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TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK
SYSTEMS OVER SET THEORY

KENTARO FUJIMOTO

Abstract. In this article we study the systems KF and VF of truth over set theory as well as related
systems and compare them with the corresponding systems over arithmetic.

§1. Introduction. How is the content of the term “is true” given to us? Possibly it
may be given by an explicit definition in terms of other notions, but Tarski’s unde-
finability theorem imposes a quite stringent restriction on the explicit definability
of truth in nonsemantic terms. Some argue that the notion of truth is ultimately
to be axiomatically conceived; namely, a certain collection of sentences involving
the term “is true”, called axioms or meaning postulates of the term, determine its
content and use. The present article focuses on such an axiomatic approach toward
truth, which takes the term “is true” to be axiomatically understood and studies
various axioms for it.
One peculiar feature of the notion of truth is that it can be applied to any sentence
about any subject matter but in the same uniform way. While we can talk of truth
of two different subjects as separate and independent issues on their own rights, we
also regard them as restrictions of a certain general notion of truth to the particular
subject matters in question, sharing certain “essential” properties that uniformly
permeate through truths of all subject matters.
With this conception of truth, one natural formal setting for theories of truth for
a given subject matter is the following. We first pick and fix a formal system of the
subject matter, which is called a base system. Then we add the axioms of truth on
top of the base system. These axioms of truth are given independently of the subject
matter and base system; we may need to slightly tweak and adjust their formulation
to fit them in the formal structure of the chosen base system, but these axioms
should express the same “essential” property of truth from one subject matter to
another and from one base system to another. We call the result of this process an
axiomatic system of truth over the base system (or over the subject matter). One
important implication of this view is that the notion of truth is not intrinsically
embodied in a chosen subject matter and some general (but informal) conception
of truth is somehow taken as given in advance independently of the choice of subject
matters. Hence, in principle, we can (and should) consider and investigate axiomatic

Received March 5, 2016.
2010Mathematics Subject Classification. 03B30, 03D70, 03E65, 03E70, 03F35, 03F99.
Key words and phrases. axiomatic theories of truth, second-order set theory, Kripke-Platek set theory,

inductive definitions.

c© 2018, Association for Symbolic Logic
0022-4812/18/8303-0002
DOI:10.1017/jsl.2017.77

868

https://doi.org/10.1017/jsl.2017.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.77


TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK SYSTEMS 869

systems of truth and their axiomatic conceptions of truth over a variety of different
subject matters and base systems.
The study of axiomatic systems of truth has so far centered around those over
arithmetic, and philosophical debates on the axiomatic approach to truth have been
based mostly on the results about those systems over arithmetic. This is not because
philosophers are only interested in the truth of arithmetic, but probably because
they believe that those systems over arithmetic provide a generic case and most of
the fundamental results over arithmetic and philosophical debates based on them
can be generalized to other cases. However, in the present article, we will show
that there exists some strong disanalogy between axiomatic systems of truth over
arithmetic and over set theory, and thereby suggest that axiomatic systems of truth
over arithmetic may not be such a generic case.
A distinction is often made between compositional and noncompositional systems
of truth. Halbach explains this distinction as follows:

I call an axiomatic system [of truth] compositional if, according to its axioms, the
semantical status of its expressions (in particular, their truth or falsity) depends
only on the semantical status of its constituents. [15, p. 120]

Halbach refers to the Kripke-Feferman system KF as a typical example of a com-
positional system and to Cantini’s VF as an example of a noncompositional system.
This distinction is sometimes thought to be fundamental, and Halbach suggests to
relate compositionality to predicativity:

In general, predicativity and compositionality seem closely related. Compo-
sitionality is to truth systems what predicativity is to second-order system.
[15, p. 120]

In the present article, we will focus on the arch compositional system KF and
the arch noncompositional system VF and investigate the relationship between
them as well as other relevant systems both over arithmetic and over set theory.
Consequently, we will see some strong disanalogy between their behavior and the
relationships of them over arithmetic PA and over set theory ZF: in particular, it
will be shown that KF and VF are proof-theoretically equivalent over ZF and thus
have the same set-theoretic consequences, whereas the former is significantly weaker
than the latter over PA.
The structure of the article is as follows. In Sections 2–5, we introduce the main
systems we will investigate and show some basic facts about them: namely, the sys-
temsKF andVF of truth, the systems ÎD1 and ID1 of fixed-points, and the system SC1
of stage comparison prewellorderings. We next introduce an intermediate system
KPV, theKripke-Platek set theory overV, in Section 6, and then give an embedding
of KPV in SC1 in Section 7. Finally, by giving an embedding of VF in KPV, we
obtain the equivalence of all those systems in Section 8. After obtaining this main
result, we first give two relevant results as an application of our results in Section 9
and then study some variants of those systems in Sections 10–12.

§2. KF and VF over set theory. Let L∈ = {∈} be the language of first-order set
theory with the membership relation ∈ as its only non-logical symbol. ZF stands
for Zermelo-Fraenkel set theory over L∈. For the sake of systems of truth we also
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consider an expansion LT of L∈ defined as LT := L∈ ∪ {T}, where T is a unary
predicate symbol that is meant to be the truth predicate.
Let L be either L∈ or LT . Within ZF we can formalize the language L∞

which consists of L with constant symbols cx for each element x of the universe
V. This formalization provides us with a coding of the L∞-expressions; for an
L∞-expression e we denote its code by �e�; we specially denote the code of the set
constant cx for x ∈ V by ẋ. This formalization also comes with a coding of various
syntactic relations and operations on L∞. We will use exactly the same notation
and definitions for this formalization as in [12]. For instance, we write

St∞L := {z | z is a code of an L∞-sentence};
Fml∞L := {z | z is a code of an L∞-formula};

∧. and ¬. are (class) functions such that, for �ϕ�, ��� ∈ Fml∞L ,

¬. �ϕ� = �¬ϕ� and �ϕ�∧. ��� = �ϕ ∧��.

We can assume all the syntactic relations and operations that we use are ΔZF1 . For
readability, we write “∀�ϕ�” and “∃�ϕ�” to emphasize that codes of formulae are
quantified over and to thereby suppress the syntactical operations; for example, by
(∀�ϕ� ∈ St∞L )(∀��� ∈ St∞L )(T�ϕ ∧ �� ↔ T�¬¬(ϕ ∧ �)�), we mean

(∀x ∈ St∞L )(∀y ∈ St∞L )
(
T(x ∧. y)↔ T(¬. (¬. (x ∧. y)))

)
.

We will also write ∀�ϕ(v1 . . . vk)� to express “for all codes of formulae with at most
k variables free”; ∃�ϕ(v1 . . . vk)� has the dual meaning for existential quantification.
For an L∞-formula ϕ(v) with a distinguished free variable v and a set x ∈ V, we
write �ϕ(ẋ)� for the code of the result of substituting the constant cx for x for the
variable v in ϕ (i.e., the so-called Feferman’s dot convention).
Let L be any first-order language including L∈. We will consider the following
extensions of the axiom schemata of set theory to L:

L-Ind : ∀x
(
(∀y ∈ x)ϕ(y)→ ϕ(x)

)
→ ∀xϕ(x), for each ϕ ∈ L.

L-Sep : ∀a∃b∀x
[
x ∈ b ↔ x ∈ a ∧ ϕ(x)

]
, for each ϕ ∈ L.

L-Repl : ∀a
[
(∀x ∈ a)∃!yϕ(x, y) → ∃b(∀x ∈ a)(∃y ∈ b)ϕ(x, y)

]
, for each ϕ ∈ L.

We can easily show ZF+ L-Sep 	 L-Ind for any L ⊃ L∈.

Definition 2.1. The axioms of KF− comprises those of ZF plus:

K1: ∀x∀y[(T�ẋ = ẏ� ↔ x = y) ∧ (F �ẋ = ẏ� ↔ x �= y)],
K2: ∀x∀y[(T�ẋ ∈ ẏ� ↔ x ∈ y) ∧ (F �ẋ ∈ ẏ� ↔ x �∈ y)],
K3: ∀x[(T�Tẋ� ↔ Tx) ∧ (F �Tẋ� ↔ Fx)],
K4: (∀��� ∈ St∞LT )(T�¬¬�� ↔ T���),
K5: (∀���, ��� ∈ St∞LT )

[(
T�� ∧ �� ↔ (T��� ∧ T���)

)
∧

(
F �� ∧ �� ↔ (F ��� ∨

F ���)
)]
,

K6: (∀�ϕ(v)� ∈ Fml∞LT)
[(
T� ∀vϕ(v)� ↔ ∀xT�ϕ(ẋ)�

)
∧

(
F �∀vϕ(v)� ↔

∃xF �ϕ(ẋ)�
)]
,

where we put Fx :⇔ T ¬. x. Then we set KF := KF− + LT -Sep + LT -Repl. Some
proof-theoretic analyses of KF are already given in [12].
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Definition 2.2. The axioms of VF− comprises those of ZF plus:

V1: ∀�x
(
T(�ϕ(�̇x)�)→ ϕ(�x)

)
, for each LT -formula ϕ(�x),

V2: ∀x∀y
[(
T�ẋ = ẏ� ↔ x = y

)
∧ (F �ẋ = ẏ� ↔ x �= y

)]
,

V3: ∀x∀y
[(
T�ẋ ∈ ẏ� ↔ x ∈ y

)
∧ (F �ẋ ∈ ẏ� ↔ x �∈ y

)]
,

V4: (∀�ϕ(�v)� ∈ Fml∞LT )
(
LogAxL∞

T
(�ϕ(�v)�)→ T�∀�vϕ(�v)�

)
,

V5: (∀�ϕ(v)� ∈ Fml∞LT )
(
∀xT�ϕ(ẋ)� → T�∀vϕ(v)�

)
,

V6: (∀���, ��� ∈ St∞LT )
(
T�� → �� → (T��� → T���)

)
,

V7: (∀��� ∈ St∞LT )(T��� → T�T����),
V8: (∀��� ∈ St∞LT )(F�T���� → F���),
V9: (∀��� ∈ St∞LT ) T �(T���→¬T�¬��)�,
where LogAxL∞

T
(x) expresses “x is a logical axiom for L∞

T ”; hence V3 says “the
universal closure of every logical axiom for L∞

T is true”. Then we set VF := VF− +
LT -Sep + LT -Repl.

§3. ID1 and ÎD1 over set theory. For a first-order language L, we let L2 be the
second-order language associated with L with infinitely many unary predicate
variables X,Y,Z, . . . but without any new nonlogical symbols added. We call an
L2-formula Φ elementary when Φ contains no second-order quantifiers (possibly
with second-order free variables); the Π0n- and Σ

0
n-formulae are standardly defined.

An L-inductive operator form is an elementary L2-formula A(x,X) with only one
second-order variable X and one first-order variable x free in which X occurs only
positively. We write I(L) for the set of L-inductive operator forms.
For an L2-formula B(X1, . . . ,Xn) with designated second-order free variables

X1, . . . , Xn, and for L-formulae Ψ1(u1), . . . , Ψn(un) with designated first-order
free variables u1, . . . un, an L-formula B(Ψ1(û0), . . . ,Ψn(ûn)) denotes the result of
simultaneously replacing each occurrence ofXi t byΨi(t) for each term t (1 ≤ i ≤ n)
with renaming of bound variables in B and Ψi ’s as necessary to avoid collision;
we occasionally suppress ‘ûi ’s and simply write B(Ψ0, . . . ,Ψn). For an L-formula
Ψ(z) and an L2-formula C(x,X) with designated free variables z, and x and X,
respectively, possibly with parameters, we define

ClosC(Ψ(ẑ)) := ∀x
(
C(x,Ψ(ẑ))→ Ψ(x)

)
.

Again we will suppress “ẑ” when there is no worry of confusion.
A first-order language LFix for systems of inductive definitions is defined as L∈
plus unary predicates JA associated to each A(x,X) ∈ I(L∈). We will occasionally
identify a formula ϕ(x), possibly with parameters, and the class {x | ϕ(x)}; e.g.,
we write x ∈ JA for JA(x) and JA ⊂ Φ for ∀x(x ∈ JA → Φ(x)).

Definition 3.1. The LFix-system ÎD−
1 comprises ZF plus the following schema:

∀x[ JA(x)↔ A(x, JA) ], for each A ∈ I(L∈).

Then we set ÎD1 := ÎD−
1 + LFix-Sep + LFix-Repl.

The LFix-system ID−
1 comprises ZF plus the following schemata:

ClosA(JA), for each A ∈ I(L∈).

ClosA(Ψ)→ ∀x[JA(x)→ Ψ(x)], for each A ∈ I(L∈) and Ψ ∈ LFix.
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Then we set ID1 := ID−
1 + LFix-Sep + LFix-Repl.

We can standardly show that ÎD−
1 is a sub-theory of ID

−
1 (see [4, Lemma 2.1.1]).

Let L1 and L2 be first-order languages, and let S and T be systems over L1 and
L2, respectively. For L ⊂ L1 ∩ L2, we write S ⊂L T when S is conservative over T
for L; the relation S =L T means that S ⊂L T and T ⊂L S.
There are a number of similarities and analogies between systems of truth or
inductive definitions over set theory ZF and over arithmetic PA, and we will discuss
the arithmetical counterparts of VF, ID1, etc., over PA. Hence, to clearly distinguish
them, when mentioning those systems over PA, we will add “[[PA]]” after the names
of systems; e.g., VF[[PA]], ID1[[PA]], etc.

Theorem 3.2. 1. KF =L∈ ÎD1. 2. ID1 ⊂L∈ VF.

Proof. 1. One inclusion ÎD1 ⊂L∈ KF can be shown in an exactly parallel manner
to Cantini’s [6] proof of ÎD1[[PA]] ⊂LN

KF[[PA]] over arithmetic, whereLN is the first-
order language of arithmetic. The converse can be shown by interpreting the truth
predicate T of KF by a fixed-point of an inductive operator form T (x,X) ∈ I(L∈)
describing the closure condition of the strong Kleene evaluation schema; the proof
is exactly parallel to Feferman’s [9] proof ofKF[[PA]] ⊂LN

Σ11-AC. These proofs yield
themutual interpretability ofKF− and ÎD−

1 in which theL∈-part is preserved; hence,
we actually have KF− =L∈ ÎD−

1 .
2. Kahle [18] gives a direct interpretation of VF[[PA]] in ID1[[PA]] that preserves
the arithmetical part, and this interpretation can be used as it is for our claim: that
is, for each A ∈ I(L∈), we can interpret JA(x) by an LT -formula

(∀�ϕ(v)� ∈ Fml∞LT )[ClosA(T�ϕ( ˆ̇v)�)→ T�ϕ(ẋ)� ].

