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We present fully resolved simulations of the flow–structure interaction in a flexible
pipe conveying incompressible fluid. It is shown that the Reynolds number plays a
significant role in the onset of flutter for a fluid-conveying pipe modelled through the
classic garden-hose problem. We investigate the complex interaction between structural
and internal flow dynamics and obtain a phase diagram of the transition between
states as function of three non-dimensional quantities: the fluid-tension parameter, the
dimensionless fluid velocity and the Reynolds number. We find that the flow patterns
inside the pipe strongly affect the type of induced motion. For unsteady flow, if there
is symmetry along a direction, this leads to in-plane motion whereas breaking of
the flow symmetry results in both in-plane and out-of-plane motions. Hence, above a
critical Reynolds number, complex flow patterns result for the vibrating pipe as there
is continuous generation of new vorticity due to the pipe wall acceleration, which is
subsequently shed in the confined space of the interior of the pipe.

Key words: bifurcation, flow–structure interactions, vortex flows

1. Introduction
A flexible, fluid-conveying pipe constitutes a simple flow–structure interaction

system with intriguingly complex dynamical properties. Such systems are extensively
used in the oil and gas industry and in nuclear engineering but are also of great
interest in biomechanics, e.g. the blood flow in veins or air flow in pulmonary
alveoli. A flutter instability arises if the fluid velocity in the pipe is sufficiently high,
resulting in a pipe motion whose form is close to a sinusoidal one at lower velocity
values, while it appears totally erratic at higher velocities. This is an instability that
we can observe in everyday life, such as when watering the garden with a hose
(hence the name garden-hose or water-hose instability), or watching ‘sky dancers’ –
long flexible tubes dancing above air blowers in the streets to advertise a product
(Doaré & De Langre 2002; Cros, Romero & Flores 2012).

Bourrières (1939) was one of the first to conduct experiments to determine the
flutter of a cantilevered pipe; a similar study was undertaken later by Ashley &

† Email address for correspondence: george_karniadakis@brown.edu
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Haviland (1950) in order to explain the vibrations of long pipelines. Benjamin
(1961a,b) derived the general theory of fluid-conveying flexible pipes and shed light
on the principal mechanisms of flow–structure interaction. In their pioneering work,
Paidoussis and his collaborators (Gregory & Paidoussis 1966; Paidoussis 1998, 2004)
have elucidated the onset of the instabilities that appear in fluid-conveying systems
in a series of publications combining experimental and theoretical studies.

In previous studies, the focus has been mainly on the dynamics of the pipe using
approximate flow models, whereas the fully resolved viscous flow dynamics inside
the pipe, to the best of our knowledge, has never been studied systematically when
coupled with the pipe vibrations (for the flow inside the pipe, we perform direct
numerical simulations based on the three-dimensional incompressible Navier–Stokes
equations for viscous fluids). Typically, the flow effect has been modelled through
potential flow analysis, viz. through the added mass forces acting on the pipe.
Similarly, depending on whether the flow is laminar or turbulent, Guo, Zhang &
Païdoussis (2010) proposed various flow profile modification factors to consider the
non-uniformity of the flow velocity distribution, however, the fluid dynamics in the
pipe was still over-simplified. As we know, flow in a stationary pipe transitions to
turbulence at a Reynolds number of approximately Re ≈ 2000, but oscillations of
the pipe greatly affect the flow patterns, lowering substantially the transition point
(Benhamou, Laneville & Galanis 2004). We demonstrate this flow sensitivity on the
amplitude of the transverse oscillation, through simulation of the flow in a circular
pipe subjected to a planar motion in the form of a standing wave at two different
amplitudes: (a) A = 0.5D, (b) A = 1.0D. The motion of the pipe is prescribed as:
y = A sin(2πft) sin(2πz/L), with frequency f = 0.167, pipe length L = 15D and
diameter D. A constant body force is used to drive the flow at mean Reynolds
number Re= 800. From figure 1 we note that, while the flow remains laminar at the
lower amplitude, at the higher amplitude there is clear evidence of transition. If the
pipe is free to move under the action of fluid forces, we find that this new flow state
induces amplification of the oscillation, which will further excite the flow, and so on,
forming an unstable feedback loop.

