
J. Fluid Mech. (2014), vol. 747, pp. 218–246. c© Cambridge University Press 2014
doi:10.1017/jfm.2014.148

218
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We report experimental, theoretical and numerical results on the effects of horizontal
heterogeneities on the propagation of viscous gravity currents. We use two geometries
to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness
varies as a power-law function of the streamwise coordinate; (b) a heterogeneous
porous medium whose permeability and porosity have power-law variations. We
demonstrate that two types of self-similar behaviours emerge as a result of horizontal
heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis
(scaling) for viscous gravity currents that propagate away from the origin (a point of
zero permeability); (b) a second-kind self-similar solution is found using a phase-plane
analysis for viscous gravity currents that propagate toward the origin. These theoretical
predictions, obtained using the ideas of self-similar intermediate asymptotics, are
compared with experimental results and numerical solutions of the governing partial
differential equation developed under the lubrication approximation. All three results
are found to be in good agreement.
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1. Introduction

The gravitationally driven spreading of viscous fluids, also known as viscous
gravity currents, is a process common to a large number of industrial and geological
phenomena (Hoult 1972; Simpson 1982; Huppert 2000, 2006). One aspect of their
propagation has been particularly attractive, namely the ability, after a sufficient
amount of time has elapsed, to obtain the spatial distribution, or shape, of the
current at different times through a transformation of the independent variables.
In other words, once the initial condition is ‘forgotten’, gravity currents evolve in
a self-similar fashion (Barenblatt 1996; Sedov 1993). As a result, the self-similar
propagation of gravity currents, which can be understood as intermediate asymptotics
in the sense of Barenblatt & Zel’dovich (1972), has been studied in detail; see, e.g.,
the mathematical framework for problems of this type discussed by Gratton & Minotti
(1990) and the references therein.

† Email address for correspondence: hastone@princeton.edu
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Second-kind self-similar solutions for gravity currents 219

One-dimensional gravity currents in homogeneous porous media have been of
particular interest (see, e.g., Huppert 2006). In unconfined porous media, self-similar
solutions of the first kind, whose scaling exponents can be determined by simple
balances of terms in the governing equations, were obtained by Barenblatt (1952)
and Pattle (1959) to describe the spread of a finite mass of fluid. The latter solutions
were extended to apply to propagation due to fluid injection and shown to agree
with laboratory experiments in both Hele-Shaw cells (see, e.g., Huppert & Woods
1995) and systems of packed beads (see, e.g., Lyle et al. 2005). In soil mechanics,
the propagation of a gravity current into an unsaturated soil is known as infiltration
(Philip 1970; Bear 1972), and self-similar solutions of the first kind have also been
adapted as approximations for infiltration into homogeneous layers with a pre-existing
moisture distribution (Witelski 1998). A wealth of first-kind self-similar solutions also
describe the early and late time propagation regimes through a homogeneous porous
medium lying above an inclined impermeable boundary (see, e.g., Vella & Huppert
2006), over fractured horizontal substrates (see, e.g., Pritchard 2007) and for drainage
from the edge of a finite porous reservoir (Zheng et al. 2013). In confined porous
media, on the other hand, a rarefaction wave self-similar solution was derived, and
verified by numerical simulations, to describe the evolution of the immiscible interface
between a fluid being injected at a constant rate and the more viscous fluid being
displaced (Nordbotten & Celia 2006); seepage through the confining layer has also
been considered (Woods & Farcas 2009). Further work revealed that, after injection
ceases, there is a transition from an early time self-similar behaviour to a late time
self-similar behaviour, and again the theoretical results were supported by numerical
simulations (Hesse et al. 2007). Direct numerical simulations have shown that the
presence of transverse sidewalls can affect the selection of a self-similar propagation
regime or the transition from one to the next (Hallez & Magnaudet 2009).

Two-dimensional (2D) and axisymmetric propagation of viscous gravity currents has
also been studied, given the possible practical applications to fluid injection into wells
and subsurface reservoirs. For a viscous current propagating away from the centre
of a horizontal plate, a first-kind self-similar solution was found in an unconfined
system and in a porous medium (Barenblatt 1952; Pattle 1959; Kochina, Mikhailov
& Filinov 1983), verified experimentally for spreading into an inviscid fluid (e.g. air)
(Didden & Maxworthy 1982; Huppert 1982), and in a system of packed beads (see,
e.g., Lyle et al. 2005). The axisymmetric propagation of a power-law non-Newtonian
gravity current into an inviscid fluid (e.g. air) has also been studied (Gratton, Mahajan
& Minotti 1999). For non-axisymmetric configurations, gravity currents in unconfined
systems arising from both point and line sources (Lister 1992), converging flows (Diez
et al. 1998) and currents in porous media (Vella & Huppert 2006; De Loubens &
Ramakrishnan 2011) have been considered.

An interesting feature of the axisymmetric problem is that self-similar solutions of
the second kind exist for the case of propagation toward the centre of a horizontal
plate (Gratton & Minotti 1990; Angenent & Aronson 1995), and these were found
to agree with experiments (Diez, Gratton & Gratton 1992). Second-kind self-similar
solutions, unlike those of the first kind, cannot be obtained by a scaling analysis
of the governing partial differential equation (PDE) (Barenblatt & Zel’dovich 1972;
Barenblatt 1996; Eggers & Fontelos 2009) but rather are constructed by a more
involved mathematical analysis. The significance of this step is that there are
propagation modes for viscous gravity currents that can only be obtained via a
phase plane analysis (Sedov 1993; Courant & Friedrichs 1999) of the governing PDE,
which requires the numerical solution of a nonlinear eigenvalue problem for the
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scaling exponent in the similarity variable (Barenblatt & Zel’dovich 1972; Barenblatt
1996).

Heterogeneity always exists in real-world porous media, and it may significantly
affect the propagation regimes of viscous gravity currents. When there exists a
power-law permeability gradient in the vertical direction, the propagation and drainage
processes in a porous medium are modified from the homogeneous case (Huppert &
Woods 1995; Takagi & Huppert 2007; Ciriello et al. 2013; Zheng et al. 2013). In
vertically layered systems with permeability jumps across layers, flow focusing can
occur and may even dominate over buoyancy as the key physical transport mechanism
(Huppert, Neufeld & Strandkvist 2013). In general, homogenization techniques must
be employed in such cases to derive a depth-averaged governing equation for the
current (Anderson, McLaughlin & Miller 2003). It should be noted that heterogeneity
exists not only in the vertical but also in the horizontal direction in real-world systems.
For example, porous media may have horizontal permeability and porosity gradients
on the reservoir scale (Bear 1972; Class et al. 2009), while individual channels
and cracks in the porous medium can have varying gap thickness in the streamwise
flow direction (Spence & Sharp 1985; Detournay 2004). To the best of the authors’
knowledge, the propagation of viscous gravity currents into media with horizontal
heterogeneity has only been studied previously by Ciriello et al. (2013), however,
they only considered first-kind self-similar solutions and assumed the porosity of the
medium to be constant.

The goal of this paper is to study the effects of horizontal heterogeneity on
the propagation of viscous gravity currents. As we document below, horizontal
heterogeneity allows for both first- and second-kind self-similar currents. Figure 1
shows a summary of the physical situations in which we expect self-similarity
of the second kind: (a) converging currents on a horizontal substrate (Gratton
& Minotti 1990; Diez et al. 1992; Angenent & Aronson 1995); (b) converging
currents in an unconfined homogeneous porous medium; (c) currents propagating
in horizontal channels or cracks with varying gap thickness of power-law form; (d)
currents propagating in a homogeneous porous medium with converging boundaries
of power-law shape in the horizontal direction; and (e) currents propagating in
heterogeneous porous media with power-law permeability and porosity gradients in
the horizontal direction.

In this work, we analyse in detail the effects of heterogeneity, specifically case (c) is
studied in § 2.1 and case (e) is studied in § 2.2. In addition, we briefly discuss cases
(b) and (d) in appendices A.1 and A.2, respectively. We show that viscous gravity
currents propagating away from the origin (a point of zero permeability) are described
by first-kind self-similar solutions, while currents propagating toward the origin are
described by second-kind self-similar solutions. A novel conservative implicit finite-
difference scheme is developed (appendix B) to numerically solve the governing PDE.
In § 3, the results from the analysis based on self-similar intermediate asymptotics are
shown to agree well with the numerical solutions and laboratory experiments.

