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SUMMARY
This paper deals with the path planning of non-holonomic
vehicles on an uneven natural terrain. It uses the properties
of incompressible viscous fluid fields. The full configuration
is considered including position and orientation. Lanes are
computed instead of a single path. Bounds on curvature and
constraints on initial and final orientations are also
addressed. By using the Keymeulen/Decuyper fluid method
and adding friction forces in the Stokes’ equations, the
shortest paths or the minimum energy ones can be found,
even on an uneven terrain. In addition, in order to satisfy the
kinematics and dynamics constraints of a non-holonomic
robot a local variation of the shear constraint is used to
control the upper bound of the trajectory curvature. Adding
small corridors at the departure and destination also satisfies
initial and final orientation requirements.

KEYWORDS: Mobile robots; Non-holonomic path planning;
Potential methods; Incompressible viscous fluids.

1. INTRODUCTION
Driving a mobile robot toward a target through an obstacle
field remains a fundamental problem in robotics. Path
planning methods are usually classified into two categories:
graph methods and potential field methods.1,2 Graph meth-
ods are based on a geometrical cell-decomposition of space.
These methods require large computation resources that
produces optimum path planning with respect to objective
criteria, such as finding the shortest, or the minimum energy
path.3,4

The potential field methods, pioneered by Kathib,5

consist in applying physical models to the robot and its
environment. Khatib’s method was developed from an
analogy with electrostatic field physics where obstacles
generate a repulsive field, while the desired destination
emits an attractive field. A key problem with this approach
is that the robot gets often trapped in a local minimum.

Two research areas issued from that study. A first way has
developed methods to allow the robot to escape local
minima6 or, better, to avoid them.7 Kodischek and Rimon
opened the second important area in proposing potential
navigation functions that eliminate local minima (except
arrival) for spherical obstacles.8,9 However, extension to
more general obstacle shapes has proved to be difficult.

In the same way, Connoly, Burns and Weiss10 proposed a
potential field based on Laplace’s equation. They demon-

strated that this potential field has no local minima. The
study of Laplace’s equation was completed by Masoud et
al.11 and Kim ahd Khosla.12

Other physical analogies have been proposed, more
particularly a magnetic analogy developed by Singh,13

a scent diffusion model presented by Schmidt,14 and a
method using principles in fluid dynamics proposed by
Keymeulen.15

These potential methods do not produce an optimum
energy consumption path. Furthermore most of paths
planning methods have ignored the non-holonomic behav-
iour of robots. When taken into account, nonholonomic
constraints are post processed.

To avoid the drawbacks of the existing methods, this
paper deals with a road planning strategy based on Stokes’
equations for incompressible viscous fluids. Section 2
recalls the advantages of general fluid methods, such as
ensuring robot security and non-existence of local minima.
Keymeulen and Decuyper16,17 showed these properties.

Section 3 proposes optimum path planning with various
performance indices. Indeed, introducing external friction
forces into the initial model allows the selection of
optimised roads. Two friction forces are defined: The first
one is used to select the shortest paths; the second shows the
minimum energy lanes. An example on an uneven natural
terrain is given, which illustrates the performance. Section 4
presents the way to deal with kinematic and dynamic
constraints by controlling the local deformation of fluid
particles to obtain a lower bound to the stream lines radius
of curvature.

2. FLUID METHODS
Fluid methods, pioneered by Keymeulen and Decuyper,
have many properties.16 First, these authors demonstrate that
fluid methods generate a collision free path from a fluid
vector field which is not necessarily the gradient of a
potential function. Second, they prove that using fluid flow
for path generation does not produce any local minima but
unstable stagnation points on obstacles, and how a local
pressure field guides fluid particles and finds the shortest
path. Third, they analyse the interplay between the dynam-
ical laws and boundary conditions using tools from
topology. The Dirichlet and Von Newmann boundary
conditions are studied.

In conclusion, they show that the best planning result can
be obtained by using incompressible viscous fluids. The
viscosity implies that the velocity is zero on the boundary18
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and maximum at the center of the fluid tubes bordered by
obstacles.17

The selection of the path consists in a streamline
computed as the line where the shear stress tensor field in
the direction of velocity is zero. This streamline has the
maximum velocity.

2.1. Stokes’ equations
According to Keymeulen and Decuyper’s results we
propose a method based on an incompressible and very
viscous fluid described by the Stokes’ equations for
stationary flow and we develop improvements to include
kinematical and geometrical constraints.

