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We discuss the self-consistent dynamics of plasmas by means of a Hamiltonian
formalism for a system of N near-resonant electrons interacting with a single
Langmuir wave. The connection with the Vlasov description is revisited through
the numerical calculation of the van Kampen-like eigenfrequencies of the linearized
dynamics for many degrees of freedom. Both the exponential-like growth as well as
damping of the Langmuir wave are shown to emerge from a phase mixing effect
among beam modes, revealing unexpected similarities between the stable and unstable
regimes.
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1. Introduction
Collisionless damping of electrostatic waves is one of the most fundamental

phenomena in plasma physics and a starting point for the studies on the wave–particle
interaction. From its first report by Landau (1946) until its experimental verification
by Malmberg & Wharton (1964), this phenomenon was considered with some caution
by the plasma community, in particular due to the mathematical aspects (specifically
the use of complex integral and the large time limit in the Laplace transform) of its
derivation and its paradoxical nature.

A very physical and intuitive approach was proposed by Dawson (1961), who
explained this effect as resulting from a near-resonance mechanism of energy (and
momentum) transfer between wave and particles. Dawson also pointed out a time
threshold for a breakdown (due to trapping effects) of Landau’s linear analysis.
Later on, O’Neil (1965) extended the analysis for arbitrary times and found that
the nonlinearities may lead the wave to a time-asymptotic behaviour with a constant
non-zero amplitude. O’Neil’s picture, introduced in the sixties, gave rise to what
we call today ‘nonlinear Landau damping’ and induced a reconsideration of the
phenomenon from experimental (Malmberg & Wharton 1967; Franklin, Hamberger
& Smith 1972), numerical (Brodin 1997; Manfredi 1997) and theoretical (Mouhot &
Villani 2010, 2011) viewpoints. In the last decades, the existence of a critical initial
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2 D. D. A. Santos and Y. Elskens

amplitude that distinguishes whether the asymptotic field Landau damps to zero or
evolves to a steady non-zero value has been proved, by solving the Vlasov–Poisson
system, by Brunetti, Califano & Pegoraro (2000) and Lancellotti & Dorning (2003)
and from a statistical-physics-like viewpoint by Firpo & Elskens (2000, 2001).

Another prominent interpretation for linear Landau damping (beside Dawson’s
mechanical picture) explains it through the phase mixing of generalized (singular)
eigenmodes of the corresponding linear dynamical system. This formulation, resting
on a strictly linear theory and originally proposed by van Kampen (1955), shows
that for a given perturbation with wavenumber k there is a continuous spectrum of
real frequencies allowed for the plasma oscillations. In this context, Landau damping
emerges from a special superposition of stationary (distribution-like) solutions that
now go under the name of van Kampen modes. Though such superpositions account
for the exponential decay of initial perturbations at Landau’s rate, special initial data
can also be constructed which cause a decay at slower rates (Belmont et al. 2011).

Nowadays, it is well known that other kinds of systems also admit normal modes
analogous to the van Kampen modes for plasmas (see e.g. Pen 1994; Vekstein 1998;
Vandervoort 2003). Indeed, similar phenomena are found in a wide variety of systems
such as e.g. dusty plasmas (Bliokh, Sinitsin & Yaroshenko 1995), galaxies (Kandrup
1998), two-dimensional fluid flows (del Castillo-Negrete & Firpo 2002) and liquids
containing gas bubbles (Smereka 2002). Despite its being an old problem, Landau
damping remains intensely investigated experimentally (Doveil, Escande & Macor
2005) and theoretically (see e.g. Dougherty 1998; Ryutov 1999; del Castillo-Negrete
2002; Elskens 2005; Mouhot & Villani 2010, 2011; Bratanov et al. 2013; Bénisti
2016) with new aspects and viewpoints still being explored.

In contrast to the difficult reception of Landau damping by the physics community,
the weak warm beam instability, captured by the same formula (with an opposite sign
reflecting its physics), was immediately accepted. We show in this paper that its status
is somewhat more subtle, and that this Landau instability has more to share with
damping than might be thought initially. Indeed, the aim of this paper is to provide
further theoretical and numerical insight into how both Landau effects emerge from
the phase mixing among the van Kampen-like modes in the Hamiltonian approach.

The key element in plasmas is their being an N-body system∗. Therefore, a
microscopic description involving actual particles, rather than a continuum represented
by a smooth distribution function in (r, v) space, is their physical fundamental model
(Elskens & Escande 2003; Elskens, Escande & Doveil 2014). As deriving a kinetic
model for singular interactions, with the Coulomb divergence at short range, remains
a challenge (Chaffi, Casta & Brenig 2014; Kiessling 2014; Brenig, Chaffi & Rocha
Filho 2016), understanding basic plasma phenomena from the N-body picture is
important. Moreover, the N-body approach yields its own benefits, such as showing
unexpected connections between Landau damping and Debye screening (Escande,
Doveil & Elskens 2016).

