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Intrauterine growth restriction (IUGR) can induce deleterious changes in the modulatory ability of the vascular endothelium, contributing to an
increased risk of developing cardiovascular diseases in the long term. However, the mechanisms involved are not fully understood. Emerging
evidence has suggested the potential role of endothelial progenitor cells (EPCs) in vascular health and repair. Therefore, we aimed to evaluate the
effects of IUGR on vascular reactivity and EPCs derived from the peripheral blood (PB) and bone marrow (BM) in vitro. Pregnant Wistar rats were
fed an ad libitum diet (control group) or 50% of the ad libitum diet (restricted group) throughout gestation. We determined vascular reactivity,
nitric oxide (NO) concentration, and endothelial nitric oxide synthase (eNOS) protein expression by evaluating the thoracic aorta of adult male
offspring from both groups (aged: 19–20 weeks). Moreover, the amount, functional capacity, and senescence of EPCs were assessed in vitro. Our
results indicated that IUGR reduced vasodilation via acetylcholine in aorta rings, decreased NO levels, and increased eNOS phosphorylation at
Thr495. The amount of EPCs was similar between both groups; however, IUGR decreased the functional capacity of EPCs from the PB and BM.
Furthermore, the senescence process was accelerated in BM-derived EPCs from IUGR rats. In summary, our findings demonstrated the deleterious
changes in EPCs from IUGR rats, such as reduced EPC function and accelerated senescence in vitro. These findings may contribute towards
elucidating the possible mechanisms involved in endothelial dysfunction induced by fetal programming.
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Introduction

Clinical and experimental data have revealed deleterious adapta-
tions in the vasculature as a hallmark of the fetal programming
process.1–11 These responses are attributed to insults (e.g. maternal
diet manipulation, hypoxia, and uteroplacental insufficiency)
that occur during the critical window of fetal development.5–12

Indeed, intrauterine growth restriction (IUGR) is associated with
abnormalities in the modulatory ability of the vascular endothe-
lium, resulting in reduced endothelium-dependent relaxation.7–9

Several mechanisms are involved in vascular programming;
increased reactive oxygen species (ROS) levels and reduced
antioxidant capacity have been observed in IUGR animals.8–10,13

In addition, decreased endothelial nitric oxide synthase (eNOS)
messenger RNA expression, methylation of the NOS3 promoter,
and lower nitric oxide synthase (NOS) activity can contribute
to NO reduction in different vascular beds.4,14 Together, these
adaptations may lead to an increase in cardiovascular events in
adult life.

Asahara et al. have isolated and characterized putative endo-
thelial progenitor cells (EPCs) from the peripheral blood (PB) to
investigate their possible roles.15 EPCs are a heterogeneous
population of cells in different states of maturation derived from
the bone marrow (BM).16,17 These cells exhibit the capacity to
proliferate and migrate to injured sites where they play a role in
several physiological repair processes such as reendothelization
and vascular integrity maintenance.18–20 Indeed, EPCs can
differentiate into mature endothelial cells or activate resident
endothelial cells by releasing paracrine factors.21 Cardiovascular
risk factors can reduce both EPC number and functions.21,22

Furthermore, the properties of EPCs can be impaired under
pathological conditions such as hypertension, vascular dysfunc-
tion, and heart failure, thus contributing to the prognosis of
cardiovascular diseases.23–26

It is known that IUGR could induce harmful changes in
EPCs.27 Ligi et al. have extracted EPCs from the umbilical cord
of newborns with IUGR and found a significant reduction in
functional capacity, evidenced by the lower number of colony-
forming units (CFUs) and the longer time in establishing
colonies in vitro.27 In addition, the angiogenic capacity of EPCs
was reduced, and senescence was enhanced.27 Therefore,
IUGR may be an additional risk factor for EPC dysfunction.
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Given that EPC dysfunction is also present in cases of altered
flow-mediated vasodilation,28–30 we hypothesized that EPC
functional impairment could be a possible link between IUGR
and reduced endothelium-dependent vasodilation in rats.
Therefore, this study investigated the possible effects of IUGR
on the vascular reactivity, EPC number, and EPC function of
adult male rat offspring in vitro.

