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Diverse organisms that swim and fly in the inertial regime use the flapping or
pumping of flexible appendages and cavities to propel themselves through a fluid. It
has long been postulated that the speed and efficiency of locomotion are optimized by
oscillating these appendages at their frequency of free vibration. In jellyfish swimming,
a significant contribution to locomotory efficiency has been attributed to the effects
passive energy recapture, whereby the bell is passively propelled through the fluid
through its interaction with stopping vortex rings formed during each expansion of
the bell. In this paper, we investigate the interplay between resonance and passive
energy recapture using a three-dimensional implementation of the immersed boundary
method to solve the fluid–structure interaction of an elastic oblate jellyfish bell
propelling itself through a viscous fluid. The motion is generated through a fixed
duration application of active tension to the bell margin, which mimics the action of
the coronal swimming muscles. The pulsing frequency is then varied by altering the
length of time between the application of applied tension. We find that the swimming
speed is maximized when the bell is driven at its resonant frequency. However, the
cost of transport is maximized by driving the bell at lower frequencies whereby the
jellyfish passively coasts between active contractions through its interaction with the
stopping vortex ring. Furthermore, the thrust generated by passive energy recapture
was found to be dependent on the elastic properties of the jellyfish bell.

Key words: propulsion, swimming/flying

1. Introduction
In many animals, locomotion emerges from the interplay of the active material

properties of an organisms’ musculature and the passive material properties of their
flexible body or appendage. Elastic structures that bend and flex can be thought of as
mechanical systems with their own natural frequency of vibration, or the frequency

† Email address for correspondence: ahoover2@tulane.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0001-8812-0354
mailto:ahoover2@tulane.edu
https://doi.org/10.1017/jfm.2018.1007


1032 A. P. Hoover, A. J. Porras and L. A. Miller

at which the a system oscillates in free vibration. Since maximum deformations are
generated when a flexible structure is driven at its natural frequency, it has been
suggested that locomotory efficiency and performance is also maximized at this
frequency (Alexander & Bennet-Clark 1977). The basis for this argument is that
when an animal’s muscular processes are tuned to the elastic properties of their
locomotory structures, the potential energy stored in the elastic structures during
muscular deformation is maximized. The cessation of muscular activity in turn
releases the stored potential energy and further drives the motion of the structure.

For swimming and flying animals, fluid motion also plays a significant role in
determining the efficiency of locomotion. Independent and sometimes counter to the
argument that performance is maximized when a structure is driven at its natural
frequency, it is conjectured that locomotory performance is enhanced when the
movement of the structure is tuned to nonlinear fluid effects, such as drag reduction
(Ramananarivo, Godoy-Diana & Thiria 2011) or pressure-induced suction (Gemmell
et al. 2015a). On the other hand, resonant driving can enhance the transfer of
momentum from the structure to the local fluid environment and lead to the formation
strong vortex structures to drive the organism forward (Hoover et al. 2018). Other
arguments suggest that while resonance may play a large role with certain body
shapes, other body shapes do not benefit due to effects of fluid damping (Tytell et al.
2010). The debate behind these two camps suggests the need for high fidelity models
that incorporate both the nonlinear effects from the surrounding fluid environment
and the elastic structures that account for the morphology and mechanical properties
of the organism.

Jellyfish locomotion can be a characterized as a process of active elastic deformation
of a bell and passive recoil (Hoover & Miller 2015). The propulsive cycle of forward
swimming jellyfish is initiated by the contraction of the coronal swimming muscles
present in the subumbrellar cavity of the bell. This muscular contraction deforms the
bell and pushes fluid out of the bell cavity, forming a starting vortex ring in the wake
of the jellyfish. Following the cessation of muscular activity, the bell’s passive elastic
properties, which are due to the mechanical properties of the mesoglea (Arai 1997),
drive the expansion of the bell to its resting state. The expansion of the bell refills
it with fluid. During this passive expansion, the motion of the bell margin forms
a stopping vortex ring, which is rotating in the opposite direction of the starting
vortex ring (Gemmell, Costello & Colin 2014). The interaction between the starting
and stopping vortex rings directs fluid from a region outside of the bell’s immediate
wake upward into the bell cavity (Hoover, Griffith & Miller 2017). This process,
known as passive energy recapture (Gemmell et al. 2013), allows for a secondary
source of thrust at no additional metabolic cost for the jellyfish. This vortex ring
dynamics is particularly important for oblate jellyfish with a low fineness ratio where
the stopping vortex ring continues to drive the bell forward and direct prey towards
feeding structures. It has been suggested that this dynamic has allowed jellyfish to
reach sizes that surpass the phylogenetic constraints of their musculature (Dabiri et al.
2005a,b; Dabiri, Colin & Costello 2007).

A number of studies have considered jellyfish locomotion in the context of resonant
driving. Demont & Gosline (1988) first noted the phenomena and used a reduced-order
lumped parameter model to characterize the bell as a spring–mass–damper system,
with linear damping terms to describe the viscoelastic mesoglea and the shear of the
surrounding fluid. Applying a sinusoidal force at the resonant frequency resulted in
a 40 % increase in the amplitude of the circumferential oscillation when compared
to frequencies significantly above and below. Megill, Gosline & Blake (2005) further
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added to the model by incorporating nonlinear spring elements that account for large
strains. Recently, Hoover & Miller (2015) approached this problem numerically by
solving the fully coupled fluid–structure interaction problem. Using a two-dimensional
(2-D) elastic bell immersed in a viscous fluid, they found that driving near the
resonant frequency produced a 50 % increase in swimming speed relative to below
the resonant frequency driving and even more gains when compared to frequencies
significantly above the resonant frequency. There were several limitations of this
model. The bell was driven using a sinusoidal driving force that actively re-expanded
it, and the 2-D model was only applied to the study of prolate bells, as the fluid
dynamics of oblate bells is not well characterized in two dimensions (Herschlag &
Miller 2011).

A number of other computational studies have examined the fluid dynamics behind
jellyfish swimming (Zhao, Freund & Moser 2008; Huang & Sung 2009). Sahin
& Mohseni (2009) modelled the bell using an axisymmetric Lagrangian–Eulerian
formulation to simulate the forward swimming of Aequorea victoria using recorded
bell profiles. Herschlag & Miller (2011) tested Reynolds number effects using 2-D
immersed boundary jellyfish models of oblate and prolate bells. Park et al. (2014)
used a penalty immersed boundary method to drive the bell motion and explore
wake structures. Alben, Miller & Peng (2013) used a combination of computational
tools and analytical models to quantify the kinematics of the bell for both high
swimming and high efficiency movements. These studies did not specifically quantify
the interplay between the bell’s material properties and passive energy recapture since
the kinematics were prescribed or simplified.

Recently, Hoover et al. (2017) developed a computational three-dimensional (3-D)
immersed boundary model of a forward swimming jellyfish whose kinematics are a
consequence of the interaction between the bell’s material properties and the local
fluid dynamics. In that study, the bell’s passive elastic and active muscular material
properties were varied, and their effects on swimming performance were quantified. It
was noted that the relative strength of the muscular contraction determined the strength
and speed of advection of the vortex rings. However, this study did not examine the
effects of passive energy recapture by varying the driving period.

In this study, we quantify the relationship between the driving frequency, the
dynamics of passive energy recapture and the resulting locomotory efficiency of
jellyfish using the 3-D numerical model described in Hoover et al. (2017). First, we
extract the period of free vibration for bells of differing material properties. We then
drive the bell over a range of frequencies using a strength of muscular activation that
is proportional to the effective stiffness of the bell. The frequencies are varied by
fixing the duration of active contraction and varying the length of time the muscles
are relaxed. The role of passive energy recapture is then quantified by measuring
the strength of the stopping vortex ring. The performance of the bell at a given
driving frequency is then quantified by examining the resulting swimming speed and
input power. We then use swimming efficiency metrics, such as swimming economy
and cost of transport, to compare the performance of bells with varying material
properties. An additional study is performed to examine the performance of driving
the bell significantly above its natural frequency.

