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Abstract

Necrotic enteritis (NE), caused by Clostridium perfringens (CP), is one of the most common of
poultry diseases, causing huge economic losses to the poultry industry. This review provides
an overview of the pathogenesis of NE in chickens and of the interaction of CP with the host
immune system. The roles of management, nutrition, probiotics, and vaccination in reducing
the incidence and severity of NE in poultry flocks are also discussed.

Introduction

Necrotic enteritis (NE) is an important intestinal disease of chickens which was previously known to
be caused by Clostridium perfringens (CP) type A and to a lesser extent by type C strains
(Songer, 1996). It is of note, however, that with identification of B-like necrotic enteritis toxin
(NetB) as the major CP toxin, the NE-producing CP strains are currently classified as type G
(Rood et al., 2018).As anopportunistic pathogen,CPcolonizes the intestinal tract of healthy chickens
at a densityof 102 colony forming units (CFU) per gramof intestinal content. The proliferation ofCP
in the gut is associatedwithproductionof various toxins, includingα-toxin,NetB,TpeL, andperhaps
other undefined toxins, which may in turn cause NE. There are several predisposing factors that
enhance CP proliferation and toxin production, including unbalanced composition of the
diet, immunosuppression, and intestinal damage caused by other diseases such as coccidiosis. NE
is commonly seen in 2- to 5-week-old broiler chickens and the clinical form of the disease is charac-
terizedbyahighmortality rate of up to50%,with consequent economic losses to thepoultry industry.
The subclinical form of NE does not result in significant mortality and is only associated with mild
damage to the intestine. However, this formmay cause significant financial losses through impairing
the ability of the intestine to absorb nutrients, ultimately resulting in a significant reduction in
performance parameters (Gholamiandehkordi et al., 2007; Shojadoost et al., 2012).

Over the past several decades, following the discovery of NE by Parish in 1961 (Parish,
1961), several preventive measures have been attempted for disease prevention and control,
with dietary inclusion of antibiotic growth promoters (AGPs) in poultry feed being the
most widely used approach worldwide (Elwinger et al., 1998). However, the ban on preventive
use of in-feed antibiotics in the European Union countries (Levy, 2014), USA and Canada has
the potential to impose substantial economic losses to the poultry industry due to the
re-emergence of once well-controlled diseases, including NE (M’Sadeq et al., 2015). As a result,
a wide range of studies have been dedicated to understanding the pathogenesis of CP and
development of novel methods for prevention of disease (Caly et al., 2015; Prescott et al.,
2016; Smyth, 2016). Indeed, research in this area has led to the discovery of a novel pore-forming
toxin called NetB (Keyburn et al., 2008), as well as detection of specific genomic structures that
play a role in the virulence potential of CP, indicating that NE is not merely a toxin-mediated
disease (Lepp et al., 2010). These breakthroughs have paved the path toward a better understand-
ing of CP pathogenesis and developing effective control strategies against NE.

Many studies have been conducted to investigate the effect of antimicrobial alternatives such
as probiotics, prebiotics, enzymes, essential oils, and organic acids, in addition to vaccination for
prevention of NE in broiler chickens (Adhikari et al., 2020). Yet, despite a tremendous amount of
research on this topic, there is currently no vaccine or feed additive available that offers complete
protection against NE; as a result, the annual global economic losses incurred by this disease are
still estimated to be approximately $6 billion USD (Wade et al., 2015). In this article, we review
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different aspects of NE with a focus on the pathogenesis and asso-
ciated immune responses, in addition to highlighting the current
strategies of NE prevention in chickens, including vaccines and anti-
microbial alternatives.

Pathogenic mechanisms of C. perfringens in chickens

Pathogenesis of CP is very complex and depends on host, microbe,
and management (including diet) factors (Fig. 1). Pathogenesis of
NE is complicated due to the involvement of many factors, including
colonization by CP via intestinal mucus degradation and subsequent
penetration of mucosal surfaces; quorum sensing; and production of
tissue-degrading toxins, such as NetB (Keyburn et al., 2008),
α-toxin and toxin C. perfringens large cytotoxin (TpeL) (Prescott
et al., 2016). Among the toxins produced by CP, the NetB toxin
has long been thought to be the major virulence factor of CP.
Following the initial identification of NetB, research efforts have
provided a detailed understanding of the extra-chromosomal loca-
tion of the gene encoding this toxin, uncovered its role in the
pathogenicity of CP and explored the possibility of using it as a tar-
get antigen in vaccine strategies (Rood et al., 2016). Genomic and
transcriptomic analyses have provided new insights into pathogen-
icity. Novel findings surrounding pathogenic mechanisms have
included toxin production, quorum sensing, attachment to host tis-
sues, and production of other pathogenicity-related enzymes, in
addition to new data related to subclinical CP infection.

Comparative genomic and transcriptomic analyses of
pathogenicity-related genes of C. perfringens

Transcriptomic analysis of virulence genes in CP
Analyses of genome content and gene expression allow for
mechanisms of CP pathogenicity to be assessed from a broader

viewpoint. For instance, transcriptomic analysis of a NetB positive
CP strain has been used to assess relative differences in gene
expression under in vitro and in vivo conditions (Parreira et al.,
2016). In a study by Parreira et al. (2016), significant differences
in global gene expression were observed in CP subjected to differ-
ent environmental conditions. When considering virulence genes
specifically, it was found that the expression of these genes was the
lowest in bacteria grown in a nutrient-poor medium, similar to
those observed in CP recovered from chickens. More importantly,
the notable decrease in the expression of virulence genes was
found to coincide with decreased expression of regulatory VirR/
VirS genes; however, expression of VirT, an alternate regulator
of VirR/VirS regulated genes, was upregulated. This research
highlighted the potential regulatory mechanisms employed by
CP in environments of different nutrient availability.

Genomic analysis of virulence genes in CP
Genomic analysis of CP isolates allows for the identification of
pathogenicity-related genes in CP and enables comparison
between pathogenic and non-pathogenic strains. For instance,
whole genome sequence analysis of CP isolated from a NE out-
break in chickens revealed the presence of genes related to toxin
production, virulence elements, antibiotic resistance, and inserts
of bacteriophage origin (Li et al., 2017a). Further, comparative
analyses of the genomes of different strains of CP have identified
differences among them (Ronco et al., 2017; Lacey et al., 2018a;
Kiu et al., 2019). In this regard, sequenced genomes from 30
chicken and turkey CP isolates revealed key differences in the
presence of pathogenicity genes; NE-causing bacteria in chickens
were found to contain NE pathogenicity loci (NELoc) 1, 2 and 3,
netB and a collagen adhesin gene (cnaA), whereas in turkeys, only
NELoc-2 was consistently observed along with limited

Fig. 1. Pathogenesis of C. perfringens infection in broiler chickens leads to NE. C. perfringens is an opportunistic pathogen that is normally found in a healthy gut
flora of chickens. In a healthy gut, C. perfringens secretes low levels of enzymes and toxins that are subsequently neutralized by secretory antibodies (IgY and IgA).
Mucosal and gut microbiota perturbation, caused by either feeding high animal protein or indigestible NSP diet (1b) and or ingestion of Eimeria oocysts which is
associated with plasma leakage into the gut lumen, lead to C. perfringens growth and proliferation. The uncontrolled growth of C. perfringens is accompanied by
secretion of a variety of mucolytic enzymes (sialidases, galactosidases, hexosaminidases and fucosidases) and pore-forming toxins such as NetB, allowing its pene-
tration of the mucosa. Following penetration of the intestinal mucosa, C. perfringens secrete tissue-degrading toxins such as α-toxin and TpeL, which can lead to
mild mucosal damage (subclinical NE) that is associated with nutrient malabsorption and dissemination of C. perfringens into the environment. In severe cases, the
excessive secretion of these toxins may lead to extensive necrosis (clinical NE) and cholangiohepatitis that can eventually lead to death of chickens.
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representation of netB and cnaA (Ronco et al., 2017). Despite
identifying NetB in all NE-causing isolates, the results of the
study by Ronco et al. (2017) suggest significant differences in
pathogenic mechanisms between turkeys and chickens. This was
further supported by identification of cnaD, a proposed collagen
adhesin gene found in all isolates from diseased turkeys but only
in a 39% of isolates from diseased chickens. Among strains of CP,
some differences exist at the chromosomal level, although
large-scale sequencing of isolates of CP from multiple host species
demonstrated that pathogenicity was more closely linked to extra-
chromosomal genes located on plasmids (Lacey et al., 2018a). In a
similar study, comparing healthy and NE-affected-broiler CP
isolates (Kiu et al., 2019), netB was consistently observed in NE
isolates, along with collagen adhesin genes and tpeL, the latter
of which codes for a separate toxin, resulting in proposal of the
existence of an extra-virulent lineage of bacteria. Overall, recent
genomic and transcriptomic analyses of CP have provided further
insight into the genes that in addition to netB, contribute to
pathogenicity in chickens.