2. Formulation of the mathematical model
2.1. Gravity currents in channels

Hele-Shaw cells, i.e. channels created by two closely spaced plates, are an ideal
system in which to study the propagation of viscous gravity currents spreading into
an inviscid fluid (e.g. air) or into a porous medium. To formulate a mathematical
model of these processes, we assume that the invading and displacing fluids are
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Top view Side view
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FIGURE 1. (Colour online) Different flows of viscous gravity currents, propagating toward
a coordinate system’s origin, that may be described by self-similar solutions of the
second kind. (a) Converging viscous gravity currents on a horizontal substrate (Gratton
& Minotti 1990; Diez et al. 1992; Angenent & Aronson 1995). (b) Converging currents
in homogeneous porous media. (c) Viscous gravity currents propagating in horizontal
channels with varying gap thickness of power-law form. (d) Currents propagating
horizontally in homogeneous porous media with converging boundaries of power-law form.
(e) Currents propagating in heterogeneous porous media with permeability and porosity
gradients in the horizontal direction.

immiscible, separated by a sharp interface, and we only consider the limit of
negligible surface tension. In addition, in the present work, the invading fluid always
has greater viscosity than the displaced fluid, so that the interface is not susceptible
to the Saffman–Taylor viscous fingering instability (Saffman & Taylor 1958; Homsy
1987). The viscous gravity current in the channel is long and thin, so the lubrication
approximation applies, and the flow is horizontal to leading order in the aspect ratio;
velocity components in the vertical and cross-stream direction are neglected. Given
the unconfined nature of this flow problem, in the following, we also assume motion
of the displaced fluid is negligible since the upper layer is sufficiently deep.

2.1.1. Flow away from the origin
Consider a viscous gravity current propagating in a horizontal channel in the

direction of increasing gap thickness, away from the origin of the chosen coordinate
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FIGURE 2. (Colour online) Diagram of the geometry of a horizontal channel with varying
gap thickness b(x) in which a viscous gravity current is propagating. The shape of
the current and the position of the front are denoted by h(x, t) and xf (t), respectively.
(a) Propagation away from the origin in the direction of increasing gap thickness. (b)
Propagation toward the origin, from far downstream, in the direction of decreasing gap
thickness. Gravity is directed in the negative vertical (i.e. −z) direction.

system (see figure 2a). We denote by h(x, t) the shape of the current and by xf (t) the
location of the moving front (nose of the current) such that h(xf (t), t)= 0. We assume
that the gap thickness of the channel has a power-law form: b(x) = b1xn, where b1
and n are non-negative real numbers.

The lubrication approximation holds, if |db/dx| � 1 and |∂h/∂x| � 1, except
perhaps at the nose of the current. However, note that for the assumed shape b(x)
and n> 1, the requirement that |db/dx| � 1 is violated when the nose of the current
xf ≈ (nb1)

1/(1−n). Also, the lubrication approximation fails when the aspect ratio
b(xf )/xf ≈ 1 (for propagation away from the origin), or xf ≈ b1/(1−n)

1 ; specifically,
the cross-stream velocity is no longer negligible, and the propagation of the gravity
current is not described by a one-dimensional model. Moreover, we see that for
n > 1, b(x)/x is an increasing function of x, hence there is a maximal propagation
distance, xf = O(b1/(1−n)

1 ), beyond which the one-dimensional lubrication model fails.
Meanwhile, for n < 1, b(x)/x is a decreasing function of x, hence b(x) < x holds
for all x > O(b1/(1−n)

1 ); although b(xf )/xf ≈ 1 near the origin for n < 1, this in an
initial, localized effect that does not affect the overall applicability of the lubrication
approximation for the gravity current’s propagation.

Under the above assumptions, Darcy’s law in the horizontal direction and the one-
dimensional form of the continuity equation, respectively, take the form

u=−k(x)
µ

∂p
∂x
, (2.1a)

∂

∂t
(hb)+ ∂

∂x
(hub)= 0, (2.1b)

where u is the transversely averaged horizontal velocity, k is the effective permeability
of the medium, p is the fluid pressure and µ is the viscosity of the invading fluid.
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Second-kind self-similar solutions for gravity currents 223

In the vertical direction, the pressure field is hydrostatic: p(x, z, t) = p0 + 1ρg
(h(x, t)− z), where p0 is the ambient pressure in the displaced fluid, and 1ρ is the
density difference between the two fluids (Huppert & Woods 1995).

Following standard steps (Huppert & Woods 1995; Barenblatt 1996), we substitute
the hydrostatic pressure distribution and the gap thickness b(x)= b1xn into (2.1); we
neglect drag on the bottom plate and assume h is sufficiently greater than b so that
the permeability is given by k(x) = b(x)2/12. Then, we obtain a nonlinear diffusion
equation for the current height:

∂h
∂t
− A

xn

∂

∂x

(
x3nh

∂h
∂x

)
= 0, (2.2)

where A = (1ρgb2
1)/(12µ). The case of a channel with constant gap thickness is

recovered by setting n= 0.
To maintain generality, we define the injection rate as γQtγ−1 so that, at any time,

the total volume of injected liquid is Qtγ , where γ > 0. Since the gravity current is
moving away from the origin x= 0, the global mass conservation constraint has the
form ∫ xf (t)

0
xnh(x, t) dx= Btγ , (2.3)

where B=Q/b1. We expect that the details of the solution will depend on n and γ .
From a scaling analysis of (2.2) and (2.3), we find that the appropriate similarity

variable is
ξ = x

(AB)1/(3−n)t(γ+1)/(3−n)
, (2.4)

from which it immediately follows that the front of the current moves according to

xf (t)= ξf (n, γ )(AB)1/(3−n)tγ+1/(3−n), (2.5)

where the prefactor ξf (n, γ ) is a constant that depends only on the values of n and
γ . We define y≡ x/xf (t)= ξ(x, t)/ξf (n, γ ), after which the shape of the current can
be written as

h(x, t)= ξ 2(1−n)
f A(n+1)/(n−3)B(2(n−1))/(n−3)t(2(n−1)γ+(n+1))/(n−3)f (y), (2.6)

where f (y) and ξf (n, γ ) are solutions to the following system:

(y3nff ′)′ −
(
γ + 1
n− 3

)
yn+1f ′ −

(
2(n− 1)γ + (n+ 1)

n− 3

)
ynf = 0, (2.7a)

f (1)= 0, (2.7b)

ξf (n, γ )=
(∫ 1

0
ynf (y) dy

)1/(n−3)

, (2.7c)

and primes denote differentiation with respect to y. For n= 0, equation (2.7) reduces
to the homogeneous porous medium case in Cartesian coordinates (Huppert & Woods
1995). In this class of problems, one boundary condition is sufficient to uniquely
determine the solution, owing to the form of the singularity at the front.
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FIGURE 3. Self-similar shape of a viscous gravity current propagating away from the
origin in a channel with variable gap thickness of the form b(x)= b1xn for (a) constant
volume (γ = 0) and (b) constant injection rate (γ = 1), and various values of n; the
prefactor ξf (n, γ ) is shown in (c). The solutions for f were found by integrating (2.7a)
numerically by shooting backwards from y= 1− ν (ν = 10−4), where boundary conditions
on f and f ′ are imposed using the asymptotic form from (2.8).

Following Huppert (1982), we can determine the asymptotic behaviour of the
current near the nose from (2.7a,b):

f (y)∼
(
γ + 1
3− n

)
(1− y) as y→ 1−, (2.8)

which can, in turn, be used to provide two boundary conditions near y=1, i.e. f (1−ν)
and f ′(1− ν), ν� 1, in a shooting procedure for solving (2.7a) numerically. Typical
numerically computed current shapes f (y) are shown in figure 3 for (a) constant
volume (γ = 0) and (b) constant injection rate (γ = 1) and various choices of n. The
dependence of ξf on γ is illustrated in figure 3(c) for various choices of n.
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Second-kind self-similar solutions for gravity currents 225

For γ = 0 and 0 6 n< 3, (2.7) has the exact solution

f (y) =


1
2(n− 1)(n− 3)

(
1− y2(1−n)

)
, n 6= 1,

− 1
2 ln y, n= 1,

(2.9a)

ξf (n, 0) = [(n+ 1)(n− 3)2
]1/(3−n)

. (2.9b)

For n= 0, this solution reduces to a special case of the Barenblatt–Pattle point-source
solution (Barenblatt 1952; Pattle 1959). For n > 3, the self-similar solution represents
a receding front because (γ + 1)/(3− n)< 0, which has also been observed in higher-
order lubrication models (King & Bowen 2001; Flitton & King 2004). However, in
the present case, the first-kind self-similar solution for n > 3 is unphysical because
f < 0, which means the height of the current is negative.

2.1.2. Flow toward the origin
In this section, we consider the opposite case of a viscous gravity current

propagating in the direction of decreasing gap thickness, i.e. toward the origin (see
figure 2b). Since it is now possible for the gravity current to reach the origin (x= 0),
we define a critical time tc at which this occurs; in the present work, tc is determined
from numerical simulations and/or experiments and, in general, could be infinite. Note
that, the global mass conservation constraint, as expressed in (2.3), no longer holds.
Any modification of the latter for flow toward the origin requires the introduction of
another length scale x0 and another time scale tc into the problem. Therefore, in this
physical situation, it is not a priori clear how to obtain a self-similar solution by
scaling arguments alone. Moreover, we do not expect complete self-similarity with
respect to a similarity variable, i.e. even if a self-similar solution can be obtained it
will depend on tc (or x0) explicitly (Barenblatt 1952, §5.1.1).