2. Materials and methods
2.1. Fluid–structure interaction

Fluid–structure interaction problems are common to biological systems and have been
examined with a variety of computational frameworks. The immersed boundary (IB)
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method (Peskin 2002; Mittal & Iaccarino 2005) is an approach to numerically solving
fully coupled fluid–structure interaction problems introduced by Peskin to study blood
flow in the heart (Peskin 1977). Since then, the IB method has been applied to a
variety of fluid–structure interaction problems in biology in the low to intermediate
Reynolds number regime, including undulatory swimming (Fauci & Peskin 1988;
Bhalla et al. 2013; Hoover et al. 2018), insect flight (Miller & Peskin 2004, 2005,
2009; Jones et al. 2015), lamprey swimming (Tytell et al. 2010, 2016), crustacean
swimming (Zhang et al. 2014) and jellyfish swimming (Hamlet, Santhanakrishnan &
Miller 2011; Herschlag & Miller 2011; Hoover & Miller 2015; Hoover et al. 2017).

The IB formulation of fluid–structure interaction uses an Eulerian description of
the equations of fluid motion, and it uses a Lagrangian description of the elastic
immersed boundaries. Let x = (x, y, z) ∈ Ω denote physical Cartesian coordinates,
with Ω denoting the physical region occupied by the fluid–structure system. Let
X= (X, Y, Z) ∈U denote Lagrangian material coordinates that describe the immersed
structure, with U denoting the Lagrangian coordinate domain. The physical position
of material point X at time t is χ(X, t) ∈Ω , so that the physical region occupied by
the structure at time t is χ(U, t)⊂Ω .

The immersed boundary formulation of the equations of motion is given by

ρ

(
∂u(x, t)
∂t

+ u(x, t) · ∇u(x, t)
)
=−∇p(x, t)+µ∇2u(x, t)+ f (x, t), (2.1)

∇ · u(x, t)= 0, (2.2)

f (x, t)=
∫

U
F(X, t) δ(x− χ(X, t)) dX, (2.3)∫

U
F(X, t) ·V(X) dX=−

∫
U
P(X, t) : ∇XV(X) dX, (2.4)

∂χ(X, t)
∂t

=

∫
Ω

u(x, t) δ(x− χ(X, t)) dx (2.5)

in which ρ is the fluid density, µ is the dynamic viscosity, u(x, t)= (ux, uy, uz) is the
Eulerian material velocity field and p(x, t) is the Eulerian pressure field. Here, f (x, t)
and F(X, t) are equivalent Eulerian and Lagrangian force densities. F is defined in
terms of the first Piola–Kirchhoff solid stress in (2.4) using a weak formulation, in
which V(X) is an arbitrary Lagrangian test function. The Dirac delta function δ(x)
appears as the kernel of the integral transforms, equations (2.3) and (2.5), that connect
the Eulerian and Lagrangian frames.

In this study, a hybrid finite difference/finite element version of the immersed
boundary method (IB/FE) is used to approximate (2.1)–(2.5). The IB/FE method
uses a finite difference formulation for the Eulerian equations and a finite element
formulation to describe the solid body. More details on the IB/FE method can be
found in Griffith & Luo (2017).

2.2. Bell model and geometry
In the following subsection, we describe the structural model of the bell. In this study,
the bell’s motion is a result of the interaction between the passive elastic material
properties of the bell, the active tension generated by the model of the coronal
swimming musculature and the interaction with the surrounding fluid. The structural
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stresses resulting from the bell’s passive and active material properties are calculated
using the first Piola–Kirchhoff stress tensor

P= Pp + Pa (2.6)

in which Pp describes the passive elasticity of the body and Pa describes the active
tension generated by the muscle.

The passive elastic properties of the bell’s mesoglea are described using a neo-
Hookean material model

Pp = η(F− F−T) (2.7)

in which F= ∂χ/∂X is the deformation gradient and η is the elastic modulus of the
material.

The contraction and release of the subumbrellar swimming muscles is modelled
with time-dependent active stress on the bell. This circumferentially oriented stress
is applied over the lower portion of the bell, which is where the coronal swimming
musculature is present. The active stress is calculated via

Pa = JTFf 0 f T
0 (2.8)

in which J= det(F) is the Jacobian of F, T is the magnitude of the prescribed tension
and f 0 is the (fibre) direction vector of the prescribed tension with respect to the
reference configuration. Here f 0 is chosen to model the coronal orientation of the
subumbrellar swimming musculature in the undeformed configuration.

The three-dimensional bell model developed for this study accounts for variations in
the bell’s thickness and material properties. Previous models (Daniel 1983; McHenry
& Jed 2003; Sahin, Mohseni & Colin 2009; Herschlag & Miller 2011) have described
the bell geometry as a hemiellipsoid or by using functions fit to digitized bell shapes.
In this study, the immersed body model is a hemi-ellipsoid bell with both exumbrellar
and subumbrellar surfaces. The bell shape was parametrized using a hemiellipsoid
description for the exumbrellar (ex) and subumbrellar (sub) surfaces via

(X − Xc)
2
+ (Y − Yc)

2

a2
ex,sub

+
(Z − Zc)

2

b2
ex,sub

= 1 for Z > 0, (2.9)

in which Xc= (Xc, Yc, Zc) is the centre of the ellipsoid, aex,sub is the radial axis of the
subumbrellar and exumbrellar surfaces of the bell, respectively, and bex,sub is its vertical
axis (see table 1 and figure 1a). Variation in the bell thickness due to difference in the
exumbrellar and subumbrellar dimensions accounts for variation in the elastic profile
of the bell, where the thinner bell margin is more flexible than the thicker top of the
bell. In all of the numerical studies reported here, as η is varied, Tmax is also varied
by the same proportion. This ensures the same amount of static deformation of the
bell.

Below we describe how the active muscular tension is applied to the bell. The
tension, T , applied at point X varies in time and with respect to the height of the
bell in its reference configuration, Z, and is given by

T = Tmax · α · β (2.10)

in which Tmax is the maximum applied tension, α=α(t) is a temporal parametrization
of the activation and release of muscular tension and β = β(Z) is a spatial
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xbex

bsub

aex

z

asub

(a) (b)

1.0

0.5ı

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Z/Lvert

0.9 1.0

(c)

FIGURE 1. (Colour online) (a) A diagram of the bell model geometry with major
and minor axes for the subumbrellar hemiellipsoid, asub and bsub respectively, and the
exumbrellar hemiellipsoid, aex and bex. (b) The model geometry draws inspiration from the
oblate jellyfish, Aurelia spp. (c) A plot of the spatial parametrization of the musculature,
β, relative to the bell height, Z/Lvert.

Parameter Symbol Value

Elastic modulus ηref 75.0 Pa
Horizontal axis (exumbrellar) aex 0.02 m
Horizontal axis (subumbrellar) asub 0.019 m
Vertical axis (exumbrellar) bex 0.016 m
Vertical axis (subumbrellar) bsub 0.01 m
Maximum tension T ref

max 75.0 N
Activation inflection point Zlim 0.0075 m
Musculature variable (spatial) θs 700.0 m−1

TABLE 1. Table of dimensional parameters for the bell’s structural model. In this study
the elastic modulus, η, and the maximum tension, Tmax, are varied in proportion to one
another and the values reported here are for the reference configuration.

parametrization of the distribution of the subumbrellar musculature. We remark
that 0 6 α, β 6 1. A value of 0.0 implies either that no muscle is present or that the
muscle is not activated.

