation (2.6) to yield an equation that
holds for each integer k:

∞∑
j=−∞

(
Uk−j

[
∂2

∂y2
− β2(j + γ)2 − α2

]
− 2

∂Uk−j
∂y

∂

∂y
+ 2β2(k − j)(j + γ)Uk−j

)
p̂j

= c

[
∂2

∂y2
− β2(k + γ)2 − α2

]
p̂k. (2.12)

The appropriate boundary conditions are

∂p̂k

∂y
= 0 at y = 0 and

∂p̂k

∂y
→ 0 when y →∞. (2.13)

This problem consists of an infinite number of coupled ordinary differential equations
which must be truncated in order to find a numerical solution. The complete system
must be solved numerically, when the solution is sought for an arbitrary value of
the detuning parameter γ. If, however, even and odd solutions in z are sought, the
system of equations can be simplified for the fundamental and subharmonic modes.
In this case the numerical effort is decreased considerably because the dimension of
the matrices arising from the discretization is halved.
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In the fundamental (γ = 0) case, even (odd) modes are obtained by imposing the
condition p̂−k = p̂k (p̂−k = −p̂k). This is equivalent to introducing either a cosine or
a sine expansion

p̃(y, z) =

∞∑
k=0

p̂k(y) cos (kβz), (2.14)

p̃(y, z) =

∞∑
k=1

p̂k(y) sin (kβz), (2.15)

into equation (2.6), to yield two different systems of ODEs.
In the case of subharmonic disturbances (γ = 0.5) the spanwise periodicity of the

fluctuations is twice that of the base flow. The subharmonic mode also contains a
symmetry which renders the decoupling into even and odd modes possible. In this
case the cosine and sine expansions are

p̃(y, z) =

∞∑
k=0

p̂k(y) cos

(
2k + 1

2
βz

)
, (2.16)

p̃(y, z) =

∞∑
k=0

p̂k(y) sin

(
2k + 1

2
βz

)
. (2.17)

These two expansions produce two new systems of ODEs which clearly yield two
different classes of solutions, as in the case of the fundamental modes. Notice,
however, that the sinuous fluctuations of the low-speed streaks, represented in the
fundamental case by the sine expansion (2.15) are given, in the subharmonic case, by
the cosine expansion (2.16). This is because the subharmonic sinuous case treats two
streaks, which oscillate out of phase (cf. Le Cunff & Bottaro 1993). Likewise, varicose
oscillations of the low-speed streaks are represented by the cosine series (2.14) for
the fundamental mode, and by the sine expansion (2.17) in the case of subharmonic
perturbations.

For the sake of clarity, in the remainder of the paper only the definitions of
sinuous or varicose modes of instability will be employed, with reference to the
visual appearance of the motion of the low-speed streaks. A sketch of the different
fundamental and subharmonic modes is provided in figure 2: it clearly illustrates
how in the subharmonic cases sinuous (varicose) fluctuations of the low-speed streaks
are always associated with staggered (in x) varicose (sinuous) oscillations of the
high-speed streaks.

2.2. Chebyshev polynomials in real space

The temporal eigenvalue system derived in § 2.1 is solved numerically using a spec-
tral collocation method based on Chebyshev polynomials. Consider the truncated
Chebyshev expansion

φ(η) =

N∑
n=0

φ̄nTn(η),

where

Tn(η) = cos (n cos−1(η)) (2.18)
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Fundamental sinuous Subharmonic sinuous

Fundamental varicose Subharmonic varicose

z

x

Figure 2. Sketch of streak instability modes in the (x, z)-plane over four streamwise and two
spanwise periods, by contours of the streamwise velocity. The low-speed streaks are drawn with
solid lines while dashed lines are used for the high-speed streaks.

is the Chebyshev polynomial of degree n defined in the interval −1 6 η 6 1. We use

ηj = cos
πj

N
, j = 0, 1, . . . , N,

as collocation points, that is, the extrema of the Nth-order Chebyshev polynomial
TN plus the endpoints of the interval.

The calculations are performed using 121 (N = 120) Chebyshev collocation points
in y, and with the Fourier series in z truncated after fifteen modes. The wall-
normal domain varies in the range (0, ymax), with ymax well outside the boundary
layer (typically ymax is taken equal to 50). The Chebyshev interval −1 6 η 6 1 is
transformed to the computational domain 0 6 y 6 ymax by the use of the conformal
mapping

y = a
1 + η

b− η , (2.19)

where

a =
yi ymax

ymax − 2yi
and b = 1 +

2a

ymax

.

This mapping puts half the grid points in the region 0 6 y 6 yi, with yi chosen to be
equal to 8.

The unknown functions p̂k = p̂k(y) may now be approximated by

p̂Nk (y) =

N∑
n=0

p̄nkT̃n(y),

where T̃n(y) = Tn(η) with η 7→ y being the mapping (2.19). The Chebyshev coefficients
p̄nk , n = 0, . . . , N, are determined by requiring equation (2.12) to hold for p̂Nk at the
collocation points yj , j = 1, . . . , N − 1. The boundary conditions (2.13) are enforced
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by adding the equations

N∑
n=0

p̄nkT̃n,y(0) =

N∑
n=0

p̄nkT̃n,y(ymax) = 0,

where subscript n, y denotes the y-derivative of the nth Chebyshev polynomial.

2.3. Chebyshev polynomials in complex space

The discretization leads to a generalized eigenproblem with the two matrices con-
taining only real elements; hence, the solutions will consist of either real eigenvalues
or complex conjugate pairs. No strictly damped solutions can be found using these
equations together with an integration path running along the real y-axis from 0
to ymax, since the neglect of viscosity introduces a continuous spectrum of singular
neutral modes. Lin (1944) performed an asymptotic analysis on the Orr–Sommerfeld
equation, requiring the inviscid eigenvalue problem (the Rayleigh equation) to be a
limit of the viscous one when the Reynolds number approaches infinity. For this to
apply, he found that the integration path in the inviscid case could be taken on the
real axis if ci > 0 and that it should be taken in the complex plane for ci 6 0, in
such a way that the singularities lie on the same side of the integration path as in the
ci > 0 case.

Information on the singularities is contained in the system’s determinant. We are
satisfied here with the approximate location of the singularities and to simplify the
analysis the mean field with the shape assumption is considered, i.e.