We study the internal flow-induced vibration of the pipe via direct numerical
simulation (DNS), in parallel with eigenvalue analysis of the corresponding simplified
problem. The coupled fluid–structure system is solved using the research spectral
element code NEKTAR (Karniadakis & Sherwin 2013), employing a Fourier
expansion in the z flow direction and a tensor-product Jacobi polynomial basis in the
cross-flow (x, y) planes. For the fluid, the Navier–Stokes equations are solved while
for the structure solver a tensioned beam equation is used. Moreover, a boundary-fitted
coordinate formulation is used to take into account the pipe unsteady deformation.
Since this solver has been used extensively in simulating vortex-induced vibration of
a cylinder in external flow (Newman & Karniadakis 1997; Evangelinos & Karniadakis
1999; Bourguet, Karniadakis & Triantafyllou 2011, 2013), we do not repeat all the
details here; we refer the interested readers to Newman & Karniadakis (1997).

The paper is organized as follows. Section 2 describes the physical model of a
fluid-conveying pipe under the boundary conditions of the classic garden-hose problem.
We propose and justify a ‘discontinuous’ forcing model to study the flow-induced
instability mechanism, both for the system employing DNS and for the eigenvalue
analysis of the system employing a simplified flow model. In § 3, we provide the
simulation results of the fluid dynamics and structural dynamics. We first compare the
difference between a ‘full’ forcing model and a ‘discontinuous’ forcing model in § 3.1.
Then we present a phase diagram of dynamic transition between states as function
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FIGURE 1. (Colour online) Flow transition at subcritical Reynolds number. Instantaneous
contours of axial velocity (a,c) and vorticity perpendicular to the plane of motion (b,d) at
the mid-plane of an oscillating pipe under different amplitudes. (a,b) A= 0.5D, (c,d) A=
1.0D. The motion of the pipe is prescribed as: y= A sin(2πft) sin(2πz/L), with f = 0.167
the frequency, L= 15D the pipe length and D the diameter. A constant body force is used
to drive the flow at mean Reynolds number Re= 800.

of three non-dimensional parameters in § 3.2. Moreover, we obtain the bifurcation
diagrams for both the flow and the structure quantitatively, and also compare the DNS
results against the eigenvalue analysis in § 3.3. Finally, we summarize the main points
of our paper in § 4.

2. System models

The fluid-conveying pipe with circular cross-section is parametrized by the pipe
length L, diameter D, structural mass per unit length mc, flexural rigidity EI and
tension T . The fluid is characterized by its density ρf , dynamic viscosity µ, conveying
fluid mass per unit length ma = ρf (πD2/4) and a mean axial flow velocity U. The
mass ratio between solid and fluid is (mc/ma) = 24/π for the results reported in
this study, but other values were investigated. The Reynolds number Re is defined
as Re= ρf UD/µ. The units for these variables can be seen in table 1.

The structural dynamics is represented by a string-beam model, expressed as:

mc
∂2q
∂t2
= ∂

∂s

(
T
∂q
∂s

)
− ∂2

∂s2

(
EI
∂2q
∂s2

)
+ F̃, (2.1)

where s is the Lagrangian coordinate along the pipe; q= [qx, qy]T and F̃ = [F̃x, F̃y]T
denote the motions in a plane locally perpendicular to the axis of the pipe and the
corresponding forces from the fluid side, respectively.
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T EI Re u Ip

Units kg m s−2 kg m−3 s−2 1 1 1
Case 1 3 120 740 7.9 1.4
Case 2 13.2 120 1330 14.2 0.998
Group 3 13.2 120 [646, 1330] [2.15, 4.4] [0.24, 0.998]

TABLE 1. Physical parameters used in the current paper.

2.1. Structure model set-up
A clamp-free cantilever pipe model was used to simulate the garden-hose problem
in previous studies. In the current simulations, we employ a different set-up in order
to facilitate the three-dimensional (3-D) flow computations, an approach we call
the ‘discontinuous’ forcing model. We employ periodicity conditions along the flow
direction, with pinned–pinned pipe end conditions. In order to effectively study a
cantilevered pipe, we apply the forces from the fluid solver only over a segment of
the pipe, starting from one end and ending somewhere before the other end; hence
a ‘discontinuous’ forcing is applied. To justify the model selection, we analyse the
work, WT , done by fluid forces over one oscillation cycle of pipe, modelled through
the added mass effect (Ibrahim 2010), which is:

WT = −
∫ T

0

∫ L

0
ma

(
∂2q
∂t2
+ 2U

∂2q
∂t∂s
+U2 ∂

2q
∂s2

)
∂q
∂t

ds dt

= −ma

∫ L

0

[1
2

(
∂q
∂t

)2
]T

0

−U2

[
1
2

(
∂q
∂s

)2
]T

0

 ds

+U
∫ T

0

[(∂q
∂t

)2
]L

0

+U
[(
∂q
∂s
∂q
∂t

)]L

0

 dt

 . (2.2)

For a periodic motion, the first two terms vanish. For a pinned–pinned pipe with
forcing over the entire length, the total work is zero, since both ends are fixed:
∂q/∂t(0) = ∂q/∂t(L) = 0. Hence the fluid force does not supply any net energy to
the pipe, and there can be no flutter instability in this case due to the end conditions.
Note that the argument here is somewhat circular as far as the stability of the overall
pipe is concerned, because we assumed that the motion is periodic, i.e. stable. The
only conclusion, therefore, from this argument concerns the contribution of positive
energy from the end conditions – which can be significant for a garden hose. This
is clearly seen in Paidoussis & Issid (1974) who showed the appearance, for certain
parametric combinations, of a coupled-mode flutter, viz. a pair of oscillatory modes
even though the ends were pinned. They explained that there is frequency coalescence
providing secular terms (linearly growing amplitude as a function of time) and hence
the critical condition of flutter cannot be that of neutral stability (i.e. the motion is
not periodic as assumed in the argument herein).

However, if we apply the loading over a part of the pipe, we see that there is
clearly a possibility of instability due to the energy exchange at the end of the applied
forcing, depending on the phasing of the fourth term in the right-hand side of (2.2).
Indeed, the work done by this ‘discontinuous’ forcing will be non-zero. This is a
similar flow-induced instability mechanism as in a cantilever pipe (Paidoussis 1998),
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The flow dynamics of the garden-hose instability 599

to render the system non-conservative, so that it can lose stability by flutter. When the
fluid velocity U is sufficiently small, due to the effect of the Coriolis force the fluid
provides negative energy, leading to damping of the pipe motion versus time. On the
other hand, a flutter instability arises when WT > 0, implying that the pipe is gaining
energy from the fluid and hence its motion is amplified. So in this computationally
convenient model, we enforce the fluid force to end at Lm = 0.75L, equivalent to
discharging the fluid there, as if there the pipe discharges at that point the fluid in
the local tangential direction. The vectoring of the fluid, i.e. as it changes direction
since the pipe vibrates, is the mechanism of potential instability, as is also for a
cantilever pipe. Since the effect of tension is also included, a non-dimensional fluid-
tension parameter, Ip, is used to estimate the degree of the instabilities (Triantafyllou
1992):

Ip = maU2

T(1+ e)/(e− 0.125)
, (2.3)

where e= mc/ma. Large values of Ip imply that the fluid has imparted more kinetic
energy to the structure than can be supported by the tension; i.e. Ip > 1 for pipe
conveying inviscid uniform flow (Triantafyllou 1992); otherwise, the tension effect
dominates.

2.2. Eigenvalue analysis of three models
We also performed eigenvalue analysis of the system employing the simplified flow
model, which is based on the added mass effect, expressed as:

mc
∂2q
∂t2
= ∂

∂s

(
T
∂q
∂s

)
− ∂2

∂s2

(
EI
∂2q
∂s2

)
−ma

(
∂2q
∂t2
+ 2U

∂2q
∂t∂s
+U2 ∂

2q
∂s2

)
. (2.4)

Through the use of η= q/L, ε= s/L, τ = (EI/(mc +ma))
1/2t/L2, equation (2.4) can be

rendered in dimensionless form:

∂2η

∂τ 2
+ (u2 − α)∂

2η

∂ε2
+ 2u

√
β
∂2η

∂τ∂ε
+ ∂

4η

∂ε4
= 0, (2.5)

which employs the dimensionless system parameters:

u=
(ma

EI

)1/2
LU, β = ma

ma +mc
, α = TL2

EI
. (2.6a−c)

Moreover, the dimensionless frequency ω is related to the dimensional circular
frequency, Ω , by

ω=
(

ma +mc

EI

)1/2

ΩL2. (2.7)

Equation (2.5) is discretized via the Galerkin method by using the eigenfunctions of a
cantilevered beam for a cantilever pipe model, and sinusoidal functions for a pinned–
pinned model, as basis and test functions (Paidoussis 1998).