In fact, this is an interpretation of ID−
1 in VF

− and thus ID−
1 ⊂L∈ VF−. �

§4. Systems of stage comparison strict preordering. Let us fix any L∈-structure
M = 〈M,E〉 where E is an interpretation of the symbol ∈. Each A(x,X) ∈ I(L∈)
induces a monotone operator ΦM

A : P(M ) → P(M ) such that, for X ⊂ M ,
ΦM

A (X ) = {x ∈M | 〈M,E,X 〉 |= A(x,X)}, where 〈M,E,X 〉 is an (L∈ ∪ {X})-
structure in which the predicate X is interpreted by X . An operator Φ: P(M ) →
P(M ) is called inductive onM, when Φ = ΦM

A for some A ∈ I(L∈).
Let Φ be an inductive operator onM. By recursion on ordinals α, we define sets
I <αΦ , I

α
Φ ∈ P(M ) as I <αΦ :=

⋃
�<α I

�
Φ and I

α
Φ := Φ(I

<α
Φ ), respectively. Then there is

an ordinalα such that I αΦ = I
<α
Φ andΦ(I

α
Φ ) = I

α
Φ .Wedenote the least suchα by ||Φ||

and simply write IΦ for I
||Φ||
Φ . For each x ∈ IΦ, we set ||x||Φ := min{	 | x ∈ I 	Φ},

which induces a strict prewellordering ≺Φ onM :

x ≺Φ y ⇔
{
||x||Φ < ||y||Φ if x, y ∈ IΦ,
x ∈ IΦ ∧ y �∈ IΦ otherwise.

We call ≺Φ the stage comparison strict prewellordering of Φ. This is so defined that
the field fd(≺Φ) of ≺Φ isM and the elements y ∈M \ IΦ are all maximal elements
greater than any x ∈ IΦ. We have IΦ = {x ∈M | ∃y(x ∈ Φ(I <||y||ΦΦ )}.
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Now the following is easily observed:

x ≺Φ y ⇔ x ∈ IΦ ∧ y �∈ Φ(I <||x||ΦΦ ) ⇔ x ∈ IΦ ∧ y �∈ Φ({u | u ≺Φ x}).

We use this equivalence for axiomatizing the stage comparison strict prewellorder-
ings ≺Φ of inductive operators (on our intended modelM := 〈V,∈〉).
LetLSC be a languagedefined asLFix plus a further unarypredicate≺A associated
to each inductive operator form A(x,X) ∈ I(L∈), which is meant to express the
stage comparison strict prewellordering ofΦM

A . For readability wewill writex ≺A y
for 〈x, y〉 ∈≺A. Given A ∈ I(L∈) we write ≺A�x for the class of ≺A-predecessors
of x, i.e., {y | y ≺A x} (with x as a parameter).

Definition 4.1. The LSC-system SC−
1 comprises ID

−
1 plus: for all A ∈ I(L∈),

(SC0): ≺A ⊂ Pair, where Pair denotes the class of ordered pairs;
(SC1): ∀x∀y

[
x ≺A y ↔

(
x ∈ JA ∧ ¬A(y,≺A�x)

)]
;

(SC2): ∀x
(
∀y(y ≺A x → ϕ(y)) → ϕ(x)

)
→ ∀xϕ(x), for all ϕ(x) ∈ LSC.

Then we set SC1 := SC−
1 + LSC-Sep + LSC-Repl.

Remark 4.2. SC1 is equivalent to Sato’s [22, p. 106] axiomatization ID
+
1 of stage

comparison prewellorderings. The equivalence will be shown in Appendix.

Lemma 4.3. 1. SC−
1 	 ∀x [x ∈ JA ↔ A(x,≺A�x)], for each A ∈ I(L∈).

2. SC−
1 	 ∀x(x �∈ JA ↔ JA ⊂≺A�x), for each A ∈ I(L∈).

Proof. 1. Note that ≺A is irreflexive due to (SC2). Hence, if x ∈ JA then
A(x,≺A�x) by (SC1). SupposeA(x,≺A�x). By (SC1) we have ≺A�z⊂ JA for all z
in general. Hence, we obtain A(x, JA) by monotonicity and thus x ∈ JA.
2. Suppose x �∈ JA. We have ¬A(x, JA). Since ≺A�z⊂ JA for all z, we have

¬A(x,≺A�z) for all z by monotonicity and thus z ≺A x for all z ∈ JA by (SC1).
For the converse, if x ∈ JA then JA �⊂≺A�x since x �∈≺A�x by irreflexivity. �
Lemma 4.4. SC−

1 	 “≺A is transitive”, for every A ∈ I(L∈).

Proof. It suffices to show by ≺A-induction on x, using (SC2), that

∀y∀z
(
z ≺A y ∧ y ≺A x → z ≺ x

)
, for all x.

Let z ≺A y and y ≺A x. We have z ∈ JA and¬A(x,≺A�y) by (SC1). Since we have
≺A�z ⊂≺A�y by the induction hypothesis, we obtain¬A(x,≺A�z) bymonotonicity
and thus z ≺ x by (SC1). �
Lemma 4.5. SC−

1 	 ∀x∀y
(
x ≺Ay ∨ y ≺Ax ∨ ≺A�x=≺A�y

)
, for anyA ∈ I(L∈).

Proof. We can assume x, y ∈ JA; otherwise the claim follows fromLemma 4.3.2.
We will show by ≺A-induction on x with side ≺A-induction on y that

x ≺A y ∨ y ≺A x ∨ ≺A�x=≺A�y , for all x ∈ JA and y ∈ JA.

Assume x �≺A y and y �≺A x. Take any z ≺A y. By transitivity, x ≺ z can’t be the
case. If ≺�x=≺�z were the case, then we would get ¬A(y,≺�x) and thus x ≺A y
by (SC1). Hence, we obtain z ≺A x by the sub-inductive hypothesis; we have
shown≺�y⊂≺�x. The converse is shown parallelly but by using the main-induction
hypothesis instead. �
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Definition 4.6. We put �A:= {〈x, y〉 | A(x,≺A�y)} for each A ∈ I(L∈), and
write x �A y :⇔ 〈x, y〉 ∈�A. Note that ≺A occurs in x �A y only positively.

Lemma 4.7. SC−
1 	 ∀x∀y[x �A y ↔ (x ∈ JA ∧ y ⊀A x)]; by Lemma 4.3.

The next theorem by Sato [22] is of crucial importance for the present article.
The proof of the theorem is an ingenious modification of the Stage Comparison
Theorem (see [19]) specially for base systems with a certain reflection property.

Theorem 4.8 (Sato [22]). SC1 is a definitional extension of ÎD1.
We close this section with one immediate consequence of Sato’s theorem.
Burgess [5] presented an extension of KF[[PA]] over arithmetic, which augments

KF[[PA]] with axioms expressing that T is the least fixed-point of the Kripkean
operator with the strong Kleene evaluation schema, namely, the inductive operator
form T (x,X) ∈ I(L∈) taken in the proof of Theorem 3.2.1. Thereby Burgess’s
system KF
 over set theory is defined as KF plus the following schema:

ClosT (Ψ)→ ∀x(Tx → Ψ(x)), for each Ψ ∈ LFix.
ObviouslyKF
 is interpretable in ID1 simply by translatingT to JT . Hence, it follows
from Sato’s Theorem and Theorem 3.2, we have the next theorem.
Theorem 4.9. KF
 and KF are proof-theoretically equivalent.

§5. Basic facts of inductive classes provable in SC−
1 . We will formalize some basic

results of inductive relations (cf. [19]) within SC−
1 .

For a (k+1)-tuple a = 〈a0, . . . , ak〉 and i ≤ k, we denote its (i+1)-th component
ai by (a)i . Given a class X and a ∈ V, we put Xa = {x | 〈x, a〉 ∈ X}; note that
we do not generally have Xa = {(z)0 | z ∈ X} unless X ⊂ Pair. We assume for
simplicity that (a)i is defined for all sets a ∈ V and all i < �.
Until and including Proposition 5.4, we will work within ID−

1 .

Definition 5.1. The following definition is made in ID−
1 . A class X is said to be

inductive, if there is A ∈ I(L∈) such that X = JaA for some a ∈ V; when this holds
we say that X is defined by A with parameter a. We also say that X is coinductive
when −X := {x | x �∈ X} is inductive, and that X is hyperelementary when X is
both inductive and coinductive.

Theorem 5.2 (Transitivity Theorem). The following is provable in ID−
1 . Let

A(x, v1, . . . , xl ,X,Y1, . . . ,Yk) ∈ L2∈ be elementary in which only the displayed vari-
ables are free and X,Y1, . . . ,Yk occur only positively. For every inductive Y1, . . . , Yk
and parameters a1, . . . , al ∈ V, there is an inductive X such that

∀x
(
A(x, �a,X, �Y )→ x ∈ X

)
. (T1)

∀x
(
A(x, �a,Z, �Y )→ x ∈ Z

)
→ X ⊂ Z, for all classes Z. (T2)

Proof. Let Yi be defined by Bi with bi (1 ≤ i ≤ k). Note thatA(x, �a,X, �Y ) then
contains �b as parameters besides �a. Put A′(x,X) ∈ I(L∈) to be[
((x)1)0=0→ A

(
(x)0, ((x)1)1, . . . , ((x)1)l ,X(x)1, (X1)((x)1)l+1, . . . , (Xk)((x)1)l+k

)]
∧

∧
1≤i≤k

(
(x)1 = i → Bi

(
(x)0,Xi

))
∧ x ∈ Pair;
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then JA′ ⊂ Pair. We can assume that if ((x)1)0 = 0 then (x)1 �= i for all
i > 0.
We first show J iA′ = JBi for 1 ≤ i ≤ k. Let Bi = (JBi × {i}) ∪ (V× (V \ {i})).
We have ClosA′(Bi ) and thus JA′ ⊂ Bi ; hence J iA′ ⊂ Bii = JBi . If Bi(x, J iA′), then
A′(〈x, i〉, JA′) and thus 〈x, i〉 ∈ JA′ ; hence ClosBi (J

i
A′) and thus JBi ⊂ J iA′ .

We have shownYi = (J iA′)bi for 1 ≤ i ≤ k. Let c = 〈0, a1, . . . , al , b1, . . . , bk〉 and
X := J cA′ . For (T1), ifA(x, �a,X, �Y ) thenA′(〈x, c〉, JA′ ) and thus x ∈ J cA′ . For (T2)
suppose ∀x(A(x, �a,Z, �Y )→ x ∈ Z) for a classZ. PutZ′ := (Z×{c})∪{x ∈ JA′ |
(x)1 �= c}. We have ClosA′(Z′), since A′(x,Z′) and (x)1 �= c implies A′(x, JA′)
and thus x ∈ Z′. Hence JA′ ⊂ Z′ and thus X ⊂ Z. �
We say that C(x,X) ∈ L2SC possibly with parameters is positive elementary in
classes Y1, . . . , Yk , when there are some �a ∈ V and A(x, �v,X,Y1, . . . ,Yk) ∈ L2∈
with at most the displayed variables free and only with positive occurrences of
X,Y1, . . . ,Yk such that C(x,X) ↔ A(x, �a,X, Y1, . . . , Yk). Hence, Theorem 5.2
says that every positive elementary C(x,X) in inductive classes has an inductive
least fixed-point provably in ID−

1 , and we denote it by JC.
We will occasionally treat classes of n-tuples (n ≥ 2) as if they were n-ary
predicates (or relations) and write P(x1, . . . , xn), Q(x1, . . . , xm), etc.

Corollary 5.3. In ID−
1 , the collection of inductive relations is closed under

conjunction, disjunction, existential, and universal quantification.

A relation R is said to be elementary on classes X1, . . . , Xk , if R is constructed
from X1, . . . , Xk , =, and ∈, by ¬, ∧, ∃, and ∀. We simply say X is elementary if X is
elementary on V, which is obviously hyperelementary.

Corollary 5.4. In ID−
1 , if X1, . . . , Xk are hyperelementary and R is elementary

on X1, . . . , Xk , then R is hyperelementary.

From now on, we will work within SC−
1 in the rest of the present section.

Proposition 5.5. For A ∈ I(L∈) and a ∈ V, we set x ≺A,a y :⇔ 〈x, a〉 ≺A
〈y, a〉. This ≺A,a strictly prewellorders JaA: i.e., it is irreflexive, transitive, and

(∀x ∈ JaA)
[
∀y(y ≺A,a x → y ∈ Y )→ x ∈ Y

]
→ JaA ⊂ Y, for all classes Y.

We also define x �A,a y :⇔ 〈x, a〉 �A 〈y, a〉, which is transitive and well-founded.
The way in which≺A,a prewellorders X = JaA depends on the choice ofA and a,
but the choice of the pair do not matter for our subsequent argument and so we let
≺X denote ≺A,a for some fixed A and a defining X .
Proposition 5.6. Let X be inductive. By Lemmata 4.3 and 4.7, we have

1. x ≺X y implies x ∈ X , and x �X y implies x ∈ X ;
2. y �∈ X implies X ⊂≺X �y and X ⊂�X �y ;
3. x ≺X y iff x ∈ X ∧ y �X x, and x �X y iff x ∈ X ∧ y ⊀X x.

Theorem 5.7 (Stage Comparison Theorem). The relation≺A is inductive. Hence,
by Corollaries 5.3 and 5.4, �A is also inductive.