U(y, z) = UB(y) +
As

2
us(y; β)eiβz +

As

2
us(y; β)e−iβz, (2.20)

with UB the Blasius solution, us the streak mode shape provided by the analysis of
Andersson et al. (1999a) and scaled so that max[us(y; β)] = 1, As the amplitude of
the streak and β the spanwise wavenumber. Figure 1 shows the streak mode shape
us. Introducing expansion (2.20) into equation (2.12) yields an equation that holds for
each integer k:

As

2
us

(
∂2

∂y2
− β2(k − 1 + γ)(k − 3 + γ)− α2

)
p̂k−1 − Asus,y ∂

∂y
p̂k−1

+(UB − c)
(
∂2

∂y2
− β2(k + γ)2 − α2

)
p̂k − 2UB,y

∂

∂y
p̂k

+
As

2
us

(
∂2

∂y2
− β2(k + 1 + γ)(k + 3 + γ)− α2

)
p̂k+1 − Asus,y ∂

∂y
p̂k+1 = 0, (2.21)

plus boundary conditions (2.13).
By rewriting equations (2.21) and (2.13) as a system of first-order equations and

studying the system’s determinant, the singularities can be identified analytically as
the roots of the equation

K∏
k=1

{
UB − c+ Asus cos

(
kπ

K + 1

)}
= 0,

where K is the number of Fourier modes. For small values of ci the approximate
location of each singularity in the complex y-plane can be identified with a Taylor
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Figure 3. (a) Temporal growth rate of the fundamental varicose mode versus the streak amplitude
for α = 0.2 and β = 0.45 (◦, real integration path; - - -, complex integration path with B = 0.01;
—–, complex integration path with B = 0.03). (b) The three curved lines denote different integration
paths: - - -, B = 0.01; -·-·-, B = 0.02; —–, B = 0.03. The thick segments of stars denote the singular
segments for three different streak amplitudes. From the left: As = 0.15 (amplified modes do not
exist), 0.215 (the least stable discrete mode is neutral) and 0.35 (at least one amplified mode exists).
Only for the last case is the real integration path suitable.

expansion around y = yr , i.e.

UB(yr) + Asus(yr; β) cos

(
kπ

K + 1

)
= cr + h.o.t.

and to first order these locations are

ys = yr + i
ci

UB,y(yr) + Asus,y(yr) cos
(
kπ/(K + 1)

) . (2.22)

These are, as might have been expected, the values of y for which the base flow
velocity becomes equal to c at the discrete values of the z-coordinate imposed by the
truncated Fourier expansion in z. Clearly, ys crosses the real y-axis when ci changes
sign, so that the integration path has to go out into the complex y-plane in order for
the singularities to lie on the same side of the path. Integration in the complex plane
is necessary when neutral curves are sought. The mapping

yc = y − iB(ymax y − y2)1/2 (2.23)

allows the computation of damped (and neutral) modes. It is introduced into (2.19),
that is yc 7→ ηc, to deliver a curve in the complex plane with endpoints in ηc = −1
and 1. Complex Chebyshev polynomials Tc

n (ηc) are defined by using (2.18), and the
unknown functions are approximated using this new basis. This can be done since
the analytic continuation of a polynomial is given by the same polynomial but with
a complex argument.

As can be inferred from equation (2.22) the singularities corresponding to a given
set of problem parameters are confined to a finite segment in the complex y-plane. For
amplified modes this segment is found in the right half-plane in figure 3(b); for damped
modes it is displaced to the left half-plane, whereas for neutral modes the singular
segment is a subset of the real axis. In figure 3(a) the results of three calculations of
the temporal growth rate are plotted versus the streak amplitude, employing the shape
assumption for given streamwise, α = 0.2, and spanwise, β = 0.45, wavenumbers. The
circles are obtained by integrating over the real y-axis; as the amplitude As of the
streak decreases, so does the largest growth rate of the instability ωi, until the value
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Figure 4. Eigenvalue spectrum of the fundamental varicose mode for α = 0.2, β = 0.45 and
As = 0.18, displayed as temporal growth rate versus phase speed. It is obtained using a complex
integration path with B = 0.03.

As ≈ 0.215 below which only quasi-neutral modes are found. For such modes the
real integration path is located on the wrong side of the singularities. If the complex
integration path denoted by a dashed line in both figures (corresponding to B = 0.01
in the mapping (2.23)) is employed, the integration correctly follows the damped
mode down to an amplitude of about 18%. Clearly one can proceed to even smaller
amplitudes simply by increasing B, i.e. by displacing the integration contour further
into the negative yi region. For example, the dotted-dashed contour in figure 3(b)
can be used, or the continuous line path (corresponding to B = 0.03). The latter
integration path has been used and the resulting full spectrum is shown in figure 4
for a streak amplitude of 0.18. The continuous spectrum of singular neutral modes
is displaced downward and an isolated, damped mode can be identified at a phase
speed close to 0.4. Provided that the singular segment lies on the correct side of the
integration path, changes in the path do not affect this eigenvalue; the continuous
spectrum is, instead, further moved towards lower values of ωi for increasing B. Values
of B between 0.01 and 0.03 have been used in most of the calculations identifying
neutral modes in the present paper.

Clearly other integration paths are also possible; in fact, any complex detour that
leaves the singularities to its right side in the complex y-plane will yield the correct
physical eigenvalues. Since the physical solutions vanish rapidly at infinity there is no
need for the integration path to return to the real axis at y = ymax in order to enforce
the boundary conditions at the free stream (Peter Schmid, private communication).
In some calculations, the mapping

yc = y − iD(2ymax y − y2)1/2 (2.24)

corresponding to a quarter of an ellipse has also been used successfully (D was taken
equal to 0.006 in our calculations).

The growing and decaying solutions obtained by our procedure are the asymptotic
limits of amplified and damped modes of the viscous stability equations as the
Reynolds number approaches infinity (Lin 1955). We re-emphasize here that it is only
by the use of this procedure that neutral (and damped) modes can be defined without
ambiguities.
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2.4. DNS method

2.4.1. Numerical scheme

The simulation code (see Lundbladh et al. 1999) employed for the present com-
putations uses spectral methods to solve the three-dimensional, time-dependent, in-
compressible Navier–Stokes equations. The algorithm is similar to that of Kim,
Moin & Moser (1987), i.e. Fourier representation in the streamwise and spanwise
directions and Chebyshev polynomials in the wall-normal direction, together with a
pseudo-spectral treatment of the nonlinear terms. The time advancement used is a
four-step low-storage third-order Runge–Kutta method for the nonlinear terms and
a second-order Crank–Nicolson method for the linear terms. Aliasing errors from
the evaluation of the nonlinear terms are removed by the 3

2
-rule when the FFTs are

calculated in the wall-parallel plane. In the wall-normal direction it has been found
more efficient to increase the resolution rather than using dealiasing.

To correctly account for the downstream boundary layer growth a spatial technique
is necessary. This requirement is combined with the periodic boundary condition in
the streamwise direction by the implementation of a ‘fringe region’, similar to that
described by Bertolotti, Herbert & Spalart (1992). In this region, at the downstream
end of the computational box, the function λ(x) in equation (2.25) is smoothly raised
from zero and the flow is forced to a desired solution v in the following manner:

∂u

∂t
= NS(u) + λ(x)(v − u) + g, (2.25)

∇ · u = 0, (2.26)

where u is the solution vector and NS(u) the right-hand side of the (unforced)
momentum equations. Both g, which is a disturbance forcing, and v may depend
on the three spatial coordinates and time. The forcing vector v is smoothly changed
from the laminar boundary layer profile at the beginning of the fringe region to the
prescribed inflow velocity vector. This is normally a boundary layer profile, but can
also contain a disturbance. A convenient form of the fringe function is as follows:

λ(x) = λmax

[
S

(
x− xstart

∆rise

)
− S

(
x− xend

∆fall

+ 1

)]
, (2.27)

where λmax is the maximum strength of the damping, xstart to xend the spatial extent
of the region where the damping function is non-zero and ∆rise and ∆fall parameters
which specify the ‘rise’ and ‘fall’ distance of the damping function. S(a) is a smooth
step function rising from zero for negative a to one for a > 1. We have used the
following form for S , which has the advantage of having continuous derivatives of
all orders:

S(a) =


0, a 6 0

1

/[
1 + exp

(
1

a− 1
+

1

a

)]
, 0 < a < 1

1, a > 1.