Three systems, a cantilevered pipe, a pinned–pinned pipe with forcing over the
entire length and a pipe with only partial (‘discontinuous’) fluid forcing are compared,
see figure 2. In the cantilever model, it is seen that for dimensionless velocity
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FIGURE 2. (Colour online) The complex frequency (ω) bifurcation diagrams of (a) a
cantilever pipe with L= 30D, (b) a pinned–pinned pipe under ‘full’ forcing with L= 40D,
(c) a pinned–pinned pipe under ‘discontinuous’ forcing with L = 40D. All are based on
β = 0.295, α = 0. The direction of arrow denotes increasing u= 1− 10. The shaded area
denotes the unstable modes.
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u 6 7, fluid damping applies to all modes of the system, i.e. Im(ω) > 0. Then, the
system loses its stability to flutter in the second eigenfrequency after u> 7. For the
pinned–pinned model under ‘full’ forcing, the eigenfrequencies are purely real and
they decrease with increasing u, for 0 < u < π; at u = π, the system loses stability
in its first eigenfrequency by divergence (Paidoussis 1998). Although we have shown
that for a periodic response the work Wt is zero from (2.2), this simply means that no
energy is input from the pinned ends; we must recognize, however, that the system
can develop secular growth (linear growth in amplitude versus time, for example),
when the assumption of periodicity does not hold – otherwise one might conclude
that there is a paradox that theory predicts that flutter cannot occur (Paidoussis &
Issid 1974).

However, the instability of the pinned–pinned beam with continuous forcing is
different from the instability of the same beam with discontinuous forcing; the latter
resembles the instability of the garden hose, as energy may be gained from the end
of the discontinuous forcing as well. Indeed, apart from divergence (buckling), the
pinned–pinned pipe with ‘full’ forcing can only be subjected to a coupled-mode (first
and second) flutter instability (Paidoussis & Issid 1974). On the other hand, for the
‘discontinuous’ forcing model, we found that both the first and fourth eigenfrequencies
are dominant since their imaginary parts are negative. The fourth eigenfrequency will
be excited at all velocity values while the first eigenfrequency is excited at u> 4 with
either divergence or flutter response. The interaction of first and fourth eigenfrequency
responses enriches the dynamics of the pinned–pinned pipe with the ‘discontinuous’
forcing model.

The ‘discontinuous forcing model’ and the cantilever model follow qualitatively
the same instability path. However, due to the different boundary conditions used
for these two models, equation (2.5) will present various bifurcation diagrams. For
the ‘discontinuous’ forcing model, we have two pinned–pinned ends, while for the
cantilever model, we have one fixed end and the other end free. We can see from
figure 2(a,c) that the ‘discontinuous forcing model’ and cantilever model produce
various responses. For the cantilever model, only the second eigenfrequency can be
excited at u > 8, while the other three modes are suppressed since their imaginary
parts are positive. The ‘discontinuous’ forcing model becomes unstable more easily
by flutter because its critical dimensionless velocity is u = 4, lower than u = 9, that
of the cantilever model. By further comparison, the mode excitation is shifted from
the second mode in the cantilever model to combined first and fourth modes in the
‘discontinuous’ forcing model.

In summary, we have decided to use the ‘discontinuous’ forcing model due to its
similarity with the cantilever model from work analysis and its faster computability.

2.3. Fluid solver set-up

For the flow DNS, the computational domain has the same size as the full length pipe.
A 2-D grid of 260 quad elements with polynomial order p= 5 and 7 is used in the
cross-flow (x, y) planes while 64 Fourier planes are employed in the axial z direction.
As described in Newman & Karniadakis (1997), a no-slip condition is applied on the
pipe surface. Fourier expansion implies spanwise periodicity of the flow and structural
properties. Therefore, a constant force term Fz is applied along the axial direction to
sustain the flow motion.
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FIGURE 3. (Colour online) ‘Discontinuous’ forcing. (a) Simulation set-up, including the
flow inside the pipe and for two instantaneous force distributions. (b) Selected time series
of transverse displacement of pipe qy, along the span, at (Re, u, Ip) = (36, 1.16, 0.007).
(c) Time traces of qy at position Lm under ‘full’ forcing (red solid lines). (d) Time traces
of qy at position Lm under ‘discontinuous’ forcing (blue dashed lines).

