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Abstract A complication is an event or occurrence that is associated with a disease or a healthcare
intervention, is a departure from the desired course of events, and may cause, or be associated with, suboptimal
outcome. A complication does not necessarily represent a breech in the standard of care that constitutes
medical negligence or medical malpractice. An operative or procedural complication is any complication,
regardless of cause, occurring (1) within 30 days after surgery or intervention in or out of the hospital, or
(2) after 30 days during the same hospitalization subsequent to the operation or intervention. Operative and
procedural complications include both intraoperative/intraprocedural complications and postoperative/
postprocedural complications in this time interval.

The MultiSocietal Database Committee for Pediatric and Congenital Heart Disease has set forth a
comprehensive list of complications associated with the treatment of patients with congenital cardiac disease,
related to cardiac, pulmonary, renal, haematological, infectious, neurological, gastrointestinal, and endocrinal
systems, as well as those related to the management of anaesthesia and perfusion, and the transplantation of
thoracic organs. The objective of this manuscript is to examine the definitions of operative morbidity as they
relate specifically to the endocrine system. These specific definitions and terms will be used to track morbidity
associated with surgical and transcatheter interventions and other forms of therapy in a common language
across many separate databases.

As surgical survival in children with congenital cardiac disease has improved in recent years, focus has
necessarily shifted to reducing the morbidity of congenital cardiac malformations and their treatment. A
comprehensive list of endocrinal complications is presented. This list is a component of a systems-based
compendium of complications that will standardize terminology and thereby allow the study and
quantification of morbidity in patients with congenital cardiac malformations. Clinicians caring for patients
with congenital cardiac disease will be able to use this list for databases, initiatives to improve quality,
reporting of complications, and comparing strategies of treatment.
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Historical background

The fields of cardiac intensive care, cardiac surgery,
cardiac anaesthesia and cardiology continue to
advance exponentially. The survival of patients with
critical congenital heart disease is seldom in
question in the modern era. During the past two
decades, mortality after surgery for congenital heart
disease has decreased dramatically and is now 4% in
several large multicentre studies.1,2 Consequently,
the focus of clinical research and improvement
efforts has now shifted to that of reduction and
eventual elimination of morbidity.

Both mortality3 and morbidity4 have been
defined for a cardiac surgical registry database.
However, complications and death may occur in
those with congenitally malformed hearts in the
absence of surgical treatment. Additionally, a
systematic review and classification of organ-specific
complications delineated in a common platform has
not been published. These issues prompted The
Multi-Societal Database Committee for Pediatric
and Congenital Heart Disease to undertake the task
of defining organ-specific complications in relation
to congenital cardiac disease. Importantly, this
compilation of complications can be applied to
surgical and non-surgical patients alike, regardless
of manner or stage of therapy.

An extensive search of Medline and multiple
textbooks was performed to identify the existing
literature that provides definitions of the identified
endocrinal complications. All participants in the
subgroup of The Multi-Societal Database Committee
for Pediatric and Congenital Heart Disease responsi-
ble for endocrinal complications reviewed the available
data and contributed to the consensus definitions.
Members of The Multi-Societal Database Committee
for Pediatric and Congenital Heart Disease partici-
pated in refining all definitions offered in this article
by telephone conferences, e-mail correspondence, and
meetings; all participating members reviewed and
approved the final definitions in this report.

Consensus definitions

The terms in the final list of endocrinal complica-
tions developed by The MultiSocietal Database
Committee for Pediatric and Congenital Heart
Disease, along with their official definitions are
listed in Part 4 of this Supplement.

In Part 4 of this Supplement, the following terms
are defined:

> Adrenal complication - Absolute adrenal insuf-
ficiency (AAI)

> Adrenal complication - Activated adrenal response
(AAR)

> Adrenal complication - Insufficient basal cortisol
(IBC)

> Adrenal complication - Relative adrenal insuffi-
ciency (RAI)

> Calcium complication - Hypocalcemia
> Glucose complication - Hyperglycemia
> Glucose complication - Hypoglycemia
> Relative vasopressin deficiency
> Syndrome of inappropriate antidiuretic hormone

secretion
> Thyroid complication - Euthyroid sick syndrome

(or Non-thyroidal illness syndrome [NTIS])
> Thyroid complication – Hypothyroidism.

