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Abstract In this paper, we relate Lie algebroids to Costello’s version of derived geometry. For instance,
we show that each Lie algebroid – and the natural generalization to dg Lie algebroids – provides an

(essentially unique) L∞ space. More precisely, we construct a faithful functor from the category of Lie

algebroids to the category of L∞ spaces. Then we show that for each Lie algebroid L, there is a fully
faithful functor from the category of representations up to homotopy of L to the category of vector

bundles over the associated L∞ space. Indeed, this functor sends the adjoint complex of L to the tangent

bundle of the L∞ space. Finally, we show that a shifted symplectic structure on a dg Lie algebroid
produces a shifted symplectic structure on the associated L∞ space.
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1. Introduction

Lie algebroids appear throughout geometry and physics, and they provide a fertile

transfer of ideas and intuition between geometry and Lie theory. (The literature is

vast. See, for instance, [12, 19, 21, 22, 24, 43], among many other papers.) Recently

the language of derived geometry has provided another perspective on the relationship

between Lie theory and geometry, emphasizing the idea that a deformation problem is

describable by a dg Lie algebra (e.g., [35, 42]). (The formal story has a rich history built on

ideas of Schlessinger, Stasheff, Quillen, Illusie, Deligne, Drinfeld, Kontsevich, and others;
see [45] and the references contained therein.) These two approaches are compatible (see,

e.g., [9, 26, 34]), and by combining them, it becomes clearer both how to systematically

provide Lie algebroid versions of constructions from Lie theory and also how to interpret

such constructions in derived geometric terms.

In this paper we use instead an approach to derived geometry initiated by Costello [17,

30] for two related reasons. First, Costello’s notion of L∞ space interpolates smoothly

between the functorial approach to derived geometry and the language of dg manifolds,

or Q-manifolds, common in mathematical physics. Hence it is convenient for drawing

from the rich literature in higher differential geometry. Second, as we describe in § 1.2,

Costello’s formalism is compatible with his machinery for renormalization [18] and hence

makes it possible to rigorously develop interesting perturbative quantum field theories.
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1.1. What we prove

Our main results in this paper all amount to showing that a well-established notion

in Lie algebroids maps to a parallel notion in Costello’s version of derived geometry.

For instance, we show that each Lie algebroid L – and the natural generalization to dg

Lie algebroids – provides an (essentially unique) L∞ space enh(L). More precisely, we

construct a faithful functor from the category of Lie algebroids to the category of L∞
spaces. Then we show that for each Lie algebroid L, there is a fully faithful functor from

the category of representations up to homotopy of L to the category of vector bundles

over enh(L). Indeed, this functor sends the adjoint complex of L to the tangent bundle

of enh(L). Finally, we show that a shifted symplectic structure on a dg Lie algebroid L
produces a shifted symplectic structure on enh(L).

Remark 1.1. These results are not tautological. The definitions of vector bundle and

symplectic structure for L∞ spaces were written before we knew about representations

up to homotopy or symplectic Lie n-algebroids. Indeed, our results show a fortuitous

alignment between these two approaches to higher structures in differential geometry;

the simplicity of the relationship between Lie algebroids and L∞ spaces surprised us.

We hope this pattern continues. (We wonder, in particular, about L∞ space analogs

of, e.g., the work of Calaque, Căldăraru et al. [9] on Lie algebroids for derived

intersections.)

1.2. Applications to physical mathematics

Costello introduced L∞ spaces and his framework for derived geometry to facilitate

the expression of classical field theories, particularly nonlinear σ -models, in a manner

amenable to quantization via Feynman diagrams and renormalization. These notions

appeared in his quantization of the curved βγ system [17]. Since this work, his methods

have been applied to several more examples:

(i) one-dimensional topological σ -model into a cotangent bundle [29];

(ii) one-dimensional topological σ -model into a symplectic manifold, recovering Fedosov

quantization from the BV formalism [32];

(iii) the topological B-model and the Landau–Ginzburg model [41];

(iv) the two-dimensional nonlinear σ -model [33, 49].

The results in these papers, though, extend to a much larger class of target spaces:

typically any L∞ space satisfying some analog of the geometric structure required when

the target is an ordinary manifold (e.g., a symplectic form). Written in this style, these

nonlinear σ -models are simply versions of Chern–Simons, holomorphic Chern–Simons,

or BF theories with a sophisticated version of a Lie algebra as the ‘gauge group’ (rather,

the gauge algebra).

Our work thus allows us to formulate nonlinear σ -models with Lie algebroids as the

target spaces. Another intriguing direction is to formulate the Lie algebroid Yang–Mills

theories of Strobl and collaborators [40, 46, 59] in terms of L∞ spaces, in order to consider

their perturbative quantizations.
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1.3. Notations and conventions

We work throughout in characteristic zero. We work cohomologically, so the differential

in any complex increases degree by one.

For A a cochain complex, A] denotes the underlying graded vector space. If A is a

cochain complex whose degree k space is Ak , then A[1] is the cochain complex where

A[1]k = Ak+1. We use A∨ to denote the graded dual.

For X a smooth manifold, we use TX to denote its tangent bundle as a vector bundle and

T X to denote the total space of that vector bundle. We use T∨X to denote the cotangent

bundle.

If f : X → Y is a map of smooth manifolds and V a vector bundle, then we use f −1V
to denote the pullback vector bundle. Similarly, for F a sheaf on Y , we use f −1F to

denote the pullback sheaf, simply as a sheaf of sets or vector spaces. We reserve the

notation f ∗V for the case where V is a sheaf of dg �∗Y -modules, and f ∗V denotes the

sheaf of dg �∗X -modules obtained from f −1V by extending scalars.

2. Recollections on L∞ spaces

We give a brief overview of the definitions and constructions with L∞ spaces that are

relevant to our work here. For more detail and exposition, see [30].

2.1. Curved L∞ algebras

We begin by describing the relevant definitions from algebra. Recall that for a

graded-commutative algebra A] and a graded A]-module V , the graded A]-module

SymA](V ) =
⊕
n>0

Symn
A](V )

admits a natural cocommutative coalgebra structure in which

1(v1 · · · vn) =
∑
±vσ(1) · · · vσ(p)⊗ vσ(p+1) · · · vσ(n)

where the sum is over all (p, q)-shuffles σ with p+ q = n and the sign is via the Koszul

rule.

Recall that a map of coalgebras is determined by its image into the cogenerators. In

particular, if φ : Sym(V )→ Sym(W ) is a map of coalgebras, then φ is determined by a
collection of maps

{φn : Symn(V )→ W ⊕ A], for n > 0},

where each component φn denotes the restriction of φ to the summand Symn(V ) followed

by projection onto the cogenerator W ⊕ A] = Sym1 W ⊕Sym0 W . (If the map φ respects

the usual coaugmentations by A], then W is a cogenerator and it thus suffices to consider

the projection onto just W .)

Definition 2.1. Let A be a commutative dg algebra with a nilpotent dg ideal I (i.e.,

I n
= 0 for some n). Let A] denote the underlying graded-commutative algebra. A curved

L∞ algebra g over A consists of
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(1) a locally free, Z-graded A]-module Vg and

(2) a linear map of cohomological degree 1

d : SymA](Vg[1])→ SymA](Vg[1])

such that

(i) (SymA](Vg[1]), d) is a cocommutative dg coalgebra over A with the standard

coproduct; and

(ii) d(Sym0(Vg[1])) ⊂ I · Vg[1].

We use C∗(g) to denote this cocommutative dg coalgebra and call it the

Chevalley–Eilenberg homology complex of this curved L∞ algebra g.

These conditions amount to requiring that d be a square-zero coderivation and that

modulo I , the coderivation d vanishes on the constants. In short, base-changing along

the algebra map A→ A/I , we obtain an un-curved L∞ algebra.

As usual in the L∞ setting, we use the notation and terminology ‘Chevalley–Eilenberg’

since these constructions extend the usual notions of Lie algebra homology. (Note,

however, that we work cohomologically, so that our differential still increases degree.

Thus, for us, the homology complex of any ordinary Lie algebra g is concentrated in

nonpositive degrees.)

There is also a natural Chevalley–Eilenberg cohomology complex Ĉ∗(g), defined as

follows. For V a graded A]-module, its completed symmetric algebra is the graded

A]-module

ŜymA](V ) =
∏
n>0

Symn
A](V )

equipped with the filtration Fk ŜymA](V ) = Sym>k
A] (V ) and the usual commutative

product, which is filtration-preserving. Then Ĉ∗(g) is (ŜymA](V
∨
g [−1]), dg) with dg the

differential dual to d on C∗(V ). In particular, d is a derivation.

Note that powers of the nilpotent ideal I provides another natural filtration on C∗(V )
and on Ĉ∗(V ): for example, Fk

I C∗(V ) = I k
·C∗(V ). We write Gr C∗(V ) for the associated

graded cocommutative dg coalgebra of this filtration.

Similarly, powers of the nilpotent ideal I equips g and the underlying vector space Vg

with filtrations. The associated graded Gr g is a L∞ algebra over (Gr A, 0), where Gr A
is the associated graded to the I -filtration. Note that Gr Vg[1] has no curving, and, in

particular, Gr Vg[1] is thus a cochain complex.

Definition 2.2. A map of curved L∞ algebras φ : g→ h is a map of cocommutative dg

coalgebras φ : C∗(g)→ C∗(h) respecting the I -filtration. A map is a weak equivalence if

the map Gr(φ1) : Gr Vg[1] → Gr Vh[1] on the associated graded cochain complexes is a

quasi-isomorphism.

Recall our convention, stated just before Definition 2.1, for the ‘components’ of a

coalgebra map given by projection onto a cogenerator. For a non-curved L∞ algebra, such
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as Gr g or Gr h, the Chevalley–Eilenberg homology complex is naturally coaugmented and

hence Gr Vh[1] is a cogenerator.

Remark 2.3.

(1) Note that this notion of weak equivalence is stronger than requiring a

quasi-isomorphism between Chevalley–Eilenberg homology complexes, or even a

filtered quasi-isomorphism between homology complexes (i.e., a quasi-isomorphism

on the associated gradeds).

Indeed, note that we have an isomorphism Gr C∗g ∼= C∗ Gr g, so that a weak

equivalence induces a filtered quasi-isomorphism.

(2) In [35], Hinich equips the category of conilpotent cocommutative coalgebras over

a field of characteristic zero with a (non-obvious) model structure such that

the Chevalley–Eilenberg complex C∗(−) is a right Quillen functor from a model

category of differential graded Lie algebras and this Quillen adjunction is a Quillen

equivalence. The definition of weak equivalence of curved L∞ algebras is a natural

extension of Hinich’s notion, as it agrees with him on the associated graded

non-curved L∞ algebras.

2.2. L∞ spaces

We now describe a version of ‘families of curved L∞ algebras parametrized by a smooth

manifold’.

Definition 2.4. Let X be a smooth manifold. An L∞ space is a pair (X, g), where g is the

sheaf of smooth sections of a finite-rank, Z-graded vector bundle π : Vg→ X equipped

with the structure of a curved L∞ algebra structure over the commutative dg algebra

�∗X with nilpotent ideal I = �>1
X .

Remark 2.5. In [30], we allowed the vector bundle Vg to be a topological vector bundle

in order to include a class of examples related to nonlinear σ -models. The fibers were

Fréchet vector spaces. (It might be better to tame such infinite-rank vector bundles by

viewing them as bornological or as sheaves on a site of manifolds.) As we only need

finite-rank vector bundles here, we restrict to that case.

As we explain in the next subsection, the best way to think of an L∞ space is via its

functor of points. In other words, an L∞ space presents a more intrinsic geometric object,

much as one can present a smooth manifold by an atlas or a nice topological space by a

cell complex. But it is clear, even just from the definition, that there are many examples.

For example, every L∞ algebra provides an L∞ space over a point. Less obvious examples

arise from smooth and complex manifolds, as detailed in [17] and [30]. Our main result

here shows how to construct an L∞ space from a Lie algebroid.

Let (X, g) be an L∞ space. Observe that given a smooth map f : Y → X , we obtain a

curved L∞ algebra over �∗Y by

f ∗g := f −1g⊗ f −1�∗X
�∗Y ,

where f −1g denotes the sheaf of smooth sections of the pullback vector bundle f −1 Vg.

https://doi.org/10.1017/S1474748018000075 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000075


Lie algebroids as L∞ spaces 493

Definition 2.6. Let (X, g) and (Y, h) be L∞ spaces. A map of L∞ spaces 9 : (X, g)→
(Y, h) is a pair ( f, ψ), where f : X → Y is a smooth map and ψ : g→ f ∗h is a map of

curved L∞ algebras over �∗X . We say a map is base-fixing if f is the identity.

There are thus two categories of interest to us. Let L∞-space denote the category

of all L∞-spaces and all maps of L∞-spaces. For each manifold X , there is also the

category L∞-spacebf(X) whose objects are L∞-spaces with underlying manifold X and

whose morphisms are the base-fixing maps thereof. (These are simply 1-categories, not

(∞, 1)-categories.)

In parallel to these 1-categories, there are two natural (∞, 1)-categories of L∞-spaces.

We present them as categories with weak equivalences, but first we explain how L∞
spaces define derived stacks, as that functorial context determines the correct notion of

weak equivalence.

2.3. A functorial view on derived geometry

An L∞ space has an associated ‘functor of points’ and hence can be understood as

presenting a kind of space in the same way that a commutative algebra presents a scheme.

In the formalism developed in [30], which we now briefly discuss, we make this assertion

precise as follows.

There is a site ndgMan (in fact, an ∞-site) of nil dg manifolds, in which an object M
is a smooth manifold M equipped with a sheaf OM of commutative dg algebras over �∗M
that has a nilpotent dg ideal IM such that O/I ∼= C∞M . For the full definition, including

the definition of cover, see [30]. The details are not relevant for the constructions in this

paper.

Definition 2.7. A derived stack is a functor X : ndgManop
→ sSets satisfying

(1) X sends weak equivalences of nil dg manifolds to weak equivalences of simplicial

sets;

(2) X satisfies Čech descent, i.e., if for every nil dg manifold M and every cover V of

M, we have

F(M)
'
−→ holimČV F ,

where ČV• denotes the Čech nerve of the cover (namely the simplicial diagram

with n-simplices ČVn := V×M · · · ×MV).

We now explain how every L∞ space defines such a functor.

Definition 2.8. For (X, g) an L∞ space, its functor of points Bg : ndgManop
→ sSets sends

the nil dg manifold M to the simplicial set Bg(M) in which an n-simplex is a pair ( f, α):
a smooth map f : M → X and a solution α to the Maurer–Cartan equation in sections

over M of the L∞ algebra f ∗g⊗�∗M IM⊗R�∗(4n).
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Remark 2.9. If we view Ĉ∗g as the structure sheaf of the L∞ space, then a 0-simplex of

Bg(M) is a map of the underlying manifolds f : M → X and a map of commutative dg

algebras f ∗Ĉ∗g→ OM. In other words, it is a map of dg ringed spaces. In practice, it

is fruitful to think of an L∞ space as a dg manifold, described Koszul-dually as an L∞
algebra. But, as usual, the tricky aspect is to keep track of weak equivalences between dg

manifolds, which is why the functorial approach is so helpful: one focuses on the output

of a construction, not its inner workings.