3. Results and discussion
3.1. Comparison of ‘full’ forcing model and ‘discontinuous’ forcing model

First, we forced the pipe to vibrate in standing wave configuration for approximately
10 time periods and then let the pipe free to move with the ‘discontinuous’ forcing
model, see (figure 3). The pipe has length L/D = 20. We first consider low
values of the three important parameters (Re, u, Ip) = (36, 1.16, 0.007). As we
see in figure 3(b,d), the pipe returns gradually to a straight position (equilibrium),
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as expected, but during the transient it maintains a standing wave motion in the
transverse direction. Here we refer to this type of response as ‘stationary status’,
to indicate that no matter what kind of initial response is imposed, the pipe will
eventually return to a straight position. Moreover, in figure 3(c,d), we compare two
cases with ‘full’ and ‘discontinuous’ forcing and follow the local oscillation at Lm;
we see that in the latter case the amplitude decays faster since the fluid provides
negative energy to the pipe system at low flow velocity, in agreement with the work
analysis in the previous § 2.

3.2. Phase diagram of flow–pipe instability
Next, we focus on the dynamics of the self-excited pipe under ‘discontinuous’ forcing,
as described above, with length L/D= 40. We performed simulations at two different
(Re, u, Ip) parametric combinations, as shown in figure 4. They correspond to cases 1
and 2 in table 1. Figure 4(a,c) presents the displacement of the pipe in the transverse
(y) direction along the axis in one period and figure 4(b,d) shows the trajectory of pipe
in the (x, y) cross-flow plane at the position z= 30D, corresponding to the red vertical
lines in (a,c). In the low (Re, u) and high Ip case, as shown in figure 4(a), an in-plane
oscillation develops with the transverse response qy excited in the first eigenfrequency
of the pipe, but dominated by the second wavenumber, and with the pipe amplitude
at the position Lm about Ay= 1.7D. However, in the high (Re, u) and low Ip case, an
out-of-plane response develops, see figure 4(c), with transverse amplitudes of motion
at the force discontinuity position Lm equal to Ax = 3D and Ay = 2D. The vibratory
response contains the first and fourth eigenfrequencies, as found through FFT (fast
Fourier transform) analysis.

Furthermore, by recording the motion at the force discontinuity point (at Lm) in
the x − y plane, we see that we obtain in case 2 a distorted pentacle, instead of a
straight line corresponding to an in-plane motion as in case 1, see figure 4(b,d). This
difference in the dynamic response of the pipe is due to the flow bifurcation and
has not been reported before. To explore the flow transition, we plot instantaneous
flow patterns inside the pipe in figure 4(e, f ) in terms of the transverse component
of vorticity ωx (left) and the axial velocity U (right) at different z stations
z = 0, 10, 20, 30D, from bottom to top. At the low Re = 740, the flow is stable
and symmetric in the x-direction, consistent with qx= 0. However, at high Re= 1330,
the flow symmetry is broken, leading to a very well mixed flow at the cross-flow
planes, as shown by the vorticity contours. We show in figure 4( f ) the 2-D pipe
motion resulting from the flow symmetry breaking, with the transverse motion now
in the x-direction much higher than the y-direction, unlike the low Re case. From
these results we see that the Reynolds number greatly influences the transition in the
dynamic response of the pipe, from in-plane to combined in-plane and out-of-plane
motion. Both responses can be observed in the garden-hose experiment, but the latter
is more prevalent, as we usually operate at high Reynolds number.

Based on further DNS analysis, as reported above, we have constructed a phase
diagram of flow–pipe instabilities in terms of three non-dimensional parameters
(Re, u, Ip), see figure 5. Here, different colours denote different types of pipe motion:
yellow points indicate stationary status, black points in-plane motion and red points
out-of-plane motion. At higher values of (Re, u, Ip), the pipe is more prone to exhibit
an out-of-plane motion. The hollow squares represent the response around u = 14
while the hollow triangles represent responses around u = 10 in this plot. We can
see that at larger dimensionless fluid velocity u = 14, the threshold of Re = 625 is
lower, compared with Re = 1030 at u = 10, for the transition of pipe motion from
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FIGURE 4. (Colour online) Flow–pipe instabilities at different (Re, u, Ip) groups obtained
via DNS. (a,b,e) In-plane instability with (Re, u, Ip)= (740, 7.9, 1.4), (c,d, f ) out-of-plane
instability with (Re, u, Ip) = (1330, 14.2, 0.998). (a,c) Displacement of the pipe in the
transverse (y) direction along the axis in one period. (b,d) Trajectory of the pipe in
the (x, y) plane at the position z = 30, corresponding to the red vertical lines in (a,c).
(e, f ) Instantaneous shapes of the pipe and corresponding flow patterns (vorticity: −2 6
ωx 6 2 and axial velocity: 0 6 U 6 4) at z stations z= 0, 10, 20, 30D from bottom to top.