Proof. Let B(x,X) := A(x,X) ∨ X = V, and set B′(x,X) ∈ I(L∈) to be

x ∈ Pair ∧ ¬B
(
(x)1,

{
u | ¬B((x)0, {v | 〈v, u〉 ∈ X)

})
;

note that we then have JB′ ⊂ Pair. We will show ≺A= JB′ .
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For one direction, JB′ ⊂≺A, it suffices to show that ClosB′(≺A), which follows
from the following equivalences: for every x and y,

¬B
(
y,
{
u | ¬B(x,≺A�u)

})
⇔ ¬B

(
y,
{
u | ¬A(x,≺A�u)

})
4.3⇔

[
x �∈ JA ∧ ¬B

(
y,V

)]
∨
[
x ∈ JA ∧ ¬B

(
y,≺A�x

)]
⇔ x ∈ JA ∧ ¬A

(
y,≺A�x

)
⇔ x ≺A y;

the first and third equivalences obtain since ≺A�u �= V for all u by irreflexivity.
For the converse, ≺A⊂ JB′ , it suffices to show ∀y

(
x ≺A y → 〈x, y〉 ∈ JB′

)
for

all x ∈ JA by induction along ≺A. Let y �A x. We will show that B′(〈x, y〉, JB′ ).
Take any u ⊀A x. By Lemma 4.5 we have ≺A�x⊂≺A�u . Hence, for all v ≺A x,
we have 〈v, u〉 ∈ JB′ by IH and thus A(x, {v | 〈v, u〉 ∈ JB′}) by Lemma 4.3.1 and
monotonicity. Since u ⊀A x was arbitrary, we obtain{
u | ¬B

(
x,

{
v | 〈v, u〉 ∈ JB′

})}
⊂

{
u | ¬A

(
x,

{
v | 〈v, u〉 ∈ JB′

})}
⊂≺A�x �= V.

Since x ≺A y implies ¬A(y,≺A�x), we obtain the claim by monotonicity. �
Theorem 5.8 (Hyperelementary selection theorem). Let P(x, y) be an inductive
relation. There are inductive Q(x, y) and coinductive Q̌(x, y) such that

(i) Q ⊂ P; (ii) ∃yP(x, y)→ ∃yQ(x, y); (iii) ∃yP(x, y)→ ∀y[Q(x, y)↔ Q̌(x, y)].
Proof. We define

Q := {〈x, y〉 | ∀z(〈x, y〉 �P 〈x, z〉)} and Q̌ := {〈x, y〉 | ∀z(〈x, z〉 ⊀P 〈x, y〉)}.
Then (i) and (iii) follow from Proposition 5.6. For (ii), suppose ∃yP(x, y) and put
u ≺x,P v :⇔ 〈x, u〉 ≺P 〈x, v〉. Then ≺x,P prewellorders {w | 〈x,w〉 ∈ P} �= ∅ and
we can pick a ≺x,P-minimal element y′; hence, we get 〈x, y′〉 ∈ Q. �
Theorem 5.9 (Covering theorem). Let X be inductive but not coinductive, and let
Y be coinductive. Let R be a hyperelementary relation such that dom(R) ⊃ Y and
R[Y ] ⊂ X , where R[Y ] is the image {x | ∃y[y ∈ Y ∧ R(y, x)]} of Y by R. Then,
(∃c ∈ X )∀x

(
x ∈ R[Y ]→ x �X c

)
.

Proof. Otherwise X would become coinductive, since it would hold that

c ∈ X ⇔ (∃y ∈ Y )∃x
(
R(y, x) ∧ x �X c

)
. �

Theorem 5.10 (Good parametrization theorem for inductive classes). There exist
an inductive class U and elementary function S : V× V → V such that

1. for all inductive classes X , there is some a ∈ V such that Ua = X , and
2. for all inductive classes X and a ∈ V, if Ua = X then ∀c(US(a,c) = Xc).
Proof. It is known that for each A ∈ I(L∈) there is B ∈ I(L∈) ∩Π02 such that
JA = J

p
B for somep; see [22, Section 3]. Take a universalΠ

0
2-inductive operator form

U such that∃q(JqU = JB) for allB ∈ I(L∈)∩Π02.Hence, we have∃p∃q
(
(JqU)

p = JA
)

for all A ∈ I(L∈); we can assume here that p, q ∈ N and they can be primitive
recursively computed from given A. Then we take

U :=
{
〈x, 〈a, p, q〉〉 |

〈〈〈
〈x, (a)0〉, (a)1

〉
, p

〉
, q

〉
∈ JU

}
⊂ Pair.

Since the class {〈x, d 〉 | x ∈ X} with any “dummy” index d (e.g., 0) is inductive
for all inductive X , we can easily verify the Claim 1. For the Claim 2, let Q :=
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{〈x, 〈y, z〉〉 | 〈〈x, y〉, z〉 ∈ U}. Q is inductive and thus there are p, q, b such that
Q = ((JqU )

p)b and fix any such p, q, b. Then,

〈x, c〉 ∈ Ua ⇔ 〈x, 〈c, a〉〉 ∈ Q ⇔ 〈x, 〈c, a〉〉 ∈ ((JqU )p)b ⇔
〈
x,

〈〈〈c, a〉, b〉, p, q〉〉 ∈ U.
Hence we can take S(a, c) :=

〈
〈〈c, a〉, b〉, p, q

〉
. �

Lemma 5.11. The class U taken in Theorem 5.10 is not coinductive.
Proof. IfU was coinductive,P := {x | 〈x, x〉 �∈ U}would be inductive and thus
there would be some a such that a ∈ Ua ⇔ a ∈ P ⇔ a �∈ Ua . �
Theorem 5.12 (Good parametrization theorem for hyperelementary classes).
There exist inductive classes I andH , and a coinductive class Ȟ such that
(i) if a ∈ I thenHa = Ȟ a (and thusHa is hyperelementary for all a ∈ I );
(ii) if X is hyperelementary then X = Ha for some a ∈ I ;
(iii) For any inductiveP and coinductiveQ, there exists a hyperelementary function
J : V → V such that if Pa = Qa then J (a) ∈ I andHJ (a) = Pa .

Proof. Let U be the class taken in Theorem 5.10. We take I,H, Ȟ so that

a ∈ I :⇔ (a)1 ∈ U
〈x, a〉 ∈ H :⇔ a ∈ I ∧

〈
x, (a)0

〉
�U (a)1

〈x, a〉 ∈ Ȟ :⇔ (a)1 ⊀U
〈
x, (a)0

〉
.

The claim (i) is obvious by Proposition 5.6.
For (ii), let X be hyperelementary and X = Ub . Then R := {〈x, 〈x, b〉〉 | x ∈ X}
is a hyperelementary relation. By Theorem 5.9 and Lemma 5.11 we can pick c ∈ U
with ∀x(x ∈ X → 〈x, b〉 �U c). Hence we can take a := 〈b, c〉 ∈ I , since

x ∈ Ha ⇔ a ∈ I ∧ 〈x, b〉 �U c ⇔ x ∈ Ub = X.
For (iii), let P = Ub be inductive and Q be coinductive. Let us put

Z :=
{
〈x, y〉 | ∀u

(
u ∈ Qy → 〈u, S(b, y)〉 �U 〈x, S(x, y)〉

)}
,

which is inductive, and pick c such that Uc = Z. Then we define the function
J by J (a) :=

〈
S(b, a), 〈c, S(c, a)〉

〉
. Suppose Pa = Qa (= US(b,a)). We have c ∈

US(c,a) = Za ; for, c �∈ US(c,a) and 〈u, S(b, a)〉 �U 〈c, S(c, a)〉 implies 〈u, S(b, a)〉 �∈
U ; hence J (a) ∈ I . Thereby we also get Pa =

{
u | 〈u, S(b, a)〉 �U 〈c, S(c, a)〉

}
,

and thus, for all u,

u ∈ HJ (a) ⇔ J (a) ∈ I ∧ 〈u, S(b, a)〉 �U 〈c, S(c, a)〉 ⇔ u ∈ Pa. �

§6. Kripke-Platek set theory over V. We will consider a Kripke-Platek set theory
with urelements, where the set-theoretic universe V (or a fixed model of ZF, more
formally) is taken as the domain of urelements, and in which “higher-order” sets are
constructed by the KP-axioms and topped up on V, while keeping the distinction
of the sets in V (as “urelements”) and the sets added on top of V (as “sets”); we
also assume that the collection of urelements, V, forms a set and we have a constant
V for it. In terms of [2, Chapter I.2], our system is KPU+ with ZF as the theory of
urelements augmented with a constant for the set of urelements.
We take the one-sort formulation of KPU+. Let LKP = {∈0,∈1,U ,V}, where U is
a unary predicate for urelements, ∈0 is the membership relation among urelements,
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∈1 is the membership relation for sets, and V is a constant symbol for the set
of urelements. We will write Sx for ¬Ux to express set-hood. As in the previous
sections, we will occasionally treat LKP-formulae as classes, and write x ∈ U and
x ∈ S for example; the use of the symbol “∈” here should not be confused with
“∈0” or “∈1”, which are in the vocabulary of LKP.
We standardly define the collection of Δ0-formulae as the smallest collection of

LKP-formulae that contains all atomic LKP-formulae and is closed under Boolean
connectives andboundedquantifiers (∀z ∈1 x) and (∃z ∈1 x). The other collections
of LKP-formulae in the Levy hierarchy are standardly defined from Δ0.
For each ϕ ∈ L∈, we denote the relativization of ϕ to 〈U ,∈0〉 by ϕU (∈ LKP),
where all the quantifiers ∀x and ∃x are restricted to U and the membership relation
∈ of L∈ is replaced by ∈0; accordingly, ZFU means {�U | � ∈ ZF}.

Definition 6.1. The LKP-system KPV− comprises ZFU plus:

(Ext): (∀a, b ∈ S)
(
∀x(x ∈1 a ↔ x ∈1 b)→ a = b

)
,

(Found1): ∀x
(
(∀y ∈1 x)ϕ(y)→ ϕ(x)

)
→ ∀xϕ(x),

(Pair): ∀x∀y(∃a ∈ S)
(
x ∈1 a ∧ y ∈1 a

)
,

(Union): (∀a ∈ S)(∃b ∈ S)(∀x ∈1 a)(∀y ∈1 x)y ∈1 b,
(Δ0-Sep1): (∀a ∈ S)(∃b ∈ S)∀x

(
x ∈1 b ↔ x ∈1 a ∧ �(x)

)
,

(Δ0-Coll1): (∀a ∈ S)
[
(∀x ∈1 a)∃y�(x, y)→(∃b ∈ S)(∀x ∈1 a)(∃y ∈1 b)�(x, y)

]
,

(U): V∈S ∧ ∀x∀y
(
(x∈1V ↔ x ∈ U) ∧ (x∈1 y → y ∈ S) ∧ (x∈0 y → x, y ∈ U)

)
,

(Eq) : ∀x(x = x) and ∀x∀y
[
x = y →

(
	(x)↔ 	(y)

)]
,

where ϕ is anyLKP-formula,� is any Δ0-formula without b free, and 	 is any atomic
LKP-formula. For each ZF-axiom �, its relativization �U is (equivalently) Δ0 due to
the axiom (U).
We also consider the following additional axiom schemata.

(Found+0 ) : (∀x ∈ U)
(
(∀x ∈0 y)ϕ(y) → ϕ(x)

)
→ (∀x ∈ U)ϕ(x).

(Sep+0 ) : (∀a ∈ U)(∃b ∈ U)(∀z ∈ U)
(
z ∈0 y ↔ z ∈0 x ∧ ϕ(z)

)
.

(Repl+0 ) : (∀a ∈ U)
[
(∀x ∈0 a)(∃!y ∈ U)ϕ → (∃b ∈ U)(∀x ∈0 a)(∃y ∈0 b)ϕ

]
,

where ϕ is any LKP-formula. Then we set KPV := KPV− + (Sep+0 ) + (Repl
+
0 ).
1

We express various sets and classes in L∈, such as ∅,�, the class Tran of transitive
sets, the class On of ordinals, etc. Now, LKP possesses two different membership
relations ∈0 and ∈1 and bears two different set-theoretic structures 〈U ,∈0〉 and
〈S,U ,∈1〉 (where U gives the domain of urelements). Hence, those sets and classes
can be expressed in two different ways in terms of ∈0 and ∈1. We will distinguish
them by attaching superscript U or S; for example, ∅U denotes the empty set in
〈U ,∈0〉 such that ∅U ∈ U and (∀x ∈ U)x �∈0 ∅U , and ∅S denotes the empty
set in 〈S,U ,∈1〉 such that ∅S ∈ S and ∀x(x �∈1 ∅S); TranU denotes the class
{x ∈ U | (∀u ∈0 x)(v ∈0 u)v ∈0 x} of transitive sets in 〈U ,∈0〉, and TranS is the
class {x ∈ S | (∀u ∈1 x)(v ∈1 u)v ∈1 x} of transitive sets in 〈S,U ,∈1〉.

1KPV− does not derive the axiom of infinity for sets in S, but KPV does due to (Found+0 ).
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§7. Reduction of KPV− to SC−
1 . We will give an embedding ∗ of KPV− in SC−

1 .
It will be done by formalizing and generalizing the Barwise-Gandy-Moschovakis
theorem [3]. We work within SC−

1 throughout the present section.
The interpretations U∗ and ∈∗

0 , of the domain U of urelements and the
membership relation ∈0 for urelements in KPV−, are given by

U∗ := {〈a, 0〉 | a ∈ V} and x ∈∗
0 y :⇔ x ∈ U∗ ∧ y ∈ U∗ ∧ (x)0 ∈ (y)0;

note that both are elementary. To give the interpretations of = and ∈1, we need
some preliminary definitions and results that we will explain at length below.
We say a class T is a tree when the following holds

T �= ∅ ∧ T ⊂ Seq ∧ ∀x∀y
[(
x, y ∈ Seq ∧ x ∗ y ∈ T

)
→ x ∈ T

]
,

where Seq is the (elementary) class of finite sequences (or tuples), and x ∗y denotes
the concatenation of the two sequences x and y. For x ∈ Seq, we denote its length
by lh(x) (∈ �) and its (i + 1)-th component (i < lh(x)) by (x)i as in Section 5. We
include the empty sequence ε in Seq so that ε is the unique sequence with length 0,
every nonempty x ∈ Seq is a proper extension of ε, and ε ∗ x = x = x ∗ ε for all
x ∈ Seq; hence, ε is a member of every tree; for technical convenience, we stipulate
that ε �∈ U∗ and (u)−1 = ε for each u ∈ Seq.
For a class Y , we define a strict preordering �Y by
x �Y y :⇔ x, y ∈ Y ∧ x, y ∈ Seq ∧ (“x is a proper extension of y”);

note that ε is always the maximum element (“root”) of �Y if Y is a tree.
For a binary relation R, we let W[R](x,X, R) ∈ L2SC be ∀y(yRx → y ∈ X).
SinceW[R] is positive elementary in −R, the inductive class JW[R] exists for every
coinductive R by Theorem 5.2 and expresses the accessible part of R, which we will
denote by Acc(R). For a coinductive tree T , �T is also coinductive and thus its
well-foundedness is expressed as ε ∈ Acc(�T ) (↔ V = Acc(�T )); when this holds,
T is said to be well-founded. When T is well-founded, we have

(∀u ∈ T )
(
(∀v �T u) v ∈ X → u ∈ X

)
→ T ⊂ X, for all classes X.