Note that the subumbrellar musculature does not extend throughout the bell cavity,
and tension is applied mainly at the margin of the bell. The region of activation is
parameterized via

β = 1.0−
1

1+ exp(−θs(Z − Zlim))
(2.11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1007


Pump or coast 1037

Parameter Symbol Non-dimensionalization

Time t̄ t/τ ∗ref
Cycle t̄c t/τ
Propulsive cycle period τ̄ τ /τ ∗ref
Effective propulsive cycle period τ̄ ∗ τ/τ ∗

Vertical displacement D̄ D/Lvert

Elastic modulus η̄ η/(ρL2t−2
ref )

Applied tensions T̄ T/(ρL4t−2
ref )

Swimming speed (spatial average) V̄ V/(Lvert/τ
∗)

Swimming speed (top) V̄ top V top/(Lvert/τ
∗)

Cycle swimming speed V̄c V/(Lvertτ
−1)

Inverse Strouhal number St−1 Vavg/(Lradτ
−1)

Input power P̄ TVrad/(ρL4t−2
ref Lradτ

−1)

TABLE 2. Table of dimensionless parameters and their non-dimensionalizations.

in which θs characterizes the transition from an area of active tension to an area where
no tension is applied and Zlim is the inflection point of the transition (see figure 1).

In this study, two sets of simulations are performed using different temporal patterns
of activation described by α. The first set of simulations (§ 3.1) the goal is to find
the period of free vibration of the bell. Active tension is initially applied in sustained
manner before it is released to freely vibrate. In this case, α is set to

α =

{
1 for t< 2
0 for t > 2.

(2.12)

In the second set of simulations that describe forward swimming (§§ 3.2 and 3.3),
tension is repeatedly applied and released to induce a contraction of the bell’s margin
followed by a passive re-expansion of the bell. The function describing the activation
of the muscle and the release of tension draws inspiration from the recordings of
muscular contraction in Aurelia spp. found in the literature (Horridge 1954) and is
parametrized via

α =
1

1+ exp(−θat∗)
−

1
1+ exp(−θr(t∗ − tdur))

, (2.13)

t∗ =mod (t, τ )+ t0 (2.14)

in which τ is the period of a swimming cycle, t0 is an offset time for the initial
function, θa characterizes the speed of muscular activation, θr characterizes the release
of tension and tdur describes the duration of contraction. In the forward swimming
study, tdur is chosen such that the duration of active tension is held fixed as the period
of the swimming cycle varies from 0.5 s to 3.0 s. We note that both α and β are
dimensionless quantities and are adjusted for dimensionless inputs.

2.3. Dimensionless parameters
In this study, swimming performance is quantified using several dimensionless
parameters (table 2). The characteristic length of our system, L, corresponds to
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the diameter of the bell. A secondary length scale of Lvert, which corresponds to the
height of the bell, is also used to non-dimensionalize the forward swimming velocity.
Note that in all simulations Lvert = 0.4L. The characteristic time, τ ∗ref , is given as the
period of the initial free vibration of a bell with the characteristic elastic modulus
(ηref = 75 Pa). Note that this characteristic time is approximately 0.5 s. The vertical
displacement of the bell, D, is non-dimensionalized with respect to the bell height,

D̄=
D

Lvert
, (2.15)

while the radial displacement is non-dimensionalized with respect to the bell radius,

D̄rad =
Drad − 0.5L

0.5L
. (2.16)

In the forward swimming study, the effective propulsive cycle period is defined as

τ̄ ∗ = τ/τ ∗, (2.17)

where τ is the period of the propulsive cycle and τ ∗ is the period of free vibration
for a bell of stiffness η. Here τ ∗ is found empirically from the free vibration study.
Here τ̄ ranges from 1.0 to 6.0 for the reference case.

We introduce two other dimensionless temporal variables,

t̄= t/τ ∗ref , (2.18)

and
t̄c
= t/τ , (2.19)

where t̄ is non-dimensionalized with respect to a fixed length of time and t̄c represents
the point in time relative to the propulsive cycle. The reason for two temporal
non-dimensionalizations is that at times it is appropriate to examine the performance
relative to the propulsive cycle, for which t̄c would be used, and other times it is
appropriate to use a temporal variable that does not change with the driving frequency,
for which t̄ would be used.

The elastic modulus, η, is non-dimensionalized with respect to the characteristic
elastic modulus,

η̄=
η

ρL2(τ ∗ref )
−2
, (2.20)

as is the applied tension, T ,

T̄ =
T

ρL4(τ ∗ref )
−2
. (2.21)

For the reference configuration, η̄ corresponds to 11.71875 and T̄ corresponds to
approximately 7.32422× 103. In this study, T̄ is held proportional to η̄.

The spatially averaged forward swimming speed, V , of the bell is recorded at each
time step and non-dimensionalized using the equations

V̄ =
V

Lvert/τ ∗
, (2.22)
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where Lvert is the bell’s height and τ ∗ is the period of free vibration. In addition, we
record the velocity at the bell apex, V top, and apply a similar non-dimensionalization
as the spatially averaged velocity,

V̄ top
=

V top

Lvert/τ ∗
. (2.23)

Similarly, we calculate the cycle velocity, V̄c, here defined as

V̄c
=

V
Lvert/τ

, (2.24)

where the characteristic temporal variable, τ , is the period length. Here, V̄ and V̄c are
two dimensionless swimming speeds with differing non-dimensionalizations, where V̄
corresponds to a swimming speed relative to the free vibration period of the bell and
V̄c corresponds to the speed relative to the period length of the propulsive cycle; V̄ top

is included as a point of reference for experimental studies that calculate the speed
by tracking the bell apex, rather than averaging the speed over the entire bell. In this
study, we often report V̄avg and V̄c

avg, which correspond to the velocities averaged over
the length of the propulsive cycle, τ .

The cost of transport (COT), which is a measure of the energy spent per unit
distance travelled, is quantified for each of the bell models. COT is often used as a
measure of the efficiency of swimming (Schmidt-Nielsen 1972; Videler 1993; Bale
et al. 2014). COT is defined by

COT= |Ē |/Dc, (2.25)

in which Ē is the energy integrated over the propulsive cycle, and Dc is the vertical
displacement of the top of the bell for a propulsive cycle. Here E=|Drad|T , where Drad
is the radial displacement of the margin, and T is the active tension and is normalized
by the area of muscle activation; T and Drad are spatially averaged over the margin of
the bell, defined here as the region where Z 6 Zlim in the undeformed configuration.

Dimensionless power is also calculated as

P̄= T̄
Vrad

0.5L/τ ∗
, (2.26)

where Vrad is the radial velocity of the bell margin. Another metric for efficiency that
is used for studies regarding locomotion is the swimming economy Quinn, Lauder &
Smits (2014), which is defined as

ε=
V̄avg

P̄avg
, (2.27)

where P̄avg is the input power averaged over the duration of the bell’s swimming cycle.
The Reynolds number is a non-dimensional parameter that characterizes the ratio of

inertial to viscous forces in the fluid. In this study, we report the Reynolds number
using a frequency-based definition,

Re=
ρL(Lvertτ

−1)

µ
(2.28)
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where Lvertτ
−1 is the characteristic velocity. We use a frequency based characteristic

velocity rather than the resulting forward swimming speed so that Re is an input value
known at the beginning of a simulation. See table 2 for future reference.