(2.28)

This method damps disturbances flowing out of the physical region and smoothly
transforms the flow to the desired inflow state, with a minimal upstream influence.

In order to set the free-stream boundary condition not too far from the wall, a
generalization of the boundary condition used by Malik, Zang & Hussaini (1985) is
implemented. Since it is applied in Fourier space with different coefficients for each
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wavenumber, it is non-local in physical space and takes the following form:

∂û

∂y
+ |k|û =

∂v̂0

∂y
+ |k|v̂0, (2.29)

where k is the absolute value of the horizontal wavenumber vector and û is the
Fourier transform of u. Here v0 denotes the local solution of the Blasius equation
and v̂0 its Fourier transform.

2.4.2. Disturbance generation and parameter setting

The numerical implementation provides several possibilities for disturbance gener-
ation. The complete velocity vector field from the linear results by Andersson et al.
(1999a) is used for the primary disturbance. These optimally growing streaks, here
denoted vd, are introduced in the fringe region by adding them to the Blasius solution
to yield the forcing vector v = v0 + vd.

In order to trigger a secondary instability of the streaks a harmonic localized
wall-normal volume force is added. The harmonic forcing, g = (0, F, 0), is constructed
as an exponentially (in space) decaying function centred at y = y0 and x = xloc:

F = C exp [−((x− xloc)/xscale)
2] exp [−((y − y0)/yscale)

2]g(z)f(t), (2.30)

where the constant C determines the strength of the forcing and the parameters xscale

and yscale its spatial extent. The time dependence is provided by the function

f(t) = S(t/tscale) cos (ωt), (2.31)

where ω is the angular frequency and the function S has been used again in f(t) to
ensure a smooth turn on of the forcing (of duration tscale) in order to avoid problems
with transients that may grow and cause transition in the flow. It is also possible
to choose the spanwise symmetry of the forcing, to separately excite two classes of
secondary disturbances; in

g(z) = cos (βz + φ), (2.32)

we choose φ = 0 or π/2 for varicose or sinuous symmetries, respectively.
The box sizes and resolutions used for the simulations presented in this paper are

displayed in table 1. The dimensions of the boxes are reported in multiples of δ0,
which here denotes the Blasius thickness at the beginning of the computational box.
Box 1 is used to produce the nonlinear streaks and study their secondary instability,
while Box 2 is employed to verify the scaling property introduced in § 3.2; Box 3,
Box 4 and Box 5 are, instead, used to test the DNS against the linear results (see
figure 7a). The Reynolds numbers based on δ0 are also reported in the table. For the
calculations presented on the secondary instability induced by harmonic forcing, we
use xloc = 300δ0 from the beginning of the computational box, and y0 = 3δ0 with
xscale and yscale of 35δ0 and 3δ0, respectively.

3. DNS results
3.1. Nonlinear development of the streaks

Nonlinear mean fields are computed solving the full Navier–Stokes equations in a
spatially evolving boundary layer, using the optimal streaks as initial conditions. The
complete velocity vector field from the linear results by Andersson et al. (1999a) is
used as input close to the leading edge and the downstream nonlinear development
is monitored for different initial amplitudes of the perturbation. This is shown in
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xl × yl × zl nx× ny × nz
δ0 (resolution) Reδ0

Box 1 1940× 34.4× 22.06 576× 65× 32 272.2
Box 2 1940× 34.4× 22.06 576× 65× 32 332.1
Box 3 1702× 34.4× 16.68 512× 81× 8 264.6
Box 4 3096× 34.4× 16.68 1024× 81× 8 591.6
Box 5 3404× 34.4× 14.71 1024× 81× 8 948.7

Table 1. Resolution and box dimensions for the simulations presented. The box dimensions include
the fringe region, and are made dimensionless with respect to δ0, the Blasius length scale at the
beginning of the computational box. The parameters zl and nz represent the full span and the
total number of Fourier modes, respectively. Note that zl corresponds in all cases to one spanwise
wavelength of the primary disturbance.

25
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0
0.5 1.0 1.5 2.0 2.5 3.0

x

(a)

E
E0

0.5 1.0 1.5 2.0 2.5 3.0
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0.35

0.25

0.15
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(b)

A

Figure 5. (a) The energy of the primary disturbance, E, normalized with its initial value, E0, versus
the streamwise coordinate, x, for β = 0.45 and Reδ = 430. Here x has been made non-dimensional
using the distance L to the leading edge. The arrow points in the direction of increasing initial
energies, E0 = 2.92× 10−2, 3.97× 10−2, 5.18× 10−2, 7.30× 10−2, 9.78× 10−2, 1.36× 10−1, 1.81× 10−1,
2.33× 10−1, 2.91× 10−1 (E0 is computed at x = 0.3). The dashed line represents the optimal linear
growth. (b) The downstream amplitude development for the same initial conditions as in (a). The
amplitude A is defined by equation (3.2). (The two lines have been circled for future reference.)

figure 5(a), where all energies are normalized by their initial values. The dashed line
corresponds to an initial energy small enough for the disturbance to obey the linearized
equations. For this case the maximum of the energy is obtained at x = 2.7; note that
this location of maximum energy is weakly dependent on the initial amplitude, even
for quite large values of the initial energy.

A contour plot in the (z, y)-plane of the nonlinear mean field corresponding to the
circled line in figure 5(a) at x = 2 is shown in figure 6(b). This velocity field may be
expanded in the sum of cosines

U(y, z) =

∞∑
k=0

Uk(y) cos (kβz) (3.1)

where U0 differs from the Blasius solution UB by the mean flow distortion term. To be
able to quantify the size of the primary disturbance field an amplitude A is defined as

A = 1
2
[max
y,z

(U −UB)−min
y,z

(U −UB)]. (3.2)

When the shape assumption is adopted, A coincides with As. Figure 5(b) displays
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Figure 6. (a) Contour plot in a (z, y)-plane of the primary disturbance streamwise velocity using the
shape assumption. The spanwise wavenumber is β = 0.45, the streamwise position x = 2 and the
amplitude As = 0.36. (b) Contour plot in a (z, y)-plane of the nonlinear mean field corresponding
to the circled line in figure 5(a) at x = 2 (where A = 0.36). Here Reδ = 430. In both figures the
coordinates y and z have been made non-dimensional using the local Blasius length scale δ, at the
streamwise position x = 2. In fact, for all y, z plots hereafter the cross-stream coordinates have been
scaled using the local Blasius length scale.

the downstream amplitude development for the same initial conditions as figure 5(a).
Notice that the amplitude reaches its maximum value upstream of the position where
the energy attains its peak, and starts to decrease at a position where the energy is
still increasing. This is due to the thickening of the boundary layer.