A central result of [30] is then the following.

Theorem 2.10 [30, Theorem 4.8]. The functor Bg associated to an L∞ space (X, g) is a

derived stack.

This result thus gives a perspective on what an L∞ space means: it is a computationally

convenient presentation of a derived stack Bg, which is a more invariant or intrinsic

notion.

Derived stacks form a category dSt with weak equivalences, where a natural

transformation F : X→ Y between derived stacks is a weak equivalence if F(M) :

X(M)→ Y(M) is a weak homotopy equivalence for every nil dg manifold M. Because

we only care about L∞ spaces in terms of their derived stacks, we want a notion of weak

equivalence on L∞ spaces that matches with that on derived stacks.

Definition 2.11. A map of L∞ spaces 9 : (X, g)→ (Y, h) is weak equivalence if the map of

underlying manifolds f is a diffeomorphism and the map of curved L∞ algebras ψ : g→

f ∗h is a weak equivalence.

Our definition of weak equivalence between L∞ spaces is motivated by the following

property.

Proposition 2.12. The functor B : L∞-space→ dSt sending (X, g) to Bg is a functor

between categories with weak equivalences, i.e., it preserves weak equivalences. Moreover,

this functor detects weak equivalences.

In short, a map of L∞ spaces 9 : (X, g)→ (Y, h) is a weak equivalence if and only if

the induced map B9 : Bg→ Bh is a weak equivalence of derived stacks.

Proof. Let us prove the first claim. Assume that9 : (X, g)→ (Y, h) is a weak equivalence.

We argue by Artinian induction, i.e., by working up the natural tower of commutative

dg algebras

OM
qk−1
−−→ OM/Ik−1

M
qk−2
−−→ · · ·

q2
−→ OM/I2

M
q1
−→ OM/IM ∼= C∞M

for any nil dg manifold M = (M,OM) whose characterizing nilpotent dg ideal IM is

nilpotent of order k. Let Msm denote the nil dg manifold (M,C∞M ) associated to the

smooth manifold M . The simplicial set Bg(Msm) is the discrete simplicial set given by

the set of smooth maps Maps(M, X). As the underlying smooth map f : X → Y for 9 is

a diffeomorphism, the map of sets f ◦−: Maps(M, X)→ Maps(M, Y ) is an isomorphism.
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Without loss of generality, we can now assume that X = Y and the underlying map f is

the identity.

Fix a smooth map η : M → X ; it is sufficient to consider the component over this fixed

map. Now, by [30, Lemma C.3], we know that the map

Bg(qd) : Bg(M,OM/Id+1
M )→ Bg(M,OM/Id

M)

is a Kan fibration for every d, with the fiber determined by the Maurer–Cartan simplicial

set of the abelian dg Lie algebra η∗g⊗�∗M Id
M/Id+1

M , which is simply the Dold–Kan

simplicial set for a cochain complex. (See the discussion before Lemma C.8.) Then B9
induces a map between the fiber sequences

fib(Bg(qd)) //

B9fib

��

Bg(M,OM/Id+1
M ) //

B9d+1
��

Bg(M,OM/Id
M)

B9d

��
fib(Bh(qd)) // Bh(M,OM/Id+1

M ) // Bh(M,OM/Id
M)

and the base is a homotopy equivalence by induction. Hence, it is sufficient to check that

the map of fibers

9fib : η
∗g⊗�∗M Id

M/Id+1
M → η∗h⊗�∗M Id

M/Id+1
M

is a quasi-isomorphism. Consider the filtration on the fibers induced by the ideal �
>1
M .

Note that 9fib is a filtration-respecting map of filtered cochain complexes. We have an

isomorphism

Gr(η∗g⊗�∗M Id
M/Id+1

M ) ∼= η
−1(Gr g)⊗

η−1�
]
X
�
]
M ⊗�]M

Id
M/Id+1

M ,

and similarly when h is substituted for g. Since the L∞ map ψ : g→ h is a weak

equivalence, it induces a quasi-isomorphism at the level of associated gradeds, and hence

a quasi-isomorphism of the associated gradeds of the above fibers. Thus, the map of

spectral sequences arising from 9fib is a quasi-isomorphism on the first page and so 9fib
is a quasi-isomorphism.

Proving the second claim is similar. Suppose we know that B9 : Bg→ Bh is a weak

equivalence of derived stacks. Hence, on any Msm – the nil dg manifold (M,C∞M ) associated

to a smooth manifold M – we must have an isomorphism of sets

f ◦−: Bg(Msm) = Maps(M, X)→ Maps(M, Y ) = Bh(Msm),

and hence f : X → Y must be a diffeomorphism. Again, without loss of generality, we can

assume Y = X and f is the identity. It remains to show that Grψ is a weak equivalence

of L∞ algebras. We consider the nil dg manifold Xd R = (X, �X ), whose canonical tower

of algebras is

�∗X → �∗X/�
n−1
X → · · · → �∗X/�

>1
X
∼= C∞X ,

where n = dim X . Moreover, we only consider the Maurer–Cartan simplicial sets over the

identity map X → X . In that case, our hypothesis implies that for every d, B9 induces
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a weak homotopy equivalence

DK (�d
Xg/�

d+1
X g) ' DK (�d

Xh/�
d+1
X h)

of the simplicial sets associated by the Dold–Kan correspondence to these abelian dg

Lie algebras, which describe the fibers as we work up the tower for Xd R . As Gr g =⊕
d �

d
Xg/�

d+1
X g, we see that the map of cochain complexes, induced from ψ , from Gr g

to Gr h must be a quasi-isomorphism.

2.4. Vector bundles on L∞ spaces and shifted symplectic structures

L∞ spaces admit straightforward generalizations of many geometric constructions. We

begin by recalling the relevant notion of vector bundle and then of shifted symplectic

structures.

2.4.1. We now introduce a category VB(X, g) of vector bundles on an L∞ space (X, g).

Definition 2.13. Let (X, g) be an L∞ space. A vector bundle on (X, g) is a Z-graded

vector bundle π : V → X where the sheaf of smooth sections V over X is equipped with

the structure of an �
]
X -module and where the direct sum of sheaves g⊕V is equipped

with the structure of a curved L∞ algebra over �∗X , which we denote gnV, such that

(1) the maps of sheaves given by inclusion g ↪→ gnV and by the projection gnV → g

are maps of L∞ algebras; and

(2) the Taylor coefficients `n of the L∞ structure vanish on tensors containing two or

more sections of V.

The sheaf of sections of V over (X, g) means Ĉ∗(g,V[1]), the sheaf on X of dg

Ĉ∗(g)-modules given by the Chevalley–Eilenberg cochains of V as a g-module. The total

space for the vector bundle V over (X, g) is the L∞ space (X, gnV).

Remark 2.14. This definition is just a version of a module over an L∞ algebra, where

we require the underlying module to come from a vector bundle on the manifold X over

which the curved L∞ algebra g lives. Under the usual correspondence between modules

and abelian group objects, this definition amounts to giving an abelian group object

in the category of L∞ spaces over (X, g), i.e., the overcategory L∞-spacebf(X)/(X,g). In

other words, we are just deploying the notion of a Beck module. Compare with Remark

5.5. (For a quick and clear explanation of how Beck modules compare to the more familiar

notions, see [6, Lemma 1.3].)

For example, the tangent bundle to (X, g) is given by g[1] equipped with the adjoint

action of g. Dually, the cotangent bundle is given by g∨[−1] equipped with the coadjoint

action. It follows that k-forms on (X, g) are given by

�k
(X,g) = Ĉ∗(g, (3kg)[−k]),

as discussed in [30].
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Definition 2.15. Let V and W be vector bundles on the L∞ space (X, g). A map of vector

bundles from V to W is a map φ : Ĉ∗(g,V[1])→ Ĉ∗(g,W[1]) of dg Ĉ∗(g)-modules.

We wish to pinpoint the appropriate notion of weak equivalence of vector bundles.

A map of vector bundles φ induces a map Grφ : Gr Ĉ∗(g,V[1])→ Gr Ĉ∗(g,W[1]) of dg

Gr Ĉ∗(g)-modules, with respect to the filtration by powers of the nilpotent ideal. Since

Gr g is a non-curved L∞ algebra, there is a natural decreasing filtration

· · · ↪→ F1
Gr Gr Ĉ∗(g,V[1]) ↪→ F0

Gr Gr Ĉ∗(g,V[1]) = Gr Ĉ∗(g,V[1])

on such a module Gr Ĉ∗(g,V[1]) by symmetric powers of the dual of g. (Compare to how,

for an ordinary Lie algebra g, one filters C∗(g, V ) by FkC∗(g, V ) = Sym>k(g∨[−1])⊗ V .)

The quotient of Gr Ĉ∗(g,V[1]) by the first piece of the filtration has underlying graded

vector space V[1], which is thus equipped with a �]-linear differential. Let φfib denote

the map

Gr Ĉ∗(g,V[1])/F1
Gr Gr Ĉ∗(g,V[1])→ Gr Ĉ∗(g,W[1])/F1

Gr Gr Ĉ∗(g,W[1])

induced by Grφ.

Definition 2.16. Let φ : Ĉ∗(g,V[1])→ Ĉ∗(g,W[1]) be a map of vector bundles on (X, g).
Then φ is a weak equivalence if φfib is a quasi-isomorphism.

Note that a vector bundle map φ induces a map of L∞ spaces on the total spaces, and

it is a weak equivalence of vector bundles if and only if the map of total spaces is a weak

equivalence. This notion of weak equivalence is strictly stronger than requiring the map

of sections φ to be a filtered quasi-isomorphism.

2.4.2. Recall that a symplectic form is a 2-form that is non-degenerate and closed.

This definition works perfectly well in the derived setting, so long as one recognizes that

being closed – i.e., being annihilated by the differential of the de Rham complex – is data

and not a property.

Let �2,cl
(X,g), the complex of closed 2-forms on the L∞ space, be the totalization of the

double complex

�2
(X,g)

dd R
−−→ �3

(X,g)
dd R
−−→ �4

(X,g)
dd R
−−→ · · · .

A closed 2-form is a cocycle in this complex. Every element ω of �2,cl
(X,g) has an underlying

2-form i(ω) by taking its image under the truncation map i : �2,cl
(X,g)→ �2

(X,g).

Definition 2.17. An n-shifted symplectic form on an L∞ space (X, g) is a closed 2-form

ω of cohomological degree n such that the induced map i(ω) : T(X,g)→ T∨(X,g)[n] is a

quasi-isomorphism.

2.5. Discussion of related work

In the last few decades, derived geometry, particularly of an algebraic flavor, has

developed rapidly, and we make no attempt here to place L∞ spaces into that broader
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context. There are strong similarities, however, with two recent, substantial works, [26]

and [11], that we would like to sketch.

A central tenet of [26] and [11] is that, to first approximation, derived geometry is

just affine geometry over the de Rham stack. Note that any derived stack (or even

prestack) X maps canonically to its underlying de Rham stack Xd R , which does not

see nilpotent or derived directions. In a sense, Xd R just sees the macroscopic structure

of X and not its very local geometry; it only sees the ‘topology’. The idea then is that

objects over a de Rham stack should be thought of as local systems on X , and [11, 26]

provide precise theorems in this direction. Hence, constructions over the de Rham stack

are fiberwise constructions over X with the extra data of a flat connection relating the

fibers.

A similar idea underlies the definition of L∞ spaces. Given a smooth manifold, we have

the associated de Rham space Xd R = (X, �∗X ). The space Xd R presents the de Rham stack

in our smooth setting. The definition of an L∞ space (X, g) determines a derived stack

Bg living over Xd R , thereby porting the overarching paradigm to a smooth setting. On

the other hand, we have not developed an a priori global derived geometry, in contrast to

the foundational work of Toën–Vezzosi and Lurie, so we cannot take advantage of these

two perspectives, as done in [11, 26].

In § 4.4 we discuss how recent work in derived geometry connects with Lie algebroids.

3. Recollections on Lie algebroids

We give a brief overview of the definitions and constructions from the theory of Lie

algebroids that are relevant to our work here. Standard references for Lie algebroids

include Mackenzie [43] and Rinehart [53]; we also recommend the article of Fernandes [24].

3.1. The objects of study

Definition 3.1. A Lie algebroid on a smooth manifold X is a vector bundle L → X
equipped with the structure of a Lie algebra on its sheaf of smooth sections and an

anchor map ρ : L → TX , which is a map of vector bundles, such that

(1) the map on sections induced by ρ is a map of Lie algebras and

(2) for x, y ∈ 0(L) and f ∈ C∞X , we have the Leibniz rule

[x, f y] = f [x, y] + (ρ(x) f )y.

We use L to denote the sheaf of smooth sections of L.

Two classes of examples give a sense of the range of Lie algebroids. At the purely

algebraic end, note that every Lie algebra is a Lie algebroid over the point. At the

geometric end, a regular foliation on a smooth manifold gives an example, where the

anchor map is the inclusion of the subbundle into the tangent bundle. In general, the

image of the anchor map ρ is a (possibly singular) foliation, and the kernel of the

anchor map (on sections) is a C∞-linear Lie algebra. Thus, a generic Lie algebroid is

a complicated mix of a foliation and C∞-linear Lie algebra.
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Definition 3.2. A map of Lie algebroids F : L → L ′ is a map of vector bundles

L

��

φ // L ′

��
X

f // Y

such that

(1) the anchor maps intertwine ρ′ ◦φ = d f ◦ ρ and

(2) the natural map from sections of L to sections of the pullback bundle f −1L ′ is a

map of Lie algebras.

We say a map is base-fixing if the map of manifolds f is the identity.

There are thus two categories of interest to us. Let LieAlgd denote the category of

all Lie algebroids and all maps of Lie algebroids. For each manifold X , there is also the

category LieAlgdbf(X) whose objects are Lie algebroids on X and whose morphisms are

the base-fixing maps thereof. (These are 1-categories, not (∞, 1)-categories.)

Note that on a given manifold X , there are two distinguished Lie algebroids: the trivial

algebroid L = 0 and the tangent bundle id : L = T → T with the identity as the anchor

map. Every other Lie algebroid sits between them. Succinctly, we might say that they

are the initial and terminal objects of LieAlgdbf(X), respectively.

3.1.1. There are natural dg generalizations of Lie algebroids. We work with the

following.

Definition 3.3. A dg Lie algebroid is a Z-graded vector bundle L → X of total finite rank

whose sheaf L of graded smooth sections is equipped with a C∞X -linear differential, the

structure of a dg Lie algebra (over the constant sheaf CX ), and an anchor map ρ : L→ TX
of dg Lie algebras such that

[x, f y] = f [x, y] + (ρ(x) f )y

for x, y ∈ L and f ∈ C∞X . (In other words, ignoring the differential on L, we have a graded

Lie algebroid, and the differential is compatible with the bracket by being a derivation

of the graded Lie algebra.) A map of dg Lie algebroids is a map of the underlying graded

Lie algebroids that is also a cochain map.