Let min(�T ) := {u ∈ T | ∀x(u ∗ 〈x〉 �∈ T )} (i.e., the class of “leaves” of T ); this
class is elementary on T . Then we define two classes both also elementary on T :

U(T ) := {u ∈ T | u ∈ min(�T ) ∧ (u)lh(u)−1 ∈ U∗} and S(T ) := T \ U(T );
note that (u)lh(u)−1 is the last component of a sequence u = 〈u0, . . . , ulh(u)−1〉.
For interpreting the domain S of sets of KPV− in SC−

1 , we make use of the
so-called tree representation of well-founded sets: we let each well-founded tree T
represent the uniquewell-founded set b such that 〈TC({b}),∈〉 is theMostowski col-
lapse of 〈T,�T 〉; hence, bisimilarwell-founded trees represent the samewell-founded
set, say, c, and those trees are also bisimlar to the canonical tree representation (or,
tree picture) of c, defined as {ε} ∪ {〈c1, . . . , ck〉 | ck ∈ · · · ∈ c1 ∈ c} (see [1] for
a detailed exposition). However, since we allow urelements in KPV−, the notions
of collapse and bisimulation must be so modified as to accommodate urelements;
each leaf of a well-founded tree corresponds to an object with no member that is
contained in the transitive closure of the set represented by the tree, and we must
somehow distinguish the cases where the leaf represents the emptyset and where it
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represents an urelement, both of which contain no element. For this purpose, we
stipulate that, for a leaf u of a tree T , if u = 〈u0, . . . , uk〉 ends with an element of
the form uk = 〈x, 0〉 ∈ U∗ (and thus u ∈ U(T )), then it represents the urelement
xU ∈ U of KPV−, and otherwise represents ∅S .
We first define an inductive classM so that

a ∈M :⇔ a ∈ I andHa (= Ȟ a) is a well-founded tree,
where I ,H , and Ȟ are the inductive and coinductive classes taken in Theorem 5.12.
We have to make sure thatM can be properly defined. Let us put

x � y :⇔ x, y ∈ Pair ∧ (x)1 = (y)1 ∧ (x)0 �Ȟ (x)1 (y)0.
We can take Acc(�) since � is coinductive. Let us write x �a y for 〈x, a〉 � 〈y, a〉.
Then we can show that, for all a ∈ I and x, y ∈ V,

x �Ha y ⇔ x �a y and ε ∈ Acc(�a)⇔ 〈ε, a〉 ∈ Acc(�);
hence we can take M = {a ∈ I | “Ha is a tree” ∧ 〈ε, a〉 ∈ Acc(�)}, and �a
prewellorders Ha uniformly for each a ∈ M . The interpretation of the domain S
of sets is thereby given as:

S∗ := {〈a, 1〉 | a ∈M};
we add the index “1” here, in contrast to “0” added for U∗, to make U∗ and S∗

disjoint. Accordingly, the quantifiers “∀v” and “∃v” of LKP are interpreted by ∗
into “∀v ∈ (S∗ ∪ U∗)” and “∃v ∈ (S∗ ∪ U∗)”; note that the interpretations ∈∗

1 and
=∗ still remain to be defined, and their definitions will be given later.
We also have to modify the notion of the restriction of a tree T to its node u (or
“sub-tree of T below u”) so as to accommodate urelements. Preliminarily, for a tree
T and u ∈ S(T ) we put Tu := {v | u ∗ v ∈ T}, which is also a tree.
Proposition 7.1. Let T be a coinductive tree and u ∈ S(T ). If Tu is well-founded
then u ∈ Acc(�T ).
Proof. We can show (∀v ∈ Tu)

(
u ∗ v ∈ Acc(�T )

)
by induction on �Tu . �

Lemma 7.2. There exists an elementary function j : V×V → V such that (Ha)u =
Hj(a,u) for all a ∈M and u ∈ S(Ha).
Proof. We apply Theorem 5.12 to the following P and Q:

P := {〈v, 〈a, u〉〉 | u ∗ v ∈ Ha & u ∈ S(Ha)} and
Q := {〈v, 〈a, u〉〉 | u ∗ v ∈ Ȟ a & u ∈ S(Ȟ a)}.

Since we haveP〈a,u〉 = Q〈a,u〉 for all a ∈M and u ∈ S(Ha), there exists J such that
J (〈a, u〉) ∈ M and (Ha)u = P〈a,u〉 = HJ (〈a,u〉) for all a ∈ M and u ∈ S(Ha). So
we can take j(a, u) := J (〈a, u〉). �
For each x = 〈a, 1〉 ∈ S∗ and u ∈ Ha , we define x ↓u∈ S∗ ∪ U∗ so that

x ↓u :=
{
(u)lh(u)−1 (∈ U∗) if u ∈ U(Ha),
〈j(a, u), 1〉 (∈ S∗) if u ∈ S(Ha).

Remark 7.3. Let us give an informal explanation of the definitions given so far.
Fix a transitive model A = 〈A,∈〉 of ZF. On the one hand, by treating A as the set

https://doi.org/10.1017/jsl.2017.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.77


TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK SYSTEMS 881

of urelements, the universe VA of sets on A (see [2, p. 42]) and A gives a model of
KPV−, where we interpret S and U by VA and A, respectively. On the other hand,
we extend A to a model of SC−

1 and define I,H, Ȟ (⊂ A) on A in the standard
manner; thereby we define S∗ and U∗ in terms of them. Then, for x = 〈a, 1〉 ∈ S∗

and u ∈ Ha , where Ha is a well-founded tree, we define a set m(Ha, u) ∈ VA ∪ A
by recursion along �Ha :

m(Ha, u) :=

{
p (as an urelement in A) if u = 〈u0, . . . , 〈p, 0〉〉 ∈ U(Ha),
{m(Ha, u ∗ 〈v〉) | u ∗ 〈v〉 ∈ Ha} if u ∈ S(Ha).

Namely, {m(Ha, u) | u ∈ Ha} = TC({m(Ha, ε)}) is the Mostowski collapse
(in a modified sense taking urelements into account) of (Ha,�Ha ), and U(Ha)
corresponds to TC

(
{m(Ha, ε)}

)
∩ A, i.e., the support of m(Ha, ε); see [2, p.

29]. Thereby we let x (= 〈a, 1〉) interpret the set m(Ha, ε) ∈ VA. Now, the
Barwise-Gandy-Moschovakis Theorem [3,19], generalized to our setting, says that

M :=
{
m(Ha, ε) | a ∈ I andHa is a well-founded tree

}
is equal to HYPA, i.e., the smallest admissible set above A, and we will formalize
this argument within SC−

1 .
With this interpretation, a bisimulation between two trees T and S is defined to
be a relation R ⊂ T × S satisfying R(ε, ε) and the next four conditions:
(i) if t R s and t ∗ 〈u〉 ∈ U(T ), then s ∗ 〈u〉 ∈ S and R

(
t ∗ 〈u〉, s ∗ 〈u〉

)
;

(ii) if t R s and t ∗ 〈v〉 ∈ S(T ), then s ∗ 〈w〉 ∈ S and R
(
t∗〈v〉, s∗〈w〉

)
for some

w;
(iii) if t R s and s ∗ 〈u〉 ∈ U(S), then t ∗ 〈u〉 ∈ T and R

(
t ∗ 〈u〉, s ∗ 〈u〉

)
;

(iv) if t R s and s ∗ 〈w〉 ∈ S(S), then t ∗ 〈v〉 ∈ T and R
(
t ∗〈v〉, s ∗〈w〉

)
for

some v;

We say two trees are bisimilar when there is a bisimulation between them. Accord-
ingly, for x = 〈a, 1〉 ∈ S∗ and u ∈ S(Ha), the well-founded tree (Ha)u is bisimilar
to the canonical tree representation of m(Ha, u) ∈ VA, and x ↓u interprets the set
m(Hj(a,u), ε) = m((Ha)u, ε) = m(Ha, u); if u ∈ U(Ha), then x ↓u interprets the
urelement p ∈ A such that (u)lh(u)−1 = 〈p, 0〉.

Example 7.4. The tree {ε} represents ∅S in the sense that {ε} is bisimilar to the
canonical tree representation of ∅S . The trees {ε, 〈〈1, 1〉〉} and {ε, 〈〈2, 1〉〉} both rep-
resent {∅S}, but {ε, 〈〈1, 0〉〉} and {ε, 〈〈2, 0〉〉} represent {1U} and {2U}, respectively.
Next, let us call the following trees T1, T2, and T3 from left to right:

ε

��

ε

����
��
��
��
�

���
��

��
��

��
� ε

�����
���

���
��

����
���

���
���

�

〈ε〉

��

〈0〉

�� ���
��

��
��

� 〈1〉

��

〈0〉

�� ���
��

��
��

��
〈1〉

��
〈ε, ε〉 〈0, 0〉 〈0, �1〉 〈1, 〈�1, 1〉〉 〈0, 0〉 〈0, 〈�1, 0〉〉 〈1, 〈�1, 0〉〉

T1 and T2 are bisimilar and represent the same set {{∅S}}. We have U(T1) =
U(T2) = ∅, but U(T3) = {〈0, 〈�1, 0〉〉, 〈1, 〈�1, 0〉〉}. Hence, whereas T2 and T3 have
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the same shape, they are not bisimilar and represent different sets; T3 represents
{{∅S , �U

1 }, {�U
1 }}. Let ai ∈ M be such that Hai = Ti and xi = 〈ai , 1〉 ∈ S∗ for

1 ≤ i ≤ 3. Then x1 ↓〈ε,ε〉, x2 ↓〈0,0〉, and x3 ↓〈0,0〉 interpret the same set ∅S , and
x3 ↓〈0,〈�1,0〉〉 and x3 ↓〈1,〈�1,0〉〉 interpret the same urelement �U

1 .

For defining the interpretations of = and ∈1, we first formalize, within SC−
1 , the

aforementioned notion of bisimulation of hyperelementary well-founded trees as an
inductive relation. Let B(〈a, b, u, v〉, X) (with parametersH and Ȟ ) be

∀x
[
u ∗ 〈x〉 ∈ Ȟ a → ∃y

(
v ∗ 〈y〉 ∈ Hb ∧

〈
a, b, u ∗ 〈x〉, v ∗ 〈y〉

〉
∈ X

)]
∧
[
u ∈ U(Ȟ a)→

(
v ∈ U(Hb) ∧ (u)lh(u) = (v)lh(v))

)]
∧ ∀y

[
v ∗ 〈y〉 ∈ Ȟ b → ∃x

(
u ∗ 〈x〉 ∈ Ha ∧

〈
a, b, u ∗ 〈x〉, v ∗ 〈y〉

〉
∈ X

)]
∧
[
v ∈ U(Ȟ b)→

(
u ∈ U(Ha) ∧ (u)lh(u) = (v)lh(v))

)]
∧ u ∈ Ha ∧ v ∈ Hb ;

in terms of Remark 7.3, the monotone operator on A induced by B inductively lists
up the bisimilar pairs 〈(Ha)u, (Hb)v〉 starting from the leaves towards the roots.
Since B is positive elementary in H and −Ȟ , the inductive least fixed point JB of
B exists by Theorem 5.2, and we let B(a, b, u, v) denote 〈a, b, u, v〉 ∈ JB; note that
B(a, b, u, v) implies u ∈ Ha and v ∈ Hb .
Lemma 7.5. Let a, b, c ∈M and u, v,w ∈ V. The following hold

1. B(a, b, u, v) iff B(b, a, v, u).
2. If B(a, b, u, v) and B(b, c, v, w), then B(a, c, u,w).
3. IfHa = Hb and u ∈ Ha , then B(a, b, u, u).
Each of them is shown by induction along �a.
Lemma 7.6. Let a ∈ M and u ∈ S(Ha). Then B(a, j(a, u), u ∗ v, v) holds for

all v ∈ (Ha)u ; hence we have B(a, j(a, u), u, ε) in particular. This claim is shown by
induction on v along �j(a,u) (= �(Ha)u ).
We next define the dual operator C(〈a, b, u, v〉,X) of B by the following:

∃x
[
u ∗ 〈x〉 ∈ Ha ∧ ∀y

(
v ∗ 〈y〉 ∈ Ȟ b →

〈
a, b, u ∗ 〈x〉, v ∗ 〈y〉

〉
∈ X

)]
∨

[
u ∈ U(Ha) ∧ (v �∈ U(Ȟ b) ∨ (u)lh(u) �= (v)lh(v))

]
∨ ∃y

[
v ∗ 〈y〉 ∈ Hb ∧ ∀x

(
u ∗ 〈x〉 ∈ Ȟ a →

〈
a, b, u ∗ 〈x〉, v ∗ 〈y〉

〉
∈ X

)]
∨

[
v ∈ U(Hb) ∧ (u �∈ U(Ȟ a) ∨ (u)lh(u) �= (v)lh(v))

]
∨ u �∈ Ȟ a ∨ v �∈ Ȟ b ;

the monotone operator induced by C inductively lists up the nonbisimilar pairs
〈(Ha)u, (Hb)v)〉 starting from the leaves toward the roots. Let C denote the least
fixed-point JC of C; note that u �∈ Ȟ a or v �∈ Ȟ b implies C (a, b, u, v).
Lemma 7.7. Let a, b ∈M . Then, for all u ∈ Ha and v ∈ Hb , it holds

C (a, b, u, v) ⇔ ¬B(a, b, u, v).

Proof. The claim is shown by induction on u along �a. �
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For interpreting the identity = and the other membership relation ∈1 as well as
their negations �= and �∈1, we use the following inductive relations.