The formalism adopted here is closely related to the fluid model used by Dawson
(1960), where electrons are distributed into (almost) monokinetic beams, and the
central issue consists in analysing normal modes that fully describe the evolution
of the system. This approach is mathematically elementary, involving no partial
differential equations or functional analysis and not even an analytic continuation or

∗In the electrostatic description, where the interaction is described with the Poisson equation, the electric
field is not even a dynamic degree of freedom. Though this is not the most complete picture of the plasma,
it does account for several fundamental features of plasmas, including Landau damping and Debye shielding.
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Phase mixing in Landau growth and damping 3

iε prescription enforcing a causality argument. Its concepts belong in basic classical
mechanics.

In § 2, we revisit the Hamiltonian model for plasmas and waves (Escande, Zekri
& Elskens 1996; Elskens & Escande 2003) and discuss connections with the van
Kampen–Case approach (van Kampen 1955; Case 1959) when the continuous limit
is taken. In § 3, we obtain the spectrum of the discrete analogue to the van Kampen
frequencies by solving accurately the dispersion relation for systems composed of
up to 2000 beams. We also investigate differences between the damping and growth
regimes and the consistency between the discrete and the continuous systems by
monitoring the evolution of the wave intensity.

Our main results show that not only the damping but also the Landau instability
emerge as consequences of a phase mixing mechanism among the eigenmodes of the
linear system. We highlight that while in the stable case the phase mixing to generate
Landau damping involves all van Kampen-like eigenmodes, in the unstable case the
pure Landau growth results from a destructive interference effect, leaving a single
eigenmode having a dominant (exclusive, in the continuum limit) contribution to the
wave amplitude. This behaviour, observed for dense spectrum systems, is described
through (3.2) and its asymptotic form given in (3.3) and illustrated in figures 5 and 6.

The outcomes reported in this paper for systems with many degrees of freedom
were made possible only by the development of a new technique to compute complex
roots. This new root finding method is further detailed in appendix A.

2. Formalism of monokinetic beams

Our model system is composed of N charged resonant particles interacting with a
single electrostatic Langmuir wave with natural frequency ω0, in one space dimension
(Onishchenko et al. 1970; O’Neil, Winfrey & Malmberg 1971). The evolution of this
system is generated by the self-consistent Hamiltonian (Mynick & Kaufman 1978;
Tennyson, Meiss & Morrison 1994; Escande et al. 1996; Elskens & Escande 2003;
Escande 2010)

Hsc =
N∑

l=1

p2
l

2
+ω0

X2 + Y2

2
+ εk−1

w

N∑
l=1

(Y sin kwxl − X cos kwxl), (2.1)

where X and Y correspond to the Cartesian components of the complex wave
amplitude Z = X + iY , also expressed as Z = √2Ie−iθ in terms of the phase θ

and intensity I. We assume that particles have periodic boundary conditions in the
interval of length L, and the wavenumber is kw= 2πj/L for some integer j. Parameter
ε is the wave–particle coupling constant (which may be determined from further
consideration of the underlying plasma).

The first and second terms in (2.1) represent the kinetic energy of the resonant
particles (generating ballistic motion) and the energy of the free wave (related to the
vibratory motion of the non-resonant bulk particles in the plasma), respectively. The
latter (also responsible for the nonlinear nature of the dynamics) corresponds to the
interaction energy between the wave and resonant particles.

The equations of motion are directly derived from the Hamiltonian (2.1),

ẋl = pl, 1 6 l 6 N, (2.2)
ṗl = ε Im(Zeikwxl), 1 6 l 6 N, (2.3)

https://doi.org/10.1017/S002237781700006X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781700006X


4 D. D. A. Santos and Y. Elskens

Ż =−iω0Z + iεk−1
w

N∑
l′=1

e−ikwxl′ . (2.4)

This dynamical system admits as equilibrium states the configurations where the
electrostatic field has zero amplitude and the particles are distributed in monokinetic
beams (as in Dawson’s beams model), labelled 1 6 s 6 b, characterized by velocities
vs and number of particles Ns. Assuming

x(0)ns (t)= vst+ nL/Ns + φs (2.5)

as the position of the nth particle of beam s with the number of particles per beam
satisfying the condition Ns > j, the sum in (2.4) vanishes at any instant in time and,
consequently, (xl(t)= x(0)ns (t), pl(t)= vs, Z(t)= 0) corresponds to an exact, equilibrium
solution with vanishing wave. No similar solution exists with non-zero Z (Elskens
2001).