Nevertheless, Darcy’s law and the continuity equation still hold, so (2.1) remains
the governing equation, but the boundary and initial conditions change. In this
physical situation, we introduce the phase-plane formalism, following Gratton &
Minotti (1990), Sedov (1993) and Courant & Friedrichs (1999), in order to analyse
the governing equation. To this end, we substitute the hydrostatic pressure distribution,
the gap thickness b(x)= b1xn and the permeability k(x)= b(x)2/12 into (2.1) to obtain:

u=−1ρgb2
1

12µ
x2n ∂h
∂x
, (2.10a)

∂h
∂t
+ 1

xn

∂

∂x
(xnhu)= 0. (2.10b)

These two equations are the starting point of the phase-plane analysis.
Restricting to the case when tc < ∞, we first introduce τ = tc − t as the time

remaining to reach the origin (‘touch-down’). (If tc =∞, then we would not be able
to make this transformation and proceed with the phase-plane analysis. Hence, tc=∞
corresponds to non-self-similar behaviour beyond the scope of the present work.) Then,
in order to make (2.10) dimensionless, we let

u(x, t)= x
τ

U(x, τ ), h(x, t)=
(

12µ
1ρgb2

1

)
x2(1−n)

τ
H(x, τ ). (2.11a,b)
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Note that u 6 0 for propagation toward the origin and, hence, U 6 0 as well; also,
h > 0, hence H > 0. Substituting (2.11) into (2.10), and after some algebra, we
obtain the governing equations in terms of the dimensionless variables H(x, τ ) and
U(x, τ ):

U + x
∂H
∂x
+ 2(1− n)H = 0, (2.12a)

τ
∂H
∂τ
−H − x

∂

∂x
(HU)− (3− n)HU = 0. (2.12b)

By analogy with other gravity current problems where there is propagation toward
the origin (Gratton & Minotti 1990; Diez et al. 1992; Angenent & Aronson 1995), we
anticipate that we can find a self-similar solution of the second kind. If the flow is
to be self-similar, we need to identify a similarity variable. Without loss of generality,
we define the similarity variable to be ξ ≡ x/τ δ, where δ is to be determined. Then, H
and U become functions of only the similarity variable ξ , i.e. H=H(ξ) and U=U(ξ).
Thus, for a self-similar flow, equation (2.12) takes the form

U + ξH′ + 2(1− n)H = 0, (2.13a)
δξH′ +H + ξ(HU)′ + (3− n)HU = 0. (2.13b)

We can eliminate ξ from (2.13):

dU
dH
= H[(n+ 1)U − 2(1− n)δ + 1] −U(U + δ)

H[2(1− n)H +U] , (2.14a)

d ln |ξ |
dH

= − 1
U + 2(1− n)H

. (2.14b)

In particular, equation (2.14a) is an autonomous differential equation for the shape
of the current. Once U(H) is determined from (2.14a), (2.14b) can be solved to obtain
the location of the nose of the current. These steps complete the reduction of the
self-similar dynamics to a 2D phase plane (H,U). Different solution (integral) curves
in the phase plane represent different flow behaviours, i.e. self-similar solutions of
the original PDE. Certain distinguished integral curves of the ordinary differential
equation (ODE) (2.14a) in the phase plane are those that start or end at a critical point
and those that form limit cycles. The critical points can be associated with different
boundary and initial conditions of the physical system (Gratton & Minotti 1990). We
identify the finite critical points of (2.14a) by setting its numerator and denominator
equal to zero simultaneously to find:

O : (H,U) = (0, 0), (2.15a)
A : (H,U) = (0,−δ), (2.15b)

B : (H,U) =
(

1
2(1− n)(3− n)

,− 1
3− n

)
. (2.15c)

Gratton & Minotti (1990) also considered critical points where H=∞ and/or U=∞,
however, this is beyond the scope of the present work.

Point A describes a state of zero current height and finite velocity, which
corresponds to the moving front xf (t) such that h(xf (t), t) = 0 and dxf (t)/dt 6= 0.
From the definitions in (2.11), we see that point O corresponds to u, h, x and t

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.148


Second-kind self-similar solutions for gravity currents 227

such that U = H = 0. Suppose, for the sake of argument, that point O does not
correspond to the trivial downstream solution: u = h = 0 for all x and t. Then, the
only way to satisfy (2.11) is to set τ = 0. From our definition of τ , we see that
this state corresponds to the touch-down time t = tc, when the nose of the gravity
current reaches the origin (x = 0). Finally, point B does not have a clear physical
interpretation in the present context.

Thus, the self-similar solution, which describes a gravity current propagating toward
the origin, corresponds to the integral curve connecting O to A in the phase plane.
Since δ is still undetermined, it acts as a parameter that allows us to change the phase-
plane structure until a heteroclinic trajectory from O to A emerges. In other words,
we have to solve a nonlinear eigenvalue problem for δ. We do so numerically by a
shooting method that we now describe. First, to compute the heteroclinic trajectory,
we employ a fundamental-domain technique (Parker & Chua 1989, Chapter 6). To
this end, we first note that the linearization of (2.14a) at point O shows that it is a
degenerate saddle point with the eigenspace:

λ1 = −δ, e1 = (0,±1), (2.16a)

λ2 = 0, e2 =±
(

δ

1− 2(1− n)δ
, 1
)
. (2.16b)

Then, we pick two initial conditions (Hi,Ui) that are slight perturbations ('10−3) of
point O in the neutral eigendirections given by e2, and we integrate (2.14a), which
is rewritten as an autonomous system of two ODEs for convenience, numerically in
MATHEMATICA using the built-in subroutine NDSolve. Second, to solve the nonlinear
eigenvalue problem, the value of δ is adjusted using a bisection method until the
trajectory passes within a prescribed (small '10−3) distance of point A. A visual
illustration of this technique is shown in figure 4 for the special case of n= 0.5, from
which we find that δ = 1.54 . . .. (Note that full double precision, i.e. 16 digits, is
required in the value of δ for the heteroclinic trajectory to pass within the prescribed
distance of point A and obtain the plot shown in figure 4e.)

Next, we establish the effect of varying the exponent n that controls the gap
thickness of the channel. We study the problem in two ways. First, we show the
phase portraits for δ = 1.54 and different n in figure 5. Second, we compute the
value of δ numerically for a range of n values, and report the resulting δ(n) curve in
figure 6. For 06 n< 1 (regime I), δ is finite, indicating the existence of a self-similar
solution of the second kind. Note that this result also corresponds to point B being
in the fourth quadrant (H > 0, U < 0) of the (H,U) plane (see figure 5).

Simultaneously, there exist self-similar solutions of the first kind for propagation
away from the origin, for which the exponent is given by (γ + 1)/(3− n) from (2.4);
the cases γ = 0 and γ = 1 correspond to the dot-dashed (shown in blue online) and
dashed (shown in red online) curves in figure 6, respectively. In regime II (16 n< 3),
there are only self-similar solutions of the first kind, while the second-kind self-similar
solution no longer exists for the currents propagating toward the origin. For n > 3
(regime III), we note again that the first-kind self-similar solution is unphysical.

To better understand the apparently singular behaviour of δ(n) as n→ 1− in figure 6
for the case of self-similarity of the second kind, we define ε ≡ 1 − n→ 0+. Then,
equation (2.14a) hints that the eigenvalue δ(ε) ∼ 1/(2ε) as ε → 0+, which is also
supported by the numerics (see figure 6, regime I, dark dashed curve). Meanwhile, we
can rescale U and H by the eigenvalue δ, i.e. let H̃=H/δ and Ũ=U/δ; for different
values of n, the heteroclinic trajectories, which connect point Ã: (H̃, Ũ) = (0, −1)
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FIGURE 4. (Colour online) Phase portrait of (2.14a) with fixed n= 0.5 and changing δ:
(a) δ = 0; (b) δ = 0.1; (c) δ = 0.33; (d) δ = 1.3; (e) δ = 1.54; (f ) δ = 1.8. From (2.16)
we see that δ= 0 (a) is a degenerate case in which point O is no longer a saddle. In (b)
and (c), the highlighted integral curves (shown in red online) starting at point O in the
direction of a neutral eigenvector diverge to infinity. At δ= 1/(2− 2n) (= 1 for n= 0.5),
the neutral eigenvectors flip directions, and now an integral curve starting at point O and
passing near point B in the direction of point A exists. At δ= δc, the highlighted integral
curve (shown in red online) connects point O to point A as shown in (e), which means
that δ= 1.54 . . . is the solution δc to the nonlinear eigenvalue problem, and the highlighted
integral curve U(H) corresponds to a self-similar solution of the second kind. For δ > δc
(f ), trajectories starting from point O spiral into point B and, thus, cannot reach point A.

and point Õ : (H̃, Ũ)= (0, 0) in the rescaled coordinates, approach a limiting shape as
n→ 1−, as shown in figure 7. Equation (2.14a) can be rewritten in terms of H̃ and Ũ;
then, near point Ã, which represents the nose of the current, the behaviour is given
by

dŨ

dH̃
= H̃[(2− ε)Ũ − 2ε + 1/δ] − Ũ(Ũ + 1)

H̃[2εH̃ + Ũ] ∼ 2H̃ − Ũ − 1
H̃

as ε→ 0+. (2.17)

The latter captures the asymptotic behaviour of the heteroclinic trajectory near the
nose of the current (point Ã), namely H̃∼ Ũ+ 1, shown as the dotted line in figure 7.
However, the ε→ 0+ behaviour of the ODE does not satisfy the boundary condition
near point Õ. A more complete analysis would provide the solution’s behaviour near
point Õ.