Toxin-mediated pathogenic mechanisms
The pathogenic mechanisms employed by CP toxins were recently
summarized (Navarro et al., 2018). In chickens, primary patho-
genic mechanisms are attributed to the presence of NetB toxin,
yet research has suggested roles for other toxins. Rehman et al.
have reported that α-toxin dysregulates the function of gastro-
intestinal epithelial cell membranes (Rehman et al., 2006, 2009).
More recently, CP α-toxin has been shown to induce inflamma-
tory responses in chicken intestinal epithelial cells (Guo et al.,
2015). Nonetheless, in chickens, the association of NE and the
presence of the NetB toxin in CP bacteria is well characterized.
There has been considerable controversy whether other toxins
that are produced by CP could also be mechanistically responsible
for producing or enhancing NE disease in chickens; for example,
production of the TpeL toxin has been suggested to enhance the
virulence of NetB positive strains (Prescott et al., 2016). However,
no such effect was observed in a subsequent study (Yang et al.,
2018). To study this relationship further, recent work assessed
22 CP strains that all lacked the netB gene, while some harbored
tpeL (Llanco et al., 2017). Specific in vitro pathogenicity analyses
were performed, which showed that the presence of TpeL is asso-
ciated with cellular adherence, but not necessarily with invasive
processes. In a separate surveillance study, 19 netB-positive strains
of CP were isolated from NE-afflicted broilers and TpeL carriage
was observed in five of the strains which were also shown to pro-
duce the toxin protein (Gu et al., 2019). These strains were shown
to be virulent in broilers, including one specific strain that
decreased bird growth rate significantly. The study by Gu et al.
(2019) highlighted the importance of these toxins in the occur-
rence of NE, and suggested the use of TpeL- and NetB-positive
strains of CP for challenge studies. However, despite the apparent
importance of NetB and TpeL toxins with NE, a recent qPCR
analysis of CP isolates from NE-afflicted and healthy chickens
identified no significant differences in the presence or copy num-
ber of the netB gene (Yang et al., 2018). Additionally, TpeL was
only found in NetB-positive strains and was not associated with
other NE-causing strains. These recent data cast doubt on the
nature of the involvement of TpeL and NetB toxins in the patho-
genesis of NE caused by CP, suggesting a multifactorial model of
disease, although they do not negate NetB as a virulence factor.
These results coincide with recent research examining the effects
of NELoc-1-encoding genes, including netB, on the pathogenicity

of CP in chickens (Zhou et al., 2017). Spontaneous loss of the
plasmid that contains NELoc-1 after serial in vitro subcultures
allowed Zhou et al. (2017) to restore only NetB in these bacteria,
to explore mechanisms of pathogenicity. Restoration of NetB
alone recovered in vitro cytotoxicity during infection of chicken
hepatoma cells; however, lesion scores after in vivo chicken infec-
tion were not completely restored compared to the wild-type
NELoc-1-containing bacteria. Finally, recent research has shown
that transfer of netB-containing plasmids, from one strain of CP
bacteria to another strain that does not contain netB, can occur
in the chicken gastrointestinal tract, leading to enhanced virulence
in the new strain (Lacey et al., 2017).

Non-toxin-mediated pathogenic mechanisms
Beyond toxin-mediated mechanisms, other proteins produced by
CP have been shown to impact its virulence and pathogenicity.
Previous work of Kulkarni et al. (2007) identified certain
immunogenic CP proteins that were shown to induce robust
antibody responses and immunity to NE in chickens. These
proteins also included certain housekeeping enzymes such as
glyceraldehyde-3-phosphate dehydrogenase (GPD), pyruvate: fer-
redoxin oxidoreductase (PFOR) and fructose 1,6-bisphosphate
aldolase (FBA). The fact that these proteins are involved in NE
protection (Kulkarni et al., 2008, 2010) highlighted the likely
involvement of such housekeeping or energy metabolism proteins
in the pathogenesis of NE. Along similar lines, one factor that is
important in NE pathogenicity is the ability of CP to adhere to the
intestinal mucosal surface. Binding capability to collagen and gel-
atin has been explored in disease- and non-disease-causing strains
of CP, demonstrating that the former showed significantly greater
binding capacity (Wade et al., 2015). This was attributed to the
presence of a putative collagen adhesion gene, cnaA, in disease-
causing strains, which was thought to be responsible for binding
of CP to certain types of collagens in addition to gelatin. These
observations were supported by further studies demonstrating
that targeted mutation of cnaA, in two separate strains of CP, sig-
nificantly decreases binding to collagens and gelatin, abolishing
the ability for one strain to colonize while inhibiting colonization
for the other (Wade et al., 2016). In addition to adherence, deg-
radation of mucus in the chicken gastrointestinal tract has also
been proposed as a mechanism of colonization and pathogenicity
employed by CP. Mucus degradation was explored by MacMillan
et al. (2019), where they showed that CP metabolizes specific
monosaccharides that are present in mucin glycans present in
the gastrointestinal tract of poultry, providing the bacteria a nutri-
ent source and the ability to penetrate initial physical innate
defenses. Similar work has been done, examining two zinc metal-
loproteases, ZmpA and ZmpB, which share some nucleic acid
sequence homology but currently lack known substrates (Wade
et al., 2020). ZmpB is chromosomally located, while zmpA is
located on a plasmid within NELoc-1; in 83 isolates of CP,
zmpB was identified in every isolate, while zmpA was identified
in 34 of 36 isolates from NE-afflicted chickens. Despite the appar-
ent connection between ZmpA and pathogenesis, targeted muta-
tion of both genes resulted in mutant bacteria that were
significantly less able to cause intestinal disease, and the effects
of mutating both were not significantly different from the effects
of single mutations. This accumulation of recent research is show-
ing that pathogenesis of CP-induced NE is a complex process that
likely extends beyond production of the NetB toxin.

Other potential determinants of pathogenesis include gene
expression regulatory mechanisms such as the VirR/VirS two-
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component system and quorum sensing systems, including LuxS
and Agr-like systems. Experimental mutation of these regulatory
elements revealed that the loss of VirR/VirS-mediated regulation
or Agr-like-mediated quorum sensing significantly decreases in
vitro bacterial cytotoxicity, which is not affected by mutational
loss of the LuxS system (Yu et al., 2017). Expression of netB
was also significantly decreased in a similar pattern following
experimental mutations. Finally, Yu et al. (2017) showed that in
vivo pathogenicity is also significantly reduced in broilers admi-
nistered bacteria harboring mutations in the Agr-like system,
but pathogenicity was restored in bacteria containing a plasmid
with Agr-like gene sequences.

There is currently evidence demonstrating that pathogenesis of
CP extends beyond the presence of NetB and includes other
pathogenic proteins and enzymes which are under genetic regula-
tion. Further understanding of these pathogenic mechanisms will
allow for the design of novel prophylactic and therapeutic
approaches for chickens.

Immunity against C. perfringens

Immunity against CP is mediated by a concerted interaction
between innate and adaptive host mechanisms. The following
summarizes our current understanding of these mechanisms.