P+=(x, y) :⇔
[
x, y ∈ U∗ ∧ (x)0 = (y)0

]
∨
[
x, y ∈ S∗ ∧ B

(
(x)0, (y)0, ε, ε

)]
P−
= (x, y) :⇔

[
x, y ∈ U∗ ∧ (x)0 �= (y)0

]
∨
[
(x)1 �= (y)1

]
∨
[
x, y ∈ S∗ ∧ C

(
(x)0, (y)0, ε, ε

)]
P+∈1 (x, y) :⇔ y ∈ S∗ ∧ ∃z

(
〈z〉 ∈ H (y)0 ∧ P+=(x, y ↓〈z〉)

)
P−
∈1 (x, y) :⇔ y ∈ U∗ ∨ ∀z

(
〈z〉 ∈ Ȟ (y)0 → P−

= (x, y ↓〈z〉).

Corollary 7.8. For all x, y ∈ U∗ ∪ S∗, we have

¬P+=(x, y)↔ P−
= (x, y) and ¬P+∈(x, y)↔ P−

∈ (x, y).

Finally, we define the interpretations of = and ∈1 as follows:

x =∗ y :⇔ P+=(x, y) and x ∈∗
1 y :⇔ P+∈1 (x, y).

In particular, for every x = 〈a, 1〉 ∈ S∗, z ∈∗
1 x holds, if and only if either

z = 〈b, 1〉 ∈ S∗ for some b and the tree Hb is bisimilar to some immediate subtree
of Ha , or z = 〈c, 0〉 ∈ U∗ for some c and there is a leaf of Ha immediately below
the root ε that represents cU (i.e., 〈〈c, 0〉〉 ∈ Ha ∩ min(�a)); also, z =∗ x if and
only if z = 〈d, 1〉 ∈ S∗ for some d such thatHd is bisimilar toHa .

Lemma 7.9. SC−
1 	 (Eq)∗; by definition and Lemmata 7.5 and 7.6.

Lemma 7.10. Let X ⊂ S∗ ∪U∗ be hyperelementary. There exists y ∈ S∗ such that
(∀z ∈ U∗ ∪ S∗)

[
P+∈1 (z, y)↔ ∃x

(
x ∈ X ∧ P+=(z, x)

)]
.

Proof. Let T be a hyperelementary tree defined by

T := {ε} ∪ {〈x〉 | x ∈ X ∩ U∗} ∪ {〈x〉 ∗ u | x ∈ X \ U∗ ∧ u ∈ H (x)0};

we have {〈x〉 | x ∈ X ∩ U∗} ⊂ U(T ) and {〈x〉 | x ∈ X \ U∗} = {〈x〉 | x ∈
X ∩S∗} ⊂ S(T ). We first show that T is well-founded. Since Acc(�T ) is downward
closed, it suffices to show 〈x〉 ∈ Acc(�T ) for all x ∈ X . This obviously holds for
x ∈ X ∩ U∗. Let x = 〈a, 1〉 ∈ X ∩S∗.We have 〈x〉 ∈ S(T ) andT〈x〉 = Ha , which is
well-founded since 〈a, 1〉 ∈ S∗. Therefore, by Proposition 7.1, the well-foundedness
of T〈x〉 implies 〈x〉 ∈ Acc(�T ).
Now, pick b ∈M withHb = T . Let y = 〈b, 1〉 ∈ S∗ and take any z ∈ U∗ ∪ S∗.
Suppose P+∈1 (z, y). There is some 〈w〉 ∈ Hb with P+=(z, y ↓〈w〉). If z ∈ U∗, then
z = y ↓〈w〉 and thus 〈w〉 ∈ U(Hb), which entails z = y ↓〈w〉= w ∈ X ∩U∗. Assume
z = 〈a, 1〉 ∈ S∗ for some a. Then y ↓〈w〉∈ S∗ and thus 〈w〉 ∈ S(Hb); hence w ∈
X ∩ S∗. Let w = 〈c, 1〉. Since Hc = T〈w〉 = Hj(b,〈w〉), we have B(j(b, 〈w〉), c, ε, ε)
by Lemma 7.5.3 and thus P+=(y ↓〈w〉, w); hence P+=(z,w).
Let x ∈ X be such that P+=(z, x); then 〈x〉 ∈ Hb . If x ∈ U∗ then y ↓〈x〉= x and
thus P+=(z, y ↓〈x〉). If x = 〈c, 1〉 ∈ S∗, then T〈x〉 = Hc and thus B(c, j(b, 〈x〉), ε, ε)
by Lemma 7.5.3. Hence we have P+=(x, y ↓〈x〉) and thus P+=(z, y ↓〈x〉). �
Lemma 7.11. SC−

1 	 (Pair)∗; apply Lemma 7.10 toX ={v,w} for v,w ∈ S∗∪U∗.

Proposition 7.12. Let x = 〈a, 1〉 ∈ S∗, u ∈ S(Ha), and v ∈ (Ha)u . Then we
have P+=

(
(x ↓u)↓v , x ↓u∗v

)
; by definition and Lemma 7.5.3.
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Lemma 7.13. SC−
1 	 (Union)∗.

Proof. Take any x = 〈a, 1〉 ∈ S∗. Put X := {x ↓u| u ∈ Ha ∧ lh(u) = 2}. We
take y = 〈b, 1〉 ∈ S∗ such that (∀z ∈ U∗ ∪ S∗)(P+∈1 (z, y) ↔ (∃x ∈ X )P+=(z, x)) by
Lemma 7.10. Take any v ∈ S∗ and z ∈ U∗ ∪ S∗ such that P+∈1 (z, v) and P

+
∈1 (v, x).

We have P+=(v, x ↓〈w〉) for some 〈w〉 ∈ S(Ha). Hence, we have P+∈1 (z, x ↓〈w〉), and
thus there exists 〈w ′〉 ∈ H (x↓〈w〉)0 = (Ha)〈w〉 such that P+=

(
z, (x ↓〈w〉) ↓〈w′〉

)
. Then,

we obtain P+=(z, x ↓〈w,w′〉) by Proposition 7.12. Since 〈w,w ′〉 ∈ Ha , we finally get
x ↓〈w,w′〉∈ X and thus P+∈1 (z, y). �
Lemma 7.14. For eachΔ0-formulaϕ(�x) ofLKP, there are inductive relationsP+ϕ (�x)
and P−

ϕ (�x) such that, for all �x ∈ U∗ ∪ S∗,

P+ϕ (�x) ⇔ ϕ∗(�x) and P−
ϕ (�x) ⇔ ¬ϕ∗(�x).

Proof. By induction on ϕ. For example, if ϕ = (∀z ∈1 x)�(z, x, �v), we take

P+ϕ (x, �v) :⇔ x ∈ U∗ ∨ ∀w(〈w〉 ∈ Ȟ (x)0 → P+� (x ↓〈w〉, x, �v)
P−
ϕ (x, �v) :⇔ x �∈ U∗ ∧ ∃w(〈w〉 ∈ H (x)0 ∧ P−

� (x ↓〈w〉, x, �v). �

Lemma 7.15. SC−
1 	 (Δ0-Sep1)∗.

Proof. Let ϕ(z, x, �v) ∈ Δ0. Take x = 〈a, 1〉 ∈ S∗ and �v ∈ U∗ ∪ S∗. Put

X := {x ↓〈w〉| 〈w〉 ∈ Ha ∧ P+ϕ (x ↓〈w〉, x, �v)},

which is hyperelementary. By Lemma 7.10 there is y such that, for all z ∈ U∗ ∪ S∗,

P+∈1 (z, y)⇔ ∃w
(
〈w〉 ∈ Ha ∧ P+ϕ (x ↓〈w〉, x, �v) ∧ P+=(z, x ↓〈w〉)

)
⇔ P+∈1 (z, x) ∧ P

+
ϕ (z, x, �v). �

Lemma 7.16. SC−
1 	 (Δ0-Coll1)∗.

Proof. Let x = 〈a, 1〉 ∈ S∗ and suppose (∀y ∈∗
1 x)(∃z ∈ S∗ ∪ U∗)ϕ∗(y, z) for

some ϕ ∈ Δ0. By Theorem 5.8, where we take P(y, z) :⇔ z ∈ S∗ ∪ U∗ ∧ P+ϕ (y, z),
there are inductive relation Q and coinductive relation Q̌ such that

• If Q(y, z) then z ∈ S∗ ∪ U∗ and P+ϕ (y, z).
• If P+ϕ (y, z) for some z ∈ U∗ ∪ S∗, then {z | Q(y, z)} = {z | Q̌(y, z)} �= ∅.
Let X = {z | ∃u(〈u〉 ∈ Ha ∧ Q(x ↓〈u〉, z)}, which is hyperelementary. By Lemma
7.10, we pick w ∈ S∗ such that (∀v ∈ U∗ ∪ S∗)

(
P+∈1 (v,w) ↔ (∃u ∈ X )P+=(v, u)

)
,

and let w = 〈b, 1〉. Take any y with P+∈1 (y, x). We have P+=(y, x ↓〈u〉) for some
〈u〉 ∈ Ha and ϕ∗(y, z) for some z ∈ S∗ ∪ U∗. Hence we get P+ϕ (x ↓〈u〉, z) and thus
Q(x ↓〈u〉, z′) for some z′. We have z′ ∈ X , z′ ∈ U∗ ∪ S∗, and P+ϕ (x ↓〈u〉, z′), which
finally entails P+∈1 (z

′, w) and ϕ∗(y, z′). �
Lemma 7.17. SC−

1 	 (Found1)∗.
Proof. Suppose ∀y(y ∈∗

1 x → ϕ∗(y)) → ϕ∗(x) for all x ∈ U∗ ∪ S∗. Take any
z ∈ U∗∪S∗.We will showϕ∗(z). If z ∈ U∗ we trivially getϕ∗(z) by the supposition.
Let z = 〈a, 1〉 ∈ S∗. Since z ↓ε=∗ z, it suffices to show that

∀v(v �a u → ϕ∗(z ↓v))→ ϕ∗(z ↓u), for all u ∈ Ha. (1)
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Let u ∈ Ha and assume ∀v(v �a u → ϕ∗(z ↓v)). Take any w with P+∈1 (w, z ↓u).
We have P+=(w, z ↓v) for some v �a u by Proposition 7.12 and thus ϕ∗(w) by the
assumption. Since w is arbitrary we obtain ϕ∗(z ↓u) by the supposition. �
Lemma 7.18. SC−

1 	 (Ext)∗.
Proof. Let x = 〈a, 1〉 ∈ S∗ and y = 〈b, 1〉 ∈ S∗. When P+∈1 (z, x) ↔ P

+
∈1 (z, y)

for all z ∈ U∗ ∪ S∗, we can show B(a, b, ε, ε, B) and thus P+=(x, y). �
Finally, let T = {ε} ∪ {〈〈v, 0〉〉 | v ∈ V}. We can give an explicit definition of
some object b ∈M such thatHb = T . We fix one such b and its definition, and put
V∗ := 〈b, 1〉. With this interpretation, we can easily verify SC−

1 	 (U)∗.
Theorem 7.19. The translation ∗ is an interpretation of KPV− in SC−

1 . It is also
an interpretation of KPV− + (Sep+0 ) in SC

−
1 + LSC-Sep, and KPV in SC1.

Proof. For the first claim, it remains to be shown that SC−
1 	 (ZFU)∗. In general,

for each ϕ(x1, . . . , xk) ∈ L∈ only with the displayed variables free, we can show the
following by induction on ϕ, which immediately entails the claim:

SC−
1 	 ∀x1 · · · ∀xk

[
ϕ(�x) ↔ (ϕU )∗

(
〈x0, 0〉, . . . , 〈xk, 0〉

) ]
. (2)

For the second claim, let ϕ(z, �v) ∈ LKP, x = 〈a, 0〉 ∈ U∗, and �v ∈ U∗ ∪ S∗. In
the presence of LSC-Sep, we can take b = {c ∈ a | ϕ∗(〈c, 0〉, �v)}. Then we put
y = 〈b, 0〉 ∈ U∗ and have

(∀z ∈ U∗)[z ∈∗
0 y ↔ z ∈0 x ∧ ϕ∗(z, �v)].

The case for (Repl+0 ) and LSC-Repl is similarly treated. �
Theorem 7.20. For all ϕ ∈ L∈, if KPV− 	 ϕU then SC−

1 	 ϕ. The same holds for
KPV− + (Sep+0 ) and SC

−
1 + LFix-Sep, and for KPV and SC−

1 . This is an immediate
consequence of the last theorem and (2).

§8. Reduction of VF to KPV. Cantini [7] gave an embedding of VF[[PA]] in KPu,
which is essentially equal to KPU+ [2] over natural numbers augmented with the
arithmetical induction schema extended to the whole language (see [7] or [16] for
its definition); note that KP� is a urelement-free formulation of KPu.
Essentially the same embedding works for VF (over ZF) and KPV; in fact, it
gives an embedding of VF− + LT -Ind in KPV− + (Found+0 ). Such an embedding
is given by what Cantini calls provability interpretation, by which we interpret the
truth of an L∞

∈ -sentence � ∈ St∞LT by the provability of �U ∈ (St∞LT )U within a
certain semiformal infinitary system formalizable within KPV−.
In what follows we work within KPV− + (Found+0 ). As in Section 6, we will
occasionally treat LKP-formulae as classes; e.g., we write x ∈ U and x ∈ (St∞LT )U .
We also assume that formulae of LT are all expressed in their negation normal
forms; so, they can be seen as constructed from literals by means of ∧, ∨, ∀, and ∃;
then, for a formula A in its negation normal form, ¬A is standardly defined.