The effect of the nonlinear interactions on the base flow are shown by the contour
plots in figure 6. Figure 6(a) displays the primary disturbance obtained using the
shape assumption with As = 0.36, while 6(b) shows a fully nonlinear mean field,
characterized by the same disturbance amplitude. In the latter case, the low-speed
region is narrower, therefore associated with higher spanwise gradients, and displaced
further away from the wall.

A base flow like the one presented in figure 6(b) is representative of flat-plate
boundary layer flows dominated by streamwise streaks as encountered in experiments
(Bakchinov et al. 1995; Westin et al. 1994; Kendall 1985, 1990) and simulations
(Berlin & Henningson 1999).

3.2. Scaling of the mean field

In Andersson et al. (1999a) a scaling property of the optimal streamwise streaks in the
flat-plate boundary layer was found to exist. In a linearized setting, they considered
an upstream velocity perturbation at the leading edge of the flat plate, uin(0), and
its downstream response, uout(x), a distance x from the leading edge, and maximized
the output energy E(uout(x)) = E(x, β, E0, Re) over all initial disturbances with fixed
energy E(uin(0)) = E0.

The disturbance energy can be written

E(u(x)) =

∫ 2π/β

0

∫ ∞
0

(
u2 +

v̄2

Re
+
w̄2

Re

)
dy dz, (3.3)

where v̄ = v
√
Re and w̄ = w

√
Re are the cross-stream velocities in boundary layer

scales. The optimal disturbances, which were calculated using the linearized, steady
boundary layer approximation, were found to consist of streamwise vortices develop-
ing into streamwise streaks. Since streamwise aligned vortices contain no streamwise
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Figure 7. The spatial energy growth versus the streamwise coordinate, for the spanwise wavenumber,
β = 0.45. (a) With three small-amplitude solutions to the Navier–Stokes equations for Reynolds
numbers (- - -, Re = 1 × 106; -·-·-, Re = 5 × 105; · · · ·, Re = 1 × 105), and (—–) one Reynolds
number independent solution from the linearized, steady boundary layer approximations. (b) With
an initial amplitude large enough to induce considerable nonlinear effects, A = 0.30. Here the
two curves represent solutions to the Navier–Stokes equations for two different Reynolds numbers
(—–, Re = 5× 105; +, Re = 7.5× 105).

velocity component, the energy at the leading edge E0 can be written as

E0 =
Ē0

Re
, where Ē0 =

∫ 2π/β

0

∫ ∞
0

(v̄2 + w̄2) dy dz, (3.4)

with Ē0 independent of the Reynolds number. The boundary layer equations governing
(u, v̄, w̄, p̄), here p̄ = pRe, contain no explicit dependence on the Reynolds number;
furthermore, all velocities are O(1) a distance sufficiently far downstream of the
plate leading edge. Hence, the streamwise velocity component will dominate in the
disturbance energy (3.3) and the output energy obeys the scaling law

Ē(x, β, Ē0) = lim
Re→∞E(x, β, Ē0, Re). (3.5)

This scaling property holds also when the solutions are obtained from the Navier–
Stokes equations, if u = 0 at x = 0. In figure 7 both linear and nonlinear solutions
obtained from the Navier–Stokes equations are presented which verify (3.5).

Figure 7(a) displays Ē/Ē0 versus x for the spanwise wavenumber, β = 0.45. The
solid line corresponds to a solution obtained using the linearized, steady boundary
layer approximation. The other three lines represent results obtained from solving
the Navier–Stokes equations, for three different Reynolds numbers, with initial dis-
turbance energies small enough to yield a linear evolution. Figure 7(a) shows that the
boundary layer approximation is valid and yields solutions in agreement with those
obtained from the Navier–Stokes simulations.

Figure 7(b) depicts two curves representing the spatial development of Ē using
an initial energy, Ē0, large enough to induce substantial nonlinear effects. The two
curves, which represent solutions to the Navier–Stokes equations for the same initial
energy and spanwise wavenumber, collapse onto one, although they correspond to two
different Reynolds numbers. From figure 7(b) we conclude that the scaling property
(3.5) holds also when the velocity field of the primary disturbance is fully nonlinear.

To clarify the implication of (3.5), consider the same dimensional problem with
the dimensional energy denoted E∗ scaled with two different length scales, L and L1.
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We write

E∗(x, β, Ē0, Re) = E∗(x1, β1, Ē1
0 , Re

1), (3.6)

where the variables are scaled as

x∗ = xL = x1L1, β∗ = β

√
U∞
νL

= β1

√
U∞
νL1

, Re =
U∞L
ν

, Re1 =
U∞L1

ν
; (3.7)

here x∗ and β∗ are the dimensional downstream position and spanwise wavenumber,
respectively. The disturbance energies scale as

E∗ = EU2
∞δ

2 = E1U2
∞δ

2
1 and Ē0 = Ē1

0 . (3.8)

Introducing c2 = L/L1 = δ2/δ2
1 and rewriting the right-hand expression in (3.6), in

the variables x, β, Re we obtain

c2E(x, β, Ē0, Re) = E(c2x, β/c, Ē0, Re/c
2). (3.9)

Now letting the Reynolds numbers tend to infinity and using (3.5) we get

c2Ē(x, β, Ē0) = Ē(c2x, β/c, Ē0), (3.10)

for each c > 0.
An important physical implication of (3.5) can now be inferred from relation (3.10).

Since (3.10) is Reynolds number independent, a non-dimensional solution Ē(x, β, Ē0)
represent a continuous set of physical solutions in (x∗, β∗)-space, for a fixed Ē0. We
have seen that an initial array of streamwise aligned vortices at the leading edge
will result in an array of streamwise streaks downstream. Since the streamwise and
spanwise length scales are coupled, increasing the spanwise length scale at the leading
edge will yield the same downstream behaviour of the solutions but on a larger
streamwise length scale.

In figure 8 the curve (c2x, β/c), with x = 2 and β = 0.45, is shown. From (3.10)
the results along this curve are known and correspond to a rescaling of the solutions
calculated at x = 2 and β = 0.45 (represented by the star in figure 8).

Note that (3.10) implies that Ē increases linearly as the streamwise coordinate x
increases, and the spanwise wavenumber β decreases (cf. figure 8). The increase in
the energy of the streak E∗ is a result of the widening of the cross-stream spatial
extent of the disturbance. Since the shape of the streak velocity profile is the same,
this implies that the amplitude remains constant along the curve xβ2 = constant.
In contrast, the energy of the corresponding initial vortex E∗0 remains the same for
this parameter combination. This implies that the amplitude of the initial vortex, Av ,
increases linearly with the spanwise wavenumber, i.e. Av ∼ β. Thus the amplitude
of the initial vortex needed to produce a fixed amplitude of the streak along the
curve xβ2 = constant decreases in a manner inversely proportional to the spanwise
wavelength.

3.3. Secondary instability results from DNS

In this section direct numerical simulations of the secondary instability of streaks
in a spatially growing flat-plate boundary layer are compared to the results from
the inviscid secondary instability theory. This is done to ensure that the inviscid
approximation is appropriate and can be used in further investigations and parametric
studies of streak instabilities.

