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Experimental estimation of uncertainties in powder diffraction intensities
with a two-dimensional X-ray detector
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A method to obtain both one-dimensional powder diffraction intensities I(2θ) and statistical uncertain-
ties σ(2θ) from the data collected with a flat two-dimensional X-ray detector is proposed. The method
has been applied to analysis of the diffraction data of fine quartz powder recorded with synchrotron X-
ray. The profile and magnitude of the estimated uncertainties σ(2θ) have shown that the effects of
propagation of the errors in 2θ are dominant as the uncertainties about the observed intensity values
I(2θ). The powder diffraction intensity data I(2θ), including nine reflection peaks have been analyzed
by the Rietveld method incorporating the experimentally estimated uncertainties σ(2θ). The observed
I(2θ) data have been reproduced with a symmetric peak profile function (Rwp = 0.84 %), and no sig-
nificant peak shifts from calculated locations have been detected as compared with the experimental
errors. The optimized values of the lattice constants of the quartz sample have nominally been esti-
mated at a = 4.9131(4) Å and c = 5.4043(2) Å, where the uncertainties in parentheses are evaluated
by the Rietveld optimization based on the estimated uncertainties σ(2θ) for intensities I(2θ). It is likely
that reliability of error estimation about unit-cell dimensions has been improved by this analytical
method. © 2016 International Centre for Diffraction Data. [doi:10.1017/S0885715616000324]
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I. INTRODUCTION

It is well known that the statistical uncertainties of powder
diffraction data strongly depend on the crystallite size of pow-
der (Alexander et al., 1948; De Wolff, 1958; De Wolff et al.,
1959). The author has demonstrated that the crystallite size ef-
fect on diffraction intensities from stationary specimens can
quantitatively evaluated by statistical analysis of measured in-
tensities collected on step-wise rotation of the specimen (Ida
et al., 2009). It has been suggested that the method can be
used for crystallite size evaluation, for example, but the meth-
od is useless for conventional powder diffraction analysis,
because continuous rotation of powder specimen generally re-
duces uncertainties of measured intensities, and the measure-
ments of stationary specimen would be exceptional, given that
a specimen spinner is attached to the measurement system. It
should also be noted that it is difficult to establish the theory
about rotating specimens, because it depends on the geometry
and configuration of optics, the spectroscopic distribution of
source X-ray (De Wolff, 1958), and also the correlation of
them.

On the other hand, it has become widely recognized that
the use of position-sensitive detectors, one-dimensional (1D)
or two-dimensional (2D), is a highly efficient method for
data collection in X-ray diffraction measurements. Sulyanov
et al. (1994) have proposed a simple algorithm to reduce the
2D powder diffraction intensity data measured with a flat
detector to a series of 1D intensities mapped onto the values

of diffraction angles 2θ. The method of Sulyanov et al. is
based on calculation of average intensity of the pixels assigned
to a certain diffraction angle 2θ. Geometrical corrections are
applied to each pixel intensity before calculation of average,
as it should be equivalent to the value expected to be measured
at the center position of the detector.

It is quite easy to calculate the variance and standard devi-
ation of the corrected pixel intensities as well as the average of
them. In this study, the author has slightly modified the meth-
od of Sulyanov et al. in order to evaluate the standard devia-
tion σ for the average intensity I. The method has been applied
to the diffraction data of fine quartz powder measured with a
flat 2D detector on a powder diffraction beam line BL5S2 at
Aichi Synchrotron Radiation Center (AichiSR) in Japan. It
is demonstrated that the values of σ thus estimated can be
treated as if it were statistical errors of powder diffraction in-
tensities I, even if the origin of the deviations might intrinsi-
cally be deterministic.

II. DATA REDUCTION

A. Compilation of pixel intensities

A practical procedure of the data reduction by the method
of Sulyanov et al. (1994) can be summarized as follows.

(i) Prepare bins for the sum of intensities {S0, S1, . . ., Sn−1}
and number of pixels {N0, N1, . . ., Nn−1} for discrete 2θ
values, {2θ0, 2θ1, . . ., 2θn−1}. It is not mandatory but di-
visions with constant separation Δ2θ, and 2θj = 2θ0 + jΔ2θ
for j = 0, 1, . . ., n− 1, are assumed here. Each bin indexed
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by the number j then covers the 2θ range expressed by 2θ0
+ ( j− 1/2)Δ2θ≤ 2θ < 2θ0 + ( j + 1/2)Δ2θ.