Again we have two categories of interest: dgLieAlgd and dgLieAlgdbf(X). We say a

map of dg Lie algebroids ( f, φ) is a weak equivalence if the underlying map f is a

diffeomorphism and if φ induces a quasi-isomorphism of sheaves of cochain complexes.

Consequently, the categories dgLieAlgd and dgLieAlgdbf(X) become categories with weak

equivalences. (See Vezzosi’s work [61] for how to deal properly with the associated

∞-categories; he works, of course, in the setting of derived algebraic geometry.)

Remark 3.4. Our constructions seem to work without difficulty for reasonable notions of

L∞ algebroid, but in the literature there seems to be some variation in the meaning of
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this term. We indicate in Remark 5.20 a definition that admits the easiest direct

modification of our arguments.

3.2. The Chevalley–Eilenberg complex of a Lie algebroid

To any Lie algebroid ρ : L → TX there is an associated commutative dg algebra. We call

it the Chevalley–Eilenberg cohomology complex of L and denote it C∗(L), because it is

modeled on the Chevalley–Eilenberg cochain complex of a Lie algebra. It is often also

called the de Rham complex of L because for the Lie algebroid id : L = T → T , we have

C∗(L) = �∗X , the usual de Rham complex.

The complex is constructed as follows. Let L∨ be the dual vector bundle to L and

consider the map dL : 0(X,3m L∨)→ 0(X,3m+1L∨) given by

(dLα)(x0, . . . , xm) =
1

m+ 1

m+1∑
k=0

(−1)kρ(xk)α(x0, . . . , x̂k, . . . , xm)

+
1

m+ 1

∑
k<l

(−1)k+l+1α([xk, xl ], x0, . . . , x̂k, . . . , x̂l , . . . , xm).

Define C∗(L) to be the cochain complex

0(X,30L∨)
dL
−→ 0(X, L∨)

dL
−→ · · ·

dL
−→ 0(X,3n−1L∨)

dL
−→ 0(X,3n L∨)

where n = rk(L). (Note that the first term is C∞(X).) We let H∗L(X) denote the

cohomology of C∗(L).
Notice that C∗(L) naturally receives a map of commutative dg algebras from�∗X , arising

from the identity on C∞(X) = 0(X,30L∨) and the dual to the anchor map ρ∨ : �1(X)→
0(X, L∨). In particular, we have a map H∗d R(X) → H∗L(X).

These constructions are local in nature: we can consider the Lie algebroid restricted to

any open subset of X , and so C∗(L) provides a sheaf of commutative dg algebras on X .

In the case of TX as a Lie algebroid, we recover the de Rham complex �∗X as a sheaf. We

use this notation C∗(L) to refer to this sheaf, somewhat abusively.

As in the case of dg Lie algebras, the definition of C∗(L) canonically extends to dg Lie

algebroids. The dg Lie algebroid structure of L defines an internal differential on each

graded vector space appearing in the complex above, so that we have a double complex.

Thus, for a dg Lie algebroid L, we define C∗(L) to be the associated total complex.

4. Lie algebroids as L∞ spaces

The first important result of this paper is that every Lie algebroid ρ : L → TX has

a naturally associated L∞ space (X, enh(L)) – hence a derived stack – in the sense

described in § 2.2. In this section, we develop this result in two stages. First, we explain

how the ∞-jet bundle of C∗(L) provides a curved L∞ algebra over �∗X , which is an

explicit construction in differential geometry. Second, we verify the functoriality of this

construction, which involves categorical issues. A precise statement of the main result

appears there.
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4.1. The construction of enh(L)

The crucial tool here is the functor J that assigns to a vector bundleE , its ∞-jet bundle

J (E). In Appendix A, we provide proofs and references for the facts we use here. Our

arguments amount to a variation on constructions often described as Gelfand–Kazhdan

formal geometry or Fedosov resolutions.

We begin with some preliminaries. For any vector bundle V , let Ŝym(V ) denote the

sheaf of smooth sections of the filtered vector bundle Ŝym(V ) = limk Sym6k(V ). (It is

also fruitful to view Ŝym(V ) as a pro-vector bundle.) Recall that every ∞-jet bundle

J (E) admits a non-canonical isomorphism σE : Ŝym(T∨X )⊗ E → J (E) of filtered vector

bundles on X . In particular, the∞-jet bundle of the trivial line bundle, which we denote

simply J , admits a non-canonical isomorphism of filtered algebras to Ŝym(T∨X ). Moreover,

the sheaf of smooth sections J (E) of J (E) is a module over J , which is the sheaf of∞-jets

of smooth functions. Hence, we can ask for compatible isomorphisms σ0 : Ŝym(T∨X )→ J
and σE : Ŝym(T∨X )⊗ E → J (E) so that the natural module structures intertwine.

We now combine these constructions in the case of interest.

Lemma 4.1. Fix an isomorphism σ0 : Ŝym(T∨X )→ J and fix a compatible isomorphism

σL∨ : Ŝym(T∨X )⊗ L∨→ J (L∨). Then we have an isomorphism

Ŝym
(
T∨X ⊕ L∨[−1]

) ∼=
−→ J (Sym(L∨[−1]))

of C∞X -algebras.

Proof. As the functor V 7→ J (V ) is symmetric monoidal by Proposition A.2, we

see that the algebra Sym(L∨[−1]) in vector bundles gets mapped to the algebra

J (Sym(L∨[−1])) ∼= SymJ (J (L∨)[−1]). But

SymJ (J (L∨)[−1]) ∼= SymŜym(T∨X )
(Ŝym(T∨X )⊗C∞ L∨[−1])

by our choice of isomorphisms. As base change commutes with taking free algebras,

we have

SymŜym(T∨X )
(Ŝym(T∨X )⊗C∞ L∨[−1]) ∼= Ŝym(T∨X )⊗C∞ SymC∞(L∨[−1])

∼= Ŝym(T∨X )⊗C∞ Ŝym(L∨[−1])
∼= Ŝym(T∨X ⊕ L∨[−1]),

as desired.

Recall that for a Lie algebroid L, the Chevalley–Eilenberg complex C∗(L) has

underlying graded algebra Ŝym(L∨[−1]). Its differential dL is a differential operator,

so that taking ∞-jets, we obtain a sheaf of commutative dg algebras

(J (Sym(L∨[−1])),J (dL)).

We denote this sheaf of commutative dg algebras by J (C∗(L)), for brevity’s sake. As

every ∞-jet bundle J (E) has a canonical flat connection (Proposition A.8), we can take

the de Rham complex of J (C∗(L)) to obtain a commutative dg algebra over �∗X . We

denote this sheaf of commutative dg �∗X -algebras by d R(J (C∗(L))).
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We now provide our primary construction.

Theorem 4.2. Let ρ : L → TX be a Lie algebroid over a smooth manifold X . For any

choice of compatible splittings σ = (σ0, σL∨), there exists a curved L∞ algebra enh(L)σ

over �∗X such that:

(1) enh(L)σ ∼= �]X (TX [−1]⊕ L) as �
]
X -modules;

(2) Ĉ∗(enh(L)σ ) ∼= d R(J (C∗(L))) as commutative �∗X -algebras; and

(3) the map sending a section to its ∞-jet,

j∞ : C∗(L) ↪→ d R(J (C∗(L))) ∼= Ĉ∗(enh(L)σ ),

defines a quasi-isomorphism of �∗X -algebras.

Remark 4.3. The final claim asserts that Ĉ∗(enh(L)σ ) is a semi-free resolution of C∗(L)
as an algebra over �∗X . Inasmuch as we are developing an approach to derived geometry

over the base ring �∗X , working with this algebra will provide the ‘homotopically correct’

answers to questions about C∗(L).

Remark 4.4. The theorem generalizes the construction in [30] in the case L = 0, as well

as that of Costello in [17] the case of a complex foliation T 0,1
X ↪→ TX ⊗ C.

Proof of Theorem 4.2. As shown by Lemma 4.1, a choice of compatible splittings

provides an isomorphism of �
]
X -modules

σ : �
]
X (Ŝym(T∨X ⊕ L∨[−1]))→ �

]
X (J (Sym(L∨[−1]))),

just by tensoring the isomorphism in the lemma over C∞X with �
]
X . Now the right hand

side has the canonical differential ∇Sym(L∨[−1])+ J (dL), which is the sum of the flat

connection on the jet bundle J (Sym(L∨[−1])) and the operator J (dL) . Thus, the left hand

side inherits a differential denh(L). Compatibility of the algebra structures ensures that

this transferred differential is also a derivation. Hence claim (2) amounts to interpreting

this completed commutative dg algebra

(�∗X (Ŝym(T∨X ⊕ L∨[−1])), denh(L))

as the Chevalley–Eilenberg cochains of some curved L∞ algebra enh(L), which is

immediate. Claim (1) amounts to recognizing the underlying vector bundle for enh(L) as

L ⊕ TX [−1].
Claim (3) follows from a standard jet bundle argument. See Proposition A.8 or, e.g.,

[10, Proposition 3.2].

Examining the proof, one recognizes that the argument applies verbatim to a dg Lie

algebroid.

Corollary 4.5. For ρ : L → TX a dg Lie algebroid and a choice of compatible splitting σ ,

there is a curved L∞ algebra enh(L)σ over �∗X such that:
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(1) enh(L)σ ∼= �]X (TX [−1]⊕ L]) as �
]
X -modules;

(2) Ĉ∗(enh(L)σ ) ∼= d R(J (C∗(L))) as commutative �∗X -algebras; and

(3) the map sending a section to its ∞-jet,

j∞ : C∗(L) ↪→ d R(J (C∗(L))) ∼= Ĉ∗(enh(L)σ ),

defines a quasi-isomorphism of �∗X -algebras.

Remark 4.6. The construction works for an arbitrary dg manifold, and it amounts to

providing a Fedosov resolution FA of the structure sheaf A and then taking the total

complex of the de Rham complex of that Fedosov resolution. (As the structure sheaf is

a dg algebra, there is an internal differential in �k(FA) for every k.) Our goal, as the

next sections make clear, is not to provide interesting objects, but to have categorical

statements. (The challenge in derived geometry is typically to have good control and

understanding of the morphisms, particularly weak equivalences.) Hence, we have focused

on Lie algebroids, where the categorical framework is better developed than the general

theory of dg manifolds.

4.2. A functorial statement I: the base-fixing case

In the construction above, we relied on a choice of splittings for the relevant jet bundles.

Via the isomorphisms produced by the construction, we can view a change of splitting as

providing an isomorphism of curved L∞ algebras (not just quasi-isomorphism!). Thus, in

a certain sense, the splitting does not matter. We now develop a precise version of this

idea.

In this section we work over a fixed base manifold X .

Definition 4.7. Let dgLieAlgdσ denote the category whose objects are pairs (L , σ ), where

L is a dg Lie algebroid and σ = (σ0, σ1) is a compatible pair of splittings, and whose

morphisms are simply maps of the underlying dg Lie algebroids (i.e., do not depend on

the splittings in any way). Let dgLieAlgdσbf(X) denote the category where we fix the base

manifold to be X and only allow base-fixing morphisms.

Lemma 4.8. There is a faithful functor

enhσ : dgLieAlgdσbf(X) → L∞-spacebf(X),
(L , σ ) 7→ (X, enh(L)σ ),

provided by the construction of Theorem 4.2.

Proof. We have specified what to assign to objects, but we need to specify the rest of

the functor. In other words, for each base-fixing map of dg Lie algebroids L → L ′ over

X , we need to provide a map (X, enh(L))→ (X, enh(L ′)) of L∞ spaces, and then we need

to verify that our construction respects composition of maps and also sends an identity

map to an identity map.

Let φ : L → L ′ be a base-fixing map of dg Lie algebroids on X . There is

a canonical map of dg �∗X -algebras φ∨ : C∗(L ′)→ C∗(L), which induces a map
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d R(J (φ∨)) : d R(J (C∗(L ′)))→ d R(J (C∗(L))). Using the splittings before and after this

map, we obtain a map

Ĉ∗(enh(L ′))
σL′
−−→
∼=

d R(J (C∗(L ′)))
d R(J (φ∨))
−−−−−−→ d R(J (C∗(L)))

σ−1
L
−−→
∼=

Ĉ∗(enh(L))

of filtered commutative dg �∗X algebras, and hence a map of the associated L∞ spaces.

From this explicit formula for the map of L∞ spaces, it is clear that the identity goes to

the identity: the inner map d R(F(J (id∨))) is simply the identity, so that the outer maps

cancel because they are given by the splitting and its inverse.

Now let L
φ
−→ L ′

ψ
−→ L ′′ be a composition of base-fixing maps of dg Lie algebroids. At

the level of dg �∗X algebras, we have

d R(J ((ψ ◦φ)∨)) = d R(J (φ∨)) ◦ σL ′ ◦ σ
−1
L ′ ◦ d R(J (ψ∨)),

so that enhσ (ψ ◦φ) = enhσ (ψ) ◦ enhσ (φ).

Lemma 4.9. The forgetful functor F : dgLieAlgdσbf(X)→ dgLieAlgdbf(X) is an

equivalence of categories.

Proof. The forgetful functor is clearly essentially surjective, and it is fully faithful, by

construction. Hence by Theorem 1 of IV.4 of [44], it is an equivalence.

Putting these lemmas together, we obtain the result we desire.

Proposition 4.10. The construction 4.2 produces a functor enh : dgLieAlgdbf(X)→
L∞-spacebf(X) that is unique up to natural isomorphism.

Proof. Any choice of ‘inverse’ G : dgLieAlgdbf(X)→ dgLieAlgdσbf(X) to F produces a

functor enhσ ◦G : dgLieAlgdbf(X)→ L∞-spacebf(X). Moreover, for any two choices G
and G′, there is a natural isomorphism enhσ ◦G⇒ enhσ ◦G′. Hence, this functor enhσ ◦G
is unique up to natural isomorphism.

Recall that both dgLieAlgd(X) and L∞-spacebf(X) are categories with weak

equivalences. The functor enh is compatible with this structure; more precisely, we have

the following.

Proposition 4.11. The functor enh : dgLieAlgdbf(X)→ L∞-spacebf(X) preserves weak

equivalences.

Proof. Let φ : L → L ′ be a weak equivalence of dg Lie algebroids over X . Fix a splitting

of the jet sequence and further choose splittings in order to obtain isomorphisms of

�]-modules

enh(L) ∼= �]X (TX [−1]⊕ L), and enh(L ′) ∼= �]X (TX [−1]⊕ L ′).

Since φ is a strict map of vector bundles, the induced map

enh(φ)1 : �
]
X (TX [−1]⊕ L)→ �

]
X (TX [−1]⊕ L ′)

is simply given by

enh(φ)1 = id
�
]
X
⊗ (idTX [−1]⊕φ).

Hence, Gr(enh(φ)1) is a quasi-isomorphism as φ itself is a quasi-isomorphism.
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4.3. A functorial statement II: the general case

We now prove that our construction is actually functorial with respect to arbitrary maps

of Lie algebroids, not just base-fixing maps.

Proposition 4.12. The construction of Theorem 4.2 defines a faithful functor

enh : dgLieAlgd → L∞-space
(ρ : L → TX ) 7→ (X, enh(L))

unique up to natural isomorphism.