The spatial stability problem is defined by the use of a real frequency ω and a
complex wavenumber α = αr + iαi. Here the spatial growth rate −αi is obtained by
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Figure 8. Loci of spanwise wavenumbers, β, and streamwise positions, x, representing the known
solutions from the linear or nonlinear calculations at x = 2 with β = 0.45. The streamwise position
and the spanwise wavenumber have been made non-dimensional using the distance from the leading
edge L and the Blasius length scale δ = (Lν/U∞)1/2, respectively.

monitoring the maximum of the streamwise velocity component of the secondary
disturbance. The secondary disturbances are triggered using the harmonic forcing
introduced in § 2.4.2, allowing the two symmetries of fundamental type which can be
excited separately. The amplitude of the volume force is selected low enough to yield
linear secondary disturbances, avoiding the appearance of higher harmonics in the
frequency spectra.

To choose the forcing frequency for the DNS, temporal linear secondary stability
calculations for the sinuous mode are performed using the nonlinear mean field
corresponding to the circled line in figure 5(a), at the local position x = 2. The
selected mean field has amplitude A = 0.36, close to the threshold value for secondary
instability in plane channel flow (Elofsson et al. 1999). The maximum temporal growth
is found for α = 0.257, corresponding to a secondary disturbance frequency of 0.211.

The direct numerical simulations for the fundamental sinuous mode of the sec-
ondary instability are carried out using this forcing frequency, ω = 0.211, and the
velocity fields are Fourier transformed in time to obtain the amplitude variation in
the streamwise direction and the cross-stream distribution of the disturbance velocity
at the frequency of the forcing.

Figure 9(a) shows the urms distribution of the fundamental sinuous mode at x = 2.
Note how the disturbance fluctuations follow quite closely the dashed line representing
the contour of constant value of the mean field velocity corresponding to the phase
speed of the secondary instability, U = cr = 0.80. The solid line in figure 9(b)
represents the spatial growth rate of the sinuous mode obtained from the direct
numerical simulations. Here the secondary instability is excited at the streamwise
position x = 0.85. However, since the local forcing does not input pure eigenmodes
the values of the growth rates are measured from an x-position downstream of the
forcing, where the onset of an ‘eigenfunction’ is identified.

Linear temporal stability calculations, using the real part of the streamwise
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Figure 9. (a) Isocontours of r.m.s. values of the streamwise velocity component of the secondary
disturbance (ωr = 0.211) for the fundamental sinuous mode at x = 2, obtained from the DNS. The
dashed line represents the contour of the constant value of the mean field corresponding to the
phase speed of the disturbance (U = cr = 0.80). (b) Spatial growth rates, αi versus x; —–, DNS data
with Reδ = 430 and β = 0.45; ∗, linear temporal inviscid stability calculations using mean fields at
each corresponding x-position and streamwise wavenumber αr = 0.260.

wavenumber obtained from the direct numerical simulations, αr = 0.260, are also
performed, employing mean fields extracted at different streamwise positions from
the DNS. In order to compare the spatial results to the growth rates obtained from
the temporal inviscid stability problem (2.12), (2.13) a transformation first proposed
by Gaster (1962) is employed:

ωi = − αi

∂α/∂ω
. (3.11)

From the temporal eigenvalues, Gaster’s transformation (3.11) provides estimates of
spatial growth rates (cf. the stars in figure 9b). The agreement between the stability
theory and the full simulation results can be regarded as good, since the linear
stability calculations are inviscid and performed under the assumptions of parallel
mean flow. Note that, as one could expect, the inviscid approximation provides a
slight overestimate of the amplification factors, and that closer agreement is found as
the Reynolds number increases; here Re = 500 000 at the streamwise position x = 2.7.

Using the same saturated mean field, direct numerical simulations are also carried
out for the fundamental varicose mode of the secondary instability. Attempts to
identify instabilities are made with different frequencies and for different streamwise
and wall-normal positions of the forcing in the direct simulations. Also, linear stability
calculations at x = 2 and for a range of different streamwise wavenumbers are
performed. Both methods produce only stable solutions for this symmetry of the
disturbances.

However, linear calculations using as base flow the streaks obtained with the largest
initial energy tested (see figure 5), produce small positive temporal growth rates for the
fundamental varicose instability. We then proceed as for the sinuous case: the largest
growth rate, ωi, is identified to correspond, at x = 2, to a streamwise wavenumber
α = 0.250 and a frequency ωr = 0.217. This value is used in the DNS forcing and the
spatial growth rates obtained are compared to linear stability calculations performed
at different streamwise positions for αr = 0.252. The results are shown in figure
10(b); the inviscid analysis gives small positive growth rates, while in the DNS the
perturbation growth rates remain close to neutral as x exceeds 2.

Figure 10(a) shows the urms distribution of the fundamental varicose mode together
with the contour of constant value of the mean field velocity corresponding to the
phase speed of the secondary instability, i.e. U = cr = 0.863. Note also here the close
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Figure 10. (a) Isocontours of r.m.s. values of the streamwise velocity component of the secondary
disturbance (ωr = 0.217) for the fundamental varicose mode at x = 2, obtained from the DNS. The
dashed line represents the contour of the constant value of the mean field corresponding to the
phase speed of the disturbance (U = cr = 0.863). (b) Spatial growth rates αi versus x; —–, DNS
data with Reδ = 430 and β = 0.45; ∗, linear temporal inviscid stability calculations using mean
fields at each corresponding x-position and streamwise wavenumber αr = 0.252.

correspondence between the critical layer (displayed in the figure with a dashed line)
and regions of intense u-fluctuations.

From the above calculations and comparisons we draw as first conclusion that
the secondary instability of streamwise streaks is initially of sinuous type, and that the
essential stability features can successfully be captured by an inviscid approach.
The above statements are further confirmed by the results described below.

4. Inviscid secondary instability results
4.1. The shape assumption versus the nonlinearly developed mean field

As a preliminary investigation, the secondary instability of streaks approximated by
the shape assumption was parametrically studied (Andersson et al. 1999b). Compari-
son of the results with those obtained from calculations where the base flow is the
nonlinearly developed streak demonstrate the inapplicability of the shape assumption
for this type of study (except for sinuous symmetries where a qualitative agreement
can still be claimed).

In figures 11 and 12 the u-eigenfunctions, obtained with the shape assumption
approximation and the nonlinear mean field, respectively, are displayed for the
parameters indicated.