Host innate responses

The intestinal epithelial cell barrier is well equipped for microbial
sensing by means of pattern recognition receptors (PRRs), includ-
ing Toll-like receptors (TLR) (Keestra et al., 2013). Most of the
immunological processes that take place in the intestinal mucosa
against CP are initiated by secreted products of cells of the epithe-
lium and underlying lamina propria (Guo et al., 2015). Structural
components of CP or its secreted toxins interact with epithelial
cells leading to pro-inflammatory responses which contribute to
disease progression. Lu et al. (2009), have demonstrated signifi-
cant increases in ileal expression of immune response genes in
broiler chickens in response to CP infection, including expression
of TLR1, myeloid differentiation primary response 88 (MyD88),
tumor necrosis factor receptor-associated factor 6 (TRAF6),
TIR-domain-containing adapter-inducing interferon-β (TRIF),
interleukin (IL)-8 and interferon regulatory factor 3 (IRF3).
Expression of TLR2, TLR4, TLR7 and TLR15 was also increased
in the spleen. Thus, it is clear CP induces both mucosal and sys-
temic responses to infection (Lu et al., 2009). Intracellular signal-
ing mediated by TLR1, TLR2 and TLR4 can trigger expression of
antimicrobial peptides (cathelicidins and β-defensins) (Cuperus
et al., 2013; Wang et al., 2020). Defensins are host defense pep-
tides (HDPs) that are involved in host innate immunity
(Hancock et al., 2016). Avian β-defensins (avBD) are produced
by epithelial cells of the gastrointestinal tract and play a critical
role in gut defense mechanisms against a broad spectrum of
enteric pathogens by disrupting microbial cell membranes, indu-
cing cell death (van Dijk et al., 2008; Sugimura et al., 2013). Hong
et al. have examined expression of avBD 1−14 in intestines and
spleens of broiler chicks infected experimentally with CP. CP
induced distinct patterns of expression of β-defensins, with differ-
ent avBD being expressed in spleen and intestinal tissues (Hong
et al., 2012). Significant differences in patterns of expression
were noted between chicks from two commercial broiler lines,
suggesting that genetic differences may contribute to variation
in β-defensin responses. It has been demonstrated in vitro that

a recombinant avBD6 is highly effective, in a time- and
concentration-dependent manner, against CP by limiting its
growth (van Dijk et al., 2007). Importantly, there is no evidence
to date demonstrating that expression of intestinal β-defensins
provides an effective anti-CP activity in vivo. Indeed, necrosis of
intestinal tissue progresses despite expression of avBD.

Modulation of TLR signaling pathways has been investigated
as a means of reducing morbidity due to CP. Diets formulated
with yeast extract containing mannan-oligosaccharides (TLR2
ligands), however, have had limited impact on bird body weight
gains, performance, and gut morphology of CP-infected chickens
(Yitbarek et al., 2012; Alizadeh et al., 2016). An in vitro experi-
ment has demonstrated that the pro-inflammatory effects of CP
mediated through the TLR4 signaling pathway can be blocked
by treatment with Saccharomyces boulardi, a non-pathogenic pro-
biotic yeast (Wang et al., 2020). Confirmation from in vivo studies
is needed.

Chicken professional antigen presenting cells (APCs), such as
macrophages and dendritic cells, play an important role in the
development of adaptive immunity (De Geus and Vervelde,
2013). There is very little information on the type and function
of APCs involved in the initiation of immune responses against
CP. While direct functions are not clear, detection of interleukin
(IL)-1β, IL-6, IL-8 and IL-12 transcripts indicate a likely rapid
host response and a role for APCs in supporting activation of B
and T cells (Yitbarek et al., 2012; Fasina and Lillehoj, 2019). In
addition to pro-inflammatory properties of the chemokine, IL-8,
it plays a role in the recruitment and activation of granulocytes
and macrophages, with subsequent nitric oxide (NO) production
(Guo et al., 2015) and translocation of major histocompatibility
complex (MHC) class II receptors to the cell surface (Li et al.,
2010). It has been reported that in vitro stimulation of chicken
embryonic fibroblast cells (CEFs) with CP can lead to NO pro-
duction in a TLR4-dependent manner (Zhang et al., 2017a).
Limiting TLR4 induction in macrophage cell lines can reduce
CP-mediated inducible nitric oxide synthase expression (Guo
et al., 2015) and corresponding NO production (Wang et al.,
2020). Localized intestinal macrophage activation can increase
the permeability of the endothelium leading to serum loss into
the intestinal lumen. Thus, innate responses that are essential
for defense against many pathogens may, in the case of CP,
exacerbate the disease process.

Adaptive immune responses

The mechanism for B-cell activation is not well defined in chick-
ens. B-cell activation and antibody production is mediated by a
combination of cytokines and cognate antigen (Davani et al.,
2014). Infection with CP leads to a significant increase in intes-
tinal IL-4 and IL-10 transcripts (Collier et al., 2008), key cytokines
involved in B-cell activation. In addition, CP infection leads to
induction of transforming growth factor (TGF)-β (Fasina and
Lillehoj, 2019) and IL-10 (Yitbarek et al., 2012) cytokine tran-
scripts in the small intestine, traditionally associated with indu-
cing an immunosuppressive milieu. In combination with
specific cognate antigens, these cytokines (IL-10, TGF-β, IL-4)
can induce antigen-specific B-cell differentiation (Davani et al.,
2014). While these mechanisms have not been fully explored in
CP-infected chickens, detection of antigen-specific IgY antibodies
in vaccinated breeder hens demonstrates class switching (IgM to
IgY antibody isotype) as well as the presence of plasma B cells
(Keyburn et al., 2013a). Therefore, passive immunity in progeny
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chicks from vaccinated hens is mediated by maternal IgY anti-
bodies that can effectively neutralize toxins secreted by pathogenic
CP. In addition, IL-4, IL-10 and IL-23 initiate cellular repair pro-
cesses, limit inflammation and promote B-cell activation (Degen
et al., 2005; Fasina and Lillehoj, 2019). These results provide a
framework whereby host response against infection with CP eli-
cits a regulatory environment to limit tissue damage and increase
antibody production while attempting to decrease bacteria tissue
penetration.

Recent studies of immunity to CP have led to the discovery
and characterization of antigens within its bacterial immunome
(Kulkarni et al., 2008; Keyburn et al., 2013a). Vaccine candidate
antigens were identified by screening IgY and IgA antibodies
from immunized and challenged broiler chickens against CP cel-
lular and secretory antigens. PFOR, α-toxin, FBA and hypothet-
ical protein (HP) were selected for further investigation
(Kulkarni et al., 2010). Epitope mapping studies demonstrated a
broad range of B-cell epitopes in PFOR, α-toxin, FBA and HP
(Kulkarni et al., 2008, 2010). Two major segments of α-toxin
(amino acid positions 96−122 and 183−212) were highly anti-
genic (Kulkarni et al., 2010) whereas the length of HP was
demonstrated to be highly antigenic (Kulkarni et al., 2008). In
addition, B-cell epitope mapping demonstrated a total of 94 pep-
tides in PFOR showing potential for broad antigen responses
(Kulkarni et al., 2008). Recombinant α-toxin, HP and PFOR
administered intramuscularly induced significant protection in
broiler chickens against challenge with CP (Kulkarni et al.,
2007). In subsequent work, B-cell epitopes of HP and α-toxin
were cloned separately into a Salmonella enterica vector, and
chickens were vaccinated orally with the live vaccines. Both anti-
gens induced significant protection against experimental chal-
lenge (Kulkarni et al., 2010).

Several groups have examined maternal vaccination to provide
passive (maternal) antibodies against CP to their chicks (Kulkarni
et al., 2010; Keyburn et al., 2013b). Keyburn et al. have investi-
gated vaccines containing recombinant NetB protein and/or a
CP toxoid preparation. Hens received the vaccine subcutaneously,
and their progeny were challenged at 2 weeks post-hatch.
Maternal antibodies from the hens mediated significant protec-
tion (Keyburn et al., 2013a). These studies highlight important
practical considerations. Because NE is a major concern in rapidly
growing young birds, vaccination schemes must provide protec-
tion at a young age and must be convenient for mass
administration.