Proof. As noted in the proof of the base-fixing case, the functor is already defined on

objects so the remaining work is to describe how the functor behaves on maps, check

associativity, and so on. We also fix a choice of splittings for each dg Lie algebroid to

produce an L∞ space, but the same arguments as in base-fixing case ensure that the

choices are essentially irrelevant.

Now let ρL : L → TX and ρK : K → TY be Lie algebroids equipped with splittings σL
and σK of their respective jet sequences. Let F = ( f, ϕ) : L → K be a morphism of dg

Lie algebroids. We need to produce a map of L∞ spaces

enh F = ( f, ψF ) : (X, enh(L))→ (Y, enh K ),

notably a map of filtered commutative dg �∗X -algebras

ψF : Ĉ∗( f ∗enh K )→ Ĉ∗(enh(L)).

Recall that the splittings induce isomorphisms

σK : Ĉ∗(enh K )
∼=
−→ d RY (JY (C∗(K ))) and σ−1

L : d RX (JX (C∗(L)))
∼=
−→ Ĉ∗(enh(L)).

As in the base-fixing case, the key is thus to exploit the nice behavior of the jets functor

J and then pre- and post-compose by these isomorphisms from the splittings.

Via base change, we have an isomorphism of �∗X -algebras

bF : Ĉ∗( f ∗enh K )
∼=
−→ f ∗Ĉ∗(enh K ).

By properties of the functor J , specifically Propositions A.2 and A.9, we have a natural

map of sheaves of commutative dg algebras

f −1 JY (C∗(K ))→ JX (C∗( f −1 K ))

and hence a map of �∗X -algebras

pF : d RX ( f −1 JY (C∗(K )))→ d RX (JX (C∗( f −1 K ))).

By composition, we thus have an isomorphism

pF ◦ σK ◦ bF : Ĉ∗( f ∗enh K )
∼=
−→ d RX (JX (C∗( f −1 K ))).

We now use the vector bundle map ϕ in the map F of Lie algebroids. It provides a map

ϕ∨ : ( f −1 K )∨→ L∨ on the dual vector bundles, and hence induces a map of �∗X -algebras

vF := d R(J (ϕ∨)) : d RX (JX (C∗( f −1 K )))→ d RX (JX (C∗(L))).
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We define

ψF := σ
−1
L ◦ vF ◦ pF ◦ σK ◦ bF ,

which, aside from the splitting isomorphisms, is determined manifestly by the geometry

of the situation.

It remains to verify the enh respects composition of maps. Now let G = (g, φ) be a map

of Lie algebroids from ρK : K → TY to ρI : I → TZ . We need to verify that enh(G ◦ F) =
enh(G) ◦ enh(F). Using our notation from above, we see that

ψG◦F := σ
−1
L ◦ vG◦F ◦ pG◦F ◦ σI ◦ bG◦F .

The composition enh(G) ◦ enh(F) is a bit trickier to describe because one must pull back

the map ψG , which is a map of sheaves on Y , to a map of sheaves on X

ψF ◦ f ∗ψG = σ
−1
L ◦ vF ◦ pF ◦ σK ◦ bF ◦ b−1

F ◦ σ
−1
K ◦ f ∗vG ◦ f ∗ pG ◦ f ∗σI ◦ f ∗bG ◦ bF .

Simplifying, we have

ψF ◦ f ∗ψG = σ
−1
L ◦ vF ◦ pF ◦ f ∗vG ◦ f ∗ pG ◦ σI ◦ bG◦F .

Observe next that the map

vG◦F ◦ pG◦F : d RX ((g ◦ f )−1 JZ (C∗(I )))→ d RX (JX (C∗L))

can be factored as

vF ◦ pF ◦ f ∗vG ◦ f ∗ pG : d RX ( f −1(g−1(JZ (C∗(I )))))→ d RX (JX (C∗L)).

Hence

ψF ◦ f ∗ψG = σ
−1
L ◦ vG◦F ◦ pG◦F ◦ σI ◦ bG◦F ,

which agrees with ψG◦F , and so we are done.

As in the preceding section, dgLieAlgd and L∞-space are categories with weak

equivalences. Further, since a weak equivalence of dg Lie algebroids is necessarily a

diffeomorphism of the base, we can immediately piggy back off of Proposition 4.11.

Proposition 4.13. The functor enh : dgLieAlgd→ L∞-space preserves weak equiva-

lences.

4.4. Lie algebroids and formal moduli problems

That there exists a nice link between Lie algebroids and L∞ spaces is not totally

surprising; the parallels are unmistakeable from the outset. Indeed, derived deformation

theory identifies formal moduli problems and differential graded Lie algebras. Initially,

this paradigm was formal and algebraic: one studies formal thickenings of a point, which

reduces the key issues to algebra. It is natural to think in a relative way, replacing the

point with a derived scheme or stack X and studying formal thickenings of X . There has

been much recent work on this problem in derived algebraic geometry, which we highlight

below. Loosely speaking, it identifies relative formal moduli spaces over X with sheaves

of (higher) Lie algebras over X .
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In a smooth setting, dg Lie algebroids are a natural parametrized version of dg Lie

algebras and hence ought to fill one side of such a putative identification. On the other

hand, in Costello’s formalism, we have shown that L∞ spaces do present families of

formal moduli problems. Hence the work of the preceding sections confirms the natural

expectation that dg Lie algebroids present relative formal moduli problems.

There is some helpful terminology for discussing various flavors of relative formal

moduli problems. For instance, an L∞ space (X, g) presents a stack Bg under X and

over Xd R , since by construction we have maps X → Bg→ Xd R . These maps have certain

properties, however, so we refine the terminology. We say that Bg is X -pointed since X
provides the underlying ‘geometric’ points (i.e., without derived fuzz) of Bg. We also say

Bg is linear over Xd R , because it is described by a sheaf of L∞ algebras over Xd R , and

hence is close to being a linear structure rather than having a more complicated fiber

structure.

For context, let us outline a few of the highlights from algebraic geometry. Unless

otherwise noted, X will denote a scheme or stack over a field K.

(1) For X a Kähler manifold, Kapranov [38] gave the first example of a Xd R-linear L∞
algebra in describing the homotopy Lie algebra structure of TX [−1] via the Atiyah

bracket.

(2) Hennion [34] generalized Kapranov’s results to the level of derived Artin stacks in

characteristic zero. He showed that there was an adjunction between X -pointed,

X -linear formal moduli problems and dg Lie algebras in QCoh(X).

(3) In the setting of smooth algebraic varieties in characteristic zero, Calaque et al. [9]

gave an adjunction between X -pointed, K-linear formal moduli problems and Lie

algebroids on X .

(4) Gaitsgory and Rozenblyum [26] greatly generalize the notion of Lie algebroid and

formal moduli problems, to a theory internal to derived stacks (and phrased in

terms of (∞, 2)-categories). In this setting they show that X -pointed formal moduli

problems are equivalent to (their notion of) Lie algebroids on X .

Note the interesting variety of pointings and bases.

Costello’s introduction of L∞ spaces was inspired by Kapranov’s work: he wanted to

rephrase complex manifolds in Lie-theoretic terms so as to reinterpret a σ -model mapping

into such a manifold as a family of gauge theories living over that manifold. His definition

is, however, close in spirit to [26], because an L∞ space lives between a manifold X and

its de Rham space Xd R . Because this notion does not work relative to more sophisticated

stacks, however, it naturally relates to the ordinary notion of Lie algebroid and does not

require their generalization.

5. Representations up to homotopy and vector bundles on L∞ spaces

5.0.1. The following notion of ‘module over a Lie algebroid’ is the most relevant to our

work. It is introduced in [2] and allows for the construction of an adjoint representation

of a Lie algebroid. Recall that for a vector bundle E → X , we use E to denote its sheaf

of smooth sections.
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Definition 5.1. A representation up to homotopy of a Lie algebroid ρ : L → TX is a

Z-graded vector bundle E → X and a dg C∗(L)-module structure on the sheaf of free

C∗(L)]-modules C∗(L)]⊗C∞X
E . We denote this dg module by C∗(L , E) and call E its

underlying vector bundle.

That is, C∗(L)]⊗C∞X
E is equipped with the obvious C∗(L)] action by left multiplication.

To specify a representation up to homotopy, one makes a choice of differential compatible

with this graded C∗(L)]-module structure, namely, a differential D on C∗(L)]⊗C∞X
E such

that

DE (xs) = (dL x)s+ (−1)x x(DE s)

for any section x ∈ C∗(L) and section s ∈ C∗(L)]⊗C∞X
E . This concept is also known as

a super-representation in the work of Mehta and Gracia-Saz [28].

Definition 5.2. A map of representations up to homotopy is a map of dg C∗(L)-modules

f : C∗(L , E)→ C∗(L , E ′). We denote by Rep∞(L) this category of representations up to

homotopy of L.

After Theorem 5.4, we discuss Arias Abad–Crainic’s notion of weak equivalence of

representations.

Lemma 5.3 [2, Example 4.1]. If C∗(L , E) ∈ Rep∞(L), then there exists a unique

representation up to homotopy C∗(L , E∨) such that

(1) the underlying vector bundle of C∗(L , E∨) is the (graded) dual of E; and

(2) for each s ∈ C∗(L , E) and s′ ∈ C∗(L , E∨), the differential DE∨ satisfies

dL(ev(s⊗ s′)) = ev(DE∨(s)⊗ s′)+ (−1)|s|ev(s⊗ DE (s′)),

where

evE : C∗(L , E)⊗C∗(L , E∨)→ C∗(L)

is the C∗-linear extension of the natural fiberwise evaluation pairing between

sections of E and E∨.

We call this representation up to homotopy C∗(L , E∨) the dual representation up to

homotopy.

5.0.2. Recall from § 2.4 the category of vector bundles over an L∞ space. In particular,

we write VB(enh(L)) for the category of vector bundles over the L∞ space corresponding

to a given Lie algebroid ρ : L → TX .

Theorem 5.4. There is a faithful functor enhmod : Rep∞(L) → VB(enh(L)).

Proof. Just as in the construction of enh, we fix connections on the underlying vector

bundles to make an explicit construction, but these choices are irrelevant up to

isomorphism, by an argument identical to that given in the construction of enh. Thus, fix

a connection on L once and for all. The L∞ space enh(L) is given by a pair (X, enh(L)).
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Let C∗(L , E) denote an L-representation up to homotopy with underlying graded vector

bundle E and let C∗(L , E∨) denote the dual representation with underlying bundle E∨.

Fix a connection on E , which induces a connection on E∨ and also on Sym(L∨[−1])⊗ E .

By using the connections, we obtain an isomorphism of vector bundles

J (Sym(L∨[−1])⊗ E)) ∼= Ŝym(T∨X ⊕ L∨[−1])⊗ E,

as in the proof of Lemma 4.1. This isomorphism induces an isomorphism of C∞X -modules

d RX (J (C∗(L , E))] ∼= �]X (Ŝym(T∨X ⊕ L∨[−1])⊗ E),

and along this isomorphism we transfer the differential on d RX (J (C∗(L , E)) to a

differential on the right hand side, making it a dg Ĉ∗(enh(L))-module. Let us denote this

module by Ĉ∗(enh(L), Ẽ). We very nearly have a vector bundle over enh(L): it remains

to verify that this dg module is the sheaf of sections of some vector bundle.

But this is simple. The dual representation up to homotopy E∨ produces a dg

Ĉ∗(enh(L))-module that we denote Ĉ∗(enh(L), Ẽ∨). This module canonically provides

the ‘linear functions’ among the ‘ring of functions’ on the total space enh(L o Ẽ):

Ĉ∗(enh(L o Ẽ)) := ŜymĈ∗(enh(L)) Ĉ∗(enh(L , Ẽ∨)).

Hence our construction produces a vector bundle on enh(L) whose underlying vector

bundle on X is just Ẽ = �
]
X (Sym(T∨X [−1]) ⊗ E).

A map of representations up to homotopy f : C∗(L , E)→ C∗(L , F) induces a

Ĉ∗(enh(L)σ )-linear map of sections enhmod( f ) : d RX (J (C∗(L , E)))→ d RX (J (C∗(L , F))).
Moreover, this association is faithful, since taking jets is injective.

Remark 5.5. The definition of a representation up to homotopy can seem less than

obvious on first exposure, especially when formulated as an infinite sequence of higher

homotopies. It is, however, essentially a module over the Lie algebroid, but viewed

as an L∞ algebra. Equivalently, it is essentially a Beck module for the Lie algebroid.

This perspective makes clear why we should have such a nice functor enhmod: we

simply apply enh to the overcategory dgLieAlgdbf(X)/L , which maps to the overcategory

L∞-spacebf(X)/enh(L). Compare to Remark 2.14.

Remark 5.6. The preceding theorem is the analog of the central result of [47], where

Mehta proves an equivalence between representations up to homotopy and Văıntrob’s
Lie algebroid modules.

Both categories possess natural symmetric monoidal structures. In the case of

representations up to homotopy, we use −⊗C∗(L)−. For vector bundles on an L∞-space

(X, g), we essentially tensor as representations of the curved L∞ algebra g. In detail, if V
and W are vector bundles, we tensor the underlying sheaves of sections over �

]
X and then

extend the action of g in the standard way, i.e., a section x of g acts by x ⊗ idW + idV ⊗ x .

The construction in the preceding proof manifestly intertwines these tensor products, and

so we have the following.

Lemma 5.7. The functor enhmod is symmetric monoidal.
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5.0.3. These categories both possess notions of weak equivalence, and we show that

enhmod is a homotopy functor (i.e., respects weak equivalences). From [2, § 4.2], we recall

Abad–Crainic’s notion, which relies on the natural filtration

FkC∗(L , E) = 0(X,3>k L∨⊗ E)

on C∗(L , E). This filtration is the Lie algebroid analog of the Hodge filtration Fk�∗X =

�
>k
X on a de Rham complex.

Definition 5.8 [2, Definition 4.9]. A map f : C∗(L , E)→ C∗(L , E ′) of representations up

to homotopy is a weak equivalence if the induced map

f̃ : C∗(L , E)/F1C∗(L , E)→ C∗(L , E ′)/F1C∗(L , E ′)

is a quasi-isomorphism.

Remark 5.9. Let E denote the sheaf of smooth sections of the graded vector E . Note that

C∗(L , E)/F1C∗(L , E) is simply E equipped with a C∞-linear differential; from hereon we

implicitly view E as this dg vector bundle. Further, we have an isomorphism

Gr C∗(L , E) ∼= (Gr C∗(L))⊗C∞ C∗(L , E)/F1C∗(L , E),

so we see that Gr f is simply idGr C∗(L)⊗ f̃ . Hence, Gr f is a quasi-isomorphism if and

only if f̃ is a quasi-isomorphism. That is, a weak equivalence is simply a filtered

quasi-isomorphism.

Proposition 5.10. The functor enhmod preserves weak equivalences. Thus, it induces a

functor at the level of derived (aka homotopy) categories.