(ii) Apply the following treatments to each of all the valid pix-
els indexed by (X, Y) (just skip known invalid pixels).
(a) Calculate the diffraction angle 2θXY for the center

position of the pixel (see Section II B-1).
(b) Correct the pixel intensity IXY by multiplying the

factor f (X, Y ), as it is expected to be measured at
the center position (X = 0, Y = 0) of the flat detector
(see Section II B-2).

(c) Search the index of the bin j that satisfies 2θ0 + ( j−
1/2)Δ2θ≤ 2θ < 2θ0 + ( j + 1/2)Δ2θ. In case of cons-
tant separation Δ2θ, the index is simply given by

j = 2u− 2u0
D2u

+ 1
2

[ ]
, (1)

where [x] is the floor function (squared bracket nota-
tion by Gauss) that gives largest integer not greater
than a real number x.

(d) Add the corrected pixel intensity to the intensity bin,
Sj← Sj + IXY f (X, Y ) by assignment operation, and
simultaneously add unity to the number bin, Nj←
Nj + 1.

(iii) Finally, calculate the average intensities Ij by division of
Sj by Nj,

Ij = Sj
Nj

, (2)

for the bins that satisfy 0 <Nj, after all the valid pixels
have been processed.

The above algorithm looks much simpler than a method,
which is applied by Ingham (2014), and has many favorable
features: (i) all the information available from a 2D detector
can be utilized; (ii) invalid (dead) pixels, which are sometimes
found in a semiconductor detector, can be treated just by ex-
clusion of the pixels on summation; (iii) even if the detector
is not perfectly aligned, the effect of misalignment can numer-
ically be corrected by linear transformation before calculation
of 2θ; (iv) arbitrary values of the division Δ2θ can be used, no
matter what is the nominal angular resolution determined by
the ratio of the pixel size to camera length; (v) even the inten-
sities observed close to the lowest 2θ positions, usually re-
stricted by the head-piece of the direct-beam stopper, can be
used, if the pixels in the shade of the supporting rod of the
beam-stopper are excluded; and (vi) the resulting diffraction
peak profile should be free of axial-divergence effect, because
the procedure is virtually equivalent with the average of the
diffraction intensities along the Debye and Scherrer (1916)
or Hull (1917) rings.

The author would like to emphasize that only slight mod-
ification of the method of Sulyanov et al. enables experimental
evaluation of the errors of the observed intensities. It is real-
ized just by preparing another series of bins, {V0, V1, . . .,
Vn−1}, and addition of squared intensities, Vj← Vj + [IXY f
(X, Y )]2, followed by calculation of standard deviation for

the sample average,

sj =
Vj − NjI2j
Nj(Nj − 1)

[ ]1/2

, (3)

for all the bins that satisfy 1 <Nj. Statistical independence of
the corrected pixel intensities [IXY f (X, Y )] is assumed here.

The author would like to emphasize that the method of
error estimation proposed here should be more effective than
the method proposed by Yang et al. (2014), which is based
on statistical analysis about multiple frames, because the expo-
sure period for each frame should be shortened for multiple-
frame data collection.

The analytical formula to calculate the diffraction angle
2θXY and the intensity correction factor f (X, Y) for a flat 2D
detector used in transmission geometry will be described in
the following section.

B. Mapping and intensity correction for a flat 2D

detector used in transmission geometry

1. Mapping pixel positions (X, Y) to diffraction angles 2θ
Assume a flat 2D detector is attached to the 2Θ wheel of a

goniometer, and the horizontal and vertical positions of the
pixels on the detector are given by X and Y, and let the pixel
origin (X, Y) = (0, 0) at the center of spot irradiated by the in-
cident beam, when the goniometer angle is positioned at 2Θ =
0°. Note that the goniometer (detector) angle 2Θ and the dif-
fraction angle 2θ are distinguished by capital and lower case
letters in this paper. The camera length R is defined as the dis-
tance of the center position of the detector at (X, Y) = (0, 0)
from the specimen. Figure 1 illustrates the definitions of the
camera length R, detector angle 2Θ, diffraction angle 2θ,
and irradiated pixel position (X, Y).