The Eulerian variables have non-dimensional analogues for flow velocity

ū=
u

L/τ ∗
= (ūx, ūy, ūz), (2.29)

vorticity

ω̄=
ω

1/τ ∗
= (ω̄x, ω̄y, ω̄z) (2.30)

and pressure

p̄=
p

ρL2(τ ∗)2
. (2.31)

We also report the magnitude of the dimensionless vorticity,

ω̄mag = |ω| (2.32)

and the radial velocity,

ūrad = sign(y)(ūx cos(θ)+ ūy sin(θ)), θ = tan−1(x/y), (2.33)

which describes the fluid flow to and from the vertical axis.

2.4. Software implementation
The numerical model was implemented using IBAMR, a distributed-memory parallel
implementation of the IB method that includes Cartesian grid adaptive mesh
refinement (AMR) (Griffith et al. 2007; IBAMR 2014). IBAMR relies on several
open-source libraries, including SAMRAI (Hornung, Wissink & Kohn 2006; SAMRAI
2007), PETSc (Balay et al. 1997, 2009), hypre (Falgout & Yang 2002; HYPRE 2011)
and libMesh (Kirk et al. 2006).

The computational domain was taken to be a cube of length 8L with periodic
boundary conditions. The domain length was chosen so as to have minimal interaction
between the bell and the boundaries of the domain, where doubling the size of the
domain accounted for a difference of O(10−3) in V̄ for the final propulsive cycle.
The fixed domain is discretized using adaptive mesh refinement (figure 2a), where
the most refined discretization is reserved for portions of the domain where the
structure is present and the vorticity magnitude is above a certain threshold. Applying
the finest Cartesian grid discretization would result in a 10243 patch for the entire
domain, where the finest spatial grid size is h= 8L/1024.

To validate our numerical scheme and model, we varied our finest grid discretization
for patches of size 2563, 5123, 10243 and 20483. We found convergence (figure 2b) in
the averaged forward swimming speed of the bell, V̄avg, with relatively good agreement
between the 10243 and 20483 case. We chose 10243 as the default grid size for this
study for the sake of computational cost and its relative agreement with the more
refined grid. The non-dimensional time step was taken to be 1t = 10−3. Benchmark
problems for the validation of the IBAMR method and IB/FE framework can be found
in Griffith et al. (2007) and Griffith & Luo (2017).
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FIGURE 2. (Colour online) (a) Plot of the domain discretization using adaptive mesh
refinement from IBAMR, where the most refined discretization is reserved for portions
of the domain where the bell is present and the vorticity magnitude is above a certain
threshold, here plotted for |ω̄|> 2. (b) Plot of the resulting swimming speed, V̄avg, for one
cycle at varying patch discretization. We note the convergence in the swimming speed for
the more refined patches of 10243 and 20483.

3. Results
3.1. Free vibration study

To find the natural period free vibration, a coronally oriented, constant tension is
applied to the bell margin until the bell is deformed such that the passive elastic forces
and active muscular tension are nearly in balance (figure 3a in grey). Vibrational
modes are observed during this sustained contraction period, t̄ = 0.0–4.0, and are
dependent on the bell’s elastic modulus, η̄ (figure 3a). The sustained contraction
allows the bell to reach a contracted equilibrium state after the vibrational modes
are sufficiently dampened. At t̄ = 4.0, the tension is then released and the passive
elastic forces return the bell back to its resting configuration (figure 3b). We then
calculate the period of free vibration, τ̄ ∗, by measuring the time it takes for the bell
diameter to complete a full bell oscillation, starting from the point after the bell has
expanded following the initial contracted state to the next subsequent expansion of the
oscillating bell. The recorded period of free vibration remains consistent following the
subsequent oscillations, although these oscillations yielded slightly longer periods as
a result of fluid damping and changes in the effective added mass. For the reference
configuration (η̄ = η̄ref ), the period of free vibration was found to be τ̄ ∗ = 1.0. Note
that we estimate the natural frequency numerically rather than analytically since the
effective mass of the jellyfish, due to the volume of the jellyfish and the boundary
layer, is difficult to estimate at this Re for an unsteady object.

In this study, η̄ is varied as the bell geometry is held fixed. To understand the
relationship between η̄ and τ̄ ∗, the free vibration simulations are run for different
elastic moduli where η̄ = (1/3)η̄ref , (2/3)η̄ref , η̄ref , (4/3)η̄ref and (5/3)η̄ref . Note that
T̄ is held proportional to η̄ throughout this study. This ensures similar deformations
in the static contracted state. We find that decreasing η̄ increases the time it takes
for the bell radius to return to its resting configuration (Dr = 0.0). We note that the
resulting bell configurations during maximum contraction are similar because T̄ is held
proportional to η̄. Plotting the bell’s period of free vibration as a function of the bell’s
stiffness (figure 3c), we find that τ̄ ∗ decreases as η̄ increases.
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FIGURE 3. (Colour online) (a) Plot of the radial displacement, D̄r, during the free
vibration study for (1/3)η̄ref , η̄ref and (5/3)η̄ref . Active tension is applied to the bell (in
grey) and then released at t̄ = 4.0, allowing the bell, with η̄ = η̄ref , to oscillate at its
natural frequency of free vibration. (b) Snapshots of the bell profile when tension is
released from t̄= 8.0 (top) to 10.0 at 0.5 intervals. See supplementary movie 1 available
at https://doi.org/10.1017/jfm.2018.1007. (c) The recorded period of free vibration, τ ∗, for
different η̄ relative to the reference case η̄ref .

Parameter Symbol Value

Musculature variable (activation) θa 200 s−1

Musculature variable (release) θr 20 s−1

Tension duration variable tlen 0.3 s

TABLE 3. Driving study parameters.

3.2. Driving frequency study
In the following study, the temporal activation parametrization, α, is characterized by
(2.13), with the parameters θa, θr and tlen of table 3. In figure 4, we have plotted
the α with τ̄ set to 2.0 and all other parameters from table 1. Plotting the product
of these spatial and temporal parameterizations, α · β, on top of the bell during the
an activation (figure 5), we can see how the application of tension allows for the
contraction of the bell (figure 5(a–d), while the release of tension allows the bell to
passively expand to its equilibrium configuration (figure 5e–h).

To explore the interplay between the driving frequency and the role of passive
energy recapture, the bell was driven over a range of frequencies, including the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

10
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.1007
https://doi.org/10.1017/jfm.2018.1007


Pump or coast 1043

1.0

0.5

0

0 1 2 3

å

t
4 5 6

FIGURE 4. (Colour online) Plot of the temporal parametrization of the activation and
release of muscular tension, α with respect to t̄. Here τ̄ is set to 2.0, and all other relevant
parameters are given in table 3.

(a) (b) (c) (d)
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0.5

0

å . ı

(e) (f) (g) (h)

FIGURE 5. (Colour online) The product α · β is plotted on top of the deformation of
the bell at t̄c equal to (a) 0.0, (b) 0.1, (c) 0.2, (d) 0.3, (e) 0.4, ( f ) 0.5, (g) 0.75 and
(h) 1.0. Here τ̄ = 2.0 and all other relevant parameters regarding activation and release
of tension are given in tables 1 and 3. The material parameters of the bell are of the
reference configuration of § 3.2. Note that for (a–d), the bell is contracting due to the
application of tension, while in (e–h) the tension is released and the bell is allowed to
passively expand.

resonant frequency. The resulting swimming performance was then calculated using
several metrics. The driving frequency was chosen by varying the period of the
pulsing cycle, where τ̄ = 1.0–6.0 in 0.25 increments. The total amount of tension
applied on the bell margin over the course of the cycle was held fixed and the
inter-pulse time was varied (e.g. the time between active contractions). The bells
were driven for seven propulsive cycles, so as to measure their performance as they
approached their steady-state swimming speeds.