Controversies and interaction with the
cardiac system

The hormones of the endocrine system regulate the
body’s homeostatic mechanisms and include such vast
functions as energy production and utilization, fluid
and electrolyte balance, and circulatory function. Each
cascade of hormones works within a feedback loop,
most of which are regulated by the hypothalamus and
pituitary gland. Disorders of the endocrine system
include problems with overproduction or under-
production of a hormone or problems with receptors
for these hormones. Each hormone and hormonal
system impacts the function of the cardiac system in
different ways. Interactions involving the following
hormones and hormonal systems will be discussed:

> adrenal cascade and the Hypothalamic-Pituitary-
Adrenal Axis

> thyroid function
> pancreatic function
> the parathyroid gland and calcium metabolism
> arginine vasopressin.

Most endocrinal complications have been defined in
the literature previously and were agreed upon
without much discussion. It should be noted, however,
that these endocrinopathies have also been mostly
defined in otherwise healthy patients. Additionally,
most of the data for these entities come from critically
ill adult populations and may not be directly appli-
cable to paediatric populations. Fortunately there are
multiple paediatric studies that are in progress that
will help elucidate the impact of these endocrinopa-
thies in the paediatric population. The complication
that engendered a fair amount of debate was
dysfunction of the hypothalamic-pituitary-adrenal axis
in the critically ill cardiac patient.

Hypothalamic-Pituitary-Adrenal Axis
The hypothalamic-pituitary-adrenal axis involves
release of catecholamines, sex steroids, glucocorticoids
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and mineralocorticoids from the adrenal gland
under control of the hypothalamus and pituitary
gland.5 Many types of stress cause the hypothalamus
to secrete corticotropin-releasing hormone. Cortico-
tropin-releasing hormone stimulates the anterior
pituitary gland to secrete adrenocorticotropic hor-
mone, often termed ‘‘ACTH’’, which then stimu-
lates the adrenal cortex to secrete glucocorticoids
such as cortisol. Adrenocorticotropic hormone has
little control over secretion of aldosterone, the other
major steroid hormone from the adrenal cortex.

The haemodynamic alterations of adrenal insuffi-
ciency, due predominantly to deficiency of cortisol, can
present as vasomotor paralysis or shock.5 Adrenal
insufficiency is associated with decreased myocardial
contractility, vasodilatation, and capillary leak. Critical
illness typically results in increased cortisol levels of
up to six times baseline and loss of the diurnal
variation.6–10 The appropriate basal level of cortisol in
critically ill patients has been controversial, with
proposed values for normal basal cortisol ranging from
6–34 micrograms per decilitre.6,7,11–13 The discrepant
definitions of adrenal insufficiency have yielded highly
variable estimates of the incidence of adrenal dysfunc-
tion in the critically ill.6,14 For example, the reported
incidence of adrenal dysfunction in sepsis ranges from
17–54%.6,14–20 Adrenal dysfunction in critical illness
is associated with increased duration and requirement
for inotropes and/or vasopressors, and worsened
clinical outcomes.14,15 Annane and colleagues classi-
fied adult patients with septic shock into three
prognostic groups based on adrenal function, with the
worst mortality in patients with elevated basal cortisol
and a poor response to adrenocorticotropin hormone
stimulation.11,12,21