Definition 8.1. For α,  ∈ OnS , and for a finite (in the sense of U) set Γ ⊂U

(St∞LT )
U , the relation S|α


Γ holds iff one of the following holds

(a) for some a, b ∈ U , either �ȧ ∈ ḃ�U ∈0 Γ and a ∈0 b, or �ȧ �∈ ḃ�U ∈0 Γ and
a �∈0 b;
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(b) for some a, b ∈ U , either �ȧ = ḃ�U ∈0 Γ and a = b, or �ȧ �= ḃ�U ∈0 Γ and
a �=b;

(c) for some a ∈ U , it holds that �Tȧ�U , �¬Tȧ�U ∈0 Γ;
(d) �¬T�A��U , �¬T�¬A��U ∈0 Γ, for some �A�U ∈ (St∞LT )U ;
(e) there exist some �A�U , �B�U ∈ (St∞LT )U , and α0, α1 <S α such that �A ∧
B�U ∈0 Γ,S|α0


Γ, �A�U , andS|α1


Γ, �B�U ;

(f) there exist some �A�U , �B�U ∈ (St∞LT )U and α′ <S α such that �A∨B�U ∈0
Γ, and either S|α

′


Γ, �A�U or S|α

′


Γ, �B�U ;

(g) there exists some �A(x)�U ∈ (Fml∞LT )U such that �∀xA(x)� ∈0 Γ, and for
each a ∈ U there is αa <S α such thatS|αa


Γ, �A(ȧ)�U ;

(h) there exist some �A(x)�U ∈ (Fml∞LT )U andα′ <S α such that �∃xA(x)�U ∈0
Γ, andS|α

′


Γ, �A(ȧ)�U for some a ∈ U ;

(i) there exist some �A�U ∈ (St∞LT )U , α′ <S α, and ′ <S  such that

�T(�A�)�U ∈0 Γ, andS|α
′

′
�A�U ;

(j) there exist some �A�U ∈ (St∞LT )U , α′ <S α, and ′ <S  such that

�¬T(�A�)�U ∈0 Γ, andS|α
′

′ �¬A�
U ;

here, following the convention, we mean S|α

Σ ∪ {�D�} by “S|α


Γ, �D�”.

Due to the axiom (U), each of the ten clauses (a)–(j) above (and the finiteness in
U) is Δ0 with parameters α, , and Γ, and the relationS|α

′

′
Γ′ only occurs positively

therein. Hence, the relationS|α

Γ can be defined as a least fixed-point of a positive

Σ-operator and thus a Σ-predicate in KPV−; see [2, Chapter VI].

Lemma 8.2. The following basic proof-theoretic properties of the semiformal system
S are all standardly shown by induction on α (using (Found1)).
• S|α


∅U for no α and  (Consistency ofS),

• For Γ ⊂U Δ, α ≤S � , and  ≤S �, if S|α

Γ thenS|�

�
Δ (Structural Lemma),

• If a �∈0 b andS|α

Γ, �ȧ ∈ ḃ�U , thenS|α


Γ (Falsity Lemma 1),

• If a ∈0 b andS|α

Γ, �ȧ �∈ ḃ�U , thenS|α


Γ (Falsity Lemma 2),

• If a �= b andS|α

Γ, �ȧ = ḃ�U , thenS|α


Γ (Falsity Lemma 3),

• If a = b andS|α

Γ, �ȧ �= ḃ�U , thenS|α


Γ (Falsity Lemma 4),

• If S|α

Γ, �A ∧ B�U thenS|α


Γ, �A�U andS|α


Γ, �B�U (∧-Inversion),

• If S|α

Γ, �∀xA(x)�U thenS |α


Γ, �A(ȧ)�U for all a ∈ U (∀-Inversion),

• If S|α

Γ, �A ∨ B�U thenS|α


Γ, �A�U , �B�U (∨-Exportation).

Lemma 8.3. If S|α

Γ, �¬T�¬A��U , �T�A��U , thenS|α


Γ, �¬T�¬A��U .

Proof. By straightforward induction on α. �
Lemma 8.4 (Cut admissibility). Suppose S|α


Γ, �A� and S|�


Γ, �¬A� for some

�A� ∈ (St∞LT )U . Then, we haveS| �

Γ for some � ∈ OnS .

Proof. For each �A�U ∈ (St∞LT )U , let scU (�A�U) ∈ �U be the surface complexity
of �A�: all atomics are assigned the surface complexity 0 and thus scU (�Tȧ�) = 0U
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for all a ∈ U . Using (Found1) and (Found+0 ), the claim is shown by quadruple
induction on  ∈ OnS , sc(�A�) ∈ �U , α ∈ OnS , and � ∈ OnS . The details are
parallel to the proof of Theorem 4.4 of [7] (or Theorem 62.1 of [8]); we note that
Lemma 8.3 is used in the case where the rule (d) is used. �
We will writeS| Γ when S|α


Γ for some α and .

Lemma 8.5 (T-elimination). 1. IfS| �T�ϕ��U thenS| �ϕ�U .
2. IfS| �¬T�ϕ��U thenS| �¬ϕ�U .
Proof. If S|α


�T�ϕ��U , then (i) must be the case for Γ := {�T(�ϕ�)�U}, and

S|α
′

′ �ϕ�
U for some α′<S α and ′<S . The Claim 2 is shown similarly. �

Definition 8.6 (Provability interpretation). We define the provability interpre-
tation A∞ ∈ LKP for each A ∈ LT by

Tx �→ S| x, x ∈ y �→ x ∈0 y, and ∀x �→ (∀x ∈ U);

and all the other vocabulary is unchanged.

Lemma 8.7 (Reflection Lemma). LetA0(�x), . . . , An(�x) ∈ LT at most �x free. Then
KPV−	(∀�a∈U)

(
S| {�A0(�̇a)�U, . . . ,�An(�̇a)�U}U→

(
A∞
0 (�a) ∨ · · · ∨ A∞

n (�a)
))
.

Proof. For each k ∈ N, we can define within KPV− a partial truth predicate
Trk(x) of the L∞

T -structure 〈 U ,∈0,T∞, {cu |u ∈ U}〉 for all ���U ∈ (St∞LT )U with
scU (�A�U) ≤U kU ; c.f., [7, Lemma 5.8.1]. Then we can show

(∀Γ ⊂ (St∞LT )
U )

[(
S| Γ ∧ (∀x ∈0 Γ)(scU(x) ≤U kU)

)
→ (∃x ∈0 Γ)Trk(x)

]
.

by straightforward induction on α ∈ OnS , using (Found1). �
Lemma 8.8. If �ϕ(�v)�U ∈ LogAxUL∞

T
, thenS| �ϕ(�̇a)�U for all �a ∈ U .

Theorem 8.9. The translation A �→ A∞ is a relative interpretation.

Proof. V1∞ follows fromReflection Lemma. V2∞ andV3∞ follow from Falsity
Lemma and Consistency of S. V4∞ is a consequence of Lemma 8.8. V5∞ follows
from the clause (g) in Definition 8.1, the axiom (U), and Σ-Collection for S ([2,
Chapter I]), which is derivable inKPV−.V6∞ follows by∨-ExportationandLemma
8.4. V7∞ is immediate from the clause (i). V8∞ follows from Lemma 8.5.2. Finally,
V9∞ is immediate from the clause (d). �
Theorem 8.10. There is an interpretation ofVF−+LT -Ind in SC−

1 +LSC-Ind that
preserve the L∈-part.2 Hence, VF− + LT -Ind ⊂L∈ SC−

1 + LSC-Ind.
Proof. ByTheorems 7.19 and 8.9, the translationϕ �→ (ϕ∞)∗ is an interpretation
of VF−+LT -Ind in SC−

1 +LSC-Ind, and it maps ∀x to (∀x ∈ U∗), x ∈ y to x ∈∗
0 y,

and Tx to (S 	 x)∗. Let I be a new translation of LT to LSC that maps Tx to

2As amatter of fact, we can embedVF− inKPV− and thus inSC−
1 bymodifyingCantini’s embedding

of VF− in PW− + GID in [8]. For this purpose, we need to re-define (St∞LT )
U in terms of inductive

definitions within KPV−, which makes the use of (Found+0 ) in Theorem 8.4 dispensable; the new
definition does not provably equal to the original definition inKPV−, though they coincide in KPV− +
(Found+0 ). We then introduce an intermediate system that is the same as VF

− except that the quantifiers
“(∀x ∈ St∞LT )” and “(∀x ∈ Fml∞LT )” in the VF-axioms are replaced by “∀x”, which includes VF−, and
embed it in KPV−.
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(T∞)∗(〈x, 0〉) and preserves all the rest. In a similar way to (2), we can show that,
for all ϕ(x1, . . . , xk) ∈ LT only with the displayed variables free,

SC−
1 	 ∀�x

[
ϕI(�x)↔ (ϕ∞)∗(〈x1, 0〉, . . . , 〈xk, 0〉)

]
.

Hence, I is also an interpretation of VF− + LT -Ind in SC−
1 + LSC-Ind. �

§9. Applications. In the present section, we will present two applications of the
results and techniques of the previous sections.

9.1. Answer to an open problem of [12]. It was asked in [12] as an open problem
whether Σ11-AC is conservative overKFW (KFwith a global well-ordering of sets); we
refer the reader to [12] for the definitions of all the systems and axioms of second-
order set theory discussed in this subsection. The proof-theoretic equivalence of
Σ11-AC[[PA]] and KF[[PA]] over arithmetic is well-known (see [9]), but the known
proof of the conservation Σ11-AC[[PA]] ⊂LN

KF[[PA]] uses a technique that is not
yet known to be applicable to those systems over set theory. In this subsection, we
will show that the conservation holds also over set theory. Precisely, what we will
literally show is that KF is conservative over Π10-Coll; however, Σ

1
1-AC is identical as

a theory with Π10-Coll plus a global choice GC ([12, p. 1489]), and the conservation
Σ11-AC ⊂L∈ KFW can be shown in an exactly parallel manner, since the addition of
a global well-ordering of sets does not affect all the relevant arguments.

Theorem 9.1. Π10-Coll ⊂L∈ KF.

Proof. We make the following definitions in KPV−: for u ∈ U and x ∈ S,
(x)u := {v ∈ U | 〈v, u〉U ∈1 x} and PS(x) := {y ∈ S | ∀z(z ∈1 y → z ∈1 x)}.
By interpreting sets and classes of second-order set theory by urelements u ∈ U
(= V) and sets x ∈ PS(V), respectively, we obviously have a syntactic embedding
of NBG+Σ1∞-Sep + Σ

1
∞-Repl in KPV, where Σ

1
∞-Sep and Σ

1
∞-Repl are the separa-

tion and replacement schemata extended for all second-order formulae. With this
interpretation, each instance of Π10-Coll is translated into

(∀x ∈ U)(∃y ∈ PS(V))ϕU (x, y)→ (∃z ∈ PS(V))(∀x ∈ U)(∃u ∈ U)ϕU (x, (z)u),

for some ϕ ∈ L∈; note that ϕU is Δ0 for every ϕ ∈ L∈. We call this schema
(Π10-CollKP). Since we have shown SC1 ⊂L∈ KF, it suffices to show SC1 	
(Π10-CollKP)

∗: the proof is essentially a formalization of Theorem 6D.3 of [19].
Suppose the antecedent of an instance of (Π10-CollKP)

∗ holds. We take an
inductive relation P so that

P(x, y) :⇔ x ∈ U∗→
(
(y ∈ PS(V))∗ ∧ (ϕU )∗(x, y)

)
.

We have ∀x∃yP(x, y) by the supposition. It follows by Theorem 5.8 that there is
a hyperelementary Q such that Q ⊂ P and ∀x∃yQ(x, y). Then we put B := {a |
(∃x ∈ U∗)Q(x, 〈a, 1〉)}. B is hyperelementary and 〈a, 1〉 ∈ S∗ for all a ∈ B. From
this B we define another hyperelementary Z ⊂ U∗ so that

Z :=
{
w | (∃v, u ∈ U∗)(∃a ∈ B)

(
(w = 〈v, u〉U )∗ ∧ u = 〈a, 0〉 ∧ v ∈∗

1 〈a, 1〉
)}
.

By Lemma 7.10, we pick z ∈ S∗ such that (∀w ∈ U∗ ∪ S∗)[w ∈∗
1 z ↔ w ∈ Z].

Now, take any x ∈ U∗. There exists y = 〈a, 1〉 ∈ (PS(V))∗ with Q(x, y). We have
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a ∈ B and let u = 〈a, 0〉 ∈ U∗. Then, for all v ∈ U∗, (〈v, u〉U ∈1 z)∗ iff v ∈∗
1 y: that

is, ((z)u)∗ =∗ y and thus (ϕU )∗(x, ((z)u)∗). �

Remark 9.2. Since KPV derives Δ-Separation, Δ11-CA is syntactically embed-
dable in KPV. By Theorem 80.2 of [12], we also have Σ11-Coll ⊂L∈ Δ

1
1-CA ⊂L∈ KF,

which gives an alternative proof of Theorem 9.1.3

9.2. Embedding of KPu in ID1[[PA]]. It is well-known that KPu (and KP�) is
proof-theoretically equivalent to ID1[[PA]]. The proof-theoretic reduction of ID1[[PA]]
to KPu is easily obtained via the standard interpretation (see [21, Chapter 11.5] for
example), but the converse reduction was originally obtained by means of ordinal
analysis due to Jäger [16]. As far as the author knows, a direct syntactic embedding
KPu (or KP�) in ID1[[PA]] has not been given in the literature.4 We will give such an
embedding in the present subsection.
It is to be observed that all the proofs in Section 7 can be straightforwardly turned
into a proof of embeddability of KPu in SC1[[PA]]. Hence, for the purpose of the
present section, it suffices to show that SC1[[PA]] is embeddable in ID1[[PA]].
Let 〈·, ·〉 : N2 → N be a bijective pairing function and (·)0 and (·)1 its associated
projections. For a class X ⊂ N, we write x <X y for 〈x, y〉 ∈ X , which is not to be
confused with ≺X (Section 5).
We begin with Sato’s lemma in [22]. For each A(x,X) ∈ I(LN), we set

A′(x,X) := ¬A
(
(x)1,

{
u | u <X (x)0

})
.

We call A′(x, {z | A′(z,X)}
)
the derivative of A; namely, it is equal to

¬A
(
(x)1,

{
u | ¬A

(
(x)0,

{
v | v <X u

})})
.

We will abuse the notation and write A′′ for the derivative of A.
Lemma 9.3 (Sato). Let A ∈ I(LN). The following is provable in ID−

1 [[PA]]. Let X
be a class with ∀x[A′′(x,X ) ↔ x ∈ X ]. Suppose we can take the accessible part of
<X , i.e., the least class that is progressive with respect to <X : more precisely, it is
the unique (if any) class Y such that ClosW[<X ](Y ) and ClosW[<X ](Z) → Y ⊂ Z
for all classes Z (see p. 879). Then, there is a class that satisfies the SC−

1 -axioms
(SC0)–(SC2) for A in place of ≺A.5

Theorem 9.4. SC−
1 [[PA]] is a definitional extension of ID

−
1 [[PA]].