in-plane to out-of-plane motion. In the 3-D phase diagram, the solid circular points
are all located within the grey-coloured plane cut, since they have the same value
of fluid viscosity. If we plot the result on this plane cut, it will appear like the plot
in figure 6, where we reduced the number of non-dimensional parameters to two,
i.e. in terms of (Re, Ip), since the dimensionless velocity u is a linear function of Re.
The values of the (Re, Ip) pair are varied through changing the fluid velocity and the
pipe tension.

From figure 6, we can clearly see three different regimes, characterized by the
Reynolds number and the relative tension of the pipe. The two dashed lines denote
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FIGURE 5. (Colour online) 3-D phase diagram of flow–pipe instability in terms of the
group (Re, u, Ip). Different colours denotes different types of pipe motion. Yellow points:
stationary status; black points: in-plane motion; red points: out-of-plane motion. All the
solid circle points are located within the grey-coloured plane cut.
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FIGURE 6. (Colour online) Phase diagram of flow–pipe instability in terms of the critical
pair (Re, Ip). The two dashed lines denote two bifurcations, on the left from static to
in-plane motion, and on the right from in-plane to out-of-plane motion.

regions of bifurcations, on the left from static to in-plane motion, and on the right
from in-plane to out-of-plane motion. When the pipe remains stationary, the flow is
stable and concentrates at the centre of pipe along the z axis. Under in-plane motion,
the flow is no longer concentrated in the centre of the pipe along the z axis, but it is
still symmetric along a specific direction, i.e. at 45◦ off the x-axis for the case with
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FIGURE 7. (Colour online) Bifurcation diagrams in terms of Ip. The corresponding
Reynolds number varies as 6466Re6 1330. (a) L2 norm of the transverse motion of pipe
at different z stations; the red line with circles denotes the amplitude at the ‘discontinuous’
forcing position (z = 0.75L), while the blue line with triangles denotes the amplitude at
the maximum position (z≈ 0.825L). (b) L2 norm of total cross-flow velocity.

(Re, Ip)= (990, 0.56). However, the flow symmetry is broken when the pipe follows
an out-of-plane motion. An asymmetric form, lacking organization, characterizes the
flow patterns when flow instability occurs, which leads to out-of-plane motion as well.

In general, the impact of Reynolds number Re on the transition of the motion
is larger than the fluid-tension ratio Ip, i.e. at higher Reynolds number we can still
achieve an out-of-plane motion even at a relatively lower Ip ratio. The variation of
pipe motion is more sensitive at high Reynolds number. The range of Ip values for
the presence of in-plane motion is narrower at higher Reynolds number, i.e. from
0.09 6 Ip 6 0.3 at Re= 1320.

3.3. Comparison of DNS and eigenvalue analysis
In this subsection we present two bifurcation diagrams for the structure in terms of
its transverse motion in the cross-flow (x, y) plane and for the flow, in terms of the
total cross-flow velocity. Typically, a critical value of the dimensionless flow velocity,
u, is adopted to determine the onset of flutter instability. Here, we analyse the same
data sets as above with (Re, Ip) varying from (646, 0.24) to (1330, 0.998), as shown
in figure 6. For these cases we maintain the same tension and flexible rigidity, and
we vary the fluid velocity – see parameters for group 3 in table 1.