The dynamics preserves total energy H and total momentum P= kwI +∑l pl. The
reversibility of Hamiltonian dynamics is expressed by the invariance of system (2.2)–
(2.4) under the time-reversal map (x′, p′,X′,Y ′, t′,H′, k′w)= (x,−p,−X,Y,−t,H,−kw).
Here, the reversal of kw accounts for the reversal of total momentum P under this
map, as well as invariance of total energy H.

Considering the system slightly displaced from this equilibrium configuration, the
evolution of the wave amplitude and the perturbations in particle orbits obey the
linearized equations of motion

δẋns = δpns, (2.6)

δṗns =−ε Im(Ze−ikwx(0)ns ), (2.7)

Ż =−iω0Z + ε
b∑

s=1

Ns∑
n=1

δxnse−ikwx(0)ns , (2.8)

where b is the number of beams (
∑b

s=1 Ns =N ), δxns = xns − x(0)ns and δpns = pns − vs.
The perturbations in positions and momenta can be expressed in Fourier series with

coefficients C and A (Escande et al. 1996),

δxns(t)= 2 Im(Cs(t)eikwx(0)ns (t))− i
∑
m∈µ′s

Cms(t)eikmx(0)ns (t), (2.9)

δpns(t)= 2 Re(As(t)eikwx(0)ns (t))+
∑
m∈µ′s

Ams(t)eikmx(0)ns (t), (2.10)

where the set µ′s is defined as

µ′s =
{{m ∈Z : |m|6 (Ns − 1)/2 and m 6= ±j}, if Ns is odd,
{m ∈Z : 1−Ns/2 6 m 6 Ns/2 and m 6= ±j}, if Ns is even. (2.11)

The first terms in (2.9) and (2.10), which appear outside the sum, correspond to
what we call the wave-like part of the solution. We omit the subscript j in the
coefficients since they are the only components of the wave-like kind. The second
terms, involving the sums over µ′s, corresponds to the ballistic parts whose evolutions
are readily expressed in terms of the initial conditions,

Cms(t)= (Cms(0)+ iAms(0)t)e−ikmvst (2.12)
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Ams(t)= Ams(0)e−ikmvst, (2.13)

because these terms do not couple with Z as
∑

n e−ikmx(0)ns = 0 for each m, s. On the
contrary, due to their dependence on the wave amplitude Z, the wave-like components
of the Fourier coefficients have a more intricate form that requires calculating the
eigenvalues of the linearized system and expanding initial data in terms of the
corresponding eigenvectors.

2.1. Wave-like solution and dispersion relation
The ‘lattice’ Fourier coefficients of the wave-like part satisfy the system of differential
equations

Ċs =−ikwvsCs + iAs, 1 6 s 6 b, (2.14)

Ȧs =−ikwvsAs + i
ε

2
Z, 1 6 s 6 b, (2.15)

Ż = iω0Z − iε
b∑

s=1

CsNs. (2.16)

Assuming solutions of the form ∼ e−iσ t, the problem of solving the 2b+ 1 equations
of motion reduces to solving the algebraic linear system

σC =M · C, (2.17)

where C ∈ C2b+1 denotes C = [c1, . . . , cb, a1, . . . , ab, z]T, whose values of cs and as
represent, respectively, the time-independent part of the Fourier coefficients for the
positions and momenta. The real matrix M ∈R(2b+1)×(2b+1) reads

M =



kwv1 0 −1 0 0
. . .

. . .
...

0 kwvb 0 −1 0
0 0 kwv1 0 −ε/2

. . .
. . .

...

0 0 0 kwvb −ε/2
εN1 . . . εNb 0 . . . 0 ω0


. (2.18)

Denoting by Cr=[cr1, . . . , crb, ar1, . . . , arb, zr]T the rth eigenvector of M , its associated
eigenvalue σr is obtained through the characteristic equation

σr =ω0 + ε
2

2

b∑
s=1

Ns

(σr − kwvs)2
. (2.19)

For a given wavenumber kw, (2.19) states the condition to be satisfied by the
eigenfrequencies σr for the system (2.14)–(2.16) to admit non-trivial solutions. This
equation is thus a dispersion relation for the eigenmodes of the linearized system. It
can be transformed into a polynomial equation of degree 2b+ 1 with real coefficients,
and therefore admits generically 2b + 1 complex roots, with at least one of them
purely real (see figure 1b).
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(a) (b)

FIGURE 1. Illustration of a possible configuration for a system composed of one wave
with natural frequency ω0 and ten monokinetic beams. The beams velocities vs = v1 +
(s − 1)1p are set around the wave phase velocity ω0/k. (a) Distribution of particles
velocities with a constant slope, given according to f (vs)= f (v1)+ (s− 1)1pf ′ (yielding
Ns=N1pf (vs) as the number of particles) in Iv = [v1−1p/2, vb+1p/2] and set to zero
outside this interval. (b) Graphical representation of the dispersion relation (2.19) through
the line y=ω−ω0 and the many branches curve y=χ(ω)≡ (ε2/2)

∑
s(ω− kvs)

−2Ns. The
intercept point locates the single purely real solution to this equation.