In figure 6, we show snapshots of the bell and the out-of-plane vorticity, ω̄y, gene-
rated by the bell as it is driven with a propulsive cycle of length τ̄ = 2.0. Initially
at rest (figure 6a), the initiation of active muscular tension induces the contraction
of the bell (figure 6b,c) and the resulting formation of the starting vortex ring in the
wake of the bell. Once tension is released, the bell passively expands (figure 6d,e)
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FIGURE 6. (Colour online) Out-of-plane vorticity (ω̄y) for a bell with an elastic modulus
of η̄ref and period τ̄ = 2.0 at t̄c equal to (a) 0.0, (b) 0.125, (c) 0.25, (d) 0.625, (e) 0.75,
( f ) 1.0, (g) 2.0, (h) 4.0 and (i) 6.0.
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FIGURE 7. (Colour online) Plot of the velocity vector field of the xz-plane over ω̄y at
t̄c
= 1.0 for the reference configuration bell with τ̄ = 2.0. Note that the two vortex rings

pull fluid in from the side, where the starting vortex pulls it towards the negative vertical
axis away from the bell and the stopping vortex pushes it towards the positive vertical
axis in the bell cavity.

to its resting configuration where the stopping vortex ring continues to drive the bell
forward (figure 6f ). Successive propulsive cycles (figure 6g–i) contribute more starting
vortices to the wake, further driving fluid away from the bell while the stopping vortex
continues to push the bell forward. Examining the velocity vectors associated with
vortex ring interaction (figure 7), we note how the interaction of the starting and
stopping vortex rings pulls fluid in from the side of the bell. The starting vortex
ring directs it away from the bell in the wake, while the stopping vortex directs fluid
towards the bell apex. This allows for increase in forward momentum following the
expansion of the bell at no additional metabolic cost.

By examining the other Eulerian variables (figure 8) for a representative bell
(τ̄ = 2.0 at tc

= 6.0), the interaction between the starting and stopping vortex rings
becomes more apparent. In figure 8a) we plot isocontours of ω̄mag. We note the
presence of starting vortex rings in the wake of the bell, formed during the contraction
phase of the previous propulsive cycles. The stopping vortex ring is visible near the
subumbrellar cavity of the bell. The rotation of the starting vortex rings pull fluid
away from the bell, leading to the formation of a long column of negative ūz
(figure 8b). Passive energy recapture effects can be seen with the interaction between
the starting and stopping vortices, which rotate in opposite directions from one
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FIGURE 8. (Colour online) Plots of the isocontours of (a) ūz, (b) ūrad, (c) p̄ and (d) ω̄mag
for a bell with an η̄= η̄ref , τ̄ = 2.0 and at t̄c

= 6.0.

another, and produce positive ūz in the wake near the subumbrellar cavity. Their
interplay is also present when looking at ūrad (figure 8c). In the immediate wake of
the bell, a region of negative ūrad indicates that the interaction between the starting
and stopping vortex rings pulls the fluid toward the central axis of the bell in the
immediate wake. This flow then causes a region of high p̄ (figure 8d) to form in the
immediate wake.

In figure 9(a), we plot V̄ with respect to t̄ for bells with τ̄ = 2.0, 4.0 and 6.0. Recall
that the duration of applied active tension is held constant, and the length of time
between active contraction is varied. Note that V̄ is the speed averaged over the entire
bell, which accounts for the observed high frequency oscillations in V̄ and are due to
the bells’ passive elastic properties. We note that the velocity profiles are identical in
the initial contraction of the first propulsive cycle as the initial application of active
tension is the same for all cases. When the second propulsive cycle for τ̄ = 2.0 begins
(t̄ = 2.0), the bell’s velocity profile is the similar to the first propulsive cycle but
slightly higher due to additional fluid momentum generated during the first propulsive
cycle. This profile is also observed in the second propulsive cycle of τ̄ = 4.0 and 6.0.
We note the advantage of a lower τ̄ in accelerating the bell, where peak V̄ increases
with each subsequent propulsive cycle. In figure 9(b), we note a similar story with
V̄ top and find swimming profiles similar to what has been observed experimentally in
Gemmell et al. (2013). We note that V̄top increases well after the initial contraction
and expansion, which elucidates the role of the stopping vortex and passive energy
recapture in providing a secondary source of thrust.

The displacement of the top of the bell as a function of t̄ for different τ̄ is shown
in figure 10(a). We find that the initial profile of D̄ during the first propulsive cycle
to be identical regardless of τ̄ . This is due to how α of (2.13) was chosen, where the
strength of applied tension and the length of time it is held to not vary for differing τ .
The bell quickly moves forward during the contraction phase of the bell, followed by
the recoil of the expansion phase of the propulsive cycle. Following this expansion
phase of the bell, we note that the bell continues to move forward long after the
release of the active muscular tension, highlighting the role of stopping vortices in
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FIGURE 9. (Colour online) Plot of (a) V̄ and (b) V̄ top with respect to t̄ for three bells with
τ̄ = 2.0, 4.0 and 6.0. The bell’s elastic modulus is η̄ref . Note that V̄ is the dimensionless
velocity averaged over the entire bell and V̄ top is the dimensionless velocity associated with
the bell apex. The duration of active contraction is fixed, while the rest period between
active contractions is varied.
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FIGURE 10. (Colour online) Plots of D̄ as a function of (a) time non-dimensionalized by
the base period of free vibration, t̄, and (b) time non-dimensionalized by the duration of
the specific propulsive cycle for each case, t̄c, for bells with τ̄ = 1.0, 2.0, 3.0, 4.0, 5.0
and 6.0. Note that the bell driven at the natural frequency, τ̄ = 1.0 travels the farthest for
a fixed amount of time, while the bell with the longest pulsing period, τ̄ = 6.0, travels
the farthest per pulse.

providing additional thrust during the passive energy recapture phase of the propulsive
cycle. Comparing the displacement for different τ̄ , we note that bells with a shorter
τ̄ accelerate more quickly than those with a longer τ . Plotting D̄ with respect to time
non-dimensionalized by the specific the pulse period, t̄c (figure 10b), we find that bells
with a longer τ̄ swim farther over the total length of their cycle.
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FIGURE 11. (Colour online) Plots of (a) the average dimensionless swimming speed, V̄avg
and (b) the average dimensionless swimming speed determined by distance travelled per
cycle, V̄c

avg as a function of τ̄ ∗. Average velocities are reported for each of the first seven
propulsive cycles. With respect to absolute time, the fastest swimming speeds are obtained
near the resonant driving frequency τ̄ ∗=1.0. When the average velocity is calculated using
the distance travelled per propulsive cycle, lower frequency bells swim farther.

Driving the bell near the resonant frequency (τ̄ ∗ = 1) yielded higher swimming
speeds over the propulsive cycle. In figure 11(a), we show V̄avg as a function of τ̄
over the seven propulsive cycles. We note that the optimal driving frequency is at
the resonant frequency. Examining the performance of the bell for lower frequencies,
we note that the peak V̄avg shifts from a τ̄ that is slightly longer than τ̄ ∗ during
the intermediate cycles before shifting to τ̄ ∗. This is possibly due to added mass
effects that shift as the swimming speed increases and the boundary layer of the bell
decreases. We also note the presence of a second, lower peak in V̄ near τ̄ = 2.25 in
the intermediate cycles. In later cycles, this second peak shifts to τ̄ = 2.0 and 1.75.
We note that the simulations are approaching a steady state swimming speed, with less
than 10 % relative difference in V̄avg between the sixth and seventh propulsive cycle.