Figure 11(a) shows the fundamental sinuous mode which is characterized by out-
of-phase oscillations on either side of the low-speed streak, whereas the near-wall
region is relatively quiescent. The subharmonic sinuous mode (figure 11b) has real
and imaginary parts of u symmetric around the z = 0 and z = 2π/β axes. This
eigenfunction shows a striking resemblance to that obtained by Ustinov (1998) who
solved the linearized Navier–Stokes equations in time; it is also the same high-
frequency mode triggered in the experiments by Bakchinov et al. (1995). In figure
11(c) the fundamental varicose mode is displayed. In-phase fluctuations are spread in
a z-range around π/β and halfway through the undisturbed boundary layer height.
Some effect is also noticeable around z = 0 and 2π/β, close to the wall. This mode is
also very similar to that computed by Ustinov (1998). The subharmonic varicose mode
(figure 11d) is characterized by almost the same phase speed as that of its fundamental
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Figure 11. Contours of constant absolute values of the streamwise velocity component of four
different kinds of modes obtained using the shape assumption. The dashed lines represent the
contours of the constant value of the mean field corresponding to the phase velocities of the
disturbances. The sinuous modes are calculated with parameters α = 0.150, β = 0.45 and As = 0.36
at x = 2 (see figure 6a) (cr = 0.627 and ωi = 0.00301 for the fundamental mode; cr = 0.661
and ωi = 0.0104 for the subharmonic mode). The varicose modes are calculated with parameters
α = 0.150, β = 0.45 and As = 0.38 at x = 2 (cr = 0.379 and ωi = 0.00998 for the fundamental mode;
cr = 0.371 and ωi = 0.00297 for the subharmonic mode). Note that the real and imaginary parts of
the subharmonic modes have a period of 4π/β. However, their absolute values are 2π/β-periodic.

counterpart, but here the real and the imaginary parts of this u-eigenfunction are
anti-symmetric around the axes z = 0 and z = 2π/β.

The fundamental u-eigenfunction displayed in figure 12(a) was obtained using the
same mean field and streamwise wavenumber as the direct numerical simulations
shown in figure 9(a). The agreement between figures 9(a) and 12(a) is very good and
in fact, for this symmetry, there is also a fair agreement with the u-eigenfunction
displayed in figure 11(a), which was obtained using the shape assumption. Also, the
sinuous subharmonic u-eigenfunction 12(b) is in fair agreement with the one obtained
using the shape assumption displayed in figure 11(b). In contrast, the fundamental and
subharmonic varicose u-eigenfunctions are in poor agreement with both the urms plot
of figure 10(a), obtained from direct numerical simulations, and the u-eigenfunctions
of figures 11(c) and 11(d). As shown in figures 12(c) and 12(d) the u-eigenfunctions
are considerably less diffuse and are strongly concentrated around the isoline U = cr .

The growth rates of the varicose (fundamental and subharmonic) symmetries are
highly over-predicted when the shape assumption is used. The positive growth rates
of the fundamental varicose case are found to be even larger than those for the
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Figure 12. Contours of constant absolute values of the streamwise velocity component of four
different kinds of modes obtained using the nonlinear mean fields. The dashed lines represent
the contours of the constant value of the mean field corresponding to the phase velocities of the
disturbances. The sinuous modes are calculated using the nonlinear mean field corresponding to
the circled line in figure 5(a), at streamwise position x = 2, where A = 0.36, for a streamwise
wavenumber α = 0.280 (cr = 0.821 and ωi = 0.0144 for the fundamental mode; cr = 0.839 and
ωi = 0.0125 for the subharmonic mode). The varicose modes are calculated using the mean field
with largest streak amplitude (see figure 5b) at position x = 2, where A = 0.378, for a streamwise
wavenumber α = 0.275 (cr = 0.866 and ωi = 0.00218 for the fundamental mode; cr = 0.876 and
ωi = 0.00243 for the subharmonic mode). In all calculations Reδ = 430 and β = 0.45.

fundamental sinuous case, which contradicts experiments and previous, comparable,
calculations (Schoppa & Hussain 1997, 1998)

In comparing the mean fields obtained from the shape assumption to the fully
nonlinear ones, we find that the inflection point in the wall-normal direction is
smoothed by the nonlinear modification, cf. figure 13(a). This figure shows the
streamwise velocity profiles centred on the low-speed streak (i.e. z = π/β) for the two
types of mean fields and for a large amplitude. This z-location has been chosen since
it is where a wall-normal inflection point first appears when the streak amplitude
is increased, and also where the varicose eigenfunctions achieve their peak values.
As reported in a number of experimental and numerical studies (Swearingen &
Blackwelder 1987; Yu & Liu 1991; Le Cunff & Bottaro 1993; Bottaro & Klingmann
1996; Matsubara & Alfredsson 1998), the wall-normal inflection point can be related
to the varicose mode, whereas sinuous instabilities correlate well with the spanwise
mean shear.

The reason for the overpredicted varicose amplification factor when using the
shape assumption can be deduced from inspection of figure 13: an inflection point
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Figure 13. (a) The total streamwise velocity versus the wall-normal coordinate at z = π/β for:
- - - -, the nonlinear mean field, and -·-·-, the shape-assumption-approximated mean field. Here
both amplitudes are A = As = 0.33, the streamwise position is x = 2 and the spanwise wavenumber
is β = 0.45; the Blasius profile is drawn, for reference, with a solid line. (b) The different Fourier
modes Uk(y) representing the streamwise velocity of the nonlinear mean field in (a) versus the
wall-normal coordinate. The dashed line corresponds to the mean flow distortion, (U0 − UB), and
the arrow points in the direction of higher-order modes. Every mode is normalized with its maximum
((U0 − UB)max = 0.11, U1,max = 0.26, U2,max = 6.6 × 10−2, U3,max = 1.1 × 10−2, U4,max = 9.2 × 10−4.)
Here Reδ = 430.

appears for y close to 3 in this case, but it disappears when the base flow contains all
harmonics of the streak. Both the direct numerical simulations and the linear stability
calculations using the nonlinearly distorted mean fields produce stable varicose modes
for A = 0.33. In fact, only for the largest streak studied in this paper, corresponding to
an amplitude A = 0.373, a slightly unstable varicose mode is found. The discrepancy
in the secondary stability results between the two cases can be traced to the mean
flow distortion (U0−UB) (see the dashed line in figure 13b). Calculations employing a
‘nonlinear’ mean field constructed without the mean flow distortion result in varicose
perturbations with positive growth rates for A = 0.33.

Furthermore, the phase speed of the secondary instability is considerably increased
when using the nonlinear mean fields. This can be deduced by observing that non-
linearities ‘move’ the primary instability outwards from the wall. In figure 13(b) the
individual Fourier modes from the cosine expansion of the nonlinear mean field from
figure 13(a) are shown, normalized to unit value. Note that higher-order modes are
displaced away from the wall. The phase speed of the secondary instability equals the
mean field velocity at the critical layer, cf. figure 11. Therefore, as the critical layer
is moved outwards, where the mean flow velocity is higher, the phase speed of the
secondary instability is also increased.

4.2. Parametric study

In figure 5(b) the downstream amplitude development of streamwise streaks for a
spanwise wavenumber β = 0.45 and for different initial amplitudes is shown. Most
of the linear stability calculations are performed using the velocity fields with the
amplitudes found at x = 2. This position was chosen since it is close to the point
where the primary disturbance energy attains its maximum value.