The continuous limit corresponds to letting N → ∞ while keeping ε2N fixed.
Particles are described with the distribution function (Firpo & Elskens 1998)

F(x, p)= lim
N→∞

1
N

∑
l

δ(x− xl)δ(p− pl) (2.20)

and the wave is rescaled to
Z = εZ (2.21)

so that the dynamics (2.2)–(2.3) generates the characteristics of the Vlasov equation

∂tF + p∂xF − Im(Ze−ikwx)∂pF = 0 (2.22)

coupled with the wave evolution

Ż =−iω0Z + ik−1
w

∫ L

0

∫ ∞
−∞

e−ikwxF(x, p) dp dx. (2.23)

The equilibrium reference state is (Z = 0, F(x, v) = L−1f (v)), with the velocity
distribution function such that Ns = N

∫ vs+1p/2
vs−1p/2 f (p) dp: in the continuous limit, beam

velocities are continuously distributed.
The dispersion relation in this limit follows from (2.19) by replacing the sum

over the number of particles with an integral over the interval containing the beams
velocities weighted by the normalized distribution f (vs). Formally, this leads to a
singular integral equation if σ is real and f (σ/kw) does not vanish; with an iε
prescription, Landau (1946) obtains a solution σL with imaginary part

γL = πε2N
2k2

w

f ′(ω0/kw), (2.24)
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Phase mixing in Landau growth and damping 7

implying that the equilibrium is unstable for positive f ′(ω0/kw) whereas perturbations
are damped for negative f ′(ω0/kw).

For equally spaced beams, vs− vs′ = (s− s′)1p, analytical estimates (Dawson 1960;
Escande et al. 1996; Elskens & Escande 2003) show that a pair of eigenvalues ωr± iγr
is located near each beam (with |vs −ωr/kw|<1p/2), with imaginary part

γr '− 1
τrec

ln

∣∣∣∣∣δ
√

1+ θ 2
r

4π

∣∣∣∣∣+ · · ·, (2.25)

where δ := f ′(vs)1p/f (vs) and θr=O(1). Their real part ωr is near (vs+ (1p/4) sign δ)kw.
The recurrence time

τrec = 2π

kj1p
(2.26)

characterizes the time scale on which the approximation of the many beams by a
smooth distribution function loses its validity.

In the continuum limit, the imaginary parts ±γr of these eigenfrequencies as
well as their spacing go to zero, so they approach a continuum spectrum of real
eigenfrequencies which corresponds to the analogue of van Kampen modes found in
the Vlasovian approach.

When the distribution function has a negative slope, there are 2b such van Kampen-
like eigenvalues, and just one real eigenvalue beyond the fastest beam (see figure 1b).
In contrast, for a positive f ′(ω0/kw), besides these solutions condensing to the real axis
in the limit, (2.19) is also satisfied by a particular pair of eigenvalues ωL± iγL whose
imaginary part is given (in the limit 1p→ 0) by (2.24).

A first benefit of the discretized model with monokinetic beams is its avoiding
singular integrals and prescriptions of proper integration contour inherent to the
kinetic approach. It also stresses a deep difference between the damping and growth
cases: despite their being encompassed by a single formula (2.24), they must involve
different physics, because the instability is associated with a single eigenvalue solving
(2.19), while in the damping case (2.19) admits no solution with negative imaginary
part near γL.

This paradox reflects the reversibility of Hamiltonian dynamics: if damping resulted
from a genuine eigenmode of the system, the dispersion relation would have a
conjugate eigenvalue with positive real part, leading to an instability. This paradox of
the Vlasov equation was solved by van Kampen (1955, 1957) and Case (1959).

A second indication that Landau damping does not result from the ‘dominant
eigenmode’ in kinetic theory is that some initial data lead to a damping with smaller
decay rate than Landau’s: when present, they dominate over the Landau behaviour
for long times (Belmont et al. 2011).

Actually, we shall see that both Landau damping and growth are related to a phase
mixing effect among the van Kampen-like modes when the general solution of the
linearized system is written in terms of its eigenfunctions.

2.2. Normal modes expansion
Denote by Cr and σr the rth eigenvector of M and its eigenvalue. Then, by the linearity
of (2.17), the general solution G(t) = [C1(t), . . . , Cb(t), A1(t), . . . , Ab(t), Z(t)]T is a
superposition of the eigensolutions Cre−iσr t, i.e.