T helper (Th) cells can be viewed as an essential component in
the early phase of CP pathogenesis (Collier et al., 2008). Most
experimental models of NE induce a T-cell-mediated inflamma-
tory response, leading to enhanced intestinal mucogenesis
(Collier et al., 2008). Increased expression of pro-inflammatory
IL-1β and decreased expression of anti-inflammatory TGF-β
have been documented in the jejunum of broiler chicks 7 days
post-challenge with CP (Fasina and Lillehoj, 2019). Expression
of IL-13 by intestinal T cells enhances mucin production, provid-
ing a growth advantage to CP (Collier et al., 2008; Fasina and
Lillehoj, 2019). In contrast, mucosal effector T cells are character-
ized by expression of cytokines such as IL-2, IL-17 and interferon
(IFN)-γ that activate innate immune system cells and enhance
antigen presentation by APCs (Brisbin et al., 2012;
Taha-Abdelaziz et al., 2016). However, broiler chicks infected
with CP are reported to have reduced IFN-γ and IL-2 transcripts
and increased IL-10 and IL-17 transcripts in jejunal tissue by 7
days post-challenge (Fasina and Lillehoj, 2019). Therefore,

microbiota-driven IL-17 expression could indicate the involve-
ment of Th17 which play a critical role in mucosal inflammation,
induction of antimicrobial peptides and enhancing mucosal
repair (Walliser and Göbel, 2018). Along with these effects, it
has also been observed that CP infections induce a reduction in
IL-22, expressed by Th17 cells, which is critical for maintaining
gut epithelial cell survival, proliferation and induction of anti-
microbial peptides (Collier et al., 2008). These results demonstrate
a potential role for γδ T cells as an essential primary mucosal
barrier defense against CP infection and progression to NE.
Decreased intestinal T-cell function in CP-infected chickens com-
pared to non-infected chickens has been demonstrated ex vivo,
based on a lack of response to mitogen stimulation (Li et al.,
2010). Studies of T-cell responses to CP have been relatively few
in number compared to studies of B cells, and more extensive
investigations are needed.

Farm management practices and nutritional strategies

Farm management is considered one of the key factors that con-
tribute to the incidence of CP in poultry flocks (Tsiouris, 2016).
Accumulating evidence indicates that environmental stressors,
such as heat and cold stress, vaccination, processing in the hatch-
ery, transportation to the farm, wet litter, poor ventilation, and
high stocking density, can disturb the homeostasis of the intestine
and negatively impact the immune systems of chicks, thereby
increasing the incidence and severity of NE in chickens
(Hangalapura et al., 2004; Hirakawa et al., 2020).

High stocking density increases the risk of horizontal trans-
mission of CP between chickens by spreading spores through
air or direct contact, and it is often associated with a substantial
accumulation of litter, which provides a supportive niche for
CP sporulation (McDevitt et al., 2006; Guardia et al., 2011).
Furthermore, it has been reported that high stocking density
increases the CP-associated gut lesion scores and pH in the intes-
tine as well as the CP counts in the caeca of chickens (Tsiouris
et al., 2015). In addition to increasing the susceptibility of birds
to pathogens, cold stress may also contribute to the pathogenesis
of NE in chickens (Regnier and Kelley, 1981). Tsiouris et al.
(2015) investigated the role of cold stress in the pathogenesis of
NE in broiler chickens and found that exposure to cold stress
increases the incidence of NE as well as the severity of lesions
in chickens experimentally challenged with CP. Likewise, expos-
ure of chickens to heat stress could also impair their growth, dis-
rupt intestinal integrity, and suppress immune responses, thereby
increasing the susceptibility of chickens to infections (Calefi et al.,
2014). Chickens subjected to heat stress have been shown to have
high intestinal lesion scores associated with CP infection in add-
ition to the enhanced pH and viscosity of intestinal digesta
(Tsiouris et al., 2018). The mechanisms underlying these effects
have not been fully established. However, existing evidence indi-
cates that exposure of birds to low or high temperature causes
immunosuppression, making them more vulnerable to intestinal
infections (Tsiouris et al., 2015, 2018). Other environmental fac-
tors, such as reduced ventilation, high humidity, and poor litter
condition, can also significantly influence the immune systems
of birds and predispose them to NE (Dunlop et al., 2016;
Hofacre et al., 2018).

In addition to the role of environmental stressors in increasing
susceptibility to NE, gut damage caused by parasitic diseases such
as coccidiosis is one of the major risk factors for NE (Williams,
2005). Coccidiosis is a common parasitic intestinal disease caused
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in poultry by protozoan parasites of the genus Eimeria (Lillehoj
and Lillehoj, 2000). Infection with Eimeria usually occurs when
birds ingest viable oocysts from contaminated litter. Following
ingestion of sporulated oocysts, sporozoites penetrate the epithe-
lial lining of the intestine and undergo extensive asexual repro-
duction, causing disruption of the gut integrity, followed by
hemorrhage, inflammation, and excessive mucus production; all
of these manifestations provide conditions favorable for CP col-
onization in the gut (Allen and Fetterer, 2002; Williams, 2005).
Therefore, controlling coccidiosis through vaccination programs
and litter management would reduce the incidence of NE in
poultry flocks (Bangoura et al., 2014).

Biosecurity practices at the farm level are also very important
for prevention of potential horizontal transmission of infections,
including CP, within the flock or to other flocks (Tsiouris,
2016). Generally, farm biosecurity measures include disinfecting
poultry houses, equipment, vehicles, fly screens, boot dips, and
restricted entry to the barn with shower-in and shower-out facil-
ities (Tsiouris, 2016). Dietary composition is also considered one
of the critical factors that may contribute to the pathogenesis of
NE in chickens (McDevitt et al., 2006). High levels of non-starch
polysaccharides (NSPs) in the diet have been shown to increase
gastrointestinal viscosity and alter the gut microbiota compos-
ition, consequently leading to overgrowth of CP in the intestine
(Jia et al., 2009; Palliyeguru et al., 2010).

A higher incidence of NE has been observed in chickens fed
wheat- or barley-based diets (contain large amount of NSPs; i.e.
arabinoxylans and ß-glucans) than those fed corn-based diets
(Annett-Christianson, 2012). This is thought to be due to the
role of NSPs in increasing the water-holding capacity and
the viscosity of the digesta, resulting in a prolonged
passage rate of gut contents and excessive mucus production
that serve as a nutrient source for CP (Jia et al., 2009;
Annett-Christianson, 2012).

There is some evidence that the level and source of dietary
protein can significantly impact severity of NE in chickens.
High indigestible protein in the digestive tract serves as a protein
source for CP growth and proliferation, thus subsequently for NE.
For example, high levels of amino acids such as methionine and
glycine in the diet have been shown to accelerate CP growth in
the small intestine of chickens (Drew et al., 2004; Xue et al.,
2017). Drew et al. (2004) compared the effects of animal-based
protein (fishmeal) and plant-based protein (soybean meal) on
intestinal populations of CP in broilers and found that birds fed
fishmeal-based diets had higher numbers of CP in ileum and
caeca compared to those fed soybean-based diets. These data pro-
vide an explanation for the common use of animal proteins, espe-
cially fishmeal, to experimentally produce NE in chickens.

Considering the contributing roles of various environmen-
tal stressors, poor biosecurity practices and unbalanced diet
composition in induction of NE, optimization of farm man-
agement practices together with implementing nutritional as
well as disease control strategies could reduce the prevalence
of NE in poultry farms. NE can be controlled with in-feed
AGP; however, with concerns about bacterial resistance to
antibiotics and antibiotic residues in poultry products, there
is increased interest in the use of alternatives, such as probio-
tics, prebiotics, essential oils and organic acids for the control
of NE (M’Sadeq et al., 2015). Among all potential alternatives,
probiotics have gained significant attention because of their
broad immunomodulatory and antimicrobial activities
(Koenen et al., 2004; Sornplang and Leelavatcharamas, 2010).

Thus, in this review we focus on the protective role of probiotic
bacteria against NE in chickens.

Probiotics

Probiotics are defined as ‘live microorganisms which when admi-
nistered in adequate amounts confer a health benefit to the host’.
Probiotics exert their beneficial effects on chicken health though
modulation of mucosal immune responses and intestinal micro-
biota, improvement of the integrity of the intestinal epithelial bar-
rier, alteration of mucus secretion, competitive exclusion, and
production of antimicrobial and immunomodulatory substances
(Ng et al., 2009; Bermudez-Brito et al., 2012). The probiotic
mechanisms of action in prevention and control of CP-induced
NE are summarized in Fig. 2.