Observations in children with septic shock14 and
children with congenital cardiac disease22 are
consistent with these findings. The integrity of
the hypothalamic-pituitary-adrenal-axis during cri-
tical illness is typically assessed by the cosyntropin
stimulation test.19 In response to cosyntropin
stimulation, it is generally accepted that a cortisol
increase of less than 9 micrograms per decilitre, is
inappropriate and associated with worse out-
comes.12 The appropriate basal level of cortisol in
critically ill patients is controversial, however, with
proposed values for normal basal cortisol ranging
from 6–34 micrograms per decilitre.6,7,11–13 These
discrepant definitions of adrenal insufficiency have
yielded highly variable estimates of the incidence of
adrenal dysfunction in critical illness. Although the
data in children are limited, existing evidence
suggests that a basal cortisol level of 16 micrograms
per decilitre or more reflects an appropriate stress
response in critically ill paediatric patients.14,22 The
‘‘expected’’ adrenal response to critical illness is thus

defined as an adequate basal cortisol, greater than
16 micrograms per decilitre, and an appropriate
cosyntropin response of a cortisol level increase of
greater than 9 micrograms per decilitre. We have
used the term activated adrenal response to describe
this adrenal response. Using the above reference
values, adrenal activity can thus be classified into
one of the following four groups:

> Activated adrenal response: an adequate basal cortisol
of greater than 16 micrograms per decilitre, with
an appropriate response to cosyntropin stimulation
manifested by a change in cortisol of greater than
9 micrograms per decilitre.

> Absolute adrenal insufficiency: an inadequate basal
cortisol of less than 16 micrograms per decilitre,
with an inappropriate response to cosyntropin
stimulation manifested by a change in cortisol of
less than 9 micrograms per decilitre.

> Relative adrenal insufficiency: an adequate basal
cortisol of greater than 16 micrograms per
decilitre, with an inappropriate response to
cosyntropin stimulation manifested by a change
in cortisol of less than 9 micrograms per decilitre.

> Insufficient basal cortisol: an inadequate basal
cortisol of less than 16 micrograms per decilitre,
with an appropriate response to cosyntropin
stimulation manifested by a change in cortisol of
greater than 9 micrograms per decilitre.

The categories above delineate the various adrenal
responses to critical illness. Existing evidence
suggests that steroid treatment may be more
beneficial in certain subsets of adrenal response
than in others. There is uniform agreement that
patients manifesting absolute adrenal insufficiency
require glucocorticoid supplementation and possi-
bly mineralocorticoid supplementation as well.
Although conflicting data exist, previous studies
in adult patients with sepsis support steroid
treatment in patients with both relative adrenal
insufficiency and insufficient basal cortisol.11,12,21

Much of the data on the hypothalamic-pituitary-
adrenal axis in critical illness stems from research in
patients with sepsis. With increasing recognition of
adrenal dysfunction in sepsis and/or septic shock in
both adult and paediatric patients, it has become
evident that adrenal dysfunction has prognostic
implications. Of note, the adrenal response may
change during the course of an illness.23 For example,
a patient may demonstrate an activated adrenal
response early in an illness that subsequently shifts
to absolute or relative adrenal insufficiency. In
patients treated with hydrocortisone with or without
fludrocortisone, studies suggest that inotrope require-
ments fall most rapidly in patients with an
inappropriate cosyntropin response or those with
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insufficient basal cortisol.11,23,24 In other groups of
patients requiring inotropes for more than 48 hours,
steroid administration may lead to the earlier
cessation of inotropes and greater reversal of
shock.25,26 This may explain the correlations
between adrenal dysfunction and catecholamine
refractory shock in patients with sepsis.10,15

Cortisol is secreted from the adrenal cortex regu-
lated by corticotropin and corticotropin-releasing
hormone in response to physiologic stress. Cortisol
has a plethora of functions:

> it regulates vascular smooth muscle tone27

> maintains endothelial integrity28,29 and
> potentiates the actions of catecholamines.21,28

In addition to these vascular effects, cortisol also
has the following functions:

> modulates inflammation
> conserves sodium and water, and
> increases glucose levels.5