G(t)=
2b+1∑
r=1

ξrCre−iσr t, (2.27)
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8 D. D. A. Santos and Y. Elskens

with components

Cs(t)= ε2
2b+1∑
r=1

ξr

(σr − kwvs)2
e−iσr t, (2.28)

As(t)= ε2
2b+1∑
r=1

ξr

σr − kwvs
e−iσr t, (2.29)

Z(t)=
2b+1∑
r=1

ξre−iσr t. (2.30)

The coefficients ξr of the linear combination are obtained from the initial condition
and the left eigenvectors of matrix M , σrC ′r =MT · C ′r, through the inner product

ξr = C ′Tr · G(0)= z′r

[
Z(0)+ ε

b∑
s=1

Ns

(
Cs(0)

σr − kwvs
− As(0)
(σr − kwvs)2

)]
, (2.31)

where the scaling factor z′r, given by

z′r =
[

1+ ε2
b∑

s=1

Ns

(σr − kwvs)3

]−1

, (2.32)

is chosen so that the normalization condition C ′Tr′ · Cr = δr′,r is satisfied.
In the linear regime, the system of beams interacting with a single Langmuir

wave is therefore analytically solvable in terms of a normal modes expansion of
the linearized equations of motion. Within the present approach, specifically through
(2.9)–(2.13) and (2.27)–(2.32), note that once the full spectrum of eigenfrequencies
{σr} and the initial condition of the dynamics (the coefficients ξr) are known, the
evolution of the wave amplitude and the perturbations on the particles orbits are
determined.

In particular, the scaling factor z′r coincides with the weight of eigenvector Cr in the
decomposition of a ‘quiet start’ initial condition (δxns(0)= 0, δpns(0)= 0, viz. Cs(0)=
0, As(0)= 0).

3. Numerical results and discussion
In this section, we discuss the spectrum of the van Kampen-like eigenfrequencies

obtained by solving numerically (2.19) for many-beam systems and stress some
microscopic aspect of the dynamics. As we shall see, both wave damping and growth
arise as consequence of an interference among the 2b + 1 eigenmodes. However,
in respect to this interference (or phase mixing) effect, these two cases exhibit a
remarkable distinctive behaviour as the number of beams becomes large.

The monokinetic beams approach presented in § 2 breaks down after times of
the order of the bouncing time ω−1

b = (ε|Z|kw)
−1/2, where the particle orbit may

no longer be considered approximately ballistic. To ensure that trapping effects
play a negligible role and the structure of beams is preserved, all the following
results were obtained in the weak amplitude regime (easily implemented in taking
ε � 1, N ∼ ε−2 → ∞). To simplify our numerical calculations, we take ω0 = 0.0
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(a)

(b)

(c)

FIGURE 2. Damping case: discrete analogue of van Kampen eigenfrequencies in the
complex σ – plane (c), the phase (b) and the modulus (a) of the scaling factor. The curves
in the two upper panels are guides to the eye. The red losangle locates the Landau value
σL (which corresponds to no eigenmode in the finite-N model). The results were obtained
for systems composed of 50 and 200 beams with parameters set to Iv = 1.6, ω0 = 0.0,
kw = 1.0, εNf ′ =−4.8 and γL =−2.26× 10−2.

which, from the physical viewpoint, amounts to performing a Galileo transformation
to a reference frame moving with the wave (nominal) phase velocity. We set the
equilibrium state with particle velocities equally spaced (vs = v1 + (s − 1)1p)
inside an interval of length Iv centred at the origin and the distribution function
f (vs)= f (v1)+ (s− 1)f ′1p, where f ′ is constant and 1p= Iv/b is the velocity interval
between two adjacent beams. The data f (v1) = 1/Iv − (b − 1)1pf ′/2 ensure that the
distribution of velocities is normalized to unity. Thus, the number of particles† in
beam s is given by Ns =N1pf (vs).

In the weak-coupling regime and for many-beam systems, the spectrum of
eigenfrequencies is very close to the real axis, and therefore the numerical solutions
of (2.19) must be computed with high accuracy. To obtain the spectrum of
eigenfrequencies for such systems with an accuracy down to 10−7 (|σ approx

r − σr| 6
10−7), we developed a root-finding scheme based on Cauchy’s residue theorem with
triangular contours that enabled us to implement a bisection method in the complex
σ -plane. In this paper, we shall not dwell on the technical details of the method; its
key ideas are discussed in appendix A.