Proof. Let f : C∗(L , E)→ C∗(L , E ′) be a weak equivalence of representations up to

homotopy. By definition, f̃ : E → E ′ is a quasi-isomorphism. We need to show that

the induced map of vector bundles on enh L is a quasi-isomorphism. Recall – see the

proof of Theorem 5.4 – that enhmod(C∗(L , E)) has underlying graded vector bundle

Ẽ := �]X (Sym(T∨X [−1])⊗ E) on the manifold X , and similarly for C∗(L , E ′). Now the

map of vector bundles

enhmod( f ) : enhmod(C∗(L , E))→ enhmod(C∗(L , E ′))

induces a map of sheaves of sections of dg vector bundles

(enhmod( f ))fib : Ẽ → Ẽ ′

on X , where Ẽ and Ẽ ′ are equipped with the C∞-linear differentials described just

before Definition 2.16. We need to show that this map is a quasi-isomorphism but by

construction

(enhmod( f ))fib = id
�
]
X
⊗ idSym(T ∨X [−1])⊗ f̃ ,

so the proposition follows.
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5.1. The adjoint complex(es) and the deformation complex

In the setting of Lie algebroids, there are two cochain complexes that play the role of

the ‘tangent complex’ of a Lie algebroid. On the one hand, there is the deformation

complex of Crainic–Moerdijk [20]; and on the other, there is the adjoint complex of Arias

Abad–Crainic [2]. In the end, these constructions are isomorphic (after a shift in degree),

but their definitions have rather different flavors. The deformation complex has a more

intrinsic flavor – it is an obvious variant of the Hochschild complex for associative algebras

and the deformation complex of Lie algebras – and it plays the starring role in our

constructions below, so we focus on it here.

Our main goal in this section is to show that enhmod sends the deformation complex of

a Lie algebroid L (equivalently, its shifted adjoint complex) to the tangent bundle of the

L∞ space enh(L).

5.1.1. The deformation complex. Let E → X be a graded vector bundle. Recall

that a derivation of its sections E(X) is an R-linear endomorphism D such that there is

a vector field σD with the property that

D( f e) = σD( f )e+ f D(e)

for every section e and every smooth function f . Analogously, an n-multiderivation of its

sections E(X) is a graded-antisymmetric, R-multilinear map

D : E(X)⊗ · · ·⊗ E(X)︸ ︷︷ ︸
n+1 times

→ E(X)

that is a derivation in each entry separately. (Note the potential for terminological

confusion here: the map D has some cohomological degree and it has ‘degree n’ as a

multiderivation, which just depends on the number of inputs.) Thus, there is a symbol

map σD : E(X)⊗n
→ TX (X) defined by

D(e0, . . . , en−1, f en) = f D(e0, . . . , en)+ σD(e1, . . . , en−1)( f )en,

for any smooth function f ∈ C∞(X) and sections e0, . . . , en ∈ E(X). When the rank of

E is greater than one, every symbol map σD is automatically C∞-linear. We restrict

to multiderivations with C∞-linear symbols when rk(E) = 1. Observe that 0-derivations

are simply derivations of E(X) and that −1-derivations are simply sections of E(X). (We

attempt to motivate this definition of multiderivation in § 5.1.2 below.)

The first result of Crainic–Moerdijk identifies this algebraic construction with a

geometric object.

Lemma 5.11 [20, Lemma 1]. The graded vector space Dern(E) of n-multiderivations is

equal to the sections of a graded vector bundle Dern(E). This vector bundle sits in a short

exact sequence

3n+1 E∨⊗ E → Dern(E)→ 3n E∨⊗ TX .

A choice of connection on E induces a splitting of this exact sequence.
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The projection map arises from taking the symbol of an n-multiderivation. A connection

∇ allows one to split the inclusion map via

L D(e0, . . . , en) = D(e0, . . . , en)+ (−1)n
∑

i

(−1)i+1
∇σE (...,êi ,...)(ei ),

which is antisymmetric and C∞-multilinear. Note that the component 3n+1 E∨⊗ E
encodes C∞-linear multiderivations of E . Hence, the splitting allows us to recognize

that the ‘entrywise derivation’ condition simply adds the component 3n E∨⊗ TX , which

encodes the symbols.

Let Der∗(E) denote the graded vector bundle
⊕

n>−1 Dern(E)[−n]. Its sheaf of

sections Der∗(E) has a natural (graded) Lie algebra structure by the standard

‘commutator bracket’ for multilinear operators. This statement is the second result in

Crainic–Moerdijk.

Lemma 5.12 [20, Proposition 1]. Given D1 ∈ Der p(E) and D2 ∈ Derq(E), the circle

product is

D2 ◦ D1(e0, . . . , ep+q) =
∑
π

(−1)π D2(D1(eπ(0), . . . , eπ(p)), eπ(p+1), . . . , eπ(p+q)),

where π runs over all (p+ 1, q)-shuffles. The Gerstenhaber bracket

[D1, D2] = (−1)pq D1 ◦ D2− D2 ◦ D1

makes Der∗(E) into a Lie algebra.

This Lie algebra encodes information of great interest to us. For instance, if E is

concentrated in degree zero, a Lie algebroid structure on E is precisely an element

m ∈ Der1(E) such that [m,m] = 0; the m provides a Lie bracket on E . In other words,

Maurer–Cartan elements of the dg Lie algebra (Der∗(E), [−,−]) – equipped with the zero

differential – are deformations of E from a trivial Lie algebroid to a (possibly) non-trivial

Lie algebroid. If E is graded, then a dg Lie algebroid structure on E is encoded by

a Maurer–Cartan element of the form mL = m(0)+m(1), where m(0) is a 0-derivation

providing the differential and where m(1) is a 1-derivation providing the Lie bracket. (A

natural definition of L∞ algebroid structure on E would be a Maurer–Cartan element of

(Der∗(E), [−,−]), although we do not pursue that notion here.) We are thus led to the

following definition.

Definition 5.13. The deformation complex of a dg Lie algebroid ρ : L → TX is the graded

Lie algebra of multiderivations Der∗(L]) equipped with the differential d = [mL ,−],

where mL ∈ Der1(L]) satisfies [mL ,mL ] = 0 and encodes both the differential and the

Lie bracket on L]. We denote this dg Lie algebra by De f (L).

Remark 5.14. Crainic and Moerdijk use a shift De f (L)[−1] of this dg Lie algebra

(cf. [20, § 2.4]), presumably to match the classical convention that for any ordinary

Lie algebra g, a degree 2 cocycle of C∗(g, g) encodes a first order deformation of the

Lie bracket. We prefer to work with De f (L) as we want to have a dg Lie algebra
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describing deformations, rather than a shifted dg Lie algebra; in other words, we prefer our

Maurer–Cartan elements to live in degree 1. An alternative explanation for our preference

is that for the commutative dg algebra C∗(g), the tangent complex is C∗(g, g[1]), using

standard conventions of homological algebra.

A choice of connection on L allows one to identify De f (L)[−1] with a representation

up to homotopy of L with underlying vector bundle TX [−1]⊕ L]: the splitting of Der∗(L)
induced by the connection gives an isomorphism of graded sheaves

Der∗(L])[−1] ∼= Sym(L∨[−1])⊗C∞ (TX [−1]⊕L]),

and we simply the transfer the differential of De f (L)[−1] along this isomorphism. This

procedure is explained in the proof of Theorem 3.11 of [2], and so provides an alternative

definition of the adjoint complex.

Definition 5.15. Given a choice of connection ∇ on the underlying graded vector

bundle L] of a dg Lie algebroid L, the adjoint complex adj(L ,∇) of L associated

to ∇ is the representation up to homotopy induced by the (shifted) deformation

complex De f (L)[−1].

It is thus manifest that all adjoint complexes are naturally isomorphic, and not just

quasi-isomorphic.

5.1.2. An explanation for this definition. The reader might wonder how one

would go about inventing this definition of De f (L). The subtle condition is that an

n-multiderivation D is a derivation in each entry, so we focus on explaining where it

comes from.

First, consider two natural variants of the construction of De f that are likely more

familiar. If one dropped this derivation condition and simply worked R-linearly, then the

remaining pieces of the construction encode the dg Lie algebra of graded derivations of the

commutative dg algebra SymR(L∗[−1]). Indeed, the n-multiderivations are a subspace of

this big R-linear construction. For instance, the Gerstenhaber bracket is just the bracket

of derivations on that dg R-algebra. On the other hand, if we ignored the Lie algebroid

structure on L but worked C∞-linearly, then the underlying graded algebra of C∗(L) is

SymC∞(0(L
∨)[−1]) and the graded derivations are C∞-linear. Hence the dg Lie algebra of

C∞-linear derivations is SymC∞(0(L
∨)[−1])⊗∞C 0(L). Note that this object does provide

a summand of De f (L).
The subtle condition on multiderivations tries to fit between these two variants, just as

a Lie algebroid tries to fit between an R-linear Lie algebra and a C∞-linear Lie algebra.

Indeed, consider the underlying graded-commutative R-algebra of C∗L:

C](L) = 0(X,Sym(L∨[−1]).

The graded derivations of this algebra over R (i.e., not over C∞(X)) naturally form

a graded Lie algebra, via the commutator bracket. As shown in [20, § 2.5], every

n-multiderivation D of L determines such a graded derivation of C](L), by a formula
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analogous to the Lie derivative. (See equations (6)–(9) therein.) In fact, they prove the

following.

Lemma 5.16. This Lie derivative-type construction determines an isomorphism of graded

Lie algebras from Der∗(L]) to the graded R-linear derivations of C](L).

The idea of the construction is easy to see in the simplest case. Let D be a

multiderivation of degree 0. It determines a linear endomorphism L D of C](L) by

L D(α)(`0, . . . , `n) = LσD (α(`0, . . . , `n))−

n∑
i=0

α(`0, . . . , D`i , . . . , `n).

Note that in particular that for a single section

L D(a)(`) = LσD (a(`))− a(D`)

and so

L D( f a)(`) = LσD ( f a(`))− f a(D`)

= σD( f )a(`)+ f (LσD (a(`))− a(D`)).

The higher degree multiderivations simply involve many extra factors.

This approach may seem strange, as it does not to depend on the Lie algebroid structure

but only on the underlying vector bundle. But this is precisely what we want if we know

we will be working with some Lie algebroid structure on L, but do not want to fix it

ahead of time. (That is, we want a construction that recovers the correct derivations but

is uniform in all Lie algebroid structures.) Then it is natural to ask that we have an

R-linear derivation that is entrywise a derivation, while not specifying the form of that

entrywise derivation. This is what the n-multiderivation condition does. The differential

[mL ,−] is used to enforce compatibility with a choice of Lie algebroid structure.

5.1.3. De f and the tangent bundle of an L∞ space. We now want to relate the

deformation (aka adjoint) complex of a Lie algebroid L to the tangent bundle of its L∞
space enh(L). Recall that for an L∞ space (X, g), the tangent bundle is the vector bundle

g[1] equipped with the adjoint action of g. Hence, the sections of this tangent bundle are

the Chevalley–Eilenberg complex Ĉ∗(g, g[1]).

Proposition 5.17. For each dg Lie algebroid L over the manifold X , there is an

isomorphism of dg Lie algebras between

• the tangent bundle Tenh(L) of the L∞ space enh(L) associated to L and

• the vector bundle enhmod(adj(L ,∇)[1]) on enh(L) associated to an adjoint complex of L.

To be clear here, the Lie structure on Tenh(L) is by the bracket as vector fields; in other

words, we view elements as derivations of the commutative dg algebra Ĉ∗(enh(L)) over

�∗X and work with commutators of derivations. On the other hand, the Lie structure on

enhmod(adj(L ,∇)[1]) is transferred from the Lie structure on the adjoint complex itself

because enhmod is symmetric monoidal.
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Proof. We begin by verifying the claim in a particularly simple case: the dg Lie algebroid

L has only zero brackets. In other words, it is simply a graded vector bundle that we

denote L0, in order to emphasize the triviality of the brackets. Fix a connection on L0,

and so on L∨0 , and a connection on TX , and so on T∨X .

In this case, several constructions simplify substantially. For example, the

Chevalley–Eilenberg complex C∗(L0) is simply Sym(L∨0 [−1]) and the differential is zero.

Hence, using our connections, we obtain an L∞ space enh(L0) via

d RX (J (Sym(L∨0 [−1]))) ∼= �∗X (Sym(T∨X ⊕ L∨0 [−1]))
∼= Ĉ∗(enh(L0)).

As another simplification, De f (L0) is a differential graded Lie algebra with trivial

differential. Fixing a connection on L0, we find that the associated adjoint complex

is Sym(L∨0 [−1])⊗C∞ (TX [−1]⊕L0). Using our connections, we obtain an isomorphism

J ∼= Sym(T∨X ) and thus an isomorphism

J (adj(L0,∇)) ∼= Sym(T∨X ⊕ L∨0 [−1])⊗C∞ (TX [−1]⊕L0).

Taking the de Rham complex for the Grothendieck connection on jets, we obtain an

isomorphism

d RX (J (adj(L0,∇))) ∼= �∗X (Sym(T∨X ⊕ L∨0 [−1])⊗ (TX [−1]⊕ L0))

∼= Ĉ∗(enh(L0), enh(L0)).

Hence our construction enhmod sends the shifted deformation complex De f (L0)[−1] to

Ĉ∗(enh(L0), enh(L0)) ∼= Ĉ∗(enh(L0), enh(L0)[1])[−1] = Tenh(L0)[−1],

the shifted tangent bundle of the L∞ space enh(L0).

This argument simply identifies the underlying bundles and connections. We now

explain why these isomorphisms actually respect the Lie brackets.

First, we recall an important fact as background. As noted in Remark A.3, a differential

operator P : E → F between sections of vector bundles determines a DX -linear map

J (P) : J (E)→ J (F); conversely, every such DX -linear map determines a differential

operator. Hence for a fixed graded vector bundle E , there is a natural isomorphism

J : Diff(E, E)
∼=
−→ HomDX (J (E),J (E))

of graded Lie algebras, where we use the commutator bracket on both sides.

As explained in § 5.1.2, in the guise of Lemma 5.16, the multiderivations and their

commutator are precisely the graded Lie algebra of graded derivations, over R, of

C∗(L0) = C](L0). Such graded derivations are, among other things, differential operators

on C∗(L0). In particular, the graded Lie algebra of multiderivations is simply a sub-graded

Lie algebra of Diff(C∗(L0),C∗(L0)) and hence of HomDX (J (C∗(L0)),J (C∗(L0))). For

a multiderivation D, let J (D) denote the corresponding DX -linear endomorphism

of J (C∗(L0)).

Now consider

Der∗DX
(J (C∗(L0))) ⊂ HomDX (J (C

∗(L0)),J (C∗(L0))),
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the sub-graded Lie algebra of graded derivations of J (C∗(L0)) as a graded-commutative

algebra in the category of DX -modules (using tensor over C∞(X) as the symmetric

monoidal structure). This operator J (D) lives in this sub-graded Lie algebra, as it is

a graded derivation of C∗(L0), so that we have a map of graded Lie algebras

J : Der∗(L0)→ Der∗DX
(J (C∗(L0)))

by restriction.

This map is, in fact, an isomorphism, as follows. Note that every graded derivation δ ∈

Der∗DX
(J (C∗(L0))) commutes with the flat connection on J (C∗(L0)), as it is DX -linear.