The Stokes’ equations are:

���v= �∇p��f (1)

�∇ • �v=0 (2)

where:

�v is the velocity vector
�f is the vector of the external forces acting on the particle
p is the local pressure
� is the viscosity coefficient
� represents the Laplace’s operator
�∇ is the spatial derivation vector (the gradient operator)
• symbolises the scalar product.

2.2. High-viscosity advantages
First vortices can exist only in a low-viscosity domain. As it
is shown in Figure 1, vortices c1, c2, c3, c4 result from inertial
forces.

The initial Stokes’ hypotheses are that mechanical forces
are negligible and that viscous forces are large. Therefore no
vortex can exist (Figure 2).

Moreover, in a high-viscosity fluid, the speed of a particle
decreases when approaching an obstacle and becomes zero
on the boundary between fluid and obstacle. This property
ensures safety for robots. Indeed, because of viscous forces,
by following the streamline defined with a shear stress
tensor field equal to zero in the direction of velocity, a robot

navigates in the middie of the fluid tubes (roads) bordered
by obstacles.17

2.3. Stationary flow
In the model defined by equations (1) and (2), there are no
time-dependent terms, so the equations are simple.

General properties:

• A regular grid covering obstacles and free space models
the environment.

A finite difference method is used for solving the Stokes’
equations.

v1i+1,j +v1i, j+1 �4v1i, j +v1i, j�1 +v1i�1,j

h2 +f1i, j =
pi+1,j �pi�1,j

2h
(3)

v2i+1,j ++v2i, j+1 �4v2i, j +v2i, j�1 +v2i�1,j

h2 +f2i, j =
pi+1,j �pi�1,j

2h
(3)

v1i+1,j �v1i�1,j +v2i, j+1 �v2i, j�1 =0 (5)

where (v1, v2) are the velocity co-ordinates, (f1, f2) the
external force co-ordinates and p the pressure. The bound-
ary conditions are zero velocities on the obstacle boundaries
and on the limits of the closed-fluid universe. A constant
difference of pressure is kept between the start point and the
arrival point.

• If N is the number of grid nodes, resolving our problem
consists in solving a set of 3*N sparse linear equations
(equations 3–5).

The simulation shown in Figure 3 confirms that the flow
from the starting point to the arrival does not enter blind
alleys and that no vortex is present.

3. OPTIMUM PATH PLANNING
In this section, we show how our potential method can be
used to find the shortest path, or the minimum energy one,
by using friction forces in the model.

In the previous section, external forces were considered
to be zero. Let us now study any fluid particle during its
travel from the starting point to the arrival; S is the starting
point and G is the goal point (Figure 4).

By following a particle along its streamline (equation 6),
we notice that its total potential energy is equal to theFig. 1. Fluid velocity model with non-negligible inertial forces.

Fig. 2. Stokes’ fluid velocities.
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difference of pressure between the starting and the arrival
points. One has

�G

S

���v • �T=�G

S

�∇p • �T (6)

�G

S

���v • �T ds=pG �pS (7)

where �T is the trajectory tangent vector and pG �pS is the
pressure difference between G and S. Two terms are in
evidence in the equation 7: The first one is the global
pressure difference and the second one is the viscosity
forces work.

As walls and obstacles are motionless, viscosity forces
slow down fluid particles and so the viscosity forces work
between G and S is negative (equation 8).

Wu =�G

S

��v • �T ds≤0 (8)

In conclusion, the more a particle is far from obstacles, the
faster it travels, i.e. in the middle of canal.

3.1. The shortest path
Let us add an external friction force �F in the model. This
force has the direction opposite to the velocity vector and its
value is assumed here to remain constant all over the
domain (Figure 5).

Now, energy is not only dissipated by viscous forces but
by friction forces too. By following a particle along its
streamline, we notice that the mechanical work of friction
forces (L • F) depends on the length L of the particle
trajectory (equations 9 and 10).

�G

S

���v • �T+�G

S

�F • �T=�G

S

�∇p • �T=pG �pS (9)

Wu �L • F=pG �pS (10)

As the viscous forces work Wu is negative and as the
potential energy due to the difference of pressure pG �pS is
constant (equation 11), adding a constant friction force F
modifies the flow line shapes. All streamlines in the solution
have a bounded length (equation 12).