Figure 7 shows (a): the L2 norm of the transverse motion of the pipe Q =√
qx

2 + qy
2 at the discontinuity (red line with circles) and the maximum positions

(blue line with triangles), and (b): the L2 norm of the total cross-flow velocity
V =√u2 + v2. Based on the existing data in figure 7, Ip = 0.4 and Ip = 0.75 are the
two critical values for the onset of in-plane and out-of-plane motion, respectively. In
particular, Ip= 0.4 is the critical value for the onset of flow instability since the total
cross-flow velocity becomes non-zero, denoting that the transverse component of the
flow velocity is affecting greatly the pipe motion. The post-critical dynamics of the
system (i.e. the dynamics beyond the threshold of the first instability) is very rich.
The trajectories of displacement at Lm = 0.75L (in red) and z = 0.825L (in blue) at
(x, y) plane for different (Re, Ip) pairs are presented in figure 8. At the discontinuous
position, with increasing (Re, Ip) values, the pipe exhibits finite displacement response,
see figure 8(a–f ). It varies from a straight line to a figure-‘8’ shape, then a circular
motion and eventually a pentacle motion. The transition from linear motion to the
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FIGURE 8. (Colour online) Trajectories of the displacement of the pipe at Lm=0.75L (red)
and z= 0.825L (blue) in (x, y) plane for different (Re, Ip) pairs. (a,g) (Re, Ip)= (833, 0.4),
(b,h) (Re, Ip) = (990, 0.56); (c,i) (Re, Ip) = (1080, 0.68); (d,j) (Re, Ip) = (1140, 0.75);
(e,k) (Re, Ip)= (1290, 0.97); ( f,l) (Re, Ip)= (1330, 0.998).

figure-‘8’ shape corresponds to the flow transition from a symmetric state to a
disorganized state, with the change of (Re, Ip) from (1080, 0.68) to (1140, 0.75).
From figure 8(g–l), we can see that for the first three cases, with in-plane instability,
the pattern of the trajectory at the maximum vibration response position is similar
to that at the discontinuous position, and with larger amplitude. But when Ip > 0.75,
with out-of-plane instability, due to the nonlinear effect, the vibration response and
the corresponding trajectory in the (x, y) plane vary along the pipe axis. Especially,
in the case of (Re, Ip)= (1330, 0.998), we can see a nutation motion at the maximum
response position, see figure 8(l).

Moreover, a spatio-temporal spectral analysis of the transverse displacement
is presented in figure 9. The yellow vertical dashed lines denote the natural
frequencies, identified by fn= ((n2π

√
EI/(m+ma))/2L2)

√
(1+ (TL2/EIπ2n2)), where

f1 = 0.018, f2 = 0.039, f3 = 0.0642, f4 = 0.961. The wavenumbers of selected sine
Fourier modes are indicated by purple horizontal dashed lines. It is seen that only
the fourth eigenfrequency is excited if Ip 6 0.68. At Ip= 0.75, the first eigenfrequency
is excited in the beginning but eventually the vibration is shifted to the fourth
eigenfrequency. Subsequently, for even higher values, i.e. Ip > 0.97, both the first
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FIGURE 9. (Colour online) Spatio-temporal spectral analysis of vertical displacement qy at
different (Re, Ip) pairs, taken from group 3 cases. The yellow vertical dashed lines denote
the natural frequencies identified by fn = ((n2π

√
EI/(m+ma))/2L2)

√
(1+ (TL2/EIπ2n2)),

where f1 = 0.018, f2 = 0.039, f3 = 0.0642, f4 = 0.0961. The wavenumbers of selected sine
Fourier modes are indicated by purple horizontal dashed lines. (a) (Re, Ip) = (833, 0.4),
(b) (Re, Ip) = (990, 0.56), (c) (Re, Ip) = (1080, 0.68), (d) (Re, Ip) = (1140, 0.75),
(e) (Re, Ip)= (1290, 0.97), ( f ) (Re, Ip)= (1330, 0.998).

and fourth eigenfrequencies are (nearby fourth eigenfrequency), we see that it is
decreasing with Ip, from fe = 0.09 at Ip = 0.4 to fe = 0.076 at Ip = 0.998.

In parallel with the DNS parametric study, we performed an eigenvalue analysis
of the pinned–pinned pipe with ‘discontinuous’ added mass forcing and using the
same parameters – see figure 10. For all cases, the second and third eigenfrequency
responses are reduced, and increasing Ip reduces them further. At lower Ip ratio, Ip 6
0.75, the fourth eigenfrequency is dominant in the vibration response. However, at
higher Ip ratio, Ip > 0.97, both the first and fourth eigenfrequencies are excited, while
the first eigenfrequency response may even be associated with buckling of the pipe
since its value becomes zero. However, in DNS (and in experiments), this buckling
behaviour is not observed because of nonlinear effects.