3.1. Spectra and scaling factors
In the lowest graph in figure 2, we plot the spectrum of van Kampen-like eigen-
frequencies for the damping case ( f ′ < 0) for systems composed of 50 and 200

†Formally, one may wish Ns to be integer. However, the linear dynamics (2.14)–(2.16) for Fourier coefficients
no longer refers to individual particles, and any real positive values for Ns/N, N and εN are mathematically
admissible. Rational or integer values are not remarkable in this context.
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10 D. D. A. Santos and Y. Elskens

FIGURE 3. Damping case: behaviour of the average distance to real axis γ̄r ≡
b−1 ∑

r,γr>0 γr as a function of the beam spacing. The linear regression y = (0.177 ±
0.001)x± 0.001 shows that γr goes to zero like x≡1p | log1p| as computed by Dawson
(1960). The error bars represent the tolerance 10−3 used in the root-finding routine.

beams. The upper two plots display the logarithm of the modulus of the scaling
factor z′r and its phase Arg z′r, obtained from the spectra and (2.32). These curves
correspond only to the eigenmodes with γr > 0: thanks to the time reversibility of
Hamiltonian dynamics implying real coefficients in the algebraic equation (2.32), the
stable eigenmodes differ only by the opposite sign of their phase. Regardless of the
number of beams, the phase velocities ωr/kw of the damped and growing eigenmodes
are confined to the interval [−0.8, 0.8] that contains the resonant particles. The more
beams we consider, denser the spectrum becomes and it approaches as a whole the
real axis. The dependence of the mean value of the imaginary part γ̄r = b−1∑

r,γr>0 γr

(which amounts to the `1 norm of the sequence of these imaginary parts) on the beam
spacing is illustrated in figure 3, indicating how, in the continuous limit (1p→ 0),
these eigenfrequencies accumulate toward the real axis forming what corresponds
to the continuous spectrum of van Kampen frequencies derived from a Vlasovian
description. The spacing between the real parts of successive eigenfrequencies also
goes to zero like 1p because there is always a real ωr/kw between two successive
beam velocities, so that the condensation of eigenvalues onto the real axis tends to a
cut along the interval [inf(vs), sup(vs)]: this cut is the locus of van Kampen’s singular
spectrum. This behaviour γr ∼1p | ln1p|, (2.25) was computed by Dawson (1960).

Landau’s value σL =ωL + iγL, represented by the red diamond point in figure 2, is
obtained after taking the continuous limit of (2.19). The interaction between the wave
and resonant particles is responsible for the small deviation |ωL − ω0| = 2.30× 10−2

from the free wave frequency, which can also be estimated analytically (Elskens &
Escande 2003).

We also observe, in the vicinity of ωL, a striking behaviour for the modulus and
for the phase of the scaling factor. The top plot evidences a peak slightly shifted
from the origin, and the centre plot shows a change in the phase’s sign. These two
behaviours together indicate that the modes with greater contribution to the initial
data (δxns(0), δpns(0), Z(0)) are those with a frequency close to the Landau value, in
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agreement with the estimate (Elskens & Escande 2003)

z′r '−
1

2π

kw1p
γL ± i(ωr −ωL)

(3.1)

from (2.32). The plus-or-minus sign in this equation take care of the two r eigenmodes
with same phase velocity.

For the growth case ( f ′> 0), the spectrum and the scaling factor shown in figure 4
exhibit two distinctive features (compared to the damping regime) for systems with
many beams. The first one is the presence of two specific eigenfrequencies, complex
conjugate to each other, that do not approach the real axis as the number of beams
increase. We denote the eigenfrequency close to the Landau frequency by σbL (Landau-
like eigenmode, with subscript b recalling the finite number of beams) and its complex
conjugate by σbL∗ (anti-Landau eigenmode), both highlighted in the figure. The second
striking difference is the spike (note the log scale) in the curve for the modulus of the
scaling factor. It shows, along with Arg(z′bL)≈ 0, that the Landau and the anti-Landau
eigenmodes have a dominant contribution to the initial data.

3.2. Quiet start evolution
In order to monitor the contributions of the bL and bL∗ eigenmodes to the wave
amplitude, we consider a single realization of the system where the wave is launched
with initial amplitude Z(0)=1 and particles start from the equilibrium configuration of
monokinetic arrays. For this specific quiet start realization, the evolution of the wave
amplitude is given according to (2.30) by

Z(t)= z′bLe−iσbLt + z′bL∗e
−iσbL∗ t +

2b+1∑
r=1

r 6=bL,bL∗

z′re
−iσr t, (3.2)

recalling that the scaling factor corresponds to a weight factor indicating how much
each eigenmode contributes to construct the initial amplitude.

Due to the fact that for many-beam systems z′bL≈ 1 and σbL≈ σL, as seen from the
black graphs in figure 4, one would expect the Landau-like (bL) eigenmode to provide,
by itself, the correct growth of the wave. However, the contribution of the other 2b
eigenmodes still have to be taken into account. Thanks to a destructive interference,
these 2b eigenmodes superposed contribute only with a small oscillatory part that does
not compromise the exponential growth ∼eγLt of the wave. Figure 5 illustrate this
destructive interference by monitoring the evolution of the Cartesian components of
each term of (3.2) for a system of 2000 beams. This graph exhibits a clear symmetry
between the red and green curves, showing that the O(1) contribution of the anti-
Landau eigenmode is cancelled out by the superposition of the (dense, individually
small) van Kampen-like eigenmodes. The dashed curves that appear as an envelope in
figure 5 are given by ±e−γLt and indicate that, in the same way as for the anti-Landau
eigenmode, the superposition of the van Kampen-like eigenmodes also damps with the
anti-Landau rate.