The diffraction angle 2θ of the pixel (X, Y) on the detector
at the goniometer angle 2Θ is given by

2uXY = arccos
Rcos2Q− Ysin2Q���������������

R2 + X2 + Y2
√ . (4)

Figure 1. Definitions of the camera length R, detector angle 2Θ, diffraction
angle 2θ, and irradiated pixel position (X, Y).
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2. Corrections of pixel intensity in transmission-mode
measurement

The pixel intensity of a flat detector should be treated with
(a) non-spherical, (b) oblique-incidence, and (c) polarization
corrections. The former two corrections (a) and (b) are com-
bined as “solid angle correction” in the formula proposed by
Sulyanov et al. (1994), but they are separated here, partly
because the author prefers to include the effect of difference
in extinction (absorption and scattering by air) of the diffracted
beam into the non-spherical correction, and the formula of
oblique-incidence correction may be modified in future
because of the penetration of X-ray into the detector layer of
a semiconductor device.

a. Non-spherical correction

The non-spherical correction should be applied to the
pixel intensity of a flat detector, because the distance r to a
pixel at (X, Y) on the detector from the specimen given by

r =
���������������
R2 + X2 + Y2

√
, (5)

is generally different from the distance R to the center position
(0, 0) of the detector face. If the linear extinction coefficient of
air is given by μa, the intensity to be observed should be pro-
portional to r−2exp(− μar), and the non-spherical correction
factor fNS (X, Y ) should then be given by

fNS(X, Y) = r2

R2
exp[ma(r − R)]

=R2 + X2 + Y2

R2
exp ma

���������������
R2 + X2 + Y2

√
− R

( )[ ]
.

(6)

b. Oblique-incidence correction

The oblique-incidence correction is connected with the
secant of the angle of incidence at the detector face, and the
correction factor should be given by

fOI(X, Y) = r

R
=

���������������
R2 + X2 + Y2

√

R
. (7)

c. Polarization correction for bending-magnet synchrotron
X-ray

Linear polarization with horizontal electric-field vector
can be assumed for a bending-magnet synchrotron beam,
while Kahn et al. (1982) have described more detailed formu-
la, including the vertical component of the electric field for the
laboratory X-ray sources. The rotation axis of the goniometer
is usually directed in horizontal and perpendicular to the direc-
tion of the synchrotron beam, the length of the projection of
the polarization vector onto the cross-section of the diffracted
beam should be proportional to the cosine of the deviation
angle of the diffraction beam from the vertical plane parallel
to the incident X-ray beam. As the intensity of the electromag-
netic wave is proportional to the squared amplitude of the elec-
tric field, the polarization correction factor for the pixel should

be given by

fP(X, Y) = R2 + X2

R2
. (8)

d. Overall correction factor for bending-magnet synchrotron
X-ray

The overall correction factor for a flat 2D detector used
with synchrotron X-ray in transmission geometry is given
by the product of fNS (X, Y ), fOI (X, Y ), and fP(X, Y ), that is,

f (X, Y) = (R2 + X2 + Y2)3/2(R2 + X2)
R5

exp ma

���������������
R2 + X2 + Y2

√
− R

( )[ ]
.

(9)

III. EXPERIMENTAL

Fine quartz powder with typical crystallite size between 3
and 7 µm, prepared by pulverization and sedimentation of
Brazilian natural quartz was used as the test sample. The pow-
der was filled into a glass capillary tube (Hilgenberg,
Mark-tube, no. 14) of 0.5 mm in diameter. The capillary speci-
men was rotated at the speed of 1 rev min−1 during the diffrac-
tion measurement.

The powder diffraction intensities were recorded with a
flat 2D pixel detector (Dectris, PILATUS 100K) attached to
the powder diffraction measurement system (Figure 2) on
the beam line BL5S2 at AichiSR in Japan, where the hard
X-ray beam radiated from a superconducting bending magnet
inserted in the storage ring operated in top-up mode at the ac-
celeration voltage of 1.2 GeV is available. The synchrotron
beam was collimated and monochromated with a couple of cy-
lindrical mirrors and a Si 111 double-crystal monochromator,
and effectively focused to the position close to the detector
face. The peak wavelength of the source X-ray was assumed
to be 0.9970 Å from the observed peak positions of the quartz
sample and the typical value of the lattice constant a = 4.913 Å
reported for natural and synthetic quartz in literatures (Brice,
1980). The linear extinction coefficient of air is estimated at
μa = 1.9 × 10−3 cm−1.