According to the scaling property of the mean fields derived in § 3.2, the results
obtained for the parameters used in this section, x = 2 and β = 0.45, can be rescaled
to apply for all values of β (see figure 8). This implies that a result from a secondary
instability calculation obtained using a mean field corresponding to a point on the
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Figure 14. Results for the fundamental sinuous growth rates, ωi, versus the spanwise wavenumbers
along the curve in figure 8. The star gives the value of the amplification factor obtained when
A = 0.36, α = 0.30, β = 0.45 and x = 2, i.e. ωi = 0.014.

curve in figure 8 can be rescaled to yield the amplification value for all points
on this curve. Since ωi/β = constant, the value of the constant can be determined
from a secondary instability result for a specific parameter combination. The line
representing the growth rates of the fundamental sinuous symmetry is displayed in
figure 14. In practice, however, the scaling property relating ωi and β is limited to an
intermediate range of β. Since their distance of amplification is so short, disturbances
characterized by large values of β will need a large initial disturbance amplitude at
the leading edge, whereas disturbances represented by low values of β will saturate
far downstream, where Tollmien–Schlichting instabilities may become important and
change the transition scenario. For larger values of β, the corresponding x-position
is closer to the leading edge and viscous effects may have a damping influence on the
amplification of unstable waves.

Primary disturbances with β in the range [0.3, 0.6] (here considered with respect
to the fixed streamwise position x = 1), have the largest transient amplification (An-
dersson et al. 1999a; Luchini 2000). The spanwise distance selected in the controlled
experiments by Bakchinov et al. (1995) corresponds to a value of β equal to 0.45
(at the location of their roughness elements), and this is also the scale of boundary
layer fluctuations in the presence of free-stream turbulence (Westin et al. 1994). It
could be speculated that this range of β is particularly appropriate when dealing
with boundary layer streaks, since it corresponds to a spanwise spacing of about 100
wall units once viscous length scales are introduced. The spacing of 100 viscous wall
units is not only obeyed by quasi-regular streaks in turbulent but also in laminar
and transitional boundary layers (see Blackwelder 1983; Kendall 1985, 1990; Westin
et al. 1994). It is also the typical transverse ‘box’ dimension for turbulence to survive
in the minimal channel simulations of Jimenez & Moin (1991) and Hamilton, Kim
& Waleffe (1995). In the present case, if a simple measure of the friction velocity is
adopted by the use of the Blasius wall shear, it is easy to see that streaks spaced
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Figure 15. Isocontours of the growth rate ωi, in the (x, α)-plane, for the sinuous fundamental mode,
employing the mean field corresponding to the circled line in figure 5. The maximum contour level
is 0.014 and the spacing is 0.0014. The ∗ represents the maximum growth rate, ωi = 0.0147, obtained
at position x = 1.88 and for a streamwise wavenumber α = 0.259.
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Figure 16. Temporal growth rate (a) and phase speed (b) versus streamwise wavenumber for the
fundamental sinuous modes for different amplitudes of the primary disturbance (- - -, A = 28.8;
-·-·-, A = 31.7; —/—, A = 34.5; —+—, A = 36.4; —∗—, A = 37.3). The arrows point in the
direction of increasing A.

100 wall units apart are present in a subcritical (with respect to TS waves) boundary
layer if β is in the range [0.3, 0.63].

Figure 15 shows the isocontours of the growth rate ωi, for the fundamental sinuous
instability in the (x, α)-plane for the mean field corresponding to the circled line in
figure 5. The growth rates do not vary significantly for the range 1.6 < x < 2.2 and,
in this interval, the maximum growth rate is obtained for nearly the same value of the
streamwise wavenumber (α = 0.259). Stability calculations are, therefore, performed
on the mean field at x = 2, where the primary disturbance has saturated and, for the
cases with lower initial energy, the streak amplitude achieves its maximum value (cf.
figure 5).

An extensive parametric study is carried out for the sinuous fundamental (γ = 0),
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Figure 17. Temporal growth rate (a) and phase speed (b) versus the Floquet parameter for
sinuous modes, for four different amplitudes of the primary disturbance (symbols as in figure 16).

arbitrarily detuned (0 < γ < 0.5) and subharmonic (γ = 0.5) symmetries, which were
the only ones found to be significantly unstable. First the Floquet parameter is set to
zero, i.e. fundamental modes are focused upon. In figure 16(a) the growth rate of the
instability ωi = αci is plotted against the streamwise wavenumber, for the different
amplitudes of the streaks, obtained with the DNS. One can note that on increasing
the amplitude, not only do the growth rates increase but their maxima are also shifted
towards larger values of the streamwise wavenumber α. As shown in figure 16(b) the
phase speeds of the fundamental sinuous modes are but weakly dispersive.

Next, we examine the effect of changes in the spanwise wavelength of the secondary
disturbance, i.e. we study the effect of the detuning parameter γ. It is often assumed
that the preferentially triggered secondary instability modes have the same transverse
periodicity as the base flow; this is not at all evident here. The full system of equations
(2.12)–(2.13) has been solved without resorting to symmetry considerations to yield
the results displayed in figure 17, corresponding to a streamwise wavenumber α equal
to 0.255 and for mean fields with amplitudes large enough to lead to instabilities for
the chosen α. A monotonic behaviour is observed in the γ range of [0, 0.5] except for
the case of lower amplitude A.

The behaviour of the amplification factor of the subharmonic modes for differ-
ent streamwise wavenumbers and different amplitudes of the primary disturbance is
shown in figure 18(a). For amplitudes larger than about 0.30, the subharmonic sym-
metry produces lower maximum growth rates than the fundamental symmetry. Note,
however, that for lower amplitudes the sinuous subharmonic symmetry represents the
most unstable mode. The phase speed for the subharmonic symmetry, displayed in
figure 18(b), is larger than in the fundamental case and the waves are slightly more
dispersive.

4.3. The neutral conditions of streak breakdown

A study has been conducted to identify the marginal conditions of breakdown, with
each neutral point ωi = 0 calculated for a range of α by means of the complex
integration technique discussed in § 2.3. The steady base velocity profiles obtained
with the DNS at x = 2 are used here. The results are displayed in figure 19(a, b) for
the two sinuous symmetries, together with contour levels of constant growth rates.

It is immediately observed that a streak amplitude of about 26% of the free-stream
speed is needed for breakdown to occur. Although this critical value is achieved
for small values of α (where the parallel flow assumption becomes questionable) we
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Figure 18. Temporal growth rate (a) and phase speed (b) versus streamwise wavenumber for the
subharmonic sinuous modes for different amplitudes of the primary disturbance (—×—, A = 25.6;
—.—, A = 27.2; - - -, A = 28.8; -·-·-, A = 31.7; —/—, A = 34.5; — + —, A = 36.4; —∗—, A = 37.3).
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Figure 19. Neutral curves for streak instability in the (A, α)-plane for (a) the fundamental sinuous
mode, (b) the subharmonic sinuous mode (contour levels: ωi = 0, 0.0046, 0.0092).

are roughly around the values reported by P. H. Alfredsson (private communication,
1998), who stated that “amplitudes of at least 20%” are needed for an instability
of the streaks to emerge, and by Bakchinov et al. (1995) who in their experiments
produced streaks with A ≈ 20% and generated their controlled excitation with a
vibrating ribbon. In the case of plane Poiseuille flow, the experiments of Elofsson et
al. (1999) show that the threshold amplitude for streak breakdown is 35%, irrespective
of the Reynolds number. This Reynolds-number independence was also observed in
direct numerical simulations of Couette flow by Kreiss, Lundbladh & Henningson
(1994) who reported that “the disturbances in the calculations are found to reach
an amplitude of order one for all Reynolds numbers before the rapid secondary
instability sets in”.