Analytically, indeed, the asymptotic form (3.1) for the scaling factor implies that the
third term in (3.2) behaves like the Fourier transform of a Lorentz function, namely
as −Z(0)e−γL |t|. Therefore, (3.2) reduces to

Z(t)' Z(0)eγLt + Z(0)e−γLt − Z(0)e−γL|t| (3.3)

which reduces to Z(0)eγL|t| for both positive and negative t.
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(a)

(b)

FIGURE 4. Growth case: (a) modulus and phase of the scaling factor (the lines are guides
to the eye) and (b) spectrum of the van Kampen-like eigenfrequencies in the complex
σ plane for systems composed of 100, 500 and 2000 beams. The red losangle locates
the Landau mode, which is slightly shifted from the origin by ωL = −4.87 × 10−3. The
parameters were set to Iv = 1.0, ω0 = 0.0, kw = 1.0, εNf ′ = 16.0 and γL = 2.51× 10−3.

This form rescues the time reversibility in the solution to the initial value problem.
If the response to the initial perturbation were described with only the Landau-like
eigenmode, it would lead to a decreasing |Z(t)| for t → −∞. Yet time-reversal
symmetry (unbroken by the quiet start initial condition) requires the wave to increase
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(a)

(b)

FIGURE 5. Growth case: evolution of real (a) and imaginary (b) parts of the Landau
(bL), anti-Landau (bL∗) and van Kampen-like components in the wave complex amplitude
Z = X+ iY for a system of 2000 beams in the unstable case. The symmetry between the
red and green curves shows the compensation between the anti-Landau eigenmode and the
van Kampen spectrum. The Landau (blue) line is growing exponentially, exceeding largely
the range of our ordinate axis.

as t→−∞ just as it does for t→∞. Therefore, the system evolution for all times
must involve both the Landau-like and anti-Landau modes, the sum of which reads
2Z(0) cosh γLt. But this sum does not start exactly exponentially at t= 0, so that the
van Kampen-like eigenmodes are needed to cancel the anti-Landau mode for t > 0,
and to cancel the Landau-like mode for t< 0.

This peculiarity of the growth regime can be seen numerically only when
considering a larger number of beams. The necessity of working with such many-beam
systems motivated us to developed the Cauchy root-finding scheme once that
traditional computer algebra systems failed in providing the full spectrum.

Note that the damping case is analytically simpler: it involves only van Kampen-
like eigenmodes, for which the scaling factors given by (3.1) again yield the Fourier
transform of a Lorentz function. However, γL is now negative, so that z′r > 0 for ωr ≈
ωL and (3.2) reduces to the well known

Z(t)' Z(0)eγL|t|. (3.4)

Figure 6 show the evolution of the wave intensity I = Z∗Z/2, obtained through the
superposition of the van Kampen-like eigenmodes for systems composed of 30, 50
and 200 beams. We observe that the Langmuir wave damps (or grows) initially with
the expected Landau prediction log IL(t)= log I(0)± 2|γL|t, represented by the dashed
black lines. For the unstable case, even for a small number of beams, where max{γr}>
γL and the bL and bL∗ modes are not prominent, the discrete and continuous systems
agree.
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(a)

(b)

FIGURE 6. Evolution of the wave intensity for systems composed of 30 (red), 50 (blue)
and 200 (orange) beams for the stable (a) and the unstable (b) cases with the dashed
lines corresponding to the Landau prediction. The same parameters that generated the
spectra in figures 2 and 4 were used here. As initial condition we consider Z(0)= 1.0 and
unperturbed trajectories δxns(0)= δpns(0)= 0 with particles starting in the configuration of
equally spaced monokinetic beams.

The divergences observed in the graphs occur for times close to the recurrence time
τrec ∼ 2π/1ωr ∼ 2π/(kw1p) where the lack of an effective phase mixing of the van
Kampen-like eigenmodes along with the large values of the modulus of the complex
amplitude z′re

γr t of the unstable eigenmodes make the wave intensity depart from the
Landau line. After this characteristic time, the approximation of a discrete system
composed of monokinetic beams by a continuous one is no longer valid (Firpo &
Elskens 1998). It is worth noting that the departure of the orange curve from the
Landau line in the top part of figure 6 is not related to the breakdown of the phase
mixing but to the small values of IL(t) compared to the amplitude of the oscillations.