Figure 3 demonstrates the cross-section intensity profile
of the attenuated direct X-ray beam recorded on an X-ray
film (Fuji Film, Imaging Plate; IP) and digitized with an IP
reader (Rigaku, R-AXIS DS3C) with nominal resolution of
0.05 mm. The intensity profile has been well fitted with a
2D Gaussian function, and the full widths at half-maximum
along the horizontal and vertical directions were estimated at
0.35 and 0.21 mm, respectively. Taking the smearing of the
IP image into account, the intrinsic widths of the source
X-ray should be narrower than those values. Similar analysis
applied to the direct-beam intensity profile taken with a
PILATUS detector yielded 0.23 and 0.17 mm along the hori-
zontal and vertical directions, which suggests that the cross-
section intensity profile of the source X-ray is certainly
more restricted than the IP image, but it is difficult to quantify
it, because the pixel size of the PILATUS detector is 0.172
mm. It should be noted that highly definite image of
Debye-Scherrer (Hull) rings can be recorded on this beam
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line over wide detector area, owing to the focusing of the syn-
chrotron beam onto the detector face.

Two sets of diffraction intensity data of quartz powder
were collected at the goniometer angles of 2Θ = 25.4° and
31.8°, where {111} and {112}-reflections of quartz are ex-
pected to be located near the center of the PILATUS detector,
respectively. The camera length was estimated at 284.19 mm
by analysis of the recorded diffraction intensity data to
match the peak locations of the {201}-reflection commonly
observed at both the goniometer angles.

IV. RESULTS

A. Average intensity

Figure 4(a) shows a 2D diffraction intensities from quartz
powder recorded with the PIATUS detector positioned at the
goniometer angle of 2Θ = 25.4°, where the darkness of each

Figure 3. (Color online) Bird’s eye view of the direct-beam intensity profile
recorded with the IP camera on BL5S2 beam line at AichiSR.

Figure 4. (a) Two-dimensional intensity profile (logarithmic contrast) of
quartz powder measured at the goniometer angle of 2Θ = 25.4°, where the
dead or bad pixels are marked by white dots. (b) The sum of pixel
intensities and (c) number of pixels mapped onto the discrete 2θ values
with the sampling interval of Δ2θ = 0.02°. (d) Average pixel intensities I,
and (e) standard deviations σ calculated from the data recorded at 2Θ = 25.4°.

Figure 2. Schematic illustration of the powder diffraction measurement
system on the beam line BL5S2 at Aichi Synchrotron Radiation Center
(AichiSR). A flat pixel detector PILATUS and a cylindrical Debye–Scherrer
camera with Imaging Plate are attached to the 2Θ wheel of the goniometer.
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pixel is displayed proportional to the logarithm of the recorded
intensity.

The locations of dead pixels, which output extraordinary
counts, are marked by white dots in Figure 4(a). Most of the
dead pixels of the PILATUS detector had been indexed on
delivery from the manufacturer (Dectris), but some additional
dead pixels were found in the recorded data, which were prob-
ably induced by mechanical shock on transport, assembling or
handling after the delivery.

Sum of the corrected pixel intensities S and number of
pixels N mapped to the discrete 2θ values at the interval of
Δ2θ = 0.02° are shown in Figures 4(b) and 4(c), respectively.
The number of pixels sampled with the interval of Δ2θ =
0.02°, shown in Figure 4(c), vary around 280 in the region
23.6° < 2θ < 28.8°, which is consistent with the pixel resolu-
tion of about 0.035° and the total number of pixels 487
along the horizontal direction of the PILATUS 100K detector.

The average intensity I and the standard deviation σ about
the calculated average intensities are plotted in Figures 4(d)
and 4(e).

Figures 5(a)–5(c) are magnified plots of S, N, and I, dem-
onstrating the effect of the averaging process, the correspond-
ing areas of which are marked as thin rectangles in Figures 4
(b)–4(d), respectively. The integrated intensities S in Figure 5
(a) and the numbers of pixels N in Figure 5(b) are similarly
corrugated because of the mismatch between the nominal an-
gular pixel resolution of 0.035° and the sampling interval of

0.02° on the analysis, and the averaged pixel intensities I in
Figure 5(c) certainly show smooth profile as expected.