Wu ≤0 pG �pS +LF≤0 (11)

L≤Llimit =
pS �pG

F
(12)

When a fluid flow problem has no solution, the fluid particle
velocity is zero all over the domain. So, by iteration, it is
possible to quickly find Fmax and Lmin (equation 13),
respectively, the maximal value of F and the minimal value
of L, accepting at least a non-zero particle velocity. This
particle follows the shortest trajectory.

Lmin =
pS �pG

Fmax

(13)

In practice, the width of the solution paths can’t be shorter
than four grid nodes due to the approximation of the finite
difference method (Figure 6). Moreover, we never consider
the shortest trajectory because it gets very close to obstacle
corners, which is dangerous for a robot. We prefer to
compute lanes wider than the robot width (Figure 7). In
order to illustrate advantages of the fluid method, we have
proposed a comparison between our method and another
typical potential fluid method (the scent diffusion21) pro-
posed by G. Schmidt.

Our method also allows us to find the shortest paths on an
uneven terrain by using its elevation map (Figure 8). In this
case, the problem comes from the distance projection onto
the map. We keep the friction forces with an opposite
direction to the direction of motion with a constant norm F
along the real trajectory.

Fig. 3. A point to point viscous fluid method example.

Fig. 4. Streamlines examples without friction.

Fig. 5. Streamlines with friction force.
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Let Lr be the length of the real trajectory and Lp the length
of the projected trajectory. The mechanical work exerted by
the friction force must be the same on the real trajectory and
on the trajectory projection. So we use a non-constant
friction force Fc in the map to correct the projection
effects.

Wr =Wp ⇔F. Lr =Fc . L (14)

where Wr is the mechanical work exerted along the real
trajectory and Wp the mechanical work exerted on the
projected trajectory.

dWr =dWp ⇔F. dLr =Fc . dLp (15)

� is the angle of the slope.

dLp =cos � . dLr (16)

Fc =
F

cos �
(17)

The example (Figures 9 and 10) shows the path planning on
an uneven terrain.

We notice that the three paths with the same length are
found.

3.2. The minimum energy consumption path
Energy consumption is a typical problem for robotic
autonomous rovers. Hence a robot navigating on uneven
surfaces has to minimise its energy consumption.

Like in the preceding section, an external force is used to
simulate the robot’s energy consumption. A complete model
should take into account the relationship between engine
power, speed, gear efficiency, wheels contact and so on.

Here we present a simple model based on energy
variation when a mass is moving on uneven surfaces.

f=mg( | tan � |+Kf ) (18)

m is the vehicle mass
g is the gravity
� is the angle representing the slope in the direction of
motion

Fig. 6. Shortest stream canal in a point to point example.

Fig. 7. Near-optimal canal.

Fig. 8. A real trajectory and its projection.

Fig. 9. The three equivalent shortest roads.

Fig. 10. The three shortest roads and the contour lines.
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Kf is friction coefficient between the wheels and the
ground

The example (Figure 11) presents the GEROMS experi-
mental site19 (about 60*100m). The ground represents a part
of the moon surface including pits, smooth hills and rocks.
Rocks and steep terrain are considered as obstacles. Three
paths are found: Two of them go through the pit and the
third turns around it and follows a contour line. Pinchard4

has proposed a comparison with path generation based on
the principles of genetic algorithms.

4. PATH PLANNING FOR NON-HOLONOMIC
ROBOT
A real robot is not able to follow any trajectory. Inertial
forces and mechanical limits force the robot to follow
trajectories with a bounded curvature:

�=
1

R
(19)

where R is the local radius of curvature (Figure 12).
�T and �N are, respectively, the tangent and the normal

vector to a trajectory.
The relation between the curvature K, the velocity and the

heading � is:

�=
��	v2

	x2

�
	v1

	x1
� sin � cos ��

	v1

	x2

sin2�+
	v2

	x1

cos2 ��
|| �v ||

(20)

In this section we introduce a constraint in our model in
order to control the curvature of the trajectories. In this way,
we guarantee that a mobile robot can follow any particle.

A fluid particle which moves in a complex environment,
is affected by a combination of deformations like elonga-
tion, crushing shear but no extension or compression
because our assumption of fluid incompressibility
(Figure 13).

According to the Stokes’ equations (equations 21) when
a fluid particle is turning, its shape is modified (Figure 14).