Bells with longer periods travelled farther per propulsive cycle than those with
shorter periods. Plotting V̄c

avg with respect to τ̄ (figure 11b), we generally find that
V̄c

avg increases as τ̄ increases, with V̄c
avg plateauing for τ̄ > 5.5 at later cycles. Recall

that V̄c
avg describes the bell heights travelled per propulsive cycle. This illustrates the

role of the stopping vortex ring in generating forward movement after the expansion
phase. As the τ̄ ∗ increases, the passive energy recapture due to the stopping vortex
ring continues to propel the bell forward for no additional energy cost. For τ̄ > 5.5,
the additional distance travelled due to the stopping vortex ring does not increase
relative to the distance travelled for bells with shorter periods.

As the period of the propulsive cycle increases, the distance between the starting
and stopping vortex rings increases as well. In figure 12, we plot ω̄y at t̄ = 4.0
for bells with τ̄ = 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0. For all cases considered, starting
vortex rings are shed into the wake of the bell, and stopping vortices are observed
in the subumbrellar cavity. As τ̄ increases, the distance between the stopping and
starting vortex ring increases, as does the distance between starting vortex rings from
previous propulsive cycles. To illustrate these difference in the wake, we plot the
instantaneous vertical flow, ūz, in the xz-plane (figure 13). As the distance between the
starting and stopping vortex ring increases, the strength of their interaction decreases,
with a smaller region of positive vertical velocity present in the immediate wake.
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FIGURE 12. (Colour online) Plots of the out-of-plane vorticity, ω̄y at t̄c
= 4.0 for bells

with η̄= η̄ref and τ̄ = (a) 1.0, (b) 2.0, (c) 3.0, (d) 4.0, (e) 5.0 and ( f ) 6.0.
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FIGURE 13. (Colour online) Plots of the vertical velocity, ūz at t̄ = 4.0 for bells with
η̄= η̄ref and τ̄ = (a) 1.0, (b) 2.0, (c) 3.0, (d) 4.0, (e) 5.0 and ( f ) 6.0.

The immediate wake of the bell with τ̄ = 1.0 is also affected by the starting vortex
ring in the third propulsive cycle.

To quantify the strength of the stopping vortex ring, its dimensionless circulation,
Γ̄ , was calculated at the end of the bells’ seventh propulsive cycle (t̄c

= 7.0). In
figure 14, we show Γ̄ as a function of τ̄ . An initial peak in circulation is present
at τ̄ = 1.0, which is followed by a steep decline to a plateau where the circulation
remains nearly constant from τ̄ =1.5 to 3.25. After this point, the circulation decreases
at a higher rate. This suggests that there is a limit to the additional thrust generated
by the stopping vortex rings due to viscous dissipation.
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FIGURE 14. Plots of the stopping vortex ring circulation, Γ̄ , with respect to τ̄ at
t̄c
= 7.0 for a bell with η̄= η̄ref .
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FIGURE 15. (a) Plot of Āz with respect to t̄ from 36 to 42 for a bell of η̄= η̄ref driven
at τ̄ = 6.0. (b) The average of the Āz, Āavg, over different intervals of the final propulsive
cycle for a bell of η̄= η̄ref driven at τ̄ = 6.0.

To further examine the role of the stopping vortex in driving the bell forward, we
calculated the vertical acceleration, Āz = (∂V̄z/∂ t̄), of the bell for η̄ = η̄ref driven at
τ̄ = 6.0 (figure 15a). If the bell was moving forward solely due to the inertia from
the contraction phase, then the bell should have be averaging a negative acceleration
during the coasting phase due to the drag on the bell. In figure 15(b) we plot the
average Āz of the bell, Āavg, over t̄= 2.0 length intervals for the final propulsive cycle.
We note that the average acceleration over in the first interval, which includes both the
contraction and expansion of the bell, is positive. In the second interval, during which
the bell is already fully expanded and being driven by the stopping vortex, is positive
as well. As the strength of the stopping vortex decreases, as noted in figure 14, the
drag on the bell contributes to a negative acceleration. The positive acceleration of the
second interval suggests that the stopping vortex plays a significant in driving the bell
forward following the contraction and expansion of the bell.
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FIGURE 16. (Colour online) Plot of (a) V̄ and (b) V̄ top with respect to t̄ for three bells
with η̄= (1/3)η̄ref , η̄ref and (5/3)η̄ref . The bell’s propulsive cycle has a period of τ̄ = 2.5.
Note that V̄ is the dimensionless velocity averaged over the entire bell and V̄ top is the
dimensionless velocity associated with the bell apex. As the η̄ is varied, the passive elastic
response of the bell varies as well.

3.2.1. Varying bell stiffness
To further examine the role of resonance, we varied the bell’s elastic modulus (see

table 1) and varied the driving frequency. In figure 16(a), we plot V̄ top with respect to
t̄ for three bells of with elastic moduli of (1/3)η̄ref , η̄ref and (5/3)η̄ref , and a propulsive
cycle of length τ̄ = 2.5. We remind that V̄ is non-dimensionalized with respect to the
bell’s period of free vibration, τ ∗, and that it is averaged over the entire bell. We find
that V̄ for all three bells display oscillations in the forward swimming speed, as seen
in figure 9(a), but that the frequency of those oscillations varies as a function of η̄,
with higher frequency oscillations occurring for the stiffest bell ((5/3)η̄ref ) and lower
frequency oscillations for the most flexible bell ((1/3)η̄ref ). We also note that the point
at which peak V̄ occurs shifts to later in the propulsive cycle as η̄ decreases.

Plotting V̄avg of the seventh propulsive cycle with respect to the effective period, τ̄ ∗,
we find that the bell swims fastest when the propulsive cycle is equal to its period
of free vibration (τ̄ ∗ = 1.0) or slightly less than it. If the period is too short, as seen
for the first point of the (1/3)η̄ref curve, the bell does not produce significant forward
swimming speed. For τ̄ ∗> 1.0 we see a steady decline in V̄avg, as previously observed
in figure 11(b). Examining V̄c

avg in figure 17(b), we find that longer τ̄ ∗ travel farther
per cycle, but V̄c

avg levels off at earlier τ̄ ∗ when η̄ is lower.
To further examine the role of resonance, we show the out-of-plane vorticity, ω̄y,

for three bells with the elastic modulus set to (1/3)η̄ref , (2/3)η̄ref and η̄ driven with
a propulsive cycle period of τ̄ = 1.0 (figure 18). The most flexible case ((1/3)η̄ref )
is driven above its resonant frequency, and is not given enough time during the
propulsive cycle to expand fully to its resting state. As such the bell is not fully
expanded by the time the next propulsive cycle begin, leading to a less defined
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FIGURE 17. (Colour online) Plot of (a) V̄avg and (b) V̄c
avg with respect to τ̄ ∗ for bells with

η̄= (1/3)η̄ref , η̄ref , and (5/3)η̄ref . Note that τ̄∗= 1 corresponds to the natural frequency of
each of the bells. V̄avg denotes the dimensionless swimming speed with respect to absolute
time. V̄c

avg denotes the average dimensionless swimming speed calculated using distance
travelled per propulsive cycle. Hence, (b) shows that bells with longer driving periods
swim farther per propulsive cycle.
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FIGURE 18. (Colour online) Plot of ω̄y for bells with τ̄ = 0.5 at t̄ = 7.0 for η̄ equal to
(a)(1/3)η̄ref , (b)(2/3)η̄ref and (c)η̄ref . The bell in (a) has not fully expanded at the end
of its propulsive cycle, and does not form the defined starting vortex rings as found in
the wakes of (b) and (c). The bell in (a) lacks the large region of positive ū found in
(b) and (c). Note that the bell in (a) is driven faster than its resonant frequency, while
the bell in (c) is being driven at its resonant frequency. The bell in (b) is being slightly
faster than its resonant frequency (τ̄ ∗ = 0.8) but is allowed enough time to expand. See
supplementary movie 2.

starting vortex ring. We find that the distinct separation of the starting vortex rings in
the wake, as seen in the higher η̄ cases, is absent. Also absent for the more flexible
bell is the separation of the starting and stopping vortex rings in the immediate wake.
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FIGURE 19. (Colour online) Plot of ūz on the xz-plane for bells with τ̄ = 0.5 at t̄= 7.0
for η̄ equal to (a) (1/3)η̄ref , (b) (2/3)η̄ref , (c) η̄ref . The bell in (a) lacks the large region of
positive ū found in (b) and (c). Note that the bell in (a) is driven faster than its resonant
frequency, while the bell in (c) is being driven at its resonant frequency. The bell in (b)
is being slightly faster than its resonant frequency (τ̄ ∗ = 0.8) but still performs well.