One can notice that the subharmonic mode is unstable for lower amplitudes than
the fundamental mode and that the growth rates for larger amplitudes are quite close
for the two symmetries. The direct numerical simulations and experiments of oblique
transition in a boundary layer conducted by Berlin, Lundbladh & Henningson (1994)
and Berlin, Wiegel & Henningson (1999) show that a subharmonic breakdown of the
streaks precedes transition to turbulence.

We do not present any results for the varicose instabilities here. In fact, both
the fundamental and the subharmonic symmetries resulted in weak instabilities for
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amplitudes larger than A = 0.37 with growth rates smaller than one fifth of the
corresponding sinuous growth rates. Therefore a breakdown scenario triggered by a
varicose instability seems unlikely.

It appears then that there is not a dominating mode but rather that fundamental
and detuned sinuous instabilities have the same probability of being observed. Hence,
the knowledge provided by these results must be combined with that of the inflow
disturbance spectrum, i.e. the prevailing receptivity conditions. The present study
furnishes possible scenarios which should be confirmed by careful experiments, i.e.
with controlled harmonic disturbances to try and trigger specific modes.

5. Discussion and conclusions
We have investigated one of the mechanisms which is a possible precursor of

transition to turbulence in a boundary layer, namely the linear instability of streaks
produced by the non-modal streamwise evolution of free-stream disturbances. Such
a breakdown has been observed in experiments carried out by the Swedish (Westin
et al. 1994; Alfredsson & Matsubara 1996) and the Russian groups (Gulyaev et al.
1989; Bakchinov et al. 1995): they generated streaky structures and visualized their
development, breakdown and the formation of turbulent spots, via smoke injection.

There is starting to be a good correspondence between experiments and theory,
and most of the segments of transition induced by the breakdown of streaks are
now elucidated (at least qualitatively). Our study aims at the modelling of only one
part of this process. More complete pictures are starting to emerge, often based on
simple model systems, particularly for the description of the self-sustained process
that makes near-wall turbulence viable (for a recent account refer to the book by
Panton 1997). Although similarities exist between the wall turbulence process and the
breakdown of laminar streaks, it is best not to draw definite parallels because of the
widely different space and time scales involved in the two cases.

Clearly, other steps can be envisioned to lead to early transition to turbulence (i.e.
strong nonlinearities, resonant interactions, etc.) and the present work represents but
one brick in the building of a comprehensive picture. One has to further appreciate
the fact that in an actual experiment irregular streaky structures are often observed,
i.e. with non-uniform spacing and with neighbouring streaks in different stages of
development, see Bottin, Dauchot & Daviaud (1998) for an example in plane Couette
flow. Thus, these structures do not necessarily become unstable together at a given
x-position, but their breakdown will probably occur in an irregular manner. These
aspects are linked to the flow receptivity, the understanding of which is, hence, crucial.
For recent progress in this direction the reader is referred to Luchini & Bottaro (1998)
and Airiau & Bottaro (1998).

The local, large Reynolds number limit has been considered here, with the impli-
cation that this simplified approach captures the essential features of the instability.
The inviscid assumption means that one has to be careful in choosing the integration
path for the eigenvalue calculation, and a simple procedure for identifying the singu-
larities in the complex y-plane and for integrating around them has been outlined.
With our approach, inspired by Lin (1944), neutral and damped inviscid modes can be
computed, and a quasi-linear behaviour of the growth rate of the instability with the
streak amplitude is found, in agreement with the careful channel flow measurements
by Elofsson et al. (1999).

We have shown here that both the linear and the nonlinear spatial development of
optimal streamwise streaks are well described by the boundary layer approximation
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and, as a consequence, Reynolds number independent for large enough Reynolds
numbers. This results in a boundary layer scaling property that couples the streamwise
and spanwise scales, implying that the same solution is valid for every combination
of x and β such that the product xβ2 remains constant. The parameter study of
streak instability is therefore representative of a wide range of intermediate values of
β for which saturation occurs at a reasonable x: large enough so that the boundary
layer approximation may still be valid and small enough so that Tollmien–Schlichting
waves may not play a significant role.

The different modes of instability have been catalogued and studied. At a prelim-
inary stage secondary instability calculations of the shape-assumption-approximated
mean fields were carried out; however, most results presented here are performed
employing the fully nonlinear mean fields. In comparing the two levels of approxi-
mations we conclude that the shape assumption must be abandoned in secondary
instability studies of streamwise streaks in flat-plate boundary layers. The secondary
instability results are very sensitive to a slight change in the shape of the mean field
velocity profile and, even if the sinuous modes are reasonably well captured by the
shape assumption, the growth rates of varicose modes are widely over-predicted.

When considering the nonlinear mean field we find that the sinuous modes are by far
the dominating instabilities. The varicose modes become unstable only for very large
amplitudes (around 37% of the free-stream speed) and should, therefore, be rarely
observed in natural transition. This is in agreement with DNS and experiments, where
the sinuous modes of instability are most often reported for the streak breakdown.

Noticeable is the fact that the sinuous, detuned instability waves can be more
amplified than the fundamental modes. The subharmonic modes are in fact found
to first become unstable with a critical streak amplitude of about 26% of the free-
stream velocity. Plots of the eigenfunctions for fundamental and subharmonic modes
demonstrate clearly that the instability is concentrated around the critical layer, and
both types of sinuous modes of breakdown are found to be almost non-dispersive.
When the streak amplitude is large enough (around 30% of the free-stream velocity)
both the fundamental and detuned modes have positive growth rates; thus, they might
both be observed and to decide on their downstream fate is a matter of environmental
bias. It is noteworthy that both experiments (Bakchinov et al. 1995) and DNS (Berlin
et al. 1994) did show subharmonic breakdown of the streaks, although neither paper
stated so explicitly.

Neutral curves have been obtained here in the amplitude–streamwise wavenumber
plane; their identification should prove useful for controlling transition and near-wall
turbulence.

Future experiments under controlled conditions may attempt to trigger some of
the modes described here. Also, an interesting direction of future research concerns
the search for a possible absolute instability of the streaks. Finding a self-sustaining
instability mechanism could provide a firmer connection with the birth of turbulent
spots.

We thank Theo Randriarifara for making his stability code available for some
of the validation tests, Paolo Luchini and Peter Schmid for interesting and fruitful
discussions, and the referees for valuable comments that helped us produce a more
physically relevant account of the breakdown of boundary layer streaks. Part of
the work was performed during the first author’s stay in Toulouse, supported by
“Internationaliseringsmedel för Doktorander” dnr 930-766-95, dossier 71, at the
Royal Institute of Technology.
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vortices. J. Fluid Mech. 297, 77.

Lin, C. C. 1944 On the stability of two-dimensional parallel flows. Proc. Natl Acad. Sci. 30, 316.

Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.

Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface:
optimal perturbations. J. Fluid Mech. 404, 289.
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