3The proof of Theorem 80.2 of [12] is flawed, but the statement itself is true and the claim that
PZF1 ⊂ Δ11-CA is also true; for, the class-theoretic counterpart of Σ1∞-TI (see [23]) is provable in
NBG + Σ1∞-Sep + Σ1∞-Repl. The proof of Theorem 80.1 of [12] is also flawed, but this statement is an
immediate consequence of the main result of [17] and Theorem 18 of [12].
4After the submission of the present article, I was informed by Prof. Wolfram Pohlers that the same

result was already obtained by Christian Tapp in [24]; but Tapp’s thesis is not widely available, and so I
keep this result in the present article.
5This statement is actually a combination of Theorems 5 and 7 of [22]. Sato gives these theorems

for second-order systems of fixed-points, but, as Sato himself notes in [22, Section 8], his proofs can be
generalized for first-order cases; there he only considers first-order systems ID1 ([[PA]]) of fixed-points
with the axiom schemata extended to the whole language, but the extension of the schemata is in fact
not necessary for the theorems.
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Proof. Let A(x,X) ∈ I(LN). Then we define B(x,X) as

A
(
(x)0,

{
u | ¬A

(
(x)1,

{
v | u �<X v

})})
,

where X occurs only positively in B and thus B ∈ I(LN). We set � := {〈x, y〉 |
〈y, x〉 �∈ JB} and we write x � y for 〈x, y〉 ∈ �; namely, for x, y ∈ N, we have
x � y ⇔ 〈y, x〉 �∈ JB. Since JB is a fixed-point of B, we have

x � y ⇔ ¬A
(
y,

{
u | ¬A(x, {v | 〈u, v〉 �∈ JB})

})
⇔ ¬A

(
y,

{
u | ¬A(x, {v | v � u})

})
⇔ A′′(〈x, y〉, �).

Namely, � satisfies the first condition of Sato’s Lemma. Then, since � is coinduc-
tive, we can take its accessible part Acc(�) (= JW[�], see p. 879) by Theorem 5.2
(modified for arithmetic), and thus the second condition is also satisfied. �
We have a canonical translation of LN in the language of KPu in which the
translation of each ϕ ∈ LN is of the form of the relativization ϕU to the class U
of urelements; note that since KPu has a constant N for the set of urelements, ϕU

is equivalent to a Δ0-formulae ϕN for all ϕ ∈ LN. Now, by Theorem 9.4, we have
an embedding of KPu in ID1[[PA]], from which we obtain in a parallel manner to
Theorem 7.20 that if KPu 	 ϕU then ID1[[PA]] 	 ϕ, for all ϕ ∈ LN. A parallel
argument gives an embedding of KPV(−) in ID(−)1 over set theory too.
KP� is formulated over L∈, and there is a canonical translation ϕ� of LN in L∈.
We can regard KP� as a subsystem of KPu by interpreting ∀x �→ (∀x ∈ S). Now,
KPu proves N and � are isomorphic (as LN-structures) and thus KPu 	 ϕ� ↔ ϕN

for all ϕ ∈ LN. Hence, we also have an embedding ofKP� in ID1[[PA]], which entails
that if KP� 	 ϕ� then ID1[[PA]] 	 ϕ, for all ϕ ∈ LN.

Theorem 9.5. KPu and KP� are embeddable in ID1[[PA]].

§10. On the strength of the replacement axiom. We have seen that the inter-
theoretical relation between axiomatic systems of truth changes when we replace
the traditional arithmetical base system by a set-theoretic one. It is observed that
LSC-Repl plays a crucial role in the proof of Sato’s theorem and thus LT -Repl is the
main cause of this disanalogy. Then, when we drop it, can we still somehow obtain
the equivalence of the noncompositional and compositional systems of truth over
set theory? The next theorem shows that the answer is affirmative but in a trivial
sense.

Theorem 10.1. 1. ID−
1 + LFix-Sep ⊂L∈ ZF. 2. SC−

1 + LSC-Sep ⊂L∈ ZF.
3. VF−+LT-Sep ⊂L∈ ZF. Hence, in particular, VF−+LT-Sep =L∈ KF−+LT-Sep.
Proof. The proof is a generalization of Theorem 20 of [12]. Let L′

∈ be L∈ ∪ {c}
for a fresh constant symbol c. We define an L′

∈-theory T by

ZF+ L′
∈-Sep + L′

∈-Repl + {∃α ∈ On(c = Vα ∧ ‘α is limit’)}
+
{
(∀�x ∈ c)

(
ϕc(�x)↔ ϕ(�x)

)
| ϕ(�x) ∈ L∈

}
,

where ϕc(�x) is the relativization of ϕ(�x) to the set c; note that ϕ here does not
contain c. Due to the Reflection Principle, we have T ⊂L∈ ZF. Now we will work
within T. For eachA ∈ I(L∈), we can standardly take the least fixed-point IΦ〈c,∈〉

A
of
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the inductive operator Φ〈c,∈〉
A : P(c)→ P(c). Consider the following translation of

LFix to L′
∈: ∀x and ∃x are translated to ∀x ∈ c and ∃x ∈ c; ∈ is translated to itself;

finally x ∈ JA is translated to x ∈ IΦ〈c,∈〉
A
. This gives an interpretation of ID−

1 in T.
Since c = Vα for some limit α ∈ On, the interpretation of LFix-Sep automatically
holds. Now, if ID−

1 + LFix-Sep 	 � for � ∈ L∈, then T 	 �c and thus T 	 � due to
the reflection axioms postulated for T. The other claims can be proven similarly. �
Corollary 10.2. KPV− + (Found+0 ) + (Sep

+
0 ) ⊂L∈ ZF.

§11. Schematic reflective closure VF∗[[PA]] over arithmetic. Feferman [9] pre-
sented the notion of schematic reflective closure of schematic systems such as PA
and ZF. Feferman’s original definition is based on the KF-axioms of truth, but we
can generalize this notion with other axiomatizations of truth like VF.
Let LN(P) := LN∪{P} for a fresh unary predicate symbol P. We define Lt(P) :=

LN(P) ∪ {T} as the language of axiomatic systems of truth over arithmetic with a
predicate variable P. For a first-order language L ⊃ LN, the L-system PAL is the
extension of PA with the induction schema extended for L.

Definition 11.1. The Lt(P)-system VF(P)[[PA]] is defined as PALt(P) plus the
VF-axioms for Lt(P), formulated for arithmetic, and the following new axiom:

P : ∀x(T�Pẋ� ↔ Px).

Here we assume P is included in our coding. Another Lt(P)-system KF(P)[[PA]] is
defined as PALt(P) plus the KF-axioms for Lt(P) and P; see [11, Section 3.3].

Definition 11.2 (P-Substitution). Let L′ ⊃ LN(P). A new inference rule,
P-substitution (for L′) is defined as

ϕ(P)

ϕ
(
�(x̂)

) (P-SubstL′)
, for ϕ(P) ∈ LN(P) and �(x) ∈ L′.

Lt(P)-systems VF∗[[PA]] and KF∗[[PA]] are defined as VF(P)[[PA]] + (P-SubstLt(P))
and KF(P)[[PA]] + (P-SubstLt(P)), respectively. Feferman [9] proved that KF

∗[[PA]]
has the strength of predicative limit and is equivalent to ramified analysis.

We next consider incorporating theP-Substitution rule into first-order systems of
inductive definitions.We defineLfix(P) asLN(P) plus unary predicate JA associated
with each inductive operator formA ∈ I(LN(P)).

Definition 11.3. The Lfix(P)-system ID1(P)[[PA]] is defined as PALfix(P) plus

ClosA(JA), for each A ∈ I(LN(P));

ClosA(Ψ)→ JA ⊂ Ψ, for each A ∈ I(LN(P)) and Ψ ∈ Lfix(P).

The Lfix(P)-system ID∗
1 [[PA]] is defined as ID1(P)[[PA]] + (P-SubstLfix(P)).

Also, although we will not study them in the present article, Lfix(P)-systems
ÎD1(P)[[PA]] and ÎD∗

1 [[PA]] are defined in an obvious manner, and we can show that
ÎD1(P)[[PA]] =LN

KF(P)[[PA]] and ÎD∗
1 [[PA]] =LN

KF∗[[PA]].
The form of P-Substitution rule resembles the Bar Rule and might be seen as a
first-order counterpart of the Bar Rule. In fact, the way in which P-Substitution

https://doi.org/10.1017/jsl.2017.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.77


892 KENTARO FUJIMOTO

increases the strength ofKF or ÎD1 up to the predicative limit is prettymuch the same
as the way in which the Bar Rule increases the strength of second-order systems
of arithmetic like Σ11-AC. However, as we will see, it does not add any strength to
VF[[PA]] and ID1[[PA]].

Lemma 11.4. VF∗[[PA]] ⊂LN
ID∗
1 [[PA]].

Proof. We can embedVF(P)[[PA]] in ID1(P)[[PA]] in the samemanner to Theorem
9.5 (with obvious modifications for arithmetic). This embedding can be extended
to an embedding of VF∗[[PA]] and ID∗

1 [[PA]] by a straightforward generalization
of Lemma 31 of [11]. We note that this proof actually gives an interpretation of
VF∗[[PA]] in ID∗

1 [[PA]] that preserves the LN(P)-part. �

§12. Analysis of ID∗
1 [[PA]]. We will give ordinal analysis of ID

∗
1 [[PA]], which then

gives analysis of VF∗[[PA]] via Lemma 11.4. We use the same notation of [13],
and the following definitions and results except 12.3–12.6 are all straightforward
generalizations of those in [13, Section 6] (or [21, Section 9]) for our current setting.
A general treatment of systems of �-iterated inductive definitions is aimed for in
[13] and thus �-ary disjunctions for � ≤ Ω� have to be taken into consideration
therein, where Ω� is the �-th uncountable cardinal. However, since we focus on
noniterated inductive definitions here, we can restrict all our arguments to � ≤ Ω1
and accordingly simplify some definitions; we will write Ω for Ω1.
A first-order language L∞

fix (P) is defined as

LN(P) ∪ {I <	A | 	 ≤ Ω & A ∈ I(LN(P))},

where I <	A is a unary predicate. As in Section 8, we assume that formulae and
sentences are expressed in their negation normal forms in the present section; cf.
[13, Section 6.1].
For each A(x,X) ∈ I(L(P)) and LN-term t, we write I

	
A(t) for A(t, I

<	
A ); it is to

be noted that theA here and thus I 	A(t) may contain P.
We divide the L∞

fix (P)-sentences into two types, namely,
∨
-type and

∧
-type, and

assign each L∞
fix (P)-formula A its characteristic sequence CS(A) ⊂ L∞

fix (P), rank
rk(A) ∈ On, and parameters par(A) ⊂ On.
A true closed LN-literal is of

∧
-type, and a false closed LN-literal is of

∨
-type.

For every closed LN-term t, both Pt and ¬Pt are neither
∧
-type nor

∨
-type. For

an LN(P)-literal A, we set par(A) = CS(A) = ∅ and rk(A) = 0.
For L∞

fix (P)-sentences A and B, the sentences A ∧ B and ∀xA are of
∧
-type, and

the sentences A ∨ B and ∃xA are of
∨
-type. We define their ranks, parameters and

characteristic sequences as follows:

rk(A�B) = max{rk(A), rk(B)} + 1, rk(QxA) = rk(A(0)) + 1,

par(A�B) = par(A) ∪ par(B), par(QxA) = par(A(0)),

CS(A�B) = {A,B}, CS(QxA) = {A(n) | n ∈ N},

where � ∈ {∧,∨}, Q ∈ {∀,∃}, and n is the numeral for n ∈ N.
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Let A(x,X) ∈ I(LN(P)) and 	 ≤ Ω. For each closed LN-term s , I
<	
A (s) is of∨

-type and ¬I <	A (s) is of
∧
-type. Their ranks and parameters are defined by

rk
(
I <	A (s)

)
= rk

(
¬I <	A (s)

)
:= � · 	; par

(
I <	A (s)

)
= par

(
¬I <	A (s)

)
:= {	};

CS
(
I <	A (s)

)
= {I �A(s) | � < �}; CS

(
¬I <	A (s)

)
= {¬I �A(s) | � < �}.

We define a translation Φ� of Lfix(P)-sentences Φ in L∞
fix (P): for each A ∈

I(LN(P)) and closed LN-term s , we set J�A(s) := I
<Ω
A (s) and ¬J�A(s) := ¬I <ΩA (s);

all the other atomic Lfix(P)-sentences, the boolean connectives, and the quantifiers
are preserved. We observe that, for an L∞

fix (P)-sentence A, we have

par(A) := {	 | I <	B occurs in A for some B ∈ I(LN(P))}.

We can easily show that rk
(
I 	A(s)

)
< � · 	 + � and rk

(
J�A(s)

)
= Ω for all A ∈

I(LN(P)), and thus rk(Φ�) < Ω+ � for every Lfix(P)-sentence Φ.
We say that an L∞

fix -sentence F is of
∨Ω-type, or simply F ∈

∨Ω, when 	 < Ω for
each occurrence of ¬I <	A (s) in F (but F may contain I

<Ω
A (s)).

We define a set C (α, �) and the collapsing function �Ω(α), for α, � ∈ On, by
simultaneous recursion on α, in exactly the same manner as in [13] and [20].6

For an ordinal �, we define an operatorH� : P(On)→ P(On) by

H�(X ) :=
⋂{
C (α, �) | X ⊂ C (α, �) ∧ � < α

}
.

GivenZ ⊂ On, wedefine a newoperatorH�[Z] by puttingH�[Z](X ) := H�(X∪Z).
In the following, the lettersH,H′,H′′, . . . will be used as syntactic variables ranging
over operators H� [X ] for some � ∈ On and X ∈ P(On), and the word “operator”
will mean such an operatorH� [X ] unless otherwise specified. For Δ ⊂ L∞

fix(P) and
F ∈ L∞

fix(P), wewill writeH[Δ] forH[
⋃
A∈Δ par(A)] andH[F ] forH[{F }]; following

the convention, we will also write Δ, F for Δ ∪ {F }.
Definition 12.1. For an operator H and a finite set Δ of L∞

fix (P)-sentences, the
relation H| α

,�
Δ holds for α,  ∈ On and � ∈ {0, 1}, if and only if α ∈ H(∅),

par(Δ) =
⋃
A∈Δ par(A) ⊂ H(∅), and one of the following holds

(Ax): Ps,¬Pt ∈ Δ for closed LN-terms s and t with the same value (i.e., sN = tN);
(
∧
): there are F ∈ Δ∩

∧
andαG <α for eachG ∈ CS(F ) such thatH[G ]|αG

,�
Δ, G ;

(
∨
): there are F ∈

∨
∩Δ, G ∈ CS(F ), and αG < α such thatH|αG

,�
Δ, G ;

(cut): there are A with rk(A) <  and α0 < α such thatH| α0
,�
Δ, A andH| α0

,�
Δ,¬A;

(cl): � = 1, and there exist some A ∈ I(LN(P)), a closed LN-term s , and α0 < α
such that I <ΩA (s) ∈ Δ andH| α0

,�
Δ, IΩA (s).