It should be noted that when the current is moving toward the origin, the
formulation of the nonlinear eigenvalue problem and phase-plane analysis does not
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FIGURE 5. (Colour online) Phase portrait with different values of n and δ = 1.54:
(a) n= 0; (b) n= 0.5; (c) n= 1.8; (d) n= 2; (e) n= 3; (f ) n= 4. Changing the value of
the parameter n changes the location of the fixed point B, which can lead to the nonlinear
eigenvalue problem for δ having no solution. As seen in (c)–(f ), a self-similar solution of
the second kind, which corresponds to the heteroclinic trajectory from O to A, does not
exist for n> 1. Note that, for n= 1 and n= 3, point B is at infinity, thus it is not shown
in (c) and (e). The highlighted integral curves (shown in red online) start at point O in
a neutral eigendirection, e2 from (2.16).

make use of the global mass conservation equation (2.3). Therefore, the injection rate
γQtγ−1 does not affect the existence of second-kind self-similar solutions. However,
Q and γ may affect the validity of the model assumptions by changing the aspect
ratio of the gravity current; in particular, |∂h/∂x| � 1 (lubrication) may fail to hold
or the drag at the bottom plate may become important if h= O(b) throughout most
of the current. In either case, the values of Q and γ will change the initial transition
period before the gravity current’s propagation becomes self-similar in this case.

2.2. Gravity currents in heterogeneous porous media
In this subsection, we consider a related problem: the propagation of gravity currents
in heterogeneous porous media in which the permeability and porosity follow power
laws in the horizontal direction. We place the origin at the location where the
permeability and porosity vanish, as shown in figure 8. Then, the permeability and
porosity are given by kp(x)= k1xn and φp(x)= φ1xm, respectively, where k1, φ1, n and
m are non-negative real numbers, and x is the streamwise coordinate as before. In
general, n and m are not independent of each other. In practice, 2< n/m< 3, where
n/m = 2 corresponds to the extreme case of a porous medium composed of tubular
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: 

FIGURE 6. (Colour online) Dependence of the exponent of the similarity variable on the
gap thickness power-law exponent for various self-similar solutions for viscous gravity
currents propagating in a horizontal channel with gap thickness variations in power-law
form. For flow from the origin, first-kind self-similar solutions exist in both regime I
and regime II; for flow toward the origin, second-kind self-similar solutions exist only in
regime I. No self-similar solutions exist in regime III. The exponent δ for the first-kind
self-similar solutions was calculated from a scaling argument, see (2.4); the exponent
δ for the second-kind self-similar solutions was calculated by solving numerically the
nonlinear eigenvalue problem described below (2.16); the dashed black curve represents
the asymptotic behaviour of the second-kind self-similar solution’s exponent δ∼1/(2−2n)
as n→ 1−.

pores, while n/m = 3 corresponds to a porous medium composed of a network of
intersecting fissures (Phillips 1991; Dullien 1992).

As before, we assume the two fluids are immiscible but we neglect surface tension
effects. We also assume the current is long and thin, so the flow is mainly in the
horizontal direction, and we neglect any motion in the displaced fluid. For clarity, the
variables in this subsection are appended with the subscript ‘p’. However, note that
n still denotes the exponent in the assumed power-law variation of the permeability,
just as in the Hele-Shaw case in § 2.1, but the expressions for k(x) and kp(x) are not
identical.

2.2.1. Flow away from the origin
When the gravity current is propagating horizontally from the origin to regions of

higher permeability and porosity, we once again start from Darcy’s law and the local
continuity equation, which now take the form

up =−kp(x)
µ

∂p
∂x
, (2.18a)

φp(x)
∂hp

∂t
+ ∂

∂x
(hpup)= 0. (2.18b)

Substituting the hydrostatic pressure distribution, the posited permeability and porosity
expressions, and combining the two equations in (2.18), we obtain a nonlinear
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0

FIGURE 7. Shape of the heteroclinic trajectory of (2.14) as n→ 1− (regime I), in rescaled
coordinates. The dotted line represents the asymptotic behaviour near point A, i.e. H ∼
U + δ.

x

z

(a)

(b)

(0,0)

(0,0)

g

g

xfp(t)

xfp(t)

hp(x, t)

hp(x, t)

FIGURE 8. (Colour online) Diagram of gravity currents propagating along a horizontal
boundary in heterogeneous porous media with power-law permeability kp(x) = k1xn and
porosity φp(x)= φ1xm variations, which give rise to gradients in the horizontal direction.
(a) A gravity current propagating away from the origin in the direction of increasing
permeability and porosity. (b) A gravity current propagating toward the origin from far
away. Gravity is directed in the negative z direction as before; hp(x, t) and xfp(t) represent
the shape and location of the nose of the current, respectively.
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diffusion equation for the shape hp(x, t) of the gravity current:

∂hp

∂t
− Ap

xm

∂

∂x

(
xnhp

∂hp

∂x

)
= 0, (2.19)

where Ap= (1ρgk1)/(µφ1). The global mass conservation constraint takes the form∫ xfp(t)

0
xmhp(x, t) dx= Bptγ , (2.20)

where, similar to before, Bp=Qp/φ1, and γQptγ−1 is the injection rate. For clarity, we
now denote the front position as xfp(t), where hp

(
xfp(t), t

)= 0.
As in § 2.1, through a scaling analysis of (2.19) and (2.20), we find a similarity

variable
ξ = x

(AB)1/(2m−n+3)t(γ+1)/(2m−n+3)
. (2.21)

Then, the location of the nose of the current is given by

xfp(t)= ξfp(m, n, γ )(AB)1/(2m−n+3)t(γ+1)/(2m−n+3). (2.22)

In terms of the similarity variable, the shape of the current is given by

hp(x, t)= ξm−n+2
fp A−(m+1)/(2m−n+3)B(m−n+2)/(2m−n+3)t((m−n+2)γ−(m+1))/(2m−n+3)fp(y), (2.23)

where y≡ x/xfp(t)= ξ(x, t)/ξfp(m, n, γ ). Then, fp(y) and ξfp(m, n, γ ) are obtained by
solving the following system:

(ynfpf ′p)
′ +
(

γ + 1
2m− n+ 3

)
ym+1f ′p −

(
(m− n+ 2)γ − (m+ 1)

2m− n+ 3

)
ymfp = 0, (2.24a)

fp(1)= 0, (2.24b)

ξfp(m, n, γ )=
(∫ 1

0
ymfp(y) dy

)1/(n−2m−3)

. (2.24c)

For n= 3m, equation (2.24) reduces to (2.7) with n replaced by m. Also, when m=
n= 0, equation (2.24) reduces to the homogeneous porous medium case in Cartesian
coordinates, as above. Meanwhile, when m = n = 1, equation (2.24a) reduces to the
equation for homogeneous case in axisymmetric coordinates (Lyle et al. 2005).

Again, we can determine the asymptotic behaviour of the current near the nose from
(2.24a,b):

fp(y)∼
(

γ + 1
2m− n+ 3

)
(1− y) as y→ 1−, (2.25)

which provides two boundary conditions near y= 1, i.e. fp(1− ν) and f ′p(1− ν), ν� 1,
in a shooting procedure for solving (2.24a) numerically. Typical shapes, fp(y), of the
current are show in figure 9 for (a) constant volume (γ = 0) and (b) constant injection
rate (γ = 1) and various choices of m and n. The dependence of ξfp on γ is illustrated
in figure 9(c) for various choices of m and n.

For γ = 0 and 0 6 n < 2m + 3, it can be shown that (2.24) possesses the exact
solution

fp(y) =


1

(m− n+ 2)(2m− n+ 3)

(
1− ym−n+2

)
, n 6=m+ 2,

− 1
m+ 1

ln y, n=m+ 2,
(2.26a)

ξfp(m, n, 0) = [(m+ 1)(2m− n+ 3)2
]1/(2m−n+3)

. (2.26b)
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FIGURE 9. Self-similar shape of a viscous gravity current propagating away from the
origin in a heterogeneous porous medium with variable permeability kp(x) = k1xn and
porosity φp(x)=φ1xm for (a) constant volume, γ =0, and (b) constant injection rate, γ =1,
and various choices of n and m; the prefactor ξfp(m, n, γ ) is shown in (c). The solutions
for fp were found by integrating (2.24) numerically by shooting backwards from y= 1− ν
(ν= 10−4), where boundary conditions on fp and f ′p are imposed using the asymptotic form
given from (2.25) .