Effects of probiotics on intestinal immune response of
NE-infected chickens

Immunomodulatory activities of probiotics have been reported in
several studies (Haghighi et al., 2005; Brisbin et al., 2008, 2011;
Bai et al., 2013; Alizadeh et al., 2020). Probiotics can stimulate
immune responses through interaction with PRRs expressed by
various immune system cells and epithelial cells (Plantinga
et al., 2011). This activation, however, does not lead to inflamma-
tion, but rather maintains intestinal homeostasis and keeps the
immune system in a state of readiness to fight off opportunistic
or invading pathogens (Yan and Polk, 2011). Additionally, pro-
biotics may reduce intestinal inflammation in response to enteric
pathogens and inhibit apoptosis of intestinal epithelial cells
(Plaza-Díaz et al., 2017; Azad et al., 2018). In the context of
NE, CP induces intestinal inflammation, causing disruption of
the structure of the gut barrier and enhancement of gut perme-
ability (Prescott et al., 2016). The potential role of probiotics in
ameliorating CP-induced inflammation has been studied in sev-
eral clinical trials. Cao et al. (2012) demonstrated that oral admin-
istration of Lactobacillus fermentum in chickens challenged with
CP significantly reduces the severity of gut inflammation caused
by CP. This protective effect was associated with reduced expres-
sion of TLR2 and IFN-γ, and increased expression of IL-10 in the
ileum of lactobacilli-treated birds compared to non-treated,
CP-infected cohorts, indicating the role of probiotics in regulating
intestinal mucosal immune response and in maintaining gut
homeostasis during the course of NE (Cao et al., 2012).

In an in vitro study, pre-treatment of CP-infected intestinal
cells with two Lactobacillus species (L. acidophilus and L. fermen-
tum) was shown to reduce CP-induced expression of the tran-
scription factor nuclear factor kappa B (NF-kB), peptidoglycan
receptors, TLR2 and nucleotide-binding oligomerization domain-
containing protein 1 (NOD1) receptors (Guo et al., 2017). In
another study, Wang et al. (2017), evaluated the effect of L. john-
sonii on intestinal mucosal immunity of chickens challenged with
CP. Supplementation with lactobacilli mitigated immune-related
adverse events associated with NE, by enhancing the production
of immunoglobulins (IgG and IgM) and the proliferation of
IgA+ B cells and T-cell subsets (CD3+CD4+ and CD3+CD8+) in
the ileum. In addition, L. johnsonii down-regulated the
CP-induced mRNA expression of various cytokines, including
IL-2, IL-8, IL-10, and IFN-γ, suggesting immunomodulatory
activities of lactobacilli and their role in maintaining intestinal
homeostasis following CP infection (Wang et al., 2017).
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Effects of probiotics on intestinal barrier integrity

In chickens, intestinal barrier function is regulated by antimicro-
bial peptides and tight-junction proteins (TJPs) (Chelakkot et al.,
2018). This section briefly reviews current knowledge on the role
of probiotics in strengthening intestinal barrier integrity.

CP infection of chickens induces the expression of β-defensin
genes, which is indicative of the critical role of HDPs in
controlling NE (Hong et al., 2012). Lactobacilli can improve intes-
tinal barrier function by up-regulating the expression of
β-defensins without provoking inflammatory responses.

Treatment of intestinal Caco-2 cells with L. acidophilus, L. plan-
tarum, and L. fermentum has been shown to enhance the expres-
sion and secretion of human β-defensin 2 (Schlee et al., 2008).
Similar observations were made in chicken intestinal epithelial
cells; treatment of these cells with L. plantarum SJ, L. fermentum
F6, L. rhamnosus MLGA, and L. rhamnosus MB12 enhanced
mRNA expression of AvBD9, with L rhamnosus MLGA exhibiting
stronger effects (Li et al., 2012). In contrast, Akbari et al. de-
monstrated that the expression of antimicrobial peptides in
cecal tonsils of chickens infected with Salmonella enterica was
not altered following treatment with probiotics (L. acidophilus,

Fig. 2. Modulation of the gut microbiota by probiotic lactobacilli mitigates against CP-induced NE. The roles of probiotic lactobacilli in prevention and treatment of
CP-induced NE are depicted in four different mechanisms. (1) Modulation of gut microbiota composition by enhancing microbial diversity and richness with specific
microbial groups, such as microbial members phyla Firmicutes and Bacteroidetes. Probiotics also compete with gut microbial pathogens including CP for intestinal
niches and nutrients. (2) Enhancing the production of SCFAs by gut microbes which in turn enhance local and systemic immune responses. Locally, SCFA induces
mucin production and enhances epithelial cell integrity and the expression of an immunoregulatory cytokine, IL-10. Systemically, SCFA enhances secretion of
chemotactic factors leading to gut infiltration of both innate (macrophages and γδ T cells) and adaptive immune system cells (αβ T cells and B cells), and,
more importantly, an increased responsiveness to stimulation. (3) Modulation of immune responses in intestinal mucosa and gut-associated lymphoid tissue
(GALT) by stimulating the tissue-resident B cells to produce secretory antibodies (IgA and IgY) that are released via transcytosis, and by stimulating tissue-resident
macrophages that directly activate various T-cell subsets, making them functionally more responsive to pathogenic challenge. Specific Lactobacillus species can
have distinct immunomodulatory effects, mainly by limiting colonic inflammation (e.g. reducing Th17, increasing Treg expression and shifting macrophages to the
M2 subtype) or by enhancing antibacterial immunity (e.g. enhancing Th17, reducing Treg expression and MHC-1 expression). (4) Secretion of antimicrobial sub-
stances either through direct or indirect competition. Direct competition is recognized as either competitive exclusion (aggregation and production of bacteria-
derived antibiotics) or limiting/inhibiting colonization. These functions are mediated by lowering luminal pH and access to their respective binding sites on epi-
thelial cells. Alternatively, Lactobacillus stimulate the intestinal epithelial barrier through TLR (TLR 4 and TLR21) as well as tissue-resident immune cells which
actively produce antimicrobial peptides (β-defensins and cathelicidins) that possess direct bactericidal activity against CP.
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Bifidobacterium bifidum, and Enterococcus faecalis) (Akbari et al.,
2008). These conflicting results might be explained by differences
in Lactobacillus strains used in these studies, as well as the dose
and frequency of administration. Furthermore, it should be
noted that the latter study used only one concentration of these
probiotics; it is unclear whether higher concentrations would
affect the outcome and whether these lactobacilli would exert
the same activity in CP-infected chickens. Overall, only a limited
number of studies have evaluated the effects of probiotics on
HDPs in chickens, and further research is needed to provide
solid evidence of probiotic effects on intestinal antimicrobial pep-
tides in CP-infected chickens.

TJPs play a critical role in maintaining intestinal barrier func-
tions in chickens by holding intestinal epithelial cells together,
protecting the gut from pathogen invasion (Vermette et al.,
2018). Disruption of TJPs will, therefore, lead to increased epithe-
lial permeability allowing translocation of luminal pathogens and
their toxins to the submucosa and internal organs, resulting in
endogenous infection, and eventually tissue damage (Chen
et al., 2006). It has been reported that CP endotoxins interact
with structural components of epithelial TJPs, such as claudin
and occludin, leading to increased tight junction permeability
and diarrhea (Emami et al., 2019). There is some evidence that
probiotics can enhance tight junction stability and decrease mem-
brane permeability to CP. Wu et al. (2019), investigated the effects
of oral administration of Enterococcus faecium on intestinal integ-
rity of chickens infected with CP. The results of this study
revealed that while CP infection significantly decreased mRNA
expression of TJPs, including CLDN-3 and ZO-1, and protein
levels of ZO-1, and increased expression and protein levels of
MLCK (a protein that increases paracellular permeability) in the
jejunum, administration of E. faecium counteracted the adverse
immunological effects of CP by up-regulating CLDN-1 mRNA
transcript and protein levels in the jejunum of infected birds.

Alteration of mucin production and competitive exclusion

Mucus overlies the gut epithelium and functions as the first line of
defense against pathogenic microorganisms (Pelaseyed et al.,
2014). Mucus mainly consists of mucin, a highly glycosylated
and interlinked protein secreted by specialized epithelial goblet
cells (Pelaseyed et al., 2014). The mucus layer is the primary
site for adherence and colonization by both commensal and
pathogenic bacteria, including CP (Martens et al., 2018). Thus,
strategies that can enhance resistance to colonization by CP
could potentially alleviate NE. CP secretes various toxins includ-
ing mucin-degrading and pore-forming toxins that disrupt the
intestinal mucosal barrier, ultimately leading to necrotic lesions
in the gut (Prescott et al., 2016). Lactobacilli and their metabolites
may induce mucus production through regulation of intestinal
mucin gene expression (Rosique et al., 2019). Xu et al. (2020)
demonstrated that dietary supplementation with L. plantarum,
in laying hens infected with CP, significantly increased MUC2
gene expression in the ileum. Another study used Bacillus subtilis
as a dietary supplement for broiler chickens and demonstrated a
significant increase in the expression of intestinal MUC-2
mRNA, whereas supplementation with a multi-strain probiotic
resulted in a significant increase in the number of goblet cells,
with no detectable alteration of MUC-2 expression
(Aliakbarpour et al., 2012). Treatment of Caco-2 cells with L.
casei has also been shown to significantly enhance mRNA expres-
sion and protein levels of MUC-2 (Mattar et al., 2003). Taken

together, these findings highlight the ability of probiotic bacteria
in promoting mucus production, and suggest their potential use
as prophylactic agents to potentiate mucosal resistance against
CP or as therapeutic agents to restore mucosal barrier function
following infection with CP.