Note that the new clause (Ax) is added to the semiformal system in [13] to deal with
the newly added predicate variable P; also, � only take either 0 or 1 since we need
not consider iterations of inductive definitions.

6These are defined in [20] and [13] for the sake of ordinal analyses of impredicative systems up toKPi
and Δ12-CA plus bar induction; hence, we here include many redundantly large ordinals for our current
purpose, such as �Ω(εI+1). We could cut off the redundant ones and simplify the definitions of C (α, �)
and �Ωα; we could replace I by Ω and drop the closure condition for � �→ Ω� in the definition of
C (α, �), and only allow Ω in place of κ in �κα. Alternatively, we could define the collapsing function in
the manner described in [21, Section 9.4].
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All the basic proof-theoretic properties are standardly shown in the same manner
as in [13, Section 6] (or [20]); in particular,

• Controlled Tautology:H[Δ, F ]|2·rk(F )
0,0
Δ,¬F (s), F (t), for eachF ∈ L∞

fix(P) and

closed LN-terms s and t with sN = tN.
• Predicative Cut-elimination: If Ω �∈ [,  + ��), � ∈ H and H| α

+��,�
Δ, then

H|ϕ�α
,�
Δ, where ϕ here denotes the binary Veblen function.7

Theorem 12.2 (Collapsing Theorem). Let X ⊂ On. Suppose � ∈ H� [X ], Δ ⊂∨Ω, and X ⊂ C
(
� + 1, �Ω(� + 1)

)
. Then, we have the following

if H� [X ]| α

Ω+1,�
Δ, thenH�+3Ω+1+α [X ]| �Ω(�+3

Ω+1+α)
�Ω(�+3

Ω+1+α),0
Δ.

Let Δ(P) = {A1(P), . . . , An(P)} be a finite set of L∞
fix (P)-sentences possibly

interspersed with P. For B ∈ L∞
fix(P), we denote {A1(B), . . . , An(B)} by Δ(B).

Lemma 12.3. SupposeH| α
0,0
Δ�(P) for a finite set Δ(P) of LN(P)-sentences. Then,

for any Lfix(P)-formula Ξ(x) with only x free, we have
H|Ω+�+α

0,0
Δ�

(
Ξ�(x̂)

)
.

Proof. We first note thatH| α
0,0
Δ�(P) and Δ(P) ⊂ LN(P) imply that neither (cut)

nor (cl) is used in its derivation and also that no I <	A appears in its derivation for
any 	 ≤ Ω. The claim is shown by induction on α.
If Δ�(P) is obtained by (Ax), then Δ�(P) contains Ps and ¬Pt for some s
and t with sN = tN. Then Δ�(Ξ�) contains Ξ�(s) and ¬Ξ�(t), and thus we get
H|Ω+�

0,0
Δ�(Ξ�) by Controlled Tautology, since par(Φ�) ⊂ {Ω} ⊂ H(∅) for every

Φ ∈ Lfix(P). If Δ�(P) contains a true closed LN-literal, then so does Δ�(Ξ�).
Suppose that the last inference is made by

∧
-rule and there exists F (P) ∈

Δ�(P) ∩
∧
with CS(F ) �= ∅ such that for all G ∈ CS(F ) there is αG < α with

H[G ]|αG
0,0
Δ�(P), G(P). Since Δ(P) ⊂ LN(P), F should be of the form ∀xΦ�(x) or

Φ�0 ∧ Φ�1 for some LN(P)-formulae Φ, Φ0, and Φ1. Hence, each G(P) ∈ CS(F ) is
equal to Ψ�(P) for some Ψ ∈ LN(P), H = H[G ] for all G(P) ∈ CS(F ), and

CS
(
F (Ξ�)

)
=

{
G(Ξ�) | G(P) ∈ CS(F )

}
; (3)

note that this (3) is not necessarily the case when F is of the form ¬I <	A (t), and
so the assumption that Δ(P) ⊂ LN(P) is crucial here. By the induction hypothe-
sis, for each G ∈ CS(F ), we have H|Ω1+�+αG

0,0
Δ�(Ξ�), G(Ξ�), and thus we obtain

H|Ω1+�+α
0,0

Δ�(Ξ�) by
∧
-rule. The other cases are similarly treated. �

The next is a straightforward generalization of well-known results; see [13,
Lemmata 76, 79, and 82] or [21, Section 9].

Lemma 12.4. For each axiom Φ of ID1(P)[[PA]], it holds thatH0|Ω·2+�Ω+1,1
Φ�.

Let ID∗
1 �n [[PA]] be the system obtained from ID∗

1 [[PA]] by restricting the number
of applications of P-SubstLfix(P) to at most n-times.

7Due to the new clause (Ax), the proof of Reduction Lemma in [13] (or [20, Lemma 3.4.3.5]) needs
slight modification to treat the extra case where the cut-formulae are Ps and ¬Ps . Such a modification
is well-known and we refer the reader to [21, Section 7.3] and [20, Lemma 2.1.5.7].
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Theorem 12.5. For each n ∈ N, if ID∗
1 �n [[PA]] 	 Φ(�x) for Φ(�x) ∈ Lfix(P), then

there exists some α < �Ω(εΩ+1) and � < εΩ+1 such that H� | α0,0 Φ
�(�r) for all closed

LN-terms �r.

Proof. The claim is shown by meta-induction on n. Suppose the claim has been
shown for m, and let n = m + 1. Put Tn to be

ID1(P)[[PA]] ∪ {Θ(Ξ) | ID∗
1 �m [[PA]] 	 Θ(P), Θ(P) ∈ LN(P), and Ξ ∈ Lfix(P)};

obviously, ID∗
1 �n [[PA]] 	 Φ(�x) implies Tn 	 Φ(�x). Let ID∗

1 �m [[PA]] 	 Θ(�v,P) and
take any Lfix(P)-formula Ξ(u, �w) and closed LN-terms �s and �t. By the induction
hypothesis, we have H� | α0,0 Θ

�(�s,P) for some α < �Ω(εΩ+1) and � < εΩ+1. Hence,

we get H� |Ω+�+α0,0
Θ�

(
�s,Ξ(û, �t)

)
by Lemma 12.3. Now assume Tn 	 Φ(�x) and

take closed LN-terms �r. It follows from the above and Lemma 12.4 that there
exist some n < � such that H� |Ω·2+�·2Ω+1+n,1

Φ�(�r). By Predicative Cut-elimination we

obtain H� |ϕ
n
0 (Ω·2+�·2)
Ω+1,1

Φ�(�r), where ϕn0 (�) is defined as ϕ
0
0(�) := ϕ0(� + 1) and

ϕk+10 := ϕ0(ϕk0 (�)). Then, by Collapsing Theorem we obtain

H
�+3Ω+ϕ

n
0 (Ω·2+�·2) |

�Ω(�+3
Ω+ϕn0 (Ω·2+�·2))

�Ω(�+3
Ω+ϕn0 (Ω·2+�·2)), 0

Φ�(�r).

We have � + 3Ω+ϕ
n
0 (Ω·2+�·2) < εΩ+1. By Predicative Cut-elimination we get

H
�+3Ω+ϕ

n
0 (Ω·2+�·2) |

ϕ
�Ω(�+3

Ω+ϕn0 (Ω·2+�·2))

(
�Ω

(
�+3Ω+ϕ

n
0 (Ω·2+�·2)

))
0, 0

Φ�(�r),

where ϕ
�Ω(�+3

Ω+ϕn0 (Ω·2+�·2))

(
�Ω

(
� + 3Ω+ϕ

n
0 (Ω·2+�·2)

))
< �Ω(εΩ+1). �

Hence, ID∗
1 [[PA]] and ID1[[PA]] has the same proof-theoretic ordinal (suitably

defined), and the proof gives their proof-theoretic equivalence for LN(P).

Theorem 12.6. VF[[PA]] =LN
VF∗[[PA]] =LN

ID1[[PA]] =LN
ID∗
1 [[PA]].

It is shown in [13] that (ID21)0 plus the Bar Rule is stronger than (ID
2
1)0 and its

proof-theoretic ordinal is �Ω(εΩ+Ω). Since (ID
2
1)0 is the second-order counterpart

of ID1, Theorem 12.6 indicates that P-Substitution does not always behave as an
equivalent first-order counterpart of the Bar Rule.

§13. Discussion and conclusion. The notion of mutual truth-definability between
axiomatic systems of truth is introduced in [11] in an attempt to formally capture
the “conceptual equivalence” of different axiomatic conceptions of truth, which is
a strong equivalence relation of axiomatic systems implying both proof-theoretic
equivalence and mutual conservation. The mutual truth-definability of KF and VF
over ZF follows from Theorems 3.2, 4.8, and 8.10. In an exactly parallel manner,
we can show the mutual truth-definability of VF(P) and KF(P) over ZF, and this
mutual truth-definability can be extended to that ofVF∗ andKF∗ overZF byLemma
31 of [11] (modified for set-theoretic base systems). These make a contrast against
the failure of the mutual truth-definability of those systems over arithmetic. Also,
although we do not yet know whetherKF∗ (andVF∗) is stronger thanKF (VF resp.)
over ZF, Theorem 12.6 gives another disanalogy in either case: if VF∗ is stronger
than VF, then the schematic reflective closure VF∗ adds deductive power over set
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theory while it does not over arithmetic; otherwise, the schematic reflective closure
KF∗ does not add deductive power over set theory while it does over arithmetic.
Some results of the present article may also give a new perspective to the so-called
conservativeness argument against deflationism about truth. In brief, the argument
goes as follows: deflationism about truth requires that the truth predicate and its
axioms should not enable any new theorem that is not derivable without them, but
adequate axiomatic systems of truth are not conservative over their base systems and
thus deflationism is untenable. Traditionally, in the context of the conservativeness
argument, only axiomatic systems of truth over arithmetic, such as KF[[PA]], are
taken into account and referred to as the “evidence” of the claim that adequate
axiomatic systems of truth are not conservative over their bases. In reply to this
argument, Field [10] points out that the failure of conservativeness is caused by
extending the arithmetical induction schema to the truth predicate, and then argues
that the extension of the schema is not justifiable solely in virtue of the concept of
truth. Theorem 10.1 suggests that different schemata and base systems havedifferent
implications for the argument.We leavemore philosophical discussions on this issue
to [14].
For the future study, we list below two open problems:

1. Do KF∗ and VF∗ have the same L∈-theorems as KF and VF?
2. Are KF− and VF− mutually truth-definable?

My conjecture is affirmative to the former and negative to the latter.

§14. Appendix. In this appendix, we will show that SC1 is equivalent to Sato’s
[22, p. 106] original system ID+1 of stage comparison prewellorderings.

Definition 14.1. Let L′
SC be a sublanguage of LSC defined by

L′
SC = L∈ ∪ {RA | A ∈ I(L∈)} = LSC \ {JA | A ∈ I(L∈)}.

The L′
SC-system ID+1 � is defined as ZF+ (SC0) with (SC2) restricted to L′

SC plus:

(ID1+)∃z
(
A(x,≺A�z) ∧ ¬A(y,≺A�z)

)
→ x ≺A y, for every A ∈ I(L∈);

(ID2+)x ≺A y ↔ ∃z
(
z ≺A y ∧ A(x,≺A�z)

)
, for every A ∈ I(L∈).

Then we set ID+1 := ID+1 � +L′
SC-Sep + L′

SC-Repl.

Sato showed that the transitivity of ≺A and the converse of (ID1
+) are provable

in ID+1 � [22, Lemma 7], and that {x | ∃yA(x,≺A�y)} is a least fixed-point of each
A ∈ I(L∈) provably in ID

+
1 � [22, Lemma 6], which induces an embedding � of LSC

into L−
SC in which J

�
A(x) := ∃yA(x,≺A�y).

Lemma 14.2. Let A ∈ I(L∈). The following are provable in ID+1 �.
1. For all x and y, if y �≺A x, then ≺A�x⊂≺A�y .
2. For all x ∈ J �A, it holds thatA(x,≺A�x).
Proof. 1. Suppose y �≺A x. Take any w ≺A x. We have A(w,≺A�u) for some
u ≺A x by (ID2

+). If w ⊀A y were the case, we would haveA(y ≺A�u) by (ID1+)
and thus y ≺A x by (ID2

+).
2. Let x ∈ J �A and pick a≺A-minimal z withA(x,≺A�z). If x ≺A z, there would
be w ≺A z with A(x,≺A�w) by (ID2+), which contradicts the minimality of z.
Hence, we get ≺A�z⊂≺A�x by 1 and thus A(x,≺A�x) by monotonicity. �
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Lemma 14.3. ID+1 �	 (SC1)�. Hence, SC−
1 is a definitional extension of ID

+
1 �.

Proof. If x ≺A y, then x ∈ J �A and ¬A(y,≺A�x) by (ID2+) and the irreflexivity
of ≺A. The converse follows from (ID1

+) and Lemma 14.2.2. �
Lemma 14.4. SC1 	 (ID1+) and SC1 	 (ID2+).
Proof. For the first claim, suppose A(x,≺A�z) and ¬A(y,≺A�z) for some z.
We have z �≺A x by (SC1) and x ∈ JA by ≺A�z⊂ JA. Hence we get ≺A�x⊂≺A�z
by Lemma 4.5 and thus ¬A(y,≺A�x) by monotonicity, which implies x ≺A y
by (SC1). For the second claim, let z ≺A y and A(x,≺A�z). By (SC1) we have
¬A(y,≺A�z), z ⊀A x, and x ∈ JA. We get ≺A�x⊂≺A�z by Lemma 4.5 and thus
¬A(y,≺A�x); hence x ≺A y. The converse follows by Lemma 4.3.1. �
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