B. Standard deviation of averaged intensity

Figures 6(a) and 6(b) display the detailed profile of the av-
erage intensities I and the standard deviations σ about the
quartz {102} and {111}-reflections, the corresponding areas
of which are shown as thin broken rectangles in Figures 4(c)
and 4(d), respectively. Figure 6(c) shows the absolute values
of numerical differentials of I by 2θ, |ΔI / Δ2θ|. The locations
of the peak tops of the double-peak σ profile are marked by ver-
tical broken lines in Figures 6(a)–6(c). The similarity between
the σ profile and the |ΔI / Δ2θ| profile suggests that the statisti-
cal variation of the average intensity I mainly comes from the
propagation of the errors in 2θ. The ratio of σ to |ΔI / Δ2θ|,
which can be related to the horizontal error, is found to be
about 0.0007° at the peak positions of σ and |ΔI / Δ2θ| profiles.
This value is close to the standard deviation expected for the
pixel resolution of 0.035° and number of pixels about 280 on
averaging, which is estimated at 0.0006° as follows:

1����
280

√
∫0.035W/2

−0.035W/2

x2dx
0.035W

≈ 0.0006W. (10)

Figure 5. Magnified profile of (a) the total intensities, (b) number of pixels
for each 2θ bin, and (c) averaged pixel intensities from the data recorded at
2Θ = 25.4°.

Figure 6. Profile of (a) average pixel intensities and (b) standard deviation
for quartz {102} and {111} reflections from the data recorded at the
goniometer angle of 2Θ = 25.4°. (c) The absolute values of the numerical
differential, |ΔI/Δ2θ|, calculated from the data shown in (a).
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It has already been suggested by the author (Ida, 2013)
that the effect of the errors in 2θ on the observed diffraction
intensities is comparable with that of particle statistics in
case of ordinary laboratory X-ray powder diffraction measure-
ments. Since it is expected that the effect of particle statistics
of the fine quartz crystallites is not strong, and effectively re-
duced by continuous rotation of the capillary specimen during
the exposure (Ida, 2011), it is likely that the propagation of the
errors in 2θ is dominant as the origin of the estimated uncer-
tainty about the average diffraction intensity on this analysis.
At the same time, finite values estimated in the σ-profile close
to the positions of |ΔI/Δ2θ| = 0 may be assigned to the effect of
particle statistics, though the angular resolution and sampling
interval in this analysis is not sufficiently fine to validate it.

C. Connection of segmented intensity data

Figures 7(a)–7(c) show the 2D diffraction image, 1D dif-
fraction intensity, and error data on diffraction angle 2θ of the
quartz powder collected with the PILATUS detector at the go-
niometer angle of 2Θ = 31.8°.

The profiles of quartz {201}-reflection, commonly re-
corded at the two goniometer angles 2Θ = 25.4° and 31.8°
are compared in Figure 8. Note that the meridian part of the
{201}-ring is lost in the data recorded at 2Θ = 25.4° [see
Figure 4(a)], while the {201}-data recorded at 2Θ = 31.8°
only include the meridian part [see Figure 5(a)]. The good

coincidence of the two intensity profiles supports that the in-
tensity corrections applied to the flat 2D detector is
appropriate.

The combined average and standard errors of the intensi-
ties, {I, σ}, in the overlapping region can be calculated from
the two data sets, {I1, σ1} and {I2, σ2}, measured at different
detector positions, by the following equations:

I = I1/s2
1 + I2/s2

2

1/s2
1 + 1/s2

2

, (11)

s = 1��������������
1/s2

1 + 1/s2
2

√ , (12)

D. Application of Rietveld refinement to the connected

intensity data

Provided that the experimental errors {σj} for the powder
diffraction intensities {Ij} are known, the Rietveld refinement
to minimize the sum of the weighted squares of deviations:

S =
∑n−1

j=0

1
s2
j

Ij − f 2uj; x1, x2, . . .
( )[ ]2

, (13)

where f (2θj ; x1, x2, . . .) is the overall profile model function
with variable parameters x1, x2,. . ., can be considered to be a
kind of maximum-likelihood estimation (Ida and Izumi,
2011, 2013), and the errors of the optimized parameters {xi}
are automatically estimated through the propagation of exper-
imental errors in most of Rietveld refinement codes.