In addition to their role in promoting mucin secretion, pro-
biotic bacteria can adhere to and colonize the mucus layer of
the small intestine, driven by non-specific physical binding or
by specific surface adhesion proteins such as mucin binding pro-
teins (produced mainly by LAB) (Boekhorst et al., 2006). The
adhesion abilities of probiotic bacteria enable them to compete
with opportunistic enteric pathogens for ecological niches and
nutrients, through a process referred to as competitive exclusion
(CE) (Woo and Ahn, 2013). Recently, the anti-CP activity of
L. acidophilus and L. fermentum has been investigated in
CP-infected chicken intestinal epithelial cells. The results revealed
that probiotic lactobacilli possess strong antagonistic activity
against CP, demonstrated by a significant reduction of CP growth
and α-toxin production as well as suppression of CP adhesion to
intestinal epithelial cells, with L. acidophilus showing greater
inhibitory effects (Guo et al., 2017). In an in vivo study, La
Ragione et al. (2004) demonstrated that oral inoculation of 1 ×
109 CFU of L. johnsonii FI9785 to chicks 24 h prior to challenge
with CP, significantly reduces CP colonization and shedding. The
authors suggested that the beneficial effects observed in the study
were a result of CE. However, the inconclusive nature of these
results warrants more in-depth investigation to determine
whether the observed effects are attributable to CE or related to
other immunomodulatory effects associated with probiotics.

Antimicrobial activity of probiotics

One of the important mechanisms of action of probiotics is their
ability to produce antimicrobial substances such as hydrogen per-
oxide, NO, and bacteriocins (Cotter et al., 2013). Bacteriocins are
a large family of ribosomally synthesized peptides that have anti-
microbial activities against bacterial pathogens (Zacharof and
Lovitt, 2012). These molecules have broad-spectrum activity and
can target specific pathogens without exerting negative effects
on commensal bacteria (Dobson et al., 2012). Bacteriocins may
directly eliminate pathogens or may function as signaling peptides
that facilitate coordination of multicellular processes and syn-
chronize group behavior within bacterial populations or may
serve as colonizing peptides giving probiotics a competitive
advantage over resident pathogens (Cotter et al., 2013).
Antagonistic activities of bacteriocin-producing probiotics against
CP have been reported in different studies (Ben Lagha et al.,
2017). In an in vitro study, it was found that bacteriocin-
producing B. subtilis PB6 exhibits significantly high inhibitory
effects on the growth of various strains of CP (Teo and Tan,
2005). In another study, Grilli et al. (2009) demonstrated that bac-
teriocin produced by Pediococcus pentosaceus (pediocin A),
exhibited potent antagonistic activities against CP and signifi-
cantly improved growth performance of chickens infected
with CP.

Production of short-chain fatty acids (SCFAs)

Another important mechanism by which probiotics contribute to
pathogen clearance is through secretion of SCFAs, such as acetate,
butyrate, and propionate (Sun and O’Riordan, 2013). In addition
to their beneficial effects as a source of energy for intestinal
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epithelium, SCFAs lower the pH of the intestine, making the con-
ditions unfavorable for growth and proliferation of entropatho-
gens. There is also evidence that SCFAs influence bacterial
populations in the ceca of broiler chickens (Van der Wielen
et al., 2000). Although fermentative bacteria, such as lactobacilli,
are intrinsically resistance to low pH, a significant negative correl-
ation has been observed between numbers of Enterobacteriaceae
and the concentration of undissociated SCFAs in the cecum of
chickens (Bearson et al., 1997). It has been suggested that undis-
sociated SCFAs may diffuse across bacterial membranes into bac-
terial cells and dissociate in the cytoplasm, leading to a decreased
internal pH and finally cell death (Russell and Diez-Gonzalez,
1997). Recent studies have demonstrated that dietary inclusion
of microencapsulated sodium butyrate significantly reduces the
CP-induced intestinal lesions and improves body weight gain of
chickens experimentally challenged with CP (Song et al., 2017;
Liu et al., 2019).

Antioxidant activity of probiotics

The ability of lactobacilli to stimulate the antioxidant system of
the host has been investigated both in vivo and in vitro (Mishra
et al., 2015). It is thought that probiotics exert their antioxidant
activities through scavenging free radicals in the intestine
(Kodali and Sen, 2008). In the context of NE, it has been reported
that infection with CP significantly lowers the antioxidant cap-
acity of birds by increasing the malondialdehyde (MDA) level
(an indicator of lipid peroxidation) and decreasing the activity
of superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GSH-Px) in serum (Zhou et al., 2016; Wang et al.,
2017). On the other hand, dietary supplementation of L. johnsonii
to CP-challenged chickens enhances the antioxidant capacity of
intestinal mucosa by reducing MDA levels and increasing the
total antioxidation capacity (T-AOC), CAT, and SOD activities,
all of which are vital for healthy intestinal function (Wang
et al., 2017). Similar observations have been made in another
study demonstrating that B. licheniformis supplementation to
broiler chickens challenged with CP significantly increases CAT
and GSH-Px activities and reduces MDA levels in serum (Zhou
et al., 2016). In addition, the expression levels of genes related
to fatty acid synthesis (acetyl-CoA carboxylase) and oxidation
(carnitine palmitoyltransferase-1 and proliferator-activated
receptor-α) were upregulated. The authors added that the positive
impact of probiotics on chicken growth performance is mostly
attributable to their role in improving antioxidant activities and
lipid metabolism.

Effects of probiotics on gut microbiome

It has been reported that gut dysbiosis caused by CP may enhance
host susceptibility to other bacterial infections leading to exacer-
bation of an already existing mucosal inflammation (Lacey et al.,
2018b). Probiotics play a critical role in maintaining intestinal
homeostasis and restoring bacterial eubiosis in infected birds
(Gagliardi et al., 2018). During the course of NE, it has been
shown that probiotics can be used to restore the composition of
the gut microbiome and to ameliorate intestinal inflammation
caused by CP (Lin et al., 2017; Qing et al., 2017). Lin et al.
(2017) demonstrated that manipulation of the gut microbiota of
chickens by probiotics such as B. licheniformis alleviates distur-
bances caused by CP on the cecal microbial community of chick-
ens. In another study, CP infection significantly decreased

diversity indices of ileal microbiota composition (ACE and
Chao 1) by increasing the relative abundance of
Gammaproteobacteria and decreasing the relative abundance of
the phylum Firmicutes (Li et al., 2017b). On the other hand,
L. acidophilus treatment increased the diversity index of the ileal
microbiota by enriching the members of phylum Firmicutes and
reducing the relative abundance of phylum Proteobacteria. The
authors suggested that L. acidophilus treatment modulates the rela-
tive abundance of certain bacterial species and restores the ileal
microbiome disrupted by CP infection.