The mineralocorticoid named aldosterone is secreted
by the adrenal gland in response to hypotension,
hyperkalemia, hyponatremia, and adrenocorticotropin
hormone stimulation. Aldosterone induces potassium
secretion and sodium and water retention by the
kidneys.5 The classic symptoms of adrenal crisis
resulting from mineralocorticoid deficiency, and thus
treated with fludrocortisone acetate, include hypona-
tremia, hyperkalemia and hypovolemia.5–7 Acidosis,
hypercalcemia, and hypoglycemia may also occur. The
haemodynamic alterations of adrenal insufficiency, due
predominantly to cortisol deficiency, can present as
vasomotor paralysis or shock.5 Adrenal insufficiency is
associated with decreased myocardial contractility,
vasodilatation, and capillary leak.

Various insults and altered neurohumoral mechan-
isms may impair the hypothalamic-pituitary-adrenal -
axis during critical illness, either resulting from
diminished release of corticotropin and corticotropin-
releasing hormone or from diminished responsiveness
of the adrenal gland to these regulatory hormones.
Commonly used pharmacologic agents can alter
adrenal function, such as narcotics, ketamine, etomi-
date, ketoconazole, rifampin and phenytoin.30,31

Pathophysiologic insults that can alter hypothalamic,
pituitary, or adrenal function include cytokines,
inflammatory mediators, hypoxia, reperfusion injury,
and/or adrenal haemorrhage.32 Waterhouse-Friderichsen
syndrome is massive haemorrhage into the adrenal
glands, and is usually bilateral. Various cytokines
can suppress the pituitary response to hypothalamic
corticotropin-releasing hormone or induce systemic
or tissue specific corticosteroid resistance.6,17 Cortisol
levels are reduced after cardiac surgery, which may
result from the systemic inflammatory response and

cytokine release induced by cardiopulmonary by-
pass.33 Finally, developmental factors may modulate
adrenal function.

Thyroid function
The hypothalamus secretes thyrotropin-releasing hor-
mone, which stimulates the pituitary gland to secrete
thyroid-stimulating hormone, which catalyzes the
conversion of thyroglobulin to thyroxine, commonly
known as ‘‘T4’’. Thyroxine is then cleaved to form the
active hormone triiodothyronine, commonly known as
‘‘T3’’. Triiodothyronine increases basal metabolic rate
and stimulates growth in tissues by increasing activity
of sodium-potassium-adenosine triphosphate pumps.5

From a cardiac standpoint, thyroid hormones increase
contractility, cardiac output, and ejection fraction.34,35

Although triiodothyronine improves diastolic func-
tion and increases intracellular calcium levels via the
sodium-calcium exchanger, it may also increase
myocardial oxygen consumption.34–37 In peripheral
vasculature, thyroid hormones reduce systemic vascu-
lar resistance and increase pulse pressure.35 Thyroid
hormones have been shown to potentiate the effects
of catecholamines.37,38

Hypothyroidism is associated with decreases in
triiodothyronine, thyroxine, and reverse triiodothyr-
onine with high levels of thyroid stimulating
hormone. Symptoms of hypothyroidism include
bradycardia, pericardial effusions, hypertension and a
narrowed pulse pressure, and myxedema.35 Studies
have also shown decreases in cardiac output and
cardiac contractility, as well as decreased diastolic
relaxation and diastolic filling. There have also been
rare incidences of increased QT interval leading to
Torsades. Chronic hypothyroidism, including subcli-
nical hypothyroidism, has been associated with
accelerated atherosclerosis, hypercholesterolemia, cor-
onary artery disease, and an increased relative risk of
death from cardiovascular causes.39 In those with
congestive heart failure, reduction in triiodothyronine
levels have been shown to be proportional to New
York Heart Association class,35 mortality,40,41 mor-
bidity,37,42 poor haemodynamics, and hyponatremia.41