Hence δ preserves the sheaf of horizontal sections of J (C∗(L0)). But these horizontal

sections are precisely C∗(L0) by Proposition A.8. Hence δ determines a multiderivation

Dδ, by restricting to the horizontal sections of J (C∗(L0)). This construction is inverse to

the map J by direct inspection.

So far we have spoken of maps between global sections, but it becomes convenient now

to talk at the level of sheaves. Recall that for any DX -modules M,N , there is a natural

map

HomDX (M,N ) ↪→ d R(HomC∞(M,N )),
because a DX -linear map is a C∞-linear map and the canonical DX -module structure on

HomC∞(M,N ) picks out DX -linear maps as horizontal sections. By construction, this

map is a quasi-isomorphism. Hence there is a natural map

Der∗DX
(J (C∗(L0))) ↪→ d R(Der∗C∞X (J (C

∗(L0)))

by restricting to the derivations inside all maps.

Stringing all of our identifications together, we obtain a map of sheaves

Der∗(L0)
∼=
−→ Der∗R(C

∗(L0))
∼=
−→ Der∗DX

(J (C∗(L0))) ↪→ d R(Der∗C∞X (J (C
∗(L0))).

In words, it says that every multiderivation determines a horizontal section of the de

Rham complex of derivations of jets. This composite is a quasi-isomorphism. As taking

the de Rham complex of left DX -modules is symmetric monoidal, the rightmost complex

is isomorphic to

Der∗�∗X (d R(J (C∗(L0)))) ∼= Der∗�∗X (Ĉ
∗(enh(L0)))

which is an equivalent description of Tenh(L0).

This complicated composite map is about how operations on smooth sections determine

corresponding operations on their jets. Since the map intertwines the actions as

derivations, it manifestly enhances the earlier identifications involving the adjoint

complex, which only involved the vector bundle structures.

Remark 5.18. We remark that another approach is to write out explicitly the Lie brackets,

done most concretely by working in local coordinates with a choice of frame of L0. For

the authors at least, this approach did not illuminate why they agree.

Having established the proposition for a trivial Lie algebroid, we turn to the general

case. It follows, in fact, as a deformation of the trivial case just explained. If the
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dg Lie algebroid L corresponds to a Maurer–Cartan element mL in De f (L0), then

j∞(mL) provides a Maurer–Cartan element of d RX (J (adj(L0,∇)[1])) and hence of

Ĉ∗(enh(L0), enh(L0)[1]). Since the latter dgla controls deformations of enh(L0), we thus

obtain a new L∞ space; we want to identify it with enh(L). Let us use the connection

on L0 to produce enh L. In that case, we are using the same underlying isomorphism of

C∞X -modules

J (Ŝym(L∨[−1])) ∼= Ŝym(T∨X ⊕ L∨[−1])

for both L0 and L. Thus, there is a canonical isomorphism of C∞-modules

d RX (J (C∗(L0)))
] ∼= d RX (J (C∗(L)))] ∼= �

]
X (Ŝym(T∨X ⊕ L∨[−1])).

The difference between the differentials on the first two spaces is precisely j∞(dL), the

differential on C∗(L) that arises from the non-trivial dg Lie algebroid structure. Under the

identification between a dg Lie algebra structure (i.e., differential and bracket) and the

differential on its Chevalley–Eilenberg cochains, the Maurer–Cartan element mL identifies

with dL and so j∞(mL) identifies with j∞(dL). Hence, the deformation of enh(L0) by

j∞(mL), transferred along the splitting isomorphism, is precisely enh(L).

Remark 5.19. This proof is independent of Theorem 4.2 and actually provides an

alternative proof. One starts by checking directly the case of a trivial Lie algebroid, which

is a straightforward application of results about∞-jets, and then applies the deformation

to obtain the general case.

Remark 5.20. In the proof above, we could have worked with an arbitrary Maurer–Cartan

element De f (L0), which encodes an L∞ algebroid, rather than an element encoding a dg

Lie algebroid. This notion of L∞ algebroid is well behaved, but we feel that it would add

an unnecessary layer of complexity to this paper to develop the full categorical aspects

of L∞ algebroids necessary for articulating our main results at this level of generality.

Several such aspects are described in [50] under the name of strong homotopy Lie algebroid

or in [39] as homotopy Lie–Rinehart pairs. More recent appearances of this notion can be

found in [7, 9, 56]. We think it would be useful and interesting to see the various flavors

of this formalism unified and expanded.

Remark 5.21. An alternative generalization of representations up to homotopy has been

put forth by Vitagliano [62]. Further, his L R∞ modules also generalize actions of L∞
algebras on dg manifolds. It could prove useful to relate his notions to our constructions

in L∞ spaces.

5.2. The Weil complex as a de Rham complex

Under our correspondence between representations up to homotopy of L and vector

bundles on enh(L), the Weil algebra of L goes to the de Rham complex of enh(L), as we

now explain. We thus obtain new perspectives on this de Rham complex in light of the

prior work on the Weil algebra. For instance, Arias Abad and Crainic [2] show this Weil

complex includes the BRST complex of Kalkman [37]. In other work, they show it also

has a natural role in studying the cohomology of classifying spaces [1, 3].
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5.2.1. The Weil algebra in Lie theory. Recall that the Weil algebra W (g) of an

ordinary Lie algebra g is a commutative dg algebra whose underlying graded algebra is

Sym(g∨[−1]⊕ g∨[−2]) and whose differential has the following form. Note that dW (g) is

a derivation and thus determined by its behavior on the subspace of generators g∨[−1]⊕
g∨[−2]. The degree 2 component of W (g) consists of 32g∨⊕ g∨, and on the degree

one component the differential dW (g) breaks up as a sum dC E + dd R , where dC E is the

differential in the Chevalley–Eilenberg cochain complex C∗(g) and where dd R is simply

the identity. The degree 3 component of W (g) consists of 33g∨⊕32g∨⊗ g∨⊕Sym2 g∨,

and on the linear piece g∨ of the degree 2 component, the differential dW (g) breaks up as

a sum of three terms of which only the term g∨→ 32g∨⊗ g∨ is non-trivial. It is given

by the differential of C∗(g, g∨), and so is determined by the coadjoint action. The Weil

complex has H k W (g) = 0 for k 6= 0 and H0W (g) = C.

There is a more succinct and conceptual way to obtain the Weil algebra:

it is the de Rham complex of the commutative dg algebra C∗(g). We quickly

outline this construction. First, identify C∗(g, g∨[−1]) as the Kähler differentials of

the Chevalley–Eilenberg cochains, which thus possesses a universal derivation map

dd R : C∗(g)→ C∗(g, g∨). Extending this de Rham differential to higher de Rham forms

in the usual fashion, we obtain a double complex

C∗(g)
dd R
−−→ C∗(g, g∨[−1])

dd R
−−→ C∗(g,32(g∨[−1]))→ · · ·

whose totalization we call the de Rham complex of C∗(g). It is manifest from this

construction that it is the Weil algebra.

We can now explain why the Weil complex has trivial cohomology, except in degree

0. In the double complex constructed in the previous paragraph, the vertical differential

in column p is simply the differential on C∗(g,Symp(g)[−p]). If we ignore the vertical

differential and use just the horizontal differential, the total complex is the symmetric

algebra on the two-term complex g[−1]
id
−→ g[−2]. (This claim is just a version of the

fact that the de Rham differential on polynomials sends a generator x to the 1-form dx .)

Hence, using the spectral sequence of the filtration by the internal, or vertical, degree of

this de Rham complex for C∗(g), we see that the first page is trivial except for p = 0 = q
by the Poincaré lemma for polynomials.

5.2.2. The Weil algebra for Lie algebroids. In [2, § 5], Arias Abad and Crainic

define a Weil algebra W(L ,∇) associated to a Lie algebroid L with a choice of connection

∇ on the underlying vector bundle. This connection is used to define a coadjoint

representation ((adj L)∨,∇), but every choice of connection produces an isomorphic Weil

algebra.

Their Weil algebra is the double complex with

W(L ,∇)p,q
=

⊕
k

0(X,3p−k(L∨)⊗3q−k(T∨X )⊗Symk(L∨))

and with differential a sum of a horizontal and vertical component. In other words,

the underlying graded algebra of the Weil algebra is generated over smooth functions

C∞(X) by a copy of 0(X, L∨) equipped with bidegree (1,0), a copy of �1(X) = 0(X, T ∗X )
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equipped with bidegree (0,1), and a copy of 0(X, L∨) equipped with bidegree (1,1). (To

compare with our discussion above, note that Arias Abad and Crainic swap the vertical

and horizontal directions relative to our construction. We adhere to their conventions

here to simplify comparison.) To specify the differential, it is thus enough to say how it

acts on these generators.

We describe the vertical differential first. The column W0,∗(L ,∇) is simply a copy

of the de Rham complex �∗(X), and hence the vertical differential on this column is

simply the exterior derivative. The column W1,∗(L ,∇) has underlying graded vector

space �](X, L∨)⊕�](X, L∨)[−1], but the vertical differential is a little complicated: if

(a, b) is an element of the direct sum, then

dver((a, b)) = (∇a− R∇b,∇b+ a),

where ∇ here denotes the chosen connection (not usually flat!) on L∨ and R∇ denotes

the associated curvature. Note that the vertical differential on this Weil algebra is thus

a natural Lie algebroid analog of what we called the horizontal differential above, which

arose from the identity map g→ g. Arias Abad and Crainic express this perspective

using a ‘double’ construction (see [2, Example 3.8]).

The horizontal differential is a bit simpler to describe. The row W∗,0(L ,∇) is simply a

copy of C∗(L). The row W∗,1(L ,∇) is the coadjoint representation ((adj L)∨,∇) with the

differential ‘conjugated’, in the terminology of Arias Abad–Crainic, which simply means

to modify the sign of the differential in the usual way due to shifting the complex up

by one degree. A direct computation verifies that the vertical differential mapping the

zeroth row to the first row is a derivation from the commutative dg algebra C∗(L) to the

coadjoint representation; in other words, it is a kind of exterior derivative from functions

to 1-forms.

The following result should thus come as no surprise.

Proposition 5.22. The de Rham complex of enh(L) is the image under enhmod of the

(totalization of the) Weil complex of L.

Proof. Recall that the functor enhmod is symmetric monoidal and also the construction

of the dual of a representation up to homotopy. Combining these, we find that

enhmod(Symq(adj∨(L ,∇))[−p]) ∼= Ĉ∗(enh(L),Symp(T∨enh(L))[−p]).

It remains to verify that enhmod sends the ‘vertical differential’ dver, in the sense of Arias

Abad–Crainic, to the de Rham differential dd R for Ĉ∗(enh(L)).
This vertical differential is a derivation, as is the de Rham differential of Ĉ∗(enh(L)),

so it suffices to understand how they behave on the generators. In other words, we only

need to show that

enhmod(dver) : enhmod(C∗(L)) → enhmod(adj∨(L))
‖ ‖

Ĉ∗(enh(L)) Ĉ∗(enh(L), T∨enh(L))

is the universal derivation on Ĉ∗(enh(L)). To show this, we use the characterizing property

that

LX f = 〈X , dd R f 〉
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for f an element of Ĉ∗(enh(L)), X a derivation on Ĉ∗(enh(L)) (i.e., a section of the tangent

bundle), LX the Lie derivative, and 〈−,−〉 the evaluation pairing between vector fields

and one-forms. On the level of representations up to homotopy, the vertical differential

satisfies the analogous relation

LX f = 〈X , dver f 〉

for f an element of C∗(L), X an element of the adjoint complex, LX the Lie derivative,

and 〈−,−〉 the evaluation pairing between the adjoint and coadjoint complexes.

(Verification is easiest using the invariant – i.e., connection-independent – description

of the (co)adjoint complexes in [2, § 3.2, Example 4.7].) By Proposition 5.17, we see that

enhmod intertwines the Lie derivative at the level of the adjoint complex with the Lie

derivative at the L∞-space level. Hence, enhmod(dver) = dd R .

Alternatively, since the Weil complexes are isomorphic (not just quasi-isomorphic) for

any choice of connection on L, we can check locally using a convenient connection. Let U
be a coordinatized open subset of X on which L is trivializable, and fix a frame on L and

let ∇ be the associated flat connection on L. In that case, the formulas in [2, Remark 5.2]

simplify tremendously. In particular, the vertical differential from C∗(L) to the coadjoint

complex is, in degree zero, the exterior derivative from C∞(X) to �1(X) and, in degree

one, the identity from C1(L) to the copy of 0(U, L∨) in the degree 1 component of

the coadjoint complex. After applying enh, one finds precisely the universal derivation,

because this trivialization of the jet bundles produces a dg Lie algebra over the de Rham

complex of X , with no complicated higher brackets.

This identification implies the following corollaries, among many others, due to the

work of Arias Abad and Crainic.

Corollary 5.23 [2, Proposition 5.1]. The cohomology of the de Rham complex of enh(L)
is isomorphic to the de Rham cohomology of the underlying manifold X .

Corollary 5.24 [2, Proposition 5.5]. Let X be a g-manifold for some finite-dimensional

Lie algebra g. Let go X denote the associated Lie algebroid: the vector bundle is the

trivial g-bundle on X , equipped with the canonical flat connection, and the anchor map is

the action map ρ : g→ 0(X, TX ). Then the de Rham complex of enh(go X) is the image

under enhmod of the Kalkman’s BRST complex W (g, X).

6. Symplectic structures

The notion of higher symplectic geometry appears in the physics literature as part of

the BRST and BV formalisms. Mathematically, there are many approaches, although

of most relevance to our results in this section is work of Roytenberg [54], Ševera [57],

and Ševera and Weinstein [58]. Recently, Pantev et al. [51] have developed symplectic

geometry in the setting of derived algebraic geometry. Here we provide a bridge between

these two mathematical approaches.

In this section we show that the notion of an n-shifted symplectic form on L∞
spaces is compatible with and extends existing definitions of n-symplectic Lie algebroids.
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Our explicit comparison is with the formulation of Roytenberg [54] in terms of dg

manifolds. (We find the lectures of Cattaneo and Schätz [15] to be a lucid and efficient

exposition of graded and dg manifolds and symplectic structures thereon.)

6.1. Brief recollections on dg manifolds

Recall that a graded manifold is a graded-ringed space (X,A) where the underlying

topological space X is a smooth manifold and A is a sheaf of Z-graded-commutative

algebras locally of the form U 7→ 0(U,Sym E), where E → U is a Z-graded vector bundle.

A map of graded manifolds F = ( f, ψ) : (X,A)→ (Y,B) is a smooth map f : X → Y and

a map of sheaves of graded f −1C∞Y -algebras ψ : f −1B→ A. A vector field X on (X,A)
is a graded derivation of A.

The central example is the graded manifold associated to a graded vector bundle E →
X : it is (X,SymC∞(E∨)), where E∨→ X denotes the dual vector bundle and E∨ denotes

its sheaf of sections. In fact, every graded manifold is isomorphic to a graded manifold

coming from a graded vector bundle. We abusively denote by E the graded manifold

arising from the vector bundle E → X .