2.2.2. Flow toward the origin
When the gravity current is moving horizontally toward the origin, i.e. in the

direction from higher to lower permeability, in a porous medium, equation (2.18) still
holds. However, as above, we cannot determine the self-similar solution by scaling
alone, so we introduce a phase-plane analysis to seek a second-kind similarity solution.
We begin with (2.18), i.e. the coupled equations for the transversely averaged fluid
velocity and continuity. First, we substitute in the hydrostatic pressure distribution,
the permeability and porosity expressions into (2.18) to obtain
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up =−1ρgk1xn

µ

∂hp

∂x
, (2.27a)

∂hp

∂t
+ 1
φ1xm

∂(hpup)

∂x
= 0. (2.27b)

Again, assuming tc<∞, we let τ = tc− t and, then, introduce dimensionless variables
via

up(x, t)= φ1
xm+1

τ
Up(x, τ ), hp(x, t)=

(
µφ1

1ρgk1

)
xm−n+2

τ
Hp(x, τ ). (2.28a,b)

Substituting the latter into (2.27), we obtain

Up + x
∂Hp

∂x
+ (m− n+ 2)Hp = 0, (2.29a)

τ
∂Hp

∂τ
−Hp − x

∂(HpUp)

∂x
− (2m− n+ 3)HpUp = 0. (2.29b)

Now, if the flow is to be self-similar, we should be able to reduce the x and t
dependence to dependence on a single similarity variable ξ ≡ x/τ δ, where δ remains
to be determined, so that Hp and Up become functions of ξ alone. Under this
assumption, equation (2.29) becomes

Up + ξH′p + (m− n+ 2)Hp = 0, (2.30a)

δξH′p +Hp + ξ(HpUp)
′ + (2m− n+ 3)HpUp = 0. (2.30b)

Finally, we eliminate ξ from (2.30) to find

dUp

dHp
= Hp[(m+ 1)Up − (m− n+ 2)δ + 1] −Up(Up + δ)

Hp[(m− n+ 2)Hp +Up] , (2.31a)

d ln |ξ |
dHp

= − 1
Up + (m− n+ 2)Hp

. (2.31b)

Thus, we have constructed the phase plane (Hp,Up) for a gravity current propagating
toward the origin in a heterogeneous porous medium. Equation (2.31a) has three finite
critical points:

O : (Hp,Up) = (0, 0), (2.32a)
A : (Hp,Up) = (0,−δ), (2.32b)

B : (Hp,Up) =
(

1
(m− n+ 2)(2m− n+ 3)

,− 1
2m− n+ 3

)
. (2.32c)

As in § 2.1.2, when the current is propagating toward the origin, the integral curve
that connects point O to point A corresponds to the similarity solution of the second
kind. Depending on the values of n and m, we can numerically determine the value of
δ using the numerical technique outlined after (2.16), where the linearized eigenspace
at point O is now

λ1 = −δ, e1 = (0,±1), (2.33a)
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FIGURE 10. (Colour online) Flow regimes for gravity current propagation in
heterogeneous porous media with power-law permeability kp(x) = k1xn and porosity
φp(x)= φ1xm variations in the horizontal direction. When a gravity current is propagating
toward the origin, a self-similar solution exists only in regime I, and it is of the second
kind. When a gravity current is propagating away from the origin, a first kind self-similar
solution is found in both regimes I and II. In regime III, there are neither advancing nor
physically meaningful self-similar solutions.

λ2 = 0, e2 =±
(

δ

1− (2+m− n)δ
, 1
)
. (2.33b)

The types of self-similar solutions that can be expected on the basis of this analysis
are summarized in figure 10, in which we colour different regions of the (m, n) plane
to illustrate the possible behaviours. As noted earlier, n/m= 2 and n/m= 3 correspond
to two limiting cases of the porous medium’s microstructure. Restricting ourselves
only to (m, n) such that 2 < n/m < 3, self-similar solutions are to be expected in
the wedge 2m < n < 3m as shown by the dashed lines in figure 10. Furthermore,
for n < m + 2, we see from (2.32c) that point B is in the fourth quadrant of the
(Hp,Up) phase plane, thus we expect second-kind self-similar solutions in this region
(regime I) of the (m, n) plane. The region in which m+ 2< n< 2m+ 3 (in addition to
2m< n< 3m) is denoted as regime II, in which we only expect self-similar solutions
of the first kind. The latter are advancing fronts because the exponent of t in (2.22)
is positive for (m, n) in this regime. Finally, for n > 2m + 3 (regime III), there are
no advancing first-kind self-similar solutions and, moreover, the first-kind self-similar
solution is unphysical because it predicts fp< 0. This classification is analogous to that
in figure 6.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.148


236 Z. Zheng, I. C. Christov and H. A. Stone

Experiment Liquid (% glycerol) n b1 (m1−n) Lcell (m) x0 (m) w (kg) tc (s)

No. 1 100 % 0.2 0.01589 0.75 0.560 0.1489 86.0
No. 2 100 % 0.2 0.01589 0.75 0.550 0.1569 66.1
No. 3 100 % 0.2 0.01589 0.75 0.550 0.1480 78.7
No. 4 100 % 0.5 0.01732 0.75 0.575 0.1731 89.0
No. 5 100 % 0.5 0.01732 0.75 0.578 0.1602 104.1
No. 6 95 % 0.5 0.01732 0.75 0.578 0.1559 54.9
No. 7 95 % 0.5 0.01732 0.75 0.600 0.1228 76.7
No. 8 90 % 0.5 0.01732 0.75 0.585 0.1556 23.0
No. 9 90 % 0.5 0.01732 0.75 0.581 0.1574 22.3
No. 10 100 % 0.8 0.03776 0.75 0.530 0.3169 81.5
No. 11 100 % 0.8 0.03776 0.75 0.515 0.3494 64.5
No. 12 100 % 0.8 0.03776 0.75 0.525 0.2464 102.5

TABLE 1. Summary of the parameters of the different experiments that we performed
of viscous gravity currents propagating toward the origin of a horizontal channel.
Glycerol–water solutions were used with various glycerol mass concentrations, as shown
in the second column. The gap thickness of the horizontal channel is given by b(x)= b1xn,
Lcell is the total length of the channel, x0 is the location of the lock gate, w is the total
weight of the liquid in the cell and tc is the time when the moving front reaches the origin
in an experiment.

3. Results from experiments and numerical simulation

We conducted a series of constant-volume gravity current experiments in horizontal
Hele-Shaw cells whose gap thicknesses vary as power laws of the streamwise
coordinate. We also solved numerically the corresponding governing PDE (2.2),
which we derived above under the lubrication approximation. The numerical scheme
is described in appendix B. In this section, we present a discussion of and a
comparison between the experiments, numerical simulations and the theoretical
considerations from self-similar intermediate asymptotics for the case of a gravity
current propagating toward the origin of a horizontal channel.

We designed three Hele-Shaw cells with different power-law shapes: (a) n = 0.2,
(b) n = 0.5 and (c) n = 0.8; recall figure 2. The cells were constructed from
scratch-resistant clear cast acrylic sheets (McMaster-Carr, No. 8560K247) using an
automatic manufacturing machine. The liquids we used were glycerol–water solutions
with various glycerol concentrations, whose physical properties were looked up in
published tables. The glycerol is coloured with food dye so the profile shapes of the
liquid can be recorded at different times using a USB camera.

We begin each experiment by setting up a lock gate at a certain location x= x0 from
the origin, where x0 was chosen near the end of the channel (x= Lcell) to allow for a
larger distance over which the gravity current can propagate. We then filled the gap
between the lock and the end with the glycerol–water solution and suddenly removed
the lock gate, allowing the fluid to propagate toward the origin (x= 0). We recorded
the location of the propagating front xf (t) at different times.

Details of different experimental designs are summarized in table 1. In these
experiments, we can vary different parameters: (a) the gap thickness; (b) the glycerol
concentration, thus the viscosity and density of the fluid; (c) the location x0 of the
lock gate; and (d) the initial volume of liquid placed behind the lock gate. To justify
the lubrication approximation utilized in § 2, we estimate the product of the aspect
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(a)

(b)

(c)

(d)

(e)

Lock gate

FIGURE 11. (Colour online) Time-lapse images of a viscous gravity current (experiment
no. 8 from table 1) propagating toward the origin of a horizontal channel (as in figures
1d and 2b) at (a) t = 0 s, (b) t = 1.5 s, (c) t = 6.5 s, (d) t = 11.5 s and (e) t = tc ≈
22.3 s, which is when the front is observed to reach the origin (xf (tc)= 0). The flow was
generated by an instantaneous removal of a vertical lock gate. Contrast has been digitally
enhanced for visual clarity.

ratio and the Reynolds number: the typical channel width is given by b1xn
0, the typical

length scale is x0, the velocity scale is x0/tc, where tc is the time for the front to
reach the origin, ρ and µ are the density and viscosity, respectively, of the glycerol
solution (ρ = 1261 kg m−3 and µ = 1.412 Pa s for 100 % glycerol). Thus, for a
typical experiment (e.g. experiment no. 1 in table 1), the product of the aspect ratio
and Reynolds number is ρb2

1x2n
0 /(µtc)≈ 2× 10−3� 1. Also, in a typical experiment,

h/b > 3 for most of the current (i.e. except at the nose), therefore, drag due to the
bottom plate can be neglected. Furthermore, in a typical experiment, the gap thickness
b is such that b(x) > 3 mm, which is the capillary length for the fluids we use, for
3 cm< x< Lcell= 75 cm, i.e. for 96 % of the length of the Hele-Shaw cell. Therefore,
surface tension can be neglected as well. The fact that drag due to the bottom plate
and surface tension can potentially be important near the nose of the current does
not affect its global self-similar behaviour, as is evidenced by our experiments and
those in the literature.