��
=�p��I+2� ��D

d��ıv= ��
+�f= �0 (21)

d�ıv= �v=0

where ��I is the identity tensor, ��D the deformation rate tensor,
and � the viscosity coefficient.

We call the perpendicular shear rate 
�� the deformation
movement in the direction perpendicular to the particle
motion (Figure 14).


�� =
	v�

	�
(22)

�v=v���+v� �� (23)

where (0, ��, ��) is a local normalised reference frame where

��=
�v

|| �v ||
(24)

There is a direct relationship between local normal shear
deformation movement and the curvature of a trajectory.

�	v�

	� �=� || �v ||

=��	v2

	x2

�
	v1

	x1
� sin � cos ��

	v1

	x2

sin2 � +
	v2

	x1

cos2 ��
(25)

Now we can introduce a new tensor ��G. Gx1,x2 represents the
corresponding matrix in the absolute reference frame.

Gx1,x2
=

�
	v�

	�
cos � sin �

	v�

	�
cos2 �

�
	v�

	�
sin2 �

	v�

	�
cos � sin �

(26)

The stress produced by the constraint tensor ��G on a particle
frontier is by definition equal to

�F= ��G • �n (27)

where �n is the normal vector at the surface of a fluid
particle

�n=a��+b��

�F= ��G • �n=

�a sin �
	v�

	�

a cos �
	v�

	� xi,x2

=
0

a
	v�

	� ��

(28)

Fig. 11. A 3D representation of the minimum energy consump-
tion paths on the GEROMS site.

Fig. 12. Radius of curvature.
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�v and �n, �F • �v=0

The ��G tensor produces a force �F opposite to the deformation
(Figure 15).

We define a new tensor ��
� by adding a term to the Stokes’
equation:

��
�=�p��I+2� ��D+k(�x) ��G (29)

where ��I is the identity tensor, ��D the deformation rate tensor,
� the viscosity coefficient, and k the curve coefficient
depending on the local position.

By using local internal constraints opposite to shear, we
can control local fluid particle deformations and conse-
quently the global fluid direction (Figure 16). To influence
the particle direction, a different value of the stress
coefficient k is used.

New global equations are then defined:

div� ��
�+ �F= �0 (30)

div �v=0 (31)

With the following additional constraint:

	v�

	�

|| �v ||
<�max

where Kmax is the upper bound of the curvature.
By this method, roads with a bounded curvature radius

are obtained (Figure 18), to be compared with the classical
simplest Stokes’ equation (Figure 17).

Fig. 13. Combination of deformations expressed in the local frame (0, ��, ��).

Fig. 14. Shape of a particle in a turn.

Fig. 15. Controlling the shape of a particle by a force.
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5. INITIAL AND FINAL ORIENTATION
CONSTRAINTS
A non-holonomic robot is only able to start in a limited
range of directions (Figure 19). In order to model this
constraint, we limit the fluid direction around the starting
and arrival points. Our solution is to build a virtual wall all
around these points (Figure 20).

Figure 21 shows a safe path planning with a lower bound
of the radius of curvature. Imposing a bounded radius, the problem may have no

solution. In such cases, the velocity vectors are null all over
the domain. So we can easily predict the existence or non-
existence of a feasible solution.

Fig. 16. Example of particle shapes with different values of k.

Fig. 17. Road planning with the classical Stokes’ equations.

Fig. 18. Road planning with a bounded curvature.

Fig. 19. Mechanical limits of a non-holonomic vehicle.

Fig. 20. Oriented fluid source.

Fig. 21. Road with a bounded radius and a constrained final
orientation.
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6. CONCLUSION
In this paper we have presented an original incompressible
viscous fluid method for generating safe paths between two
points in a complex environment.

Paths correspond to the speediest flow of fluid particles.
We have discussed the advantages of a viscous fluid
approach. An unwanted local attractor is not generated but
unstable stagnation points and the security of the robot are
guaranteed.

We have argued that using external forces allows the
planning of safe paths, which can be optimal with respect to
distance or energy criteria.

Furthermore, since a real mobile robot cannot follow
arbitrary trajectories, because of mechanical limits or
inertial forces, we have proposed a method based on an
internal force, in order to control the minimum radius of the
computed stream lines.

The method is a way to obtain preferential lanes for
indoors as well as for outdoors non-holonomic mobile
robots.
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