A dg manifold is a triple (X,A, Q), where (X,A) is a graded manifold and Q is a degree

1 vector field on A such that [Q, Q] = 0. (Such a Q is typically called a “(co)homological

vector field.”) A map of dg manifolds F = ( f, ψ) : (X,A, Q)→ (Y,B, R) is a map of

graded manifolds such that ψ is cochain map (i.e., Q ◦ψ = ψ ◦ R).

We have already encountered an important class of examples. A Lie algebroid ρ : L →
TX produces a dg manifold (X,C∗(L)), where we have compressed notation with A =
C∗(L)] and Q is the differential on the Chevalley–Eilenberg complex of L. We denote

this dg manifold by X/L as its dg algebra of functions is the derived invariants of C∞X
with respect to the action of L. As Văıntrob [60] observed, a Lie algebroid structure on a

(ungraded) vector bundle L → X is equivalent to a dg manifold structure on the graded

vector bundle L[1] → X : the cohomological vector field is precisely the differential of the

putative C∗(L) and hence encodes the bracket.

Another important example of a dg manifold is the de Rham space Xd R of a graded

manifold X = (X,A). Suppose, without loss of generality, that X corresponds to the

graded vector bundle E → X . Then the tangent bundle TX corresponds to the graded

vector bundle (TX ⊕ E)⊕ E → X . Now, the underlying graded manifold of Xd R is T [1]X .

As A = SymC∞(E∨), the structure sheaf of Xd R is

SymC∞(E∨⊕ T ∨[−1]⊕ E∨[−1]) ∼= SymA(�
1
A[−1]),

where �1
A = �

1
X ⊕ E∨ denotes the sheaf of one-forms for A. There is a natural degree

1 derivation dd R : A→ �1
A that extends the de Rham differential on C∞; in local

homogeneous coordinates {xi }, we have the standard formula dd R =
∑

i dxi
∂
∂xi

. Then

Xd R is the dg manifold (X,SymA(�
1
A[−1]), dd R), where we extend dd R as a derivation

to the symmetric algebra.

For X = (X,A, Q) a dg manifold, it is possible to equip the graded vector space of

one-forms �1
A with a natural differential Q1 determined by the requirement that Q1 ◦

dd R = dd R ◦ Q. This construction amounts to taking the Kähler differentials of the dg

algebra (A, Q), except that we require it to play nicely with smooth functions on X ,
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which is not a purely algebraic condition. (In other words, it is the Kähler differentials as

a dg C∞-ring.) The de Rham space of X is then (X,SymA(�
1
A[−1]), dd R + Q1). We use

this version of the de Rham complex of (A, Q), but it seems not to be wholly standard

in the dg manifold literature (at least it does not appear in [15, 54]).

Proposition 6.1. For the dg manifold X/L associated to a Lie algebroid L on X , the sheaf

of one-forms �1
C∗(L) is naturally isomorphic to the coadjoint complex of L. Moreover,

the de Rham complex of C∗(L) is naturally isomorphic to (the totalization of) the Weil

complex of L.

This de Rham complex itself determines a dg manifold (X, �∗X/L). In light of

Corollary 4.5 and Proposition 5.22, we immediately obtain the following corollary.

Corollary 6.2. For a Lie algebroid L on X , the de Rham complex of the dg manifold X/L
is mapped by enh to the de Rham complex of the L∞ space enh(L).

Proof of proposition. The underlying graded vector bundles on X are the same: the

cotangent bundle for X/L has underlying graded vector bundle T∨X ⊕ L∨[−1], just like

the coadjoint complex. This identification extends to the higher wedge powers. It thus

remains to relate the differentials. Since different choices of connection on L induce

canonically isomorphic coadjoint complexes, we check locally using a convenient choice.

(Compare to the final paragraph of the proof of Proposition 5.22.) Fix coordinates on

some small open U in X and fix a frame for L (and the dual frame for L∨) on this open U .

Equip L and L∨ restricted to U with the flat connection associated to this trivialization

by the frame. Then the de Rham differential for the dg manifold U/L is identical to the

vertical differential of the Weil complex by inspection (see the formulas in Remark 5.2

of [2], which simplify drastically for a flat connection).

Remark 6.3. These results are fragments of a larger story. The techniques developed in

this paper apply equally well to all dg manifolds, so that a dg manifold provides an L∞
space via the Fedosov resolution process we have articulated. The notion of de Rham

complex of a dg manifold then goes to the de Rham complex of the associated L∞ space.

6.2. Shifted symplectic structures

We now show that a symplectic structure on the dg manifold associated to a dg Lie

algebroid will produce a shifted symplectic structure on its L∞ space. Thus standard

examples, like Courant algebroids, fit into the L∞ space framework.

Let us begin by recalling the definition whose first explicit description is, so far as

we know, due to Roytenberg. (See [54, p. 6], just above Lemma 2.2, or Definition 4.3

of [15].) This definition is stronger than the definition we consider natural, as we show

momentarily, so we introduce a terminological distinction.

Definition 6.4. An n-shifted Roytenberg symplectic structure on the dg manifold X/L =
(X,C∗(L)) is a 2-form ω of cohomological degree n on the underlying graded manifold
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(X/L)] := (X,Sym(L∨[−1])) such that:

(1) the induced map ω∗ : TX/L] → T∨X/L] [n] is non-degenerate;

(2) dd Rω = 0 in the de Rham space of (X/L)]; and

(3) the cohomological vector field Q = dC∗L is symplectic with respect to ω, i.e.,

L Qω = 0.

Let us give that definition in other terms. An n-shifted Roytenberg symplectic

structure on the dg manifold X/L = (X,C∗(L)) is an element η ∈ C∗(L ,32(adj L)∨) of

cohomological degree n that is closed under the internal differential and also closed under

the vertical differential of the Weil complex. (Hence it provides a closed element for the

total differential of the Weil complex.) Further, η is to be non-degenerate, i.e., η induces

an isomorphism adj L[1] → (adj L)∨[1+ n].
We consider the following definition more natural, by analogy to our L∞ space

definition [30] or the approach of [51]. Let the closed 2-forms �2,cl(X/L) denote the

totalization of the double complex

C∗(L ,32((adj L)∨[−1]))
dd R
−−→ C∗(L ,33((adj L)∨[−1]))

dd R
−−→ · · · ,

and let i denote the obvious truncation to C∗(L ,32(adj L)∨). Recall that a closed 2-form

ω is a cocycle in the complex �2,cl(X/L).

Definition 6.5. An n-shifted symplectic form on X/L is a closed 2-form ω of

cohomological degree n such that the induced map i(ω) : adj L[1] → (adj L)∨[1+ n] is

a quasi-isomorphism.

Explicitly, a closed 2-form ω of cohomological degree n is really a sequence ω =

(ω0, ω1, . . . ) with ωi ∈ C∗(L ,3i ((adj L)∨[−1])) of internal degree n− i + 2 such that

dd Rωi = dHωi+1.

Non-degeneracy is only a property of ω0 = i(ω), while being closed is an explicit lift of

ω0 to a cocycle in �2,cl(X/L) and hence involves specifying additional data.

Examples of such shifted symplectic forms come from Roytenberg symplectic

structures.

Lemma 6.6. A Roytenberg symplectic structure of degree n defines a n-shifted symplectic

form on X/L.

Proof. By definition a Roytenberg symplectic structure η is concentrated in a single

bidegree and is closed under both the horizontal and vertical differential, hence it is

closed under the total differential. Further, by hypothesis η is non-degenerate. Such an

η corresponds to a n-shifted symplectic form of the type ω = (η, 0, 0, . . . ).

By applying Corollary 6.2, we deduce the following result from [54].
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Corollary 6.7. A shifted Roytenberg symplectic structure on X/L produces a shifted

symplectic structure on enh(L). In particular, if L is a Courant algebroid over X , then

enh(L) is 2-shifted symplectic.

Remark 6.8. We expect a Darboux lemma to hold for symplectic L∞ spaces, possibly

under some further reasonable conditions. (Derived algebraic versions appear in [5, 8],

where arguments and conditions can be found that would provide a model for such a

lemma.) One consequence would then be that for such spaces, every shifted symplectic

structure is locally equivalent to a Roytenberg symplectic structure.

Remark 6.9. Subsequent to the posting of this paper, Pym and Safronov [52] explored

shifted symplectic structures on Lie algebroids and their higher generalizations. Their

approach to basic definitions (e.g., of the de Rham forms of X/L and shifted symplectic

forms) is also modeled on [51], and it appears to agree with ours where the domains of

definition overlap (essentially, dg Lie algebroids concentrated in nonpositive degrees). A

key message of [52] is that Roytenberg’s classification must be refined when using these

more homotopically sophisticated definitions. For instance, given such a nonpositively

graded dg Lie algebroid, the ∞-groupoid of 2-shifted symplectic structures is equivalent

to a 2-groupoid of twisted Courant algebroids. That means that a 2-shifted symplectic

structure can be specified by a 2-form that is strictly closed and non-degenerate but that

also involves a closed 4-form on the underlying smooth manifold (namely, the ‘twist’ of

the Courant algebroid). Hence a Safronov–Pym 2-shifted symplectic structure is more

general than a Roytenberg 2-symplectic structure. (See § 5 for a precise discussion.) We

expect – but do not verify here – that their results port to our context, in which case one

can deduce that there are shifted symplectic structures on enh(L) that do not arise from

shifted Roytenberg symplectic structures. In other words, the converse to the preceding

corollary is not true.

6.3. AKSZ Theories

Shifted symplectic structures play a central role in the AKSZ construction [4], a

mechanism for producing classical field theories in the BV formalism. These theories

are σ -models, i.e., the field content consists of maps between geometric entities. The

paradigm operates as follows:

(1) The first input is a source dg manifold Σ equipped with a d-orientation, which

produces a volume form dvol of degree d, e.g., a closed oriented d-manifold or a

Calabi–Yau d-fold.

(2) The other input is a target dg manifold X , which is equipped with a k-shifted

symplectic structure ω.

(3) The space of fields, or field content, is the mapping space Map(Σ, X), which we

denote by E .

(4) The form dvol and the symplectic structure ω induce a k− d symplectic structure

on the space of fields E = Map(Σ, X). Explicitly, for ϕ : Σ → X a map, the tangent
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space TϕE has a pairing of degree k− d given by

〈ξ1, ξ2〉 :=

∫
p∈Σ

ϕ∗ω(p) (ξ1(p), ξ2(p))dvol,

where ξ1, ξ2 ∈ TϕE = 0(Σ, ϕ∗TX ).

(5) In the case where k− d = −1, the fields E form a −1-symplectic space and hence

defines a classical BV theory.

This paradigm was used by [4] to interpret several important field theories, including

Chern–Simons theory and the A- and B-models of mirror symmetry. See also the more

recent work of Cattaneo, Mnëv, and collaborators, e.g., [14, § 2].

This methodology can be extended beyond the setting of dg manifolds: in [51] this

formalism is developed for shifted symplectic derived stacks. As noted in [30], the

AKSZ formalism extends to shifted symplectic L∞ spaces, where it provides perturbative

descriptions of these σ -models in a way compatible with the renormalization/BV package

developed by Costello. Moreover, these perturbative theories are presented as a families of

gauge theories parametrized by the target manifold. This methodology has been fruitfully

exploited in the following recent works:

• The formal neighborhood of the zero section X ↪→ T ∗X determines a 0-shifted

symplectic L∞ space. Hence, there is an associated one-dimensional theory that is

a version of (topological) quantum mechanics. This theory is quantized in [29] and the

observable theory is described in [31].

• Any symplectic manifold (M, ω) defines a 0-shifted symplectic L∞ space.

The quantization of the resulting one-dimensional theory [32] recovers Fedosov

quantization [23] and gives a new proof of the algebraic index theorem [48].

• The formal neighborhood of the zero section Y ↪→ T ∗Y of a complex manifold Y
determines a 0-shifted symplectic L∞ space. If one takes a Calabi–Yau Riemann

surface as the source, one obtains an AKSZ theory known as the curved βγ system.

Its quantization recovers the sheaf of chiral differential operators [27] on Y and its

partition function gives a mathematically rigorous interpretation of the Witten genus

in terms of QFT [17].

• The three-dimensional theory known as Rozansky–Witten theory is realized via a

2-shifted symplectic L∞ space arising from a holomorphic symplectic manifold. See [16]

for the details of the L∞ space formulation and its quantization.

• Perturbative aspects of the Riemannian σ -model in two dimensions also fit into this

paradigm. In [33] this theory is described in terms of a 1-shifted symplectic L∞ space.

The β-function (at one loop) of this theory describes Ricci flow on the target manifold,

as first explained by Friedan [25].

The results of this paper allow one to describe a whole slew of additional perturbative

BV theories. For example, a Courant algebroid (E, ρ, 〈, 〉) defines a 2-shifted symplectic

L∞ space. The quantization of the resulting three-dimensional AKSZ theory describes a

low-energy effective theory for the Courant σ -model [36]. In collaboration with Brian
Williams, the authors intend to quantize this theory and explore its implications.
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Indeed, this example nearly brings the story full circle, as much of Roytenberg’s work [55]

was motivated by giving a mathematically coherent description to classical aspects of the

Courant σ -model.
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Appendix A. Jets and connections

If E → X is a vector bundle on a smooth manifold, its sheaf E of smooth sections is a

module over the sheaf C∞X of smooth functions on X . We will be somewhat cavalier in

moving back and forth between a vector bundle E and its sheaf E of smooth sections;

in general, we use Roman script for vector bundles and calligraphic script for sheaves.

We focus on the category VB(X) whose objects are finite-rank vector bundles and whose

morphisms are vector bundle maps. It has a natural symmetric monoidal structure given

by the Whitney tensor product, given by fiberwise tensor product.

To simplify notation, we suppress subscripts referring to the base manifold X , so C∞

will mean C∞X and T∨ will mean T∨X , for example.

A.1. Finite jet bundles

For every natural number k, there is a bundle J k(E)→ X of k-jets of E , whose fiber at

a point x ∈ X is Ex/m
k+1
x , where Ex denotes the stalk of E at x (i.e., the vector space of

germs at x of sections) and where mx denotes the vector space of germs at x of smooth

functions vanishing at x . Observe that J 0(E) = E .

Let J k(E) denote the sheaf of smooth sections of J k(E). There is a map of sheaves

jk : E → J k(E) sending a smooth section to its k-jet. (Note that jk does not arise from
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a map of vector bundles for k > 0.) Two smooth sections s, s′ ‘agree to order k at x ’ if

their germs jk(s), jk(s′) are the same in J k(E)x .

Jets play an important role in relation to differential operators. For instance, an order

k differential operator P : E → F is a C-linear map of sheaves that factors as E jk
−→

J k(E)
P̃
−→ F , where P̃ is a C∞-linear map of sheaves.

A.2. The ∞-jet bundles

The ∞-jet bundle J (E) is the pro-finite-rank vector bundle limk J k(E). We work

with it as an infinite-rank vector bundle with filtration Fk J (E) whose quotients

J (E)/Fk+1 J (E) ∼= J k(E) are finite rank. All our constructions will respect this filtration;

in other words, we work in the category of filtered vector bundles and require maps to

be filtration-preserving.