For Hele-Shaw cells with n < 1, we measured a finite critical time tc at which
the front reaches the origin. In figure 12, we plot the rescaled front location xf (t)/x0
versus the dimensionless time-to-touchdown τ/tc = 1− t/tc for different experimental
conditions. The assumption of self-similarity of the second kind leads us to expect that
xf (t)/x0 ∝ (1− t/tc)

δ. Numerical simulation results for xf (t)/x0 are also plotted on the
same figure. As can be seen in figure 12, the experimental results agree very well with
the numerical simulation for all of the geometries considered. In particular, as the front
approaches the origin, i.e. as 1− t/tc→ 0+, the initial shape of the current is forgotten,
and both the experimental and numerical simulation data for the rescaled location of
the nose of the current versus dimensionless time-to-touch-down fall on a straight line
in this log–log plot. Therefore, the behaviour is self-similar, as we predicted in our
theoretical discussion in § 2.1.2. Furthermore, the values that the slopes of the curves
asymptote to agree very well with the predictions from the theory, namely, δ ≈ 1.14
for n = 0.2, δ ≈ 1.54 for n = 0.5 and δ ≈ 2.95 for n = 0.8, where these slopes are
predicted via the second-kind phase-plane analysis (recall figure 4 and its discussion).
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1

1.54

10–3

10–2

10–2

10–1

10–1

100

100

Numerical simulation

1

1

1.14
2.95

FIGURE 12. (Colour online) Constant-volume gravity currents propagating in Hele-Shaw
cells with gap thicknesses of power-law form: b(x) = b1xn. Comparison of experiments
and numerical simulations for propagation toward the origin. Experiments in three different
Hele-Shaw cells were performed: n= 0.2 (circles), n= 0.5 (stars) and n= 0.8 (squares). In
both experiments and numerical simulations (crosses), self-similar solutions of the second
kind were observed for the three different geometries and the similarity exponents (i.e. the
intermediate asymptotic slope on the plot) are in good agreement with the theory (large
triangles).

4. Summary and conclusions

In this paper, we investigated the effects of horizontal heterogeneity on the
propagation of viscous gravity currents, with an emphasis on second-kind self-similar
behaviour. Two geometries were studied in detail as illustrative examples: (a)
horizontal channels or cracks with a varying gap thickness of power-law form and
(b) heterogeneous porous media with power-law permeability and porosity variations.
In each case, two flow patterns were considered: (a) gravity currents propagating
away from the origin (defined as the point of vanishing permeability) and (b) gravity
currents propagating toward the origin.

We employed experimental, theoretical and numerical techniques to study the flow
behaviour. Our key findings are: (i) when a viscous gravity current propagates away
from the origin in this heterogeneous medium, the behaviour is described by a self-
similar solution of the first kind, as is to be expected based on similar problems in
the literature; (ii) when the current propagates toward the origin in these models with
horizontal heterogeneity, the behaviour is described by self-similarity of the second
kind with a non-trivial exponent in the similarity variable. Depending on the form of
the heterogeneity, different flow regimes are identified corresponding to the existence
of either first-kind or both first- and second-kind self-similarity.

Our study may have possible connections to industrial processes and geological
flows in porous media, including recent applications in geological CO2 storage (see,
e.g., Class et al. 2009; Zheng et al. 2010) and shale gas recovery (see, e.g., Monteiro,
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Rycroft & Barenblatt 2012). For example, in the presence of horizontal heterogeneity,
the propagation regime of a CO2 plume can change. In the case of shale gas recovery,
the propagation of a gas driven by buoyancy in the horizontal channels created by
hydraulic fracturing is affected by the shape of the passage. Our study presents and
benchmarks a possible theoretical approach to understanding the various flow regimes
in a certain class of fissure shapes in a porous medium or crack shapes in a reservoir.
Specifically, we show how to obtain the various self-similar behaviours, even for the
cases where scaling alone cannot reveal such dynamics.
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Appendix A. Phase-plane formalism for gravity currents propagating toward the
origin in a homogeneous porous medium

A.1. Axisymmetric gravity currents in a homogenous porous medium
Second-kind self-similar solutions also exist for axisymmetric gravity currents
propagating in homogeneous porous media (i.e. constant permeability k and
porosity φ) as depicted in figure 1(b). We denote the shape of the gravity current by
ha(r, t) and its propagation velocity by ua(r, t), as before, then Darcy’s law and the
continuity equation are

ua =−1ρgk
µ

∂ha

∂r
, (A 1a)

φ
∂ha

∂t
+ 1

r
∂

∂r
(rhaua)= 0, (A 1b)

respectively. Following the procedure from the earlier sections, for tc<∞, we let τ =
tc − t and

ua(r, t)= φ r
τ

Ua(r, τ ), ha(r, t)=
(
µφ

1ρgk

)
r2

τ
Ha(r, τ ). (A.2a,b)

If the flow is to be self-similar, then Ua and Ha should depend solely on a similarity
variable ξ ≡ r/τ δ, hence (A.1) becomes

dUa

dHa
= Ha(2Ua − 2δ + 1)−Ua(Ua + δ)

Ha(2Ha +Ua)
, (A 3a)

d ln |ξ |
dHa

= − 1
Ua + 2Ha

. (A 3b)

We note that (A3) corresponds to the nonlinear heat conduction problem described in
(15) of Gratton & Minotti (1990) with m= n= 1 (in their notation).
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Equation (A 3a) has three finite critical points:

O : (Ha,Ua) = (0, 0), (A 4a)
A : (Ha,Ua) = (0,−δ), (A 4b)
B : (Ha,Ua) =

(
1
8 ,− 1

4

)
. (A 4c)

A second-kind self-similar solution is found for δ = δc such that there exist a
heteroclinic orbit from point O to point A in the phase plane. Since point B is in the
fourth quadrant in this physical situation, and there are no parameters in this model,
there always exist both first- and second-kind self-similar solutions.

A.2. Gravity currents in a homogenous porous medium with converging boundaries
Second-kind self-similar solutions also exist for a viscous gravity current propagating
in a homogeneous porous medium (i.e. constant permeability k and porosity φ) with
converging boundaries of power-law form bc(x)= bc1xn as depicted in figure 1(d). We
denote the shape of the gravity current by hc(x, t) and its propagation velocity by
uc(x, t), then Darcy’s law and the continuity equation are

uc =−1ρgk
µ

∂hc

∂x
, (A 5a)

φ
∂hc

∂t
+ 1

xn

∂

∂x
(xnhcuc)= 0, (A 5b)

respectively. Again, following the same procedure as before, for tc <∞, we let τ =
tc − t and

uc(x, t)= φ x
τ

Uc(x, τ ), hc(x, t)=
(
µφ

1ρgk

)
x2

τ
Hc(x, τ ). (A6a,b)

If the flow is to be self-similar, Hc and Uc depend only on a similarity variable ξ ≡
x/τ δ, hence (A5) becomes

dUc

dHc
= Hc[(n+ 1)Uc − 2δ + 1] −Uc(Uc + δ)

Hc(2Hc +Uc)
, (A 7a)

d ln |ξ |
dHc

= − 1
Uc + 2Hc

. (A 7b)

Equation (A 7a) has three finite critical points:

O : (Hc,Uc) = (0, 0), (A 8a)
A : (Hc,Uc) = (0,−δ), (A 8b)

B : (Hc,Uc) =
(

1
2(n+ 3)

,− 1
n+ 3

)
. (A 8c)

A second-kind self-similar solution exists for δ= δc such that there exist a heteroclinic
orbit from point O to point A in the phase plane. We expect that both first- and
second-kind self-similar solutions exist for all n, since point B is in the fourth
quadrant for all n in this physical situation.
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Appendix B. Numerical scheme for nonlinear diffusion equations with spatially
varying coefficients

B.1. Preliminaries
In this section, we develop a new finite-difference numerical method capable of
handling the nonlinear parabolic PDEs that arise in this work. To this end, let us use
the following notation for the purposes of this section:

∂h
∂t
= A

xp

∂

∂x

(
xqhs ∂h

∂x

)
, (x, t) ∈ (0, L)× (0, tf ). (B 1)

Here, A, p, q and s are positive real numbers; for example, p= n, q= 3n and s= 1
gives (2.2), while h= hp, A= Ap, p= m, q= n and s= 1 gives (2.19). In general, p
and q are not arbitrary, but determined by the physics at hand. Here L is the size of
the computational domain and tf is the final time in the simulation.

Rather than solving a moving boundary-value problem on (0, xf (t)), we prefer
to solve the problem numerically on a fixed domain (0, L) and impose appropriate
boundary conditions at x = 0 and x = L to automatically enforce the global mass
conservation constraint from, e.g. (2.3). To establish the appropriate boundary
conditions, we begin by multiplying (B 1) by xp and integrating from x = 0 to
x= L:

d
dt

∫ L

0
xph(x, t) dx= A

[
xqhs ∂h

∂x

]L

0

. (B 2)

Now, we enforce the constraint on the total mass by noting that h(x, t)=0 for x> xf (t),
hence

∫ xf

0 xph dx= ∫ L
0 xph dx=Btγ ⇒ d/dt

∫ L
0 xph dx= γBtγ−1 (γ 6= 0). Now, we require

that

A
[

xqhs ∂h
∂x

]L

0

≡ ALq(hshx)

∣∣∣∣
x=L

− A(xqhshx)

∣∣∣∣
x→0

=
{
γBtγ−1, γ 6= 0,
0, γ = 0.