In the following, we plot the instantaneous predominant frequency as a function of
time and space in figure 11 to explain the nonlinear effect on the frequency response.
It has been shown in figure 9 that several wavenumbers can contribute to the vibration
response. The question is whether the response is instantaneously mono-frequency,
with a shifting frequency in time or it is multi-frequency at all times. Obviously, the
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FIGURE 10. (Colour online) The complex frequency (Ω) diagrams (based on (2.4)) for a
pinned–pinned pipe under ‘discontinuous’ forcing with parameters for group 3 cases. The
direction of the arrow denotes increasing Ip by varying U = 2.15–4.4. The shaded area
denotes unstable modes.

temporal variation of the dominant frequency does not occur simultaneously along the
entire span in our study, see figure 11.

According to the previous linear theory analysis, the frequency response will be
constant both in time and space with value ( f4 = 0.08) at lower Ip cases. On the
other hand, at higher Ip ratio, the frequency responses should contain two values:
f1 = 0.0 and f4 = 0.08 both in time and space since both first and fourth modes are
excited. However, we can see that at smaller Ip = 0.56, a weak nonlinearity effect
manifests itself in the frequency response, since the colour legend is filled by grey
and has little white, corresponding to the frequency value range of (0.08, 0.11), see
figure 11(a–d). This nonlinear effect becomes stronger at higher Ip with a wider range
of frequency value response, as shown in figure 11(e–f ). The lowest frequency value
becomes f1 = 0.02 instead of zero frequency where the bucking would exist in the
linear analysis.

Furthermore, we analyse the synchronization of the transverse motions qx and qy
using DNS, identifying the phase angle between qx and qy in figure 12. The phase
difference Φxy is constant for Ip 6 0.68, where the trajectory of the pipe motion is
an in-plane motion, see figure 8(a–c, g–i). For the other cases with Ip > 0.75, the
trajectory of the pipe follows out-of-plane patterns since the phase difference Φxy
for these cases is time and space dependent. In summary, the excitation frequencies
obtained by the eigenvalue analysis and the modal analysis from DNS results match
closely.

4. Conclusion
The present study elucidates the flow mechanisms involved in the onset of instability

of fluid-conveying pipes that are free to vibrate. We study the system using fully
resolved simulation, in parallel with eigenvalue analysis of the system employing a
simplified fluid problem, to place the results in context with the results from previous
analyses. We constructed a 3-D phase diagram of the flow–pipe instability in terms of
the group of three basic parameters (Re, u, Ip), whereas typically only u and Ip have
been used before, to study the dynamic motion of the pipe. The Reynolds number
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FIGURE 11. Dominant frequency of vertical displacement as a function of time along
the cylinder span at different (Re, Ip) pairs, corresponding to figure 9. (a) (Re, Ip) =
(833, 0.4), (b) (Re, Ip)= (990, 0.56), (c) (Re, Ip)= (1080, 0.68), (d) (Re, Ip)= (1140, 0.75),
(e) (Re, Ip)= (1290, 0.97), ( f ) (Re, Ip)= (1330, 0.998).

Re plays a very important role in the transition of the pipe motion to also include
out-of-plane motion, while the value of u and the Ip ratio determine the amplitude of
the vibration. For example, in figure 4, we show that even for very large Ip values,
the oscillation is not self-sustained if the Reynolds number is low. Moreover, the
precise flow patterns inside the pipe determine the type of induced motion. Even
for unsteady flow, symmetry along one direction leads to in-plane motion, whereas
breaking of the flow symmetry results in out-of-plane motion. In summary, above a
threshold Reynolds number, complex flow patterns result, because there is continuous
generation of new vorticity due to the pipe wall acceleration, and subsequent shedding
of vorticity in a confined space, viz. the pipe interior.
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FIGURE 12. Temporal evolution of phase angle difference between horizontal and vertical
displacements Φxy=mod (pΦx−qΦy,2π) ·360, with (p,q)= (1,1), along the cylinder span
at different (Re, Ip) pairs, corresponding to figure 9. (a) (Re, Ip)= (833, 0.4), (b) (Re, Ip)=
(990, 0.56), (c) (Re, Ip) = (1080, 0.68), (d) (Re, Ip) = (1140, 0.75), (e) (Re, Ip) =
(1290, 0.97), ( f ) (Re, Ip)= (1330, 0.998).
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