Important in critical illness is non-thyroidal illness
syndrome or euthyroid sick syndrome which presents
with a low triiodothyronine level associated with a
normal or low thyroxine, high reverse triiodothyr-
onine and normal or high thyroid stimulating
hormone.5,40,43 Euthyroid sick syndrome is asso-
ciated with abnormal findings on thyroid function
tests in the setting of a non-thyroidal illness,
without pre-existing hypothalamic-pituitary and
thyroid gland dysfunction. After recovery from this
non-thyroidal illness, these abnormalities of the
thyroid function tests should be completely reversible.
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Theories explaining non-thyroidal illness syndrome
include:

> the body’s attempt to decrease metabolic
demands during stress,34

> a deficit in converting thyroxine to triiodothyr-
onine,40,44,45

> decreased serum thyroid binding capacity,40,44

and
> decreased hypothalamic activity reflected by

decreased thyrotropin-releasing hormone, as sex
steroids are also decreased in severe illness.43

Non-thyroidal illness syndrome may be exacer-
bated by glucocorticoids that can decrease pituitary
response to thyrotropin-releasing hormone and lead
to a lower level of thyroid stimulating hor-
mone.40,43 Dopamine, which is frequently used in
intensive care, confounds assessment of thyroid activity
since it can decrease thyroid stimulating hormone40,43

and induce secondary hypothyroidism.46,47

It is important to assess free thyroid hormone
levels since critical illness often alters serum protein
levels, including thyroid binding globulin and
albumin.43 Reduced levels of triiodothyronine have
been observed in as many as 70% of hospitalized
patients.40 Decreased thyroxine levels have been
associated with increased mortality, and the combi-
nation of low triiodothyronine and thyroxine may
carry an even worse prognosis.40,42,43

Research is ongoing to determine the thyroid
profile of patients undergoing cardiopulmonary
bypass procedures, and to assess whether thyroid
hormone replacement is beneficial for these patients.
Thyroid hormones including thyroid stimulating
hormone, thyroxine, free thyroxine, triiodothyronine,
free triiodothyronine, and thyroglobulin have been
shown to decrease after cardiopulmonary bypass with
increases in reverse triiodothyronine.34,47–53 This
decrease in triiodothyronine has been shown to be
more profound in children than adults.34,54 As
discussed above, dopamine administration may
contribute to these alterations.46 In children after
cardiac surgery, Bettendorf and colleagues reported
plasma thyroid hormone concentrations were lowest
in patients treated with dopamine, and these patients
also took the longest return to normal.47 Lower levels
of thyroid hormones postoperatively have been
associated with

> higher scores via the – the Pediatric Risk of
Mortality Scoring System (PRISM), which is des-
cribed in the tenth manuscript in this Supplement
titled ‘‘Databases for assessing the outcomes of the
treatment of patients with congenital and paediatric
cardiac disease – the perspective of critical care’’

> increased length of mechanical ventilation

> increased time requiring supplemental oxygen
> increased intensive care unit length of stay, and
> increased need for inotropes and Lasix.34,47,49,55

Conversely, patients with more favourable out-
comes had higher levels of thyroid hormones than
those who had complications or that died.50 The
nadir of thyroid hormones corresponds to the decrease
in cardiac output after congenital cardiac surgery.
This nadir of thyroid hormones begins soon after
surgery, and may last for 48 hours. Thyroid hormones
may remain at a low level for as long as 5–8 days
postoperatively, and longer with more complex
surgeries.47,50,53 The cause of this decrement in
thyroid hormones is unknown but may include stress
induced depression of the hypothalamic-pituitary-
adrenal axis, hemodilution, hypothermia, the use of
dopamine or glucocorticoids, or suppression second-
ary to tumour necrosis factor or interleukin-6.46,52,54

Replacement of triiodothyronine in patients
with congenital cardiac disease who have undergone
cardiac surgery is currently undergoing trials.
Initial data suggest that Triostat, triiodothyronine
replacement, increases cardiac index, increases
systolic blood pressure, and decreases systemic
vascular resistance.45,49,51,56,57 The heart rate in
patients increased or was unchanged but there were
no serious dysrhythmias. Triiodothyronine replace-
ment corresponded to reduced requirements of
inotropes and improved balance of fluids.49,51,56,57