(B 3)

Assuming injection from a single boundary, we can derive two sets of boundary
conditions for the PDE from (B 3):

(xqhshx)|x→0 =
−

γB
A

tγ−1, γ 6= 0,

0, γ = 0,
(B 4a)

(hshx)|x=L = 0⇒ hx|x=L = 0, (B 4b)

and

(xqhshx)|x→0 = 0⇒ hx|x=0 = 0, (B 5a)

(hshx)|x=L =

γB
ALq

tγ−1, γ 6= 0,

0, γ = 0.
(B 5b)

Thus, by imposing either set of boundary conditions above, we automatically satisfy
the global mass conservation constraint. Note that for injection (γ 6= 0) at the origin
(x= 0) we need (xqhshx)|x→0 to be finite, which is only the case if hshx =O(1/xq) as
x→ 0, i.e. the profile and/or its slope blows up at x = 0. Clearly, in this case, the
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lubrication approximation of one-dimensional flow near the origin is violated locally,
however, this does not have a significant effect on the gravity current away from this
localized region (Huppert 1982; Golding, Huppert & Neufeld 2013). Alternatively, we
could solve the PDE on a domain (`, L), where ` ≈ 0, enforcing the flux condition
(xqhshx)|x=` =−(γB/A)tγ−1⇒ (hshx)|x=` =−(γB/A`q)tγ−1.

B.2. Construction of a second-order-accurate scheme with internal iterations
Now, we introduce the grid function hn

i ≈ h(xi, tn) on the staggered grid xi = (i −
1/2)1x, where 1x= L/N. This means that the point i= 0 is a half-spacing to the left
of x= 0, and the point i= N + 1 is a half-spacing to the right of x= L; thus, N + 2
is the total number of spatial grid points. Furthermore, we use the notation

L h≡ A
xp

∂

∂x

(
xqhs ∂h

∂x

)
, (B 6)

and Ld denotes the discretized counterpart to L , as defined below. We would like to
construct a Crank–Nicolson scheme (Crank & Nicolson 1947; Strikwerda 2004) for
(B 1) via the time discretization

hn+1
i − hn

i

1t
= 1

2

(
Ld hn+1

i +Ld hn
i

)
, (B 7)

which is second-order accurate in time. Now, a second-order central difference
approximation to L can be constructed by treating the ‘non-Cartesian part’ (p, q 6= 0)
via a weighted difference as in Christov & Homsy (2009):

L h≈Ld hn
i =

A
xp

i

xq
i+1/2ψ

n+1/2
i+1/2

(hn
i+1 − hn

i )

1x
− xq

i−1/2ψ
n+1/2
i−1/2

(hn
i − hn

i−1)

1x
1x

 , (B 8)

where we introduced an intermediate variable ψ to denote the grid function of the
nonlinear term hs. To have a nonlinear conservative extension of the Crank–Nicolson
scheme for (B 1), this term has to be evaluated at the half-time step and on a staggered
mesh with respect to xi (Christov & Deng 2002), i.e.

ψ
n+1/2
i+1/2 ≡ 1

2

{
1
2

[
(hn+1

i+1 )
s + (hn+1

i )s
]+ 1

2

[
(hn

i+1)
s + (hn

i )
s
]}
. (B 9)

Note that if p= q= s= 0, then (B 8) reduces to the standard three-point second-order
central difference formula, namely ∂2h/∂x2 ≈ (hn

i+1 − 2hn
i + hn

i−1)/(1x)2.
With (B 8) and (B 9) in mind, we shall iteratively find the grid function hn+1

i at the
new time stage by replacing it in (B 7) with hn,k+1

i , where hn,0
i ≡ hn

i (Yanenko 1971).
Thus, the scheme becomes

hn,k+1
i − hn

i

1t
= A

2(1x)2

[
xq

i+1/2

xp
i
ψ

n,k+1/2
i+1/2 (hn,k+1

i+1 − hn,k+1
i )− xq

i−1/2

xp
i
ψ

n,k+1/2
i−1/2 (hn,k+1

i − hn,k+1
i−1 )

]
+ A

2(1x)2

[
xq

i+1/2

xp
i
ψ

n,k+1/2
i+1/2 (hn

i+1 − hn
i )−

xq
i−1/2

xp
i
ψ

n,k+1/2
i−1/2 (hn

i − hn
i−1)

]
, (B 10)
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which can be rewritten as[
− A1t

2(1x)2
xq

i−1/2

xp
i
ψ

n,k+1/2
i−1/2

]
hn,k+1

i−1

+
[

1+ A1t
2(1x)2

(
xq

i+1/2

xp
i
ψ

n,k+1/2
i+1/2 +

xq
i−1/2

xp
i
ψ

n,k+1/2
i−1/2

)]
hn,k+1

i

+
[
− A1t

2(1x)2
xq

i+1/2

xp
i
ψ

n,k+1/2
i+1/2

]
hn,k+1

i+1

= hn
i +

A1t
2(1x)2

[
xq

i+1/2

xp
i
ψ

n,k+1/2
i+1/2 (hn

i+1 − hn
i )−

xq
i−1/2

xp
i
ψ

n,k+1/2
i−1/2 (hn

i − hn
i−1)

]
.

(B 11)

It should be clear that each internal iteration involves the inversion of a tridiagonal
matrix, and the scheme has truncation error O

[
(1x)2 + (1t)2

]
. This is in contrast to

the scheme of Diez et al. (1992), which has truncation error O
[
(1x)2 + (1t)

]
, is valid

only for p= q and requires a ‘precursor’ film ahead of the gravity current.
We construct the boundary conditions semi-implicitly, i.e. we do not take the half-

time step values of the nonlinear hs terms but rather the values at the previous time
step, so that we can explicitly solve for the h values at the upcoming time step. Thus,
the boundary conditions in (B.4) become

1
2

[
(hn,k

0 )
s + (hn,k

1 )
s
] 1
1x

(
hn,k+1

1 − hn,k+1
0

) =
−

γB
A

tγ−1, γ 6= 0,

0, γ = 0,
(B 12a)

1
1x

(
hn,k+1

N+1 − hn,k+1
N

) = 0, (B 12b)

which can be rewritten as

hn,k+1
0 − hn,k+1

1 =

−
2γBtγ−11x

A[(hn,k
0 )

s + (hn,k
1 )

s] , γ 6= 0,

0, γ = 0,
(B 13a)

− hn,k+1
N + hn,k+1

N+1 = 0. (B 13b)

To perform the internal iterations over k at each time step n, we initialize with hn,0=
hn and continue until K such that maxi

∣∣hn,K
i − hn,K−1

i

∣∣ < 10−8 maxi

∣∣hn,K−1
i

∣∣. For the
simulations in the present work, we observe that only a few internal iterations are
required to meet the convergence criterion. Then, we set hn+1 = hn,K to complete an
iteration of the nonlinear conservative Crank–Nicolson scheme.

In a typical simulation used for generating the results in § 3, where s= 1, we used
the initial condition

h(x, 0)=
{

0, 0 6 x 6 0.8L,
0.1(x− 0.8L), 0.8L< x 6 L.

(B 14)

This corresponds to xf (0)/L= x0/L= 0.8, which is comparable with the experiments,
and h(L, 0)/L= 0.02� 1 as required by the lubrication approximation. The value of
L is set by the value of A. It should be noted that the shape of the initial condition
is ‘forgotten’ in self-similar regime.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.148


244 Z. Zheng, I. C. Christov and H. A. Stone

B.3. Convergence of the scheme and conservation properties
We have verified the second order of accuracy of the scheme constructed above by
comparing the numerical solution to the Barenblatt–Pattle exact point-source solution
(Barenblatt 1952; Pattle 1959) on the domain x ∈ (−L, L) for the axisymmetric case
in N dimensions, i.e. p= q=N − 1, and s a positive integer. By halving 1t and 1x
simultaneously, we observe second-order accuracy of the numerical solution in the L1

and L2 norms. Similarly, for both the Barenblatt–Pattle solution on x∈ (−L,L) and the
problems on x∈ (0,L) with the nonlinear boundary conditions above, we have verified
that

∫ L
0 xph dx= Btγ up to numerical precision for all t in each simulation.

REFERENCES

ANDERSON, D. M., MCLAUGHLIN, R. M. & MILLER, C. T. 2003 The averaging of gravity currents
in porous media. Phys. Fluids 15, 2810–2829.

ANGENENT, S. B. & ARONSON, D. G. 1995 Intermediate asymptotics for convergent viscous gravity
currents. Phys. Fluids 7, 223–225.

BARENBLATT, G. I. 1952 On some unsteady fluid and gas motions in a porous medium. Prikl. Mat.
Mekh. (PMM) 16, 67–78; (in Russian).

BARENBLATT, G. I. 1996 Similarity, Self-Similarity, and Intermediate Asymptotics. Cambridge
University Press.

BARENBLATT, G. I. & ZEL’DOVICH, Y. B. 1972 Self-similar solutions as intermediate asymptotics.
Annu. Rev. Fluid Mech. 4, 285–312.