Examining the vertical velocity in a 2-D plane through the central axis of the bell
(figure 19), we find that the absence of this vortex ring separation yields a smaller
region of positive ūz in the immediate wake. Movie 2 detailing this case is included
in the supplementary materials.

To describe the efficiency as a function of the bell elastic modulus and the driving
frequency, we calculated that average power input, P̄avg, the swimming economy, ε,
and the cost of transport, COT, for each of the cases. P̄avg generally decreased as the
effective period, τ̄ ∗, increased (figure 20a). When the bell was driven above its natural
frequency, τ̄∗ < 1.0 for (1/3)τ̄ , the average power input was lower since less work
was done as the bell did not fully expand. There was a second local peak in P̄avg

at τ̄ ∗ ≈ 2.25 for all η̄. For fixed τ̄ ∗, P̄avg was slightly higher for stiffer bells, due to
this study maintaining tension magnitude in proportion to the bell’s elastic modulus.
However, we note that the non-dimensionalization of P̄avg collapses fairly well for
the different η̄. Examining the swimming economy of the bell, ε, with respect to the
effective period, τ̄ ∗, we found that the swimming economy increased as τ̄ ∗ increased
(figure 20b). Local peaks in ε were noted at τ̄ ∗ that corresponded to multiples of the
period of free vibration, τ ∗. We also found that though the swimming economy of the
bells showed relatively good agreement, the swimming economy was generally higher
for more flexible bells. Similarly, more flexible bells had a lower cost of transport,
COT. Increasing the pulsing cycle duration, τ̄ , led to a decrease in COT for a given
stiffness (figure 20c).

Collapsing our results with respect to τ̄ ∗ allowed us to compare bells of different
stiffnesses relative to the period of free vibration. We generally find that bells
driven at the same τ̄ ∗ have similar V̄avg and V̄c

avg, with the exception being the most
flexible case, (1/3)η̄ref , which swims at a slightly slower speed. Plotting the vorticity
associated with bells of τ̄ ∗≈ 2.5 (figure 21), we find similarity in the vorticity profiles
of the bells. Note that the bells are driven at different frequencies. Plotting ūz on the
xz-place for the bells reveal similarities in the immediate wake of the bell. In that
region, positive ūz is present due to the starting and stopping vortex ring interactions
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FIGURE 20. (Colour online) Plot of (a) average input power (P̄avg), (b) swimming
economy (ε) and (c) cost of transport (COT) with respect to τ̄ ∗ for bells with η̄= (1/3)η̄ref ,
η̄ref and (5/3)η̄ref . Recall that the bells are driven at their resonant frequency when τ̄ ∗= 1.

(figure 22). However, we note that as η̄ decreases, the similarity in swimming speeds
decreases. This is a result of the limitations in the relative strength of applied tension
in overcoming the fluid forces associated with pushing fluid out of the bell, as
had been previously noted in Hoover & Miller (2015). As the stiffness of the bell
increases, the relative difference between bells of similar τ̄ ∗ decreases. Calculating
the dimensionless circulation at t̄c

= 7.0 for the five bells of figures 21 and 22, we
find that the circulation of the stopping vortex ring remains fairly consistent across
the five bells of varying η̄ and τ̄ . Movie 3 detailing this case is included in the
supplementary materials.

3.3. Short time scale study
Due to the choice of tlen, θa and θr in the temporal activation function, α, the
studies in § 3.2 are unable to fully span the parameter space of τ̄ ∗ < 1.0. In order
to understand the role of pumping above the resonant frequency, a short time scale
study is performed with a modified α with tlen, θa and θr values that allow for a
shorter period of activation (see table 4). With this modified α, the bell is driven with
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FIGURE 21. (Colour online) Plot of ω̄y on the xz-plane for bells with τ̄ ∗≈ 2.5 at t̄c
= 6.0

for η̄ equal to (a) (1/3)η̄ref (τ̄ = 4.25), (b) (1/3)η̄ref (τ̄ = 3.0) and (c) η̄ref (τ̄ = 2.5), (d)
(4/3)η̄ref (τ̄ = 2.25), and (e) (5/3)η̄ref (τ̄ = 2.0). See supplementary movie 3.
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FIGURE 22. (Colour online) Plot of ūz on the xz-plane for bells with τ̄ ∗ ≈ 2.5 at t̄c
=

6.0 for η̄ equal to (a) (1/3)η̄ref (τ̄ = 4.25), (b) (1/3)η̄ref (τ̄ = 3.0), (c) η̄ref (τ̄ = 2.5), (d)
(4/3)η̄ref (τ̄ = 2.25) and (e) (5/3)η̄ref (τ̄ = 2.0).

Parameter Symbol Value

Musculature variable (activation) θa 2000 s−1

Musculature variable (release) θr 2000 s−1

Tension duration variable tlen 0.2 s

TABLE 4. Short time scale study parameters.

a range of τ̄ equal to 0.5, 0.75, 1.0, 1.25 and 1.5. In figure 24 we plot α and the
corresponding forward swimming velocity V̄ for τ̄ = 0.5, 1.0 and 1.5 and η̄ = η̄ref .
We note the differences in the velocity profiles, where τ̄ = 0.5 yields a swimming
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FIGURE 23. Plot of the dimensionless stopping vortex ring circulation, Γ̄ , versus the
normalized elastic modulus of the bell, η̄/η̄ref , for five bells with τ̄ ∗ ≈ 2.5 at t̄c

= 7.0.
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FIGURE 24. (Colour online) (a) Plot of the temporal parametrization of the activation and
release of muscular tension, α, for the short time scale study for τ̄ = 0.5, 1.0 and 1.5. (b)
Plot of V̄ with respect to t̄ for the short time scale study using the α of (a).

speed that does not experience the peak swimming speeds of the bells that are driven
at τ̄ = 1.0 and 1.5.

This range of τ̄ allows us to examine the role of driving for τ̄ ∗ < 1.0 for bells
with η̄ equal to (1/3)η̄ref , (2/3)η̄ref , η̄ref , (4/3)η̄ref and (5/3)η̄ref . In figure 25(a,b), we
have plotted the resulting V̄avg and V̄c

avg with respect to the resulting τ̄ ∗ of the bells
when driving the bell with τ̄ = 0.5, 0.75, 1.0, 1.25 and 1.5. For all bells driven at
τ̄ ∗ < 0.5, the resulting swimming speed decreases. Generally, the peaks in swimming
speed occur at a range of 0.6 < τ̄ ∗ < 1.0, where stiffer bells have peaks closer to
the natural period of free vibration (τ̄ ∗= 1.0) whereas more flexible bells have peaks
in swimming speeds of a shorter period. Examining P̄avg (figure 25c), we found that
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FIGURE 25. (Colour online) Plots of (a) V̄avg, (b) V̄c
avg and (c) P̄avg with respect to τ̄ ∗

for bells with η̄ = (1/3)η̄ref , η̄ref and (5/3)η̄ref for the short time scale α. We note that
P̄avg peaks at 0.6< τ̄ ∗ < 1.0 and decreases as τ̄ ∗ increases as it did for the case in § 3.2.
However, we note a low P̄avg for τ̄ ∗ < 0.6 due to the bell not fully expanding, which in
turn leads to a lower V̄rad.

power was maximized around 0.6 < τ̄ ∗ < 1.0. As τ̄ ∗ decreases, P̄avg decreases as
a result of the bell not fully expanding to its equilibrium state when no tension is
acting on it. This in turn yields a lower Vrad since it takes the bell is already near its
contracted equilibrium state.