We use J (E) to denote the sheaf of smooth sections of J (E). There is a sheaf map

j∞ : E → J (E) sending a smooth section to its ∞-jet. In local coordinates around a

point x and with a choice of trivialization of E around x , this map agrees with the Taylor

expansion. In other words, one should view these jet bundles as a coordinate-free way of

working with Taylor expansions.

Let J denote the sheaf of ∞-jets of smooth functions, i.e., J = J (C) for the trivial

rank-one bundle C. Similarly, let J k denote the sheaf of k-jets of smooth functions.

A.2.1. The relationship of jets with differential operators provides a useful alternative

construction for jets. Recall from above that D6k = Hom∞C (J
k,C∞) is the sheaf of

order k differential operators on C∞. Let D = colimk D6k denote the sheaf of differential

operators on C∞. We see that J ∼= HomC∞(D,C∞), where the ascending filtration on D
induces the descending filtration on J .

Lemma A.1. The sheaf J is a sheaf of commutative algebras over C∞.

Proof. Recall that D has a cocommutative coproduct κ : D→ D⊗C∞ D. In brief, for

every pair of left D-modules M and N , there is a natural left D-module structure on

M⊗∞C N , where

X · (m⊗ n) = (X ·m)⊗ n+m⊗ (X · n)

for any vector field X and any section m of M and n of N . Now set M = D = N and

construct the map of left D-modules via κ : 1 7→ 1⊗ 1. Explicit computation verifies κ is

a cocommutative coproduct.

There is thus a natural map

κ∗ : HomC∞(D⊗C∞ D,C∞)→ HomC∞(D,C∞) = J ,

and precomposing with the natural map

J ⊗C∞ J = HomC∞(D,C∞)⊗C∞ HomC∞(D,C∞) → HomC∞(D⊗C∞ D,C∞)
φ⊗ψ 7→ (P ⊗ Q 7→ φ(P)ψ(Q)),

we obtain a canonical map m : J ⊗C∞ J → J , which is indeed a commutative

product.
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It will be convenient below to see this commutative algebra structure in local

coordinates. Fix coordinates {x1, . . . , xn} in a small neighborhood U around some point

p ∈ X . Then we obtain a natural associated frame {∂/∂xi } for the tangent bundle on U ,

and hence every order k differential operator has a unique expression

P =
∑
Em∈Nn

f Em(x)
∂ Em

∂x Em
where Em = (m1, . . . ,mn) and

n∑
i=1

mi 6 k.

In other words, such an operator looks like a degree k polynomial in the partial derivatives,

with coefficients in C∞(U ). Locally, we thus see that there is an isomorphism D(U ) ∼=
SymC∞(U )(T (U )) as C∞U -modules (but not as algebras). As jets are the fiberwise linear

dual, we see that J ∼= ŜymC∞(T ∨) as sheaves on U . Sections are formal power series in

the dual frame {dxi } for the cotangent bundle. Indeed, there is a natural trivialization of

the jet bundle J on U

J (U ) ∼= C∞(U )⊗C C[[x1, . . . , xn]]

so that the ∞-jet of a smooth function φ is given by∑
Em∈Nn

(∂ Emφ)x Em

with Em = (m1, . . . ,mn) a multi-index. (In other words, we are just giving the pointwise

Taylor expansion of φ.) Multiplication in J locally is just multiplication of these power

series.

A.2.2. One property will be crucial in our work. It is undoubtedly well known to

experts but does not seem to be in the literature, so we provide a proof.

Let Mod f il
J denote the category of filtered J -module sheaves (i.e., possessing a filtration

compatible with that on J ) and with maps the filtration-preserving J -module maps.

Proposition A.2. The ∞-jet functor J (−) : VB(X)→ ModC∞ described above, sending

E to J (E), lifts to a symmetric monoidal functor J (−) : (VB(X),⊗)→ (Mod f il
J ,⊗J ).

In other words, for every vector bundle E , the sheaf J (E) has a canonical J -module

structure. Moreover, there is a canonical isomorphism jE,F : J (E)⊗J J (F)→ J (E ⊗
F) for every pair of vector bundles E and F .

Proof. We first construct a natural morphism jE,F and then verify in local coordinates

that it is an isomorphism. Using the coproduct map κ : D⊗C∞ D→ D from the preceding

proof, there is a composition of maps

HomC∞(D, E)⊗C∞ HomC∞(D,F) →HomC∞(D⊗C∞ D, E ⊗F) κ∗

−→HomC∞(D, E ⊗F),
q q

J (E)⊗C∞ J (F) J (E ⊗ F)

which provides jE,F .

When E is the trivial bundle, this map equips J (F) with a J -module structure. The

natural filtration on J (F) is automatically compatible with the filtration on J .
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Indeed, sufficiently locally, F becomes a trivial bundle of rank r via a frame { f1, . . . , fr }.

A choice of coordinates trivializes J ∼= C∞(U )⊗C C[[x1, . . . , xn]], as described above.

Then locally

J (F)(U ) ∼= C∞(U )⊗C C[[x1, . . . , xn]]⊗

r⊕
j=1

C f j ,

and the action of J (U ) on J (F)(U ) is simply the natural multiplication by power series

with coefficients in C∞(U ).
For arbitrary E and F , we want to show that this map coequalizes the action of J on the

J (E) and J (F). In other words, we want it to factor through the map J (E)⊗C∞ J (F)→
J (E)⊗J J (F).

Now that we have an explicit map, we can straightforwardly check that it is an

isomorphism. Fix a point p ∈ M and choose coordinates {x1, . . . , xn} in a neighborhood

U of p. As noted above, there is then a natural trivialization of the jet bundle J on U

J (U ) ∼= C∞(U )⊗C C[[x1, . . . , xn]].

Fix a frame {ei } for E on U and a frame { f j } for F on U . Then

J (E)(U ) ∼= C∞(U )⊗C C[[x1, . . . , xn]]⊗
⊕

i

Cei

and

J (F)(U ) ∼= C∞(U )⊗C C[[x1, . . . , xn]]⊗
⊕

j

C f j .

Both J (E)(U ) and J (F)(U ) are free modules over C∞(U )[[x1, . . . , xn]]. Likewise,

J (E ⊗ F)(U ) ∼= C∞(U )⊗C C[[x1, . . . , xn]]⊗
⊕
i, j

Cei ⊗ f j .

The map jE,F (U ) reduces to the map

(φ⊗ ei )⊗ (ψ ⊗ f j ) 7→ (φψ)⊗ (ei ⊗ f j ),

where φ,ψ ∈ C∞(U )[[x1, . . . , xn]]. Hence, it coequalizes the action of J .

Remark A.3. Note that a differential operator P : E → F , maps to an operator

J (P) : J (E)→ J (F) that is only C∞-linear, not J -linear. Therefore, there is an

extension of the ∞-jet functor to a functor from the category of differential complexes

but it lands in the category D-modules, not Mod f il
J .

A.3. Three important constructions

A.3.1. Splittings and Fedosov resolutions. The following non-canonical

descriptions of jet bundles play an important role in reinterpreting Lie algebroid

constructions as Lie algebraic constructions over the de Rham complex.

There is a slick way of understanding the sheaves J and J k . Consider the diagonal

embedding 1 : X → X × X and pull back the sheaf C∞X×X along 1. There is a canonical
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quotient map q : 1−1C∞X×X → C∞X given by restricting a function to the diagonal, and let

I1 denote the kernel – the functions that vanish on the diagonal – which is a sheaf of ideals

inside the sheaf 1−1C∞X×X of algebras. Then, by our definition, J k
= 1−1C∞X×X/I

k+1
1 for

every k, and J = lim1−1C∞X×X/I
k+1
1 .

Lemma A.4. There exists a non-canonical isomorphism σ : Ŝym(T∨)→ J of filtered

algebras over C∞.

Proof. Fix a connection ∇ on the tangent bundle TX → X . The associated exponential

map exp∇ produces a diffeomorphism between a tubular neighborhood of the zero section

X
zero
−−→ T X and a tubular neighborhood of the diagonal X

1
−→ X × X . Thus, on that

tubular neighborhood, we obtain an isomorphism of short exact sequences of sheaves

I1 �
� //

exp−1
∇

��

1−1C∞X×X
//

exp−1
∇

��

C∞X

id
��

Izero
� � // zero−1C∞T X

// C∞X
where Izero denotes the ideal sheaf encoding functions on TX vanishing on the zero section.

We thus obtain isomorphisms

1−1C∞X×X/I
k+1
1 = J k ∼=

−→ Sym6k(T∨) = zero−1C∞TX
/Ik+1

zero

for all k. Taking the limit, we obtain the claim.

There is a natural way to extend this type of construction to vector bundles over X .

Lemma A.5. Fix a connection ∇TX on the tangent bundle TX → X . A connection ∇E on

a vector bundle E → X then induces a splitting σ∇ : E → J (E).
Proof. For a point x ∈ X , use the exponential map for the connection ∇TX to parametrize

a small neighborhood of x in X . For each point e in the fiber of E over x , use the connection

∇E to extend to a smooth section se of E over that small neighborhood of x . Then j∞(se)

is a section of J (E) on that small neighborhood. Set σ∇(e) to be the value of j∞(se) at

x . This construction in fact produces a vector bundle map.

Corollary A.6. For every vector bundle E, there is a non-canonical isomorphism

mσ : J ⊗C∞ E → J (E) as J -modules.

Proof. Fix a splitting σ of the canonical quotient J (E)→ E . Then we obtain a natural

map mσ : J ⊗C∞ E → J (E) sending φ⊗ e to φ · σ(e), using the J -module structure of

J (E). It is then straightforward to check locally that mσ is an isomorphism. (See, e.g.,

the proof of Lemma E.2 of [29].)

Corollary A.7. Fix an algebra isomorphism σ0 : Ŝym(T∨X )→ J . Let E → X be a

vector bundle. There exists a non-canonical isomorphism σ1 : Ŝym(T∨X )⊗ E → J (E)
intertwining the module structures.

Proof. Fix a splitting σ of the canonical quotient J (E)→ E , as in the proof of the

proceeding lemma. Then set σ1 = mσ ◦ σ0⊗ idE .

https://doi.org/10.1017/S1474748018000075 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000075


Lie algebroids as L∞ spaces 531

A.3.2. The Grothendieck connection. As notation, we mention that for V → X
a vector bundle with flat connection ∇, we use d R(V,∇) to denote the sheaf of cochain

complexes

V ∇
−→ �1(V )

∇
−→ �2(V )

∇
−→ · · ·

called the de Rham complex of (V,∇).
Note that there is a composite functor d R(J (−)) from differential complexes on X to

�X -modules. Further, note that any �X -module inherits a filtration via the nilpotent

ideal �
>1
X .

Proposition A.8. Let E → X be a vector bundle. The bundle J (E)→ X has a canonical

flat connection ∇E , called the Grothendieck connection, such that

j∞ : E → d R(J (E),∇E )

is a quasi-isomorphism of sheaves. In particular, the (hyper)cohomology of d R(J (E),∇E )

vanishes except in degree 0.

Proof. Since E is soft, it has vanishing higher cohomology, so the second claim follows

from the first. It now suffices to demonstrate this quasi-isomorphism locally. By picking

a frame on E in some small coordinatized neighborhood on which E trivializes, one is

left with verifying the claim for the trivial rank r bundle. See [13, Appendix B] for an

explicit contracting homotopy.

A.3.3. Jets and pullbacks. We need to understand how the jet construction

intertwines with maps of manifolds. It plays a crucial role Proposition 4.12, which explains

maps between Lie algebroids living over different manifolds provide maps of the associated

L∞ spaces. The following proposition is undoubtedly known by experts, but we could

not find a convenient reference, so we provide a proof.

Proposition A.9. Let f : X → Y be a map of smooth manifolds and E → Y a vector

bundle. Then there is a natural map of complete filtered (i.e., pro-) vector bundles on X :

f −1(JY E)→ JX ( f −1 E).

Proof. The key is to use the geometric perspective on the jet construction as described

at the beginning of § A.3.1 above.

Let f 2
: X2
→ Y 2 denote the map (x, x ′) 7→ ( f (x), f (x ′)). We thus have a commuting

diagram

X
f //

1X
��

Y

1Y
��

X2 f 2
// Y 2

of manifolds. Hence, the short exact sequence of C∞Y -module sheaves

0→ I1Y → 1−1
Y C∞Y 2 → C∞Y → 0
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pulls back to a map of right exact sequences of sheaves of vector spaces

f −1I1Y
//

��

f −11−1
Y C∞Y 2

//

��

f −1C∞Y //

��

0

I1X
// 1−1

X C∞X2
// C∞X // 0

by the functoriality of pull back f −1.

The middle vertical arrow is a map of sheaves of commutative algebras and the left

vertical arrow is a map of sheaves of ideals. Thus we can look at quotients by powers of

the ideal sheaves, and we obtain a canonical map

f −1J k
Y → J k

X

for every k. These maps induce a map of the associated pro-vector bundles. Concretely,

this map describes how the Taylor expansion of a function φ around a point f (x) in Y
relates to the Taylor expansion of f −1φ = φ ◦ f around x .

We can do something similar with a vector bundle E → Y . Let π−1
1 E → Y 2 denote the

vector bundle pulled back along the projection π1 : Y 2
→ Y to the first copy of Y . Let E

denote the sheaf of smooth sections of E on Y , and let E (2) denote the sheaf of smooth

functions of π E
1 on Y 2. The short exact sequence of C∞Y -module sheaves

0→ I1Y ⊗C∞Y
1−1

Y E (2)→ 1−1
Y E (2)→ E → 0

pulls back to a map of right exact sequences of sheaves of vector spaces

f −1(I1Y ⊗C∞Y
1−1

Y )E (2) //

��

f −11−1
Y E (2) //

��

f −1E //

��

0

I1X ⊗C∞X
E (2)f

// 1−1
X E (2)f

// E f // 0

where E f denotes the sheaf of smooth sections of f −1 E on X and E (2)f denotes the sheaf

of smooth sections of π−1
1 f −1 E on X2. Thus by looking at quotients by powers of the

ideal sheaves, we obtain a canonical map

f −1J k
Y (E)→ J k

X ( f −1 E).

In the limit, we obtain a natural map f −1JY (E)→ JX ( f −1 E).
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9. D. Calaque, A. Căldăraru and J. Tu, On the Lie algebroid of a derived
self-intersection, Adv. Math. 262 (2014), 751–783.

10. D. Calaque, V. Dolgushev and G. Halbout, Formality theorems for Hochschild
chains in the Lie algebroid setting, J. Reine Angew. Math. 612 (2007), 81–127.

11. D. Calaque, T. Pantev, B. Toën, M. Vaquié and G. Vezzosi, Shifted Poisson
structures and deformation quantization, J. Topol. 10(2) (2017), 483–584.

12. D. Calaque, C. A. Rossi and M. van den Bergh, Hochschild (co)homology for Lie
algebroids, Int. Math. Res. Not. IMRN 21 (2010), 4098–4136.

13. A. S. Cattaneo, G. Felder and L. Tomassini, From local to global deformation
quantization of Poisson manifolds, Duke Math. J. 115(2) (2002), 329–352.
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