Glucose homeostasis

Insulin increases glucose uptake into cells, lowers
serum glucose, and stimulates the formation of
glycogen, proteins and adipose.5 As a counter-
regulatory hormone, glucagon increases serum
glucose by stimulating glycogenolysis and gluco-
neogenesis. Hypoglycemia, defined as a glucose level
less than 80 milligrams per decilitre, can be seen in
paediatric patients with critical illness secondary to
inadequate glycogen stores, adrenal insufficiency,
and liver failure. Hypoglycaemia should be avoided
as it can lead to neurologic abnormalities58.

Hyperglycaemia can occur after cardiopulmonary
bypass procedures as a result of decreased insulin,
insulin resistance, decreased glucose utilization with
hypothermia, decreased renal elimination, increased
levels of epinephrine or cortisol, and secondary to cyto-
kines and counter-regulatory hormones.50,59 Potential
detrimental effects of hyperglycaemia are well docu-
mented; hyperglycaemia alters cellular immune func-
tion and is pro-inflammatory, whereas insulin has
anti-inflammatory properties.59,60 Insulin can reduce
cytotoxicity by shifting intracellular metabolism from
utilization of free fatty acids, which can lead to toxic
metabolites, to utilization of glucose.59 Van den Berghe
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and colleagues first reported an association of hyper-
glycaemia with increased morbidity and mortality in
critically ill adult patients, which improved with tight
glycaemic control.61,62 Findings from other studies
contradict these observations, however, so the role
of tight glycaemic control in critical care remains
controversial, especially in paediatric and neonatal
intensive care where the risk of hypoglycaemia is
particularly important.63,64 In children with severe
bronchiolitis who required mechanical ventilation,
hyperglycaemia was not independently associated with
mortality or morbidity.63 In contradictory observa-
tional studies of paediatric cardiac surgical patients,
one group reported an association between hypergly-
caemia and morbidity and mortality,65 while another
group observed no association between hyperglycae-
mia and adverse events but increased morbidity with
relative hypoglycaemia.66 No controlled trials exist in
paediatrics evaluating the effect of tight glucose
control with insulin, but it is evident that the adult
data cannot be directly translated to paediatric
practice.67 No consensus exists in the literature at
present regarding perioperative glycaemic control in
paediatric cardiac surgical patients.

Parathyroid function and calcium metabolism

Although calcium homeostasis is not an issue in
most paediatric cardiac surgical patients, hypocalcae-
mia is often important in patients with suspected or
known DiGeorge syndrome, which is associated
with parathyroid insufficiency. Calcium concentra-
tions are regulated by parathyroid hormone and
Vitamin D after conversion to calcitriol. Calcitriol
and parathyroid hormone stimulate

> calcium mobilization from bone
> resorption of calcium in the renal tubules, and
> increased absorption of calcium from the gastro-

intestinal tract.68,69

Hypocalcaemia induces secretion by the thyroid
gland of calcitonin, which opposes the actions of
parathyroid hormone. Critical illness can induce a
state of relative hypoparathyroidism, which is
exacerbated by hypomagnesaemia.68 Renal insuffi-
ciency can also lead to calcitriol deficiency. To assess
calcium homeostasis in the intensive care unit,
ionized calcium should be measured, as this is the
active fraction which is not affected by alterations in
serum protein concentrations. Ionized calcium
levels fall with administration of heparin, which is
administered in large volumes during cardiopulmo-
nary bypass.50

Decreased calcium levels can lead to reversible
myocardial dysfunction causing hypotension, increased
length of stay and morbidity, and increased
mortality in critically ill patients.70,71 Calcium

administration increases blood pressure without
affecting heart rate.69 This effect should be balanced
by the risk of destructive intracellular processes that
may result from increased extracellular and cytoplas-
mic calcium, which may be especially relevant in
patients with associated ischaemia or sepsis.69 A
retrospective review of paediatric cardiac surgical
patients found that postoperative calcium supplemen-
tation was associated with mortality and morbidity,
including prolonged length of stay, liver dysfunction,
neurological complications, infections, and need for
extracorporeal support.72 Studies investigating control
of calcium homeostasis in paediatric cardiac surgical
patients are lacking, so the role of aggressive calcium
replacement in patients with critical cardiac disease
remains obscure.