4. Summary and perspectives

Our results in this paper provide an accurate numerical support for studying
the phase mixing mechanism in Hamiltonian models. Success in investigating this
process for many-beams systems rests on the development of a new root finding
scheme based on the Cauchy’s integral theorem enabling one to compute all the roots
of the dispersion relation (2.19).

Analysing the spectrum of eigenfrequencies of the van Kampen-like modes and the
evolution of the Cartesian components of the wave amplitude highlights a remarkable
aspect in which the stable and unstable regimes differ. In the stable case, the normal
modes simply contribute collectively in providing the Landau damping; however, in
the unstable case, the pure exponential growth of the wave amplitude is the result
of a destructive interference effect (between its dual exponentially decaying mode,
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(a) (b)

FIGURE 7. Illustration of the bisection-like method in the complex σ -plane by supposing
that the root is located to the right side of the line corresponding to the sth beam. The
shaded triangles highlight the regions for which the contour integral is non-zero and that,
consequently, contain a root inside.

with same initial amplitude, and a flurry of van Kampen modes with small individual
amplitudes) that enables a single eigenmode to provide a dominant contribution on
the dynamics from the very beginning. We conclude the paper pointing out the
consistence between the discrete and the continuous systems (Firpo & Elskens 1998),
and verifying that the superposition of the van Kampen-like eigenmodes indeed
provides the expected exponential Landau damping/growth rate for the wave intensity.

The quiet start as well as the equally spaced beams setting were chosen in order to
simplify the calculations. However, one expects similar results for other discretizations
and initial conditions of the system in the many beams regime.
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Appendix A. Bisection-like root finding method in the complex plane
The Cauchy integral theorem states that if F is an analytic function on a simply

connected domain D bounded by a simple closed contour ∂D, then
∮
∂D F(z) dz = 0,

and if F has a finite number of simple poles zj in D with residues Rj, then∮
∂D F(z) dz = 2πi

∑
j Rj. In this appendix, we expose a direct scheme based on

this elementary tool of complex analysis with the aim of computing numerically the
full set of van Kampen-like eigenfrequencies.

With χ(σ) being the right-hand side of (2.19), the method consists in obtaining the
root of σ − χ(σ), inside a given region, by searching for the pole of (σ − χ(σ))−1.
To find a root in the vicinity of the velocity of the sth beam, we define two
rectangles: the left one with vertices A1 to A4 and the right one with vertices A′1
to A′4, both illustrated in figure 7(a). Firstly, we estimate the Cauchy integral along
these rectangular contours in order to identify to which side from the sth beam the
root is located. If one of these rectangles yields∣∣∣∣∮

∂D
(σ − χ(σ))−1 dσ

∣∣∣∣6 Ccrit, (A 1)
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with Ccrit representing the Cauchy criterion to assume the integral numerically zero, it
is discarded as a possible region containing the root.

After identifying the presence of a root inside a rectangle, the next step consists
in implementing the bisection-like method which is based on successive divisions of
the region of search. In figure 7, we illustrate this procedure with the shaded triangles
in figures 7(a) and 7(b) showing, respectively, the configuration at the beginning and
after 6 iterations of the method. Iterations are stopped when the largest side of the
shaded triangle is smaller than the tolerance of the method (which is an input data).
Following so, the approximate root of σ −χ(σ) is given by the geometrical centre of
the triangle.

ALGORITHM 1. BISECTION-LIKE ROOT FINDING METHOD

Gside← Larger side (A′1, A′2, A′4)
root←NULL
if ¬exist pole inside (A′1, A′2, A′4) then

if ¬exist pole inside (A′3, A′2, A′4) then
return root

else
A′1← A′3
A′3← A′4
A′4← A′2
A′2← A′3

end if
end if

while Gside > error do
if exist pole inside (A′1, (A

′
2 + A′4)/2, A′4) then

A′3← A′2
A′2← A′4
A′4← A′1
A′1← (A′2 + A′3)/2

else
A′3← A′4
A′4← A′2
A′2← A′1
A′1← (A′3 + A′4)/2

end if
Gside← Larger side (A′1, A′2, A′4)

end while
root← (A′1 + A′2 + A′4)/3
return root

end

The bisection-like method is displayed through the pseudo-code in Algorithm 1,
where we called the function ‘Larger_side (A,B,C)’, that yields the length of the
largest side of triangle ABC, and the function ‘exist_pole_inside (A,B,C)’ whose
Boolean output informs, by means of the Cauchy criterion (A 1), whether there is a
pole of (σ −χ(σ))−1 inside the triangle ABC. The code generating the results in this
paper was implemented in C language with the ‘complex.h’ library.
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Although the method was built specifically to tackle the problem of monokinetic
beams presented in this paper, it can a priori be used in an efficient way to find the
complex roots of any function F(σ ) which is well behaved in the integration domains
and such that the poles of F−1(σ ) have non-vanishing residues.
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