4. Discussion
Our three-dimensional numerical study of resonant driving and passive energy

recapture in oblate jellyfish bells indicates that the ideal driving frequency for a
given bell depends upon the metric that is to be optimized. For a given bell shape
and elastic modulus with a fixed magnitude and duration of applied muscular tension,
the fastest forward swimming speeds are generated when the bell is driven near its
resonant frequency. If the bell is driven above this frequency, it will not fully expand
before the next active contraction. This results in lower amplitude oscillations and
weaker starting and stopping vortex rings that are not efficiently shed into the wake.
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If the bell is driven below this frequency, the average distance travelled per unit time
decreases, due in part to the fact that the contractions happen less frequently. On
the other hand, long coasting periods between active contractions (corresponding to
lower driving frequencies) result in more efficient swimming when one considers the
cost of transport and average power input. The bell is passively propelled forward
for longer periods of time due to its interaction with the stopping vortex ring, though
there are limits to this secondary thrust mechanism due to viscous dissipation of the
stopping vortex ring. Furthermore, we have found limitations in increasing driving
frequency significantly above the resonant frequency.

Our results complement but also expand our understanding of resonant swimming
in jellyfish relative to previous work. The lumped parameter models by Demont
& Gosline (1988) and Megill (2002) showed that the fastest forward swimming
speeds are obtained when the bell is driven at its resonant frequency. These works
did not, however, show that lower frequencies lead to more efficient swimming as
the models did not consider unsteady effects of the fluid or vortex–bell interactions.
Hoover & Miller (2015) found that for two-dimensional prolate bells, both swimming
speed and cost of transport were maximized when the bell was driven near its
resonant frequency. Given the prolate bell geometry and the two-dimensionality of
the simulations, passive energy recapture did not have a significant effect. In our
three-dimensional simulations of oblate bells, the jellyfish can coast for extended
periods of time through passive energy recapture. While the average swimming
speeds are slower, efficiency of movement is higher. Other differences between our
results and previous models may also be due to the way in which muscular forces
are applied. In earlier resonant studies, these forces are given as sinusoidal functions
such that the duration of applied tension changes with driving frequency. There is
also an active force during expansion that acts to re-expand the bell. By keeping the
duration of applied tension constant in our model and applying no force to re-expand
the bell, we note that our model of muscular tension is more representative of true
jellyfish. We also comment that though the model extended muscular activation to the
bell margin, the resulting fluid dynamics remains similar to the experimental studies
of Gemmell et al. (2015b). Further examination of the role of the flexibility of the
bell margin and its kinematics is an area of future study.

This study also further illuminates the role of passive energy recapture in jellyfish
locomotion. A recent experimental study by Gemmell, Colin & Costello (2018)
observed that although passive energy recapture occurs throughout the jellyfish taxa,
not all jellyfish take full advantage of this mechanism. In that study it was remarked
that one possible reason for this discrepancy is that jellyfish that are continuously
swimming want to avoid the loss of inertia associated with longer inter-pulse durations.
The results from our study confirm the observation of Gemmell et al. (2013), with
significantly lower V̄avg for the reference bell with long τ̄ (figure 11a) and diminishing
returns for the distance travelled by a bell over the propulsive cycle (figure 11b). We
note that the resulting steady-state or near-steady-state swimming is higher for bells
with shorter τ̄ for the reference case. Furthermore, examining the circulation of the
stopping vortex (figure 14) at the end of the propulsive cycle revealed a steady decline
in circulation for τ̄ > 3.5. This suggests that, after this point, there are diminishing
returns on the additional thrust from passive energy recapture due to the decline of
the intensity of the stopping vortex ring. Furthermore, it is important to keep in mind
that one of the main reasons oblate jellyfish swim is to circulate fluid and nutrients
through their tentacles, as opposed to moving towards a specific destination (Costello
& Colin 1995; Dabiri et al. 2010; Gemmell et al. 2013). In light of this, swimming
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with greater efficiency, with a longer τ ∗, would be more important than swimming
proficiently.

Comparing the swimming performance of bells with differing material properties
(figure 17a,b) further reveals the dynamics between passive energy recapture and
resonant driving. Bells driven near τ̄ ∗ = 1.0 have a higher V̄avg than bells driven
with a long τ̄ ∗. Bells with a longer τ̄ ∗ in turn travel farther per propulsive cycle and
therefore have a higher V̄c

avg. The two most flexible bells, (1/3)ηref and (1/3)ηref , are
driven at τ̄ ∗ < 1 and reveal the dynamics of the driving the bell above its resonant
frequency. Driving slightly above the resonant frequency can yield faster swimming
speeds than driving at the resonant frequency, but if the frequency is too high
(figures 18 and 18) the bell does not fully expand and does not fully form the starting
and stopping vortex rings present in jellyfish locomotion. To further characterize the
swimming performance, we examined the efficiency of the bell by examining the
swimming economy, ε, and cost of transport, COT, of the bell. We generally found a
higher swimming economy for more flexible bells (figure 20b) and for bells that are
driven at longer τ̄ ∗. We note that the swimming economy revealed that a flexible bell
driven with a shorter τ̄ ∗ would have the equivalent swimming economy as a stiff bell
driven with a longer τ̄ ∗. Examining cost of transport (figure 20c) we generally find
that flexible bells have a lower cost of transport. Driving at the resonant frequency
led to a higher average input power, P̄avg, which can explain the lower efficiency
associated with τ̄ ≈ 1.0. By examining the effects of driving above the resonant
frequency, we found that driving the bell in the range of 0.6< τ̄ ∗ < 1.0 led to peak
swimming speeds (figure 25a,b), but a lower τ̄ resulted in a significant decrease in
swimming speed. This result further illustrates the limitations of driving above the
resonant frequency.

The collapse of V̄avg for bells of differing material properties using τ̄ ∗ also reveals
the interplay between the material properties of the structure and the fluid motion it
generates. Using the period of free vibration, τ ∗, as the characteristic time for V̄ , we
find that for bells with η̄> (2/3)η̄ref the resulting swimming performance is dependent
on the speed of the bell’s expansion. Stiffer bells have a lower τ ∗ and the bell will
expand more quickly to its resting configuration. During this expansion, the strength
of the stopping vortex ring formed will be dependent on the speed of expansion,
with a higher transfer of momentum for lower τ ∗. Since passive energy recapture is
dependent on the strength of the stopping vortex, scaling τ̄ ∗ with τ ∗, we find that
bells of similar τ̄ ∗ have a similar velocity and displacement, even with differences
in the driving frequency (figures 21 and 22). This further elucidates the relationship
between the bell’s material properties and the fluid forces the bell generates. This
relationship was also examined in Hoover et al. (2017), where the speed of the
starting vortex rings was found to be dependent on the strength of the applied active
tension. However, the length of the propulsive cycle was held fixed in that study
and the effects that the material properties have on passive energy recapture were
not fully examined. The results from our study further explain how these material
properties affect the strength of the starting and stopping vortex rings and their role
in both resonant driving and passive energy recapture.
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