Vasopressin

Activation of either the sympathetic nervous system or
the Renin-Angiotensin-Aldosterone system causes
increased release of arginine vasopressin in response
to low blood pressure, decreased cardiac filling, and/or
increased serum osmolarity.5,73,74 Vasopressin acts
through several receptors.75 Stimulation of V1 recep-
tors lead to vasoconstriction in skin, skeletal muscle,
and mesenteric blood vessels, but vasodilatation at low
concentrations in pulmonary, coronary and cerebral
vascular beds.76 Stimulation of V2 receptors leads to
the transport of aquaporin to the apical membrane of
the collecting ducts which increases osmotic water
permeability and re-absorption without inducing
kaliuresis.5,73,74,76 The V1b or V3 receptor in the
anterior pituitary also regulates hypothalamic-pitui-
tary-adrenal axis activity during stress and resting
conditions.77 Vasopressin thus amplifies the effect of
cosyntropin releasing hormone upon adrenocorticotro-
pin hormone release.77,78 Vasopressin and cosyntropin
releasing hormone have synergistic effects upon
adrenocorticotropin hormone release by the pituitary.77

Disease states most frequently involved with
vasopressin in paediatric patients include the
following two entities:

> syndrome of inappropriate antidiuretic hormone secre-
tion, and

> relative vasopressin deficiency.

With the syndrome of inappropriate antidiuretic
hormone secretion, excess arginine vasopressin is
released from the hypothalamus, which mediates
free water retention by the kidney, resulting in

> hypervolemia with a low serum osmolarity of
less than 280 milliosmoles per litre

> dilutional hyponatremia with a sodium of less
than 130 milliequivalents per litre, and

> an increased urine specific gravity.5
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Akin to the syndrome of inappropriate anti-
diuretic hormone secretion, arginine vasopressin
levels are elevated in patients with congestive cardiac
failure, especially those with hyponatremia.73 This
elevation has been associated with increased mortality,
and trials are ongoing to evaluate the therapeutic
option of vasopressin-receptor antagonists in heart
failure patients to stimulate diuresis.76

Relative vasopressin deficiency is defined as an
insufficient level of vasopressin for the patient’s
clinical state. The concept of relative vasopressin
deficiency in critically ill cardiac patients has only
recently been introduced, so data about this condition
are limited. It is diagnosed in patients with
hypotension and a normal vasopressin level.75,79

Vasopressin deficiency can lead to shock and may be
associated with other characteristics of diabetes
insipidus such as urine output greater than 4
millilitres per kilogram per hour, urine specific
gravity less than 1.010 and sodium greater than
145 milliequivalents per litre.5 As an adjunct for
blood pressure support in sepsis, vasopressin can
stabilize blood pressure and reduce the need for
cathecholamines.74,79 Vasopressin has been used for
postoperative hypotension in paediatric cardiac surgi-
cal patients. It has been shown to increase blood
pressure and decrease inotrope requirements without
causing tachycardia or arrhythmias.80–82

Conclusion

The present list represents a comprehensive compi-
lation of endocrine complications occurring before,
during, and after congenital cardiac surgery. Those
who care for patients with cardiac disease in a
critical care setting require a knowledge base about
the many feedback loops involved in the hormonal
regulation of the body, since these feedback loops
may complicate the management of patients with
critical cardiac disease, and more importantly, may
offer ways to intervene to improve their outcome.
Clinicians caring for patients with congenital
cardiac disease will be able to use this list for
databases, quality improvement initiatives, report-
ing of complications, and comparing strategies for
treatment.
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