NE vaccines

Efforts have been made to develop an efficacious vaccine that can
provide effective protection against NE. Since NE outbreaks may
start as early as 2–3 weeks of age, early vaccination is of utmost
importance for prevention of the disease. NE vaccines can be
developed as live-attenuated vaccines, whole inactivated vaccines,
subunit vaccines, toxoids, or recombinant vectored vaccines
(Thompson et al., 2006; Zhang et al., 2017b). Toxoid vaccines
containing inactivated CP toxins, such as α-toxin, NetB and
TpeL could induce toxin-neutralizing antibodies, preventing
damage to the gut mucosa (Keyburn et al., 2013a). While a sub-
unit vaccine comprises a pathogen-specific immunogenic antigen
and an appropriate adjuvant to enhance its immunogenicity, a
recombinant vector vaccine is made of a microbial vector carrying
the antigen-encoding DNA sequences (Kulkarni et al., 2008;
Hegazy and Hensel, 2012). However, when making a recombinant
or subunit vaccine, extra care should be taken to select the most
immunogenic antigen that can induce a robust immune response.
Therefore, molecular pathogenesis studies are necessary to iden-
tify the role of each antigen/toxin in pathogenesis as well as
host responses to the infection. Other than α-toxin, NetB or
TpeL, studies have shown that pathogenic CP have other
immunogenic, protective antigens (Jiang et al., 2009), which
once identified could be used for developing an effective NE vac-
cine. NE vaccine studies are summarized in Table 1.

Live-attenuated vaccines

Thompson et al. (2006) have demonstrated differences in the abil-
ity of live-attenuated vaccines to protect against NE. Vaccinating
chickens with a live virulent strain of CP protected against subse-
quent infection with a homologous strain, with a significant
reduction in intestinal lesions, but vaccination with an avirulent
CP strain did not protect against challenge with a virulent CP
strain. In another study, two out of four attenuated
α-toxin-negative mutants of a virulent CP strain conferred protec-
tion against experimental challenge, suggesting involvement of
other immunogens (Thompson et al., 2006). The variability in
protection among different CP strains might suggest the existence
of differences in antigenic composition and or genetic variation of
the chromosome and plasmid content of CP strains (Lacey et al.,
2018a). Therefore, caution should be exercised in selection of CP
strains for developing a live-attenuated vaccine.

Toxoid vaccines

For production of protein-based vaccines, the immunogenic pro-
tein components of CP have been investigated for NE vaccine
development using different approaches. For instance, some
investigators have explored the potential of the CP-secreted toxins
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in culture supernatants against NE. Despite the simplicity of their
production, care should be taken to ensure that toxoid vaccines
are produced correctly, as inactivation by formalin may negatively
affect their immunogenicity (Mot et al., 2013). In an in vivo study,
subcutaneous vaccination of broiler chickens with a formalin-
inactivated NetB toxoid or NetB genetic toxoid (W262A; a
domain of netB that plays a role in regulating the binding of
NetB to the cell membrane) provides partial protection against
experimental NE. The results showed that both vaccines resulted
in a significant decrease in the intestinal lesion scores and
increased antibody responses to NetB (da Costa et al., 2013).

In fact, the efficacy of toxoid vaccines appears to be highly
strain-dependent, as it has been demonstrated that only one out
of eight toxoid vaccines provides full protection against NE in
chickens (Lanckriet et al., 2010). When evaluated against CP
type A and type C in broiler chickens, toxoid vaccines resulted

in a significant increase in CP type A- and C-specific antibodies
associated with a significant decrease in intestinal lesions (Saleh
et al., 2010). However, despite their protective ability against
NE, vaccinating the birds subcutaneously at 7 and 21 days of
age, and challenging them at day 35 of age (which is 2–3 weeks
after the onset of naturally occurring outbreaks), raises concerns
about the feasibility of this vaccine in commercial poultry farms.

As NE mostly occurs in the early weeks of life, the role of pas-
sively transferred immunity against NE following vaccination of
parent stocks has been investigated. In view of this, Lovland
et al. demonstrated that vaccination of parent stock with a toxoid
vaccine, prepared from CP types A and C, confers protection
against both types of CP in their progeny chicks (Lovland et al.,
2004). Following vaccination of broiler breeder hens with CP
type A and type C toxoids adjuvanted with aluminum hydroxide,
CP α-toxin-specific IgY antibodies were detected in sera of

Table 1. Overview of NE vaccines

Type of vaccine Selected proteins/toxins
Time
(days old) Route Efficacy Researcher

Live; Virulent – 5–12 Oral Significantly reduced lesions Thompson et al.
(2006)

Live; non-virulent – 5–12 Oral Not effective Thompson et al.
(2006)

Subunit α-Toxin 5, 10 SCa Lesions reduced Cooper et al.
(2009)

Subunit α-Toxin, GPDb, PFORc, FBAd, HPe 7, 14 IMf α-Toxin, PFOR and HP were more
effective

Kulkarni et al.
(2007)

Toxoid α-Toxoid and α-Toxin 7, 14 IM Protected against severe challenge Kulkarni et al.
(2007)

Supernatant – 3, 12 SC Strain dependent Lanckriet et al.
(2010)

Subunit Toxoids A, C and A + C 7, 21 SC Reduction of chickens with lesions Saleh et al. (2010)

Toxoid NetB 3, 9, 15 SC Partial protection da Costa et al.
(2013)

Toxoid NetB 22, 24, 26
weeks old

SC Reduced lesions in progeny Keyburn, et al.
(2013a)

Subunit CnaA, FimA, FimB 7,14, 19 SC Reduction of NE lesion severity Lepp et al. (2010)

Toxoid Toxoids types A and C 14, 18 weeks
old

IM High level of resistance to natural
infection in progeny

Lovland et al.
(2004)

Subunit TpeL, Naglug, and Pgmh 7, 14, 21 IM Significant protection against lower
severity challenge

Jiang et al. (2009)

Subunit-chimeric NetB, α-toxin and NAMi 7, 13, 21 SC,
oral

Significantly lower lesions Katalani et al.
(2020)

Recombinant Salmonella vectored: FBA, PFOR,
HP

0, 14 oral Significant decrease in lesions by
FBA, HP

Kulkarni et al.
(2008)

Recombinant Salmonella vectored: α-Toxin, HP 1, 10 oral Protection against more severe
challenge by HP

Kulkarni et al.
(2010)

Recombinant Salmonella vectored: Nontoxin
fragment of α-Toxin

3, 10 oral Reduction of chickens showing
lesions

Zekarias et al.
(2008)

aSC: Subcutaneous.
bGPD: Glyceraldehyde-3-phosphate dehydrogenase.
cPFOR: Pyruvate: ferrodoxin oxidoreductase.
dFBA: Fructose 1,6-bisphosphate aldolase.
eHP: Hypothetical protein.
fIM: Intramuscular.
gEndo-beta-N-acetylglucosaminidase.
hPhosphoglyceromutase.
iMetallopeptidase.
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breeder hens and their progeny chicks. These passively immu-
nized progeny chicks showed a high-level resistance against sub-
sequent natural infection with both types of CP. In a NE
disease model, CP type C induced a better protection, demon-
strated by reduced intestinal and hepatic lesions (Lovland et al.,
2004). Despite their promising role in control of subclinical NE,
the protective effects of these vaccines against the clinical form
of NE were not evaluated in this study.

Subunit vaccines (toxin/other protein-based)

In another approach, genes encoding immunogenic proteins, such
as toxins, can be cloned into plasmids that are then expressed in
mammalian, bacteria, or insect cells, followed by identification
and purification of the expressed proteins to produce a subunit
protein-based vaccines (Nascimento and Leite, 2012). In the
past, due to a lack of adequate understanding of the immunogen-
icity profiles of various protein targets in CP, attention was given
to α-toxin as a potential vaccine candidate for NE (Kulkarni et al.,
2007). The immunogenicity and protective efficacy of recombin-
ant α-toxin-based subunit vaccines have been extensively evalu-
ated in NE challenge models in broiler chickens. Despite efforts
to unveil the potential role of α-toxin as a vaccine antigen,
there is still controversy regarding its effectiveness in inducing
protection against NE in chickens. For instance, subcutaneous
immunization of broiler chickens with a recombinant
α-toxin-based subunit vaccine at 5 days of age, followed by a
booster dose at 15 days of age, conferred a partial protection
against experimental CP infection at 25 days of age, as assessed
by α-toxin serum IgY levels and gut lesion scores (Cooper
et al., 2009). In another study, priming the birds with CP
α-toxin toxoid at 7 and 14 days of age followed by vaccination
with an active α-toxin at 21 days of age resulted in a higher
level of protection than did either one alone (Kulkarni et al.,
2007). Attempts have been made to enhance the protective effi-
cacy of α-toxin vaccines. For example, a previous study by
Kulkarni et al. (2007) evaluated the effectiveness of a single or
various combination of five different recombinant proteins
including α-toxin, GPD, PFOR, FBA, and a HP, against oral viru-
lent CP challenge in broiler chickens. While vaccination with each
of these proteins resulted in a significant increase in serum IgY
and protection against a mild challenge with CP, a combination
of α-toxin, HP and PFOR offered better protection against
more severe challenge as compared to other combinations.