Materials and methods

All procedures were approved by the Ethical Committee for
Animal Research (Protocol Number: 836.880) at the Federal
University of São Paulo and were in accordance with the
guidelines for ethical conduct in the care and use of animals
proposed by the Brazilian Society of Laboratory Animal Science
(SBCAL/COBEA).

Adult male and female Wistar rats purchased from the
Institute of Biomedical Sciences of the University of São Paulo
were kept at a controlled room temperature in a light–dark
cycle (12:12 h) with free access to standard rat chow and tap
water. As previously described, female Wistar rats were mated
with male Wistar rats (age range: 14–16 weeks) overnight. The
presence of spermatozoa in the vaginal smear was considered as
the day of conception (day 0). Each pregnant rat was indivi-
dually housed in standard cages and randomly divided into one
of two groups: the control group (CT, n = 10), which were fed
a standard laboratory animal diet (Nuvilab CR1; based on the
recommendation of the National Research Council and
National Institutes of Health, USA) ad libitum, and the
restricted group (RT, n = 11), which were fed 50% of the
typical daily food intake (determined by the amount of food
consumed by the CT group during the gestation period). The
pups were weighed immediately after they were born, and the
mothers from the RT group were fed an ad libitum diet. At
birth, litter size was standardized to eight pups (four males and
four females) for both groups to prevent alterations in neonatal
growth due to decreased milk availability during suckling. The
offspring were nursed by their mothers until weaning at day 21.
The present study was conducted only on male offspring (age
range: 19–20 weeks). To avoid litter effects, two animals from
each litter were chosen for each experiment. Female offspring
were euthanized (age range: 14–16 weeks) for use in another
study unrelated to the present research.

Resting arterial blood pressure evaluation

Resting systolic blood pressure was noninvasively determined
using a computerized tail-cuff system (PowerLab 4/S;
ADInstruments Pty Ltd., Castle Hill, Australia). Rats were
acclimatized to the apparatus in daily sessions over 5 days
(1 week before measurements).

Assessment of vascular reactivity in vitro

Under anaesthesia (50mg/kg sodium thiopental, administered
intraperitoneally), the thoracic aorta was quickly harvested and

cleaned to remove connective tissues in cold Krebs–Henseleit
solution (118mM NaCl, 4.7mM KCl, 25mM NaHCO3,
2.5mM CaCl2·2H2O, 1.2mM KH2PO4, 1.2mM
MgSO4·7H2O, 11mM glucose, and 0.01mM EDTA; pH
7.4). Two segments of the thoracic aorta from each animal
(4mm in length) were mounted in an isolated chamber con-
taining Krebs–Henseleit solution, gassed with 95%O2 and 5%
CO2, and maintained at 37°C. A basal tension of 1.5 g was
applied to each segment of the thoracic aorta. Isometric tension
was recorded using an isometric force transducer (TRI 210;
Letica, Barcelona, Spain) connected to an acquisition system
(PowerLab 8/30; ADInstruments Pty Ltd.). The preparations
were equilibrated for 1 h (the Krebs–Henseleit solution was
changed every 20min), followed by tension adjustments. After
equilibration, the cumulative concentration-response curves to
the agonists acetylcholine (ACh: 10−9–10−5M) and sodium
nitroprusside (SNP: 10−9–10−5M) were obtained in pre-
contracted (noradrenaline: 10−7M) endothelium-intact
aorta rings. Arterial integrity was assessed by stimulation
of the vessels with potassium chloride (KCl: 120mM). Endo-
thelial integrity was assessed by evaluating the relaxant effect of
ACh (10−6M) in vessels pre-contracted with noradrenaline
(10−7M). The agonist concentration-response curves were fit-
ted using a nonlinear interactive fitting software (GraphPad
Prism 5.0; GraphPad Software Inc., USA). The maximal
response (Emax) and potency (−LogEC50) are expressed as
mean ± S.E.M. and a confidence interval, respectively.