BEAR, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.
CHRISTOV, C. I. & DENG, K. 2002 Numerical investigation of quenching for a nonlinear diffusion

equation with a singular Neumann boundary condition. Numer. Meth. Partial Differ. Equ. 18,
429–440.

CHRISTOV, C. I. & HOMSY, G. M. 2009 Enhancement of transport from drops by steady and
modulated electric fields. Phys. Fluids 21, 083102.

CIRIELLO, V., DI FEDERICO, V., ARCHETTI, R. & LONGO, S. 2013 Effect of variable permeability
on the propagation of thin gravity currents in porous media. Intl J. Non-Linear Mech. 57,
168–175.

CLASS, H., EBIGBO, A., HELMIG, R., DAHLE, H. K., NORDBOTTEN, J. M., CELIA, M. A.,
AUDIGANE, P., DARCIS, M., ENNIS-KING, J., FAN, Y., FLEMISCH, B., GASDA, S. E., JIN,
M., KRUG, S., LABREGERE, D., NADERI BENI, A., PAWAR, R. J., SBAI, A., THOMAS,
S. G., TRENTY, L. & WEI, L. 2009 A benchmark study on problems related to CO2 storage
in geologic formations. Comput. Geosci. 13, 409–434.

COURANT, R. & FRIEDRICHS, K. O. 1999 Supersonic Flow and Shock Waves, Applied Mathematical
Sciences, vol. 21. Springer, corrected 5th printing.

CRANK, J. & NICOLSON, P. 1947 A practical method for numerical evaluation of solutions of partial
differential equations of the heat-conduction type. Proc. Camb. Phil. Soc. 43, 50–67.

DE LOUBENS, R. & RAMAKRISHNAN, T. S. 2011 Analysis and computation of gravity-induced
migration in porous media. J. Fluid Mech. 675, 60–86.

DETOURNAY, E. 2004 Propagation regimes of fluid-driven fractures in impermeable rocks. Intl J.
Geomech. 4, 35–45.

DIDDEN, N. & MAXWORTHY, T. 1982 Viscous spreading of plane and axisymmetric gravity waves.
J. Fluid Mech. 121, 27–42.

DIEZ, J. A., GRATTON, R. & GRATTON, J. 1992 Self-similar solution of the second kind for a
convergent viscous gravity current. Phys. Fluids A 6, 1148–1155.

DIEZ, J. A., THOMAS, L. P., BETELÚ, S., GRATTON, R., MARINO, B., GRATTON, J., ARONSON,
D. G. & ANGENENT, S. B. 1998 Noncircular converging flows in viscous gravity currents.
Phys. Rev. E 58, 6182–6187.

DULLIEN, F. A. L. 1992 Porous Media: Fluid Transport and Pore Structure. Academic Press.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.148


Second-kind self-similar solutions for gravity currents 245

EGGERS, J. & FONTELOS, M. A. 2009 The role of self-similarity in singularities of partial differential
equations. Nonlinearity 22, R1–R44.

FLITTON, J. C. & KING, J. R. 2004 Moving-boundary and fixed-domain problems for a sixth-order
thin-film equation. Eur. J. Appl. Maths 15, 713–754.

GOLDING, M. J., HUPPERT, H. E. & NEUFELD, J. A. 2013 The effects of capillary forces on the
axisymmetric propagation of two-phase, constant-flux gravity currents in porous media. Phys.
Fluids 25, 036602.

GRATTON, J., MAHAJAN, S. M. & MINOTTI, F. 1999 Theory of creeping gravity currents of a
non-Newtonian liquid. Phys. Rev. E 60, 6090–6097.

GRATTON, J. & MINOTTI, F. 1990 Self-similar viscous gravity currents: phase plane formalism. J.
Fluid Mech. 210, 155–182.

HALLEZ, Y. & MAGNAUDET, J. 2009 A numerical investigation of horizontal viscous gravity currents.
J. Fluid Mech. 630, 71–91.

HESSE, M. A., TCHELEPI, H. A., CANTWELL, B. J. & ORR JR, F. M. 2007 Gravity currents
in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577,
363–383.

HOMSY, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271–311.
HOULT, D. P. 1972 Oil spreading on the sea. Annu. Rev. Fluid Mech. 4, 341–368.
HUPPERT, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents

over a rigid horizontal surface. J. Fluid Mech. 121, 43–58.
HUPPERT, H. E. 2000 Geological fluid mechanics. In Perspectives in Fluid Dynamics (ed. G. K.

Batchelor, H. K. Moffatt & M. G. Worster), pp. 447–506. Cambridge University Press.
HUPPERT, H. E. 2006 Gravity currents: a personal perspective. J. Fluid Mech. 554, 299–322.
HUPPERT, H. E., NEUFELD, J. A. & STRANDKVIST, C. 2013 The competition between gravity and

flow focusing in two-layered porous media. J. Fluid Mech. 720, 5–14.
HUPPERT, H. E. & WOODS, A. W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292,

55–69.
KING, J. R. & BOWEN, M. 2001 Moving boundary problems and non-uniqueness for the thin film

equation. Eur. J. Appl. Maths 12, 321–356.
KOCHINA, I. N., MIKHAILOV, N. N. & FILINOV, M. V. 1983 Groundwater mound damping. Intl J.

Engng Sci. 21, 413–421.
LISTER, J. R. 1992 Viscous flows down an inclined plane from point and line sources. J. Fluid

Mech. 242, 631–653.
LYLE, S., HUPPERT, H. E., HALLWORTH, M., BICKLE, M. & CHADWICK, A. 2005 Axisymmetric

gravity currents in a porous medium. J. Fluid Mech. 543, 293–302.
MONTEIRO, P. J. M., RYCROFT, C. H. & BARENBLATT, G. I. 2012 A mathematical model of fluid

and gas flow in nanoporous media. Proc. Natl Acad. Sci. USA 109, 20309–20313.
NORDBOTTEN, J. M. & CELIA, M. A. 2006 Similarity solutions for fluid injection into confined

aquifers. J. Fluid Mech. 561, 307–327.
PARKER, T. S. & CHUA, L. O. 1989 Practical Numerical Algorithms for Chaotic Systems. Springer.
PATTLE, R. E. 1959 Diffusion from an instantaneous point source with a concentration-dependent

coefficient. Q. J. Mech. Appl. Maths 12, 407–409.
PHILIP, J. R. 1970 Flow in porous media. Annu. Rev. Fluid Mech. 2, 177–204.
PHILLIPS, O. M. 1991 Flow and Reactions in Permeable Rocks. Cambridge University Press.
PRITCHARD, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech.

584, 415–431.
SAFFMAN, P. G. & TAYLOR, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw

cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312–329.
SEDOV, L. I. 1993 Similarity and Dimensional Methods in Mechanics. 10th edn. CRC Press.
SIMPSON, J. E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid

Mech. 14, 213–234.
SPENCE, D. A. & SHARP, P. 1985 Self-similar solutions for elastohydrodynamic cavity flow. Proc.

R. Soc. Lond. A 400, 289–313.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.148


246 Z. Zheng, I. C. Christov and H. A. Stone

STRIKWERDA, J. 2004 Finite Difference Schemes and Partial Differential Equations. Society for
Industrial and Applied Mathematics.

TAKAGI, D. & HUPPERT, H. E. 2007 The effect of confining boundaries on viscous gravity currents.
J. Fluid Mech. 577, 495–505.

VELLA, D. & HUPPERT, H. E. 2006 Gravity currents in a porous medium at an inclined plane.
J. Fluid Mech. 555, 353–362.

WITELSKI, T. P. 1998 Horizontal infiltration into wet soil. Water Resour. Res. 30, 1859–1863.
WOODS, A. W. & FARCAS, A. 2009 Capillary entry pressure and the leakage of gravity currents

through a sloping layered permeable rock. J. Fluid Mech. 618, 361–379.
YANENKO, N. N. 1971 The Method of Fractional Steps (ed. M. Hoult), Springer, English translation.
ZHENG, Z., LARSON, E. D., LI, Z., LIU, G. & WILLIAMS, R. H. 2010 Near-term mega-scale CO2

capture and storage demonstration opportunities in China. Energy Environ. Sci. 3, 1153–1169.
ZHENG, Z., SOH, B., HUPPERT, H. E. & STONE, H. A. 2013 Fluid drainage from the edge of a

porous reservoir. J. Fluid Mech. 718, 558–568.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

14
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.148

	Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents
	Introduction
	Formulation of the mathematical model
	Gravity currents in channels
	Flow away from the origin
	Flow toward the origin

	Gravity currents in heterogeneous porous media
	Flow away from the origin
	Flow toward the origin


	Results from experiments and numerical simulation
	Summary and conclusions
	Acknowledgements
	Appendix A. Phase-plane formalism for gravity currents propagating toward the origin in a homogeneous porous medium
	Axisymmetric gravity currents in a homogenous porous medium
	Gravity currents in a homogenous porous medium with converging boundaries

	Appendix B. Numerical scheme for nonlinear diffusion equations with spatially varying coefficients
	Preliminaries
	Construction of a second-order-accurate scheme with internal iterations
	Convergence of the scheme and conservation properties

	References