Following the discovery of NetB as a major virulence factor in
the pathogenesis of CP (Keyburn et al., 2008), a significant
amount of research was directed toward the use of NetB as a vac-
cine. Savva et al. designed different recombinant netB mutants
and evaluated their toxicity, as compared to the pure NetB
toxin, on a chicken hepatocellular carcinoma epithelial cell line
(LMH). As the mutated proteins did not exhibit toxic effects on
the cells, the authors hypothesized that these mutants could be
used for NE vaccine development (Savva et al., 2013).

Comparative evaluation of effectiveness of various clostridial
immunogenic proteins, including α-toxin, NetB toxin, PFOR,
and elongation factor-Tu (EF-Tu) adjuvanted with ISA 71 VG,
against experimental NE challenge in broiler chickens, revealed
that all of them afford comparable levels of protection against
NE (Jang et al., 2012). However, among these vaccines, a better
weight gain was observed in chickens vaccinated with NetB
toxin and PFO recombinant proteins. In another study,
Keyburn et al. (2013b) evaluated the efficacy of purified NetB

recombinant toxin (rNetB) alone or in combination with a forma-
lin inactivated bacterin or a cell free CP supernatant toxoid
against different challenge levels of virulent CP. The results
showed that rNetB alone protects the birds against a mild chal-
lenge, while significant protection against moderate or heavy CP
challenge was observed when rNetB was combined with either
cell-free CP toxoid or bacterin. Similar to what has been observed
for α-toxin (Cooper et al., 2009), these results indicate that,
although known as the major CP toxin, NetB alone does not
induce an efficient, protective immune response against NE and
a combination with other immunogens is required to potentiate
its effect (Keyburn et al., 2013a). Recently, Escherichia coli BL21
strain was used to express and purify a recombinant metallopep-
tidase (a CP virulence factor) to make an injectable vaccine
against NE, which was shown to be protective in a CP challenge
model (Katalani et al., 2020). Further, tobacco plants were used to
make an edible NE vaccine through the expression of a fusion
protein containing NetB, α-toxin and metallopeptidase
(Katalani et al., 2020). Using this vaccine resulted in serum anti-
body response and partial protection in the CP-challenge model.

Taken together, these findings point to the variability in the
immunogenicity and protective potential of CP antigens.
Indeed, none of the studied CP antigens has shown ability to pro-
vide complete protection against severe CP challenge when admi-
nistered alone. Nonetheless, a multivalent subunit CP vaccine
consisting of hybrid antigens could conceivably result in a higher
level of protection. Another point of consideration is that any par-
enteral route used for administration of inactivated, toxoid or
recombinant vaccines will be less than ideal for mass administra-
tion on poultry farms. A more practical route and time of vaccin-
ation that results in an acceptable level of protection by 2–3 weeks
of age is desirable.

Live vectored vaccines

Attenuated Salmonella enterica strains have been extensively uti-
lized as vaccine vectors for genes encoding various CP toxins
(Hegazy and Hensel, 2012). Although attenuation of Salmonella
strains is critical to prevent the adverse effects of this bacterium
on the host, care should be taken to avoid over attenuation as it
may reduce the effectiveness of the vaccine. Moreover, the vector
should be attenuated by two mutations to ensure it does not revert
to virulence (Hegazy and Hensel, 2012). In a study by Zekarias
et al., oral administration of a recombinant attenuated S. enterica
serovar Typhimurium vaccine (RASV), expressing the c-terminal
part of α-toxin, followed by a parenteral boost vaccination with a
recombinant PlcC protein (rPlcC), induced significantly high
levels of α-toxin-neutralizing serum antibodies and serum IgG
and bile IgA titers associated with a reduction in CP colonization
and enteric pathology in chickens (Zekarias et al., 2008). In
another study, oral immunization of broiler chickens with a
recombinant Salmonella vaccine expressing either a gene encod-
ing FBA or HP has been shown to provide protection against
NE challenge, and both were associated with higher serum and
mucosal antibody responses. However, no such effects were
observed for a PFOR vaccine (Kulkarni et al., 2008). Following
the identification of the B-cell epitopes of HP and α-toxin, the
efficacy of an attenuated recombinant Salmonella vaccine expres-
sing truncated HP (tHP) as well as α-toxin toxoid on NE was
investigated in broiler chickens (Kulkarni et al., 2010). Chickens
vaccinated with α-toxoid were significantly protected against
moderate challenge, while vaccination with tHR provided
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protection against both moderate and severe challenges. Further
studies were conducted to assess and compare the effects of oral
vaccination of broiler chickens with a RASV expressing genes
encoding α-toxin and NetB (Jiang et al., 2009). While vaccination
with constructs expressing either toxin alone did not confer pro-
tection, concurrent vaccination with the two vaccines or vaccin-
ation with a vector expressing the two toxins resulted in
protection against moderate to heavy challenges with CP.
Additionally, in a more recent study, vaccination with the
RASV system expressing either FBA (an enzyme known to be
important for CP virulence) alone or a mixture of FBA,
α-toxin, and NetB toxin provided better protection against NE
than using either α-toxin or NetB toxin alone (Wilde et al.,
2019). In addition to using Salmonella strains as vaccine vectors,
Bacillus subtilis and Lactococcus lactis bacteria have also shown
considerable promise as potential vaccine vectors when used in
mice against clostridial infections (Robinson et al., 1997; Hoang
et al., 2008). The advantage of using Bacillus and lactic acid bac-
teria over Salmonella is that, in addition to being non-pathogenic,
they can confer other benefits such as immunomodulatory effects
(Sugiarto and Yu, 2004; Rhayat et al., 2019), which could add an
additional layer of protection against NE. Thus, experimental
studies are needed to explore the possibility of using these vectors
as vaccine carriers for CP antigens in chickens.

Route and time of vaccination

One of the most important points that needs to be taken into con-
sideration when developing poultry vaccines is their suitability for
mass application. Despite their considerable success in limiting
NE in chickens, one of the shortcomings of toxoid vaccines is
that they must be parenterally administered (Kulkarni et al.,
2007; Cooper et al., 2009). On the other hand, in addition to
their role in inducing local mucosal immune responses following
oral administration, attenuated vector vaccines are suitable for
mass immunization (Kulkarni et al., 2008). Another important
point is that the immune responses to vaccination should reach
a protective level before 2–3 weeks of age, the time at which chick-
ens are more vulnerable to NE. All these vaccines have shown
comparable levels of protection, however, the delay in vaccination
(1- or 2-week-old birds) together with the need for booster doses
raises concern about the feasibility of these vaccines. The poultry
industry is, therefore, seeking a vaccine which could be effective
with just a single vaccination at a very early age, but attempts to
immunize day-old broiler chickens have not been successful
(Mot et al., 2013). Another promising strategy is vaccination of
parent stock. The idea is that if the breeder flocks are vaccinated,
the maternally derived antibodies will be vertically transferred to
their progeny chicks, thereby providing protection against NE in
their early life. Keyburn et al., demonstrated that vaccination of
broiler breeder hens with purified recombinant NetB toxoid at
22, 24 and 26 weeks of age induced the production of significant
levels of specific NetB-IgY antibodies in hens and egg yolks of the
fertile eggs 4 weeks after the last vaccination and resulted in par-
tial protection against NE in broilers at 14 and 21 days of age
(Keyburn et al., 2013a). It is, however, important to note that
one of the limitations of parent stock vaccination is the gradual
reduction of antibody titers in eggs, which are laid later in their
production period together with the gradual decrease of the pas-
sive immunity in chickens as they age, which may indeed influ-
ence chicken resistance to late NE outbreaks. Therefore, more

work is required to ascertain the effectiveness of this passive
immunity transfer through breeder vaccination.

Conclusions

NE is a complex disease that is caused by an imbalance in the
intricate relationship between CP and its host. Further under-
standing of the pathogenicity of CP and its interaction with the
host immune system will allow the development of effective pre-
vention and control interventions for NE. Optimization of nutri-
tional and farm management practices in addition to the
application of probiotics and new generation vaccines should be
pursued as preventive strategies to control NE in broiler farms.
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