Thoracic aorta preparation for NO and Western blotting
assays

Under anaesthesia (50mg/kg sodium thiopental, administered
intraperitoneally), the thoracic aorta was quickly harvested and
cleaned to remove connective tissues in cold Krebs–Henseleit
solution. Then, it was immediately frozen and stored at−80°C.
The tissues were prepared using lysis buffer (100mMTris-HCl
at pH 7.4, 100mM sodium pyrophosphate, 10mM sodium
orthovanadate, 100mM NaF, 10mM EDTA, 2mM pheny-
lmethylsulfonyl fluoride, 0.01mg/ml aprotinin, and 1%
Triton X-100) and centrifuged (15,000 g, 30min, 4°C), and
the supernatant was collected. The protein content of the
lysates was determined using Pierce BCA (bicinchoninic acid)
Protein Assay Kit (Pierce Biotechnology, Rockford, IL, USA).

NO measurement

NO is extremely unstable; thus, the nitrite and nitrate in
thoracic aorta homogenates were re-converted to NO via
reaction with vanadium. NO was measured by the chemilu-
minescence method using a NO analyser (Sievers Instruments
Inc., Boulder, CO, USA), which is based on the gas-
phase chemiluminescence reaction between NO and ozone.
The results were analysed by software, and the concentration of
each sample was normalized to their respective protein
concentrations.31
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Western blotting analysis

The supernatant from thoracic aorta homogenates (70 µg) was
treated with Laemmli buffer containing 200mmol/l dithiothreitol
and subjected to sodium dodecyl sulfate polyacrylamide gel
electrophoresis with 7.5% polyacrylamide gels. Following
electrophoresis, proteins were electro-transferred overnight onto
nitrocellulose membranes (BioRad, Hercules, CA, USA). After
blocking nonspecific sites with T-TBS buffer containing 3%
bovine serum albumin at room temperature for 2 h, the
membranes were incubated overnight at 4°C with the primary
antibody anti-p-eNOSSer1177 (1∶1000; Cell Signaling, USA),
anti-p-eNOSThr495 (1:1000; Millipore, USA), or anti-t-eNOS
(1∶1000; Cell Signaling). The primary antibodies were detected
using peroxidase-conjugated secondary anti-rabbit IgG (1:1500;
Jacskon ImmunoResearch Inc., West Grove, PA, USA) and anti-
mouse IgG (1:10000; Jackson ImmunoResearch Inc.) antibodies.
The immune complexes were detected using an enhanced luminol
chemiluminescence system (ECL Plus; GE Healthcare, Little
Chalfont, UK) and subsequently photographed (Gel Logic 2200
Pro; Nova Analítica, Brazil). The bands were analysed using
ImageJ software (National Institutes of Health, Bethesda, MD,
USA). t-NOS was expressed as the ratio between its mean optical
density and the optical density of Ponceau staining.32,33 The
expression of p-eNOSSer1177 and p-eNOSThr495 was normalized
to that of t-eNOS. The results are expressed as the optical density
ratio of p-eNOSSer1177 and p-eNOSThr495 to t-eNOS.

Isolation of PB and BM mononuclear cells

Under anaesthesia (50mg/kg sodium thiopental, administered
intraperitoneally), 5–6ml of PB was collected from the
abdominal aorta in ethylenediaminetetraacetic acid (EDTA)
tubes, and both tibias and femurs were obtained and placed in
sterile phosphate-buffered saline (PBS) solution containing
penicillin–streptomycin (100 µl/l; Sigma-Aldrich Co., USA).
Under sterile conditions, tibia and femur cavities were flushed
with Dulbecco’s modified Eagle’s medium (DMEM; GIBCO,
USA) to obtain the BM. Both the PB and BM were fractio-
nated by