The results of Rietveld refinement applied to the connect-
ed diffraction intensity data of quartz powder are shown in
Figure 9 and Table I. The RIETAN-FP code (Izumi and
Momma, 2007) was used for the optimization. Space group
P3221 (No. 154) was assumed, and the initial structure param-
eters were taken from literature values (PDF No. 04-012-
0490). Symmetric pseudo-Voigt function with the formula
of Caglioti et al. (1958) for line broadening was applied as
the peak profile model. No corrections for preferred orienta-
tion and absorption were applied. Twelve-term polynomial
of diffraction angle was used as the background function.

The optimized constant peak shift parameter has been es-
timated at −0.0020(14)°, the estimated error of which is
slightly larger than the values discussed in Section IV B. It
is likely that additional errors are induced by defects of the
mechanism and/or control of the measurement system.

Figure 7. (a) Two-dimensional intensity profile (logarithmic contrast) of
quartz powder recorded at the goniometer angle of 2Θ = 31.8°. (b) Average
pixel intensities I and (c) standard deviations σ calculated from the data
shown in Figure 7(a).

Figure 8. Quartz {201}-reflection peak profile measured at the goniometer
angles of 2Θ = 25.4° and 31.8°. The estimated intensity values are marked
by white circles and crosses for 2Θ = 25.4° and 31.8°, respectively.
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The small value of Rwp = 0.84% may partly be caused by
low angular resolution of 0.035° and the restricted 2θ range
from 22.14° to 36.12° on this analysis.

It is expected that no need for application of asymmetric
profile function or shift correction confirms the reliability of
the evaluation of the peak locations and hence optimized lat-
tice parameters.

The effect of Poisson’s statistics about the observed pho-
ton counts is negligible in this measurement, because the total
counts of X-ray photons for the strongest peak exceed 1.3 ×
107, where the average value 46 800 counts pixel−1 located
at 2θ = 31.84° comes from 286 pixels of the 2D detector.

The estimated uncertainties about the lattice constants
shown in the parentheses, a = 4.9131(4) Å and c = 5.4043
(2) Å, look quite reasonable for this measurement, while ques-
tionably many significant digits about lattice constants have
frequently been reported in literatures, which are likely to be
caused by the ignorance of possible errors in 2θ.

Appropriate estimation of errors may be achieved even
from the data measured with a zero or 1D detector by more
comprehensive application of the maximum-likelihood esti-
mation (Ida, 2013), but the analytical method proposed in
this article seems to be more straightforward and easier.

V. CONCLUSION

The method of Sulyanov et al. (1994) to obtain powder
diffraction intensity data from a flat 2D detector has slightly
been modified to enable experimental estimation of errors in
diffraction intensity data. Extraordinary values counted with
dead pixels have easily been excluded on analysis.
Calculated 1D diffraction peak profiles have satisfactorily
been reproduced with a symmetric profile function, and sys-
tematic peak shift has not been detected within the experimen-
tal errors, which mean that this method can provide
aberration-free diffraction data. The profile and magnitude
of the estimated errors have shown that the propagation of

the errors in the diffraction angle 2θ is dominant in the un-
certainties of the measured intensities. The errors of the pa-
rameters optimized by the Rietveld method, lattice constants
for example, have appropriately been evaluated just by the
least-squares method weighted by the reciprocal of the
squared experimental errors.
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Figure 9. (Color online) Result of the Rietveld
refinement for the combined intensities from two
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TABLE I. Results of Rietveld refinement.

Trigonal, P32 21 (No. 154)

a = 4.9131(4) Å c = 5.4043(2) Å c/a = 1.09998(10)
Rp = 0.035 Rwp = 0.0084 Rexp = 0.0029 R(F )2 = 0.032
x(Si) = 0.4710(4) y(Si) = 0 z(Si) = 1/3 B(Si) = 1.15(14) Å2

x(O) = 0.4141(4) y(O) = 0.2689(5) z(O) = 0.7844(2) B(O) = 0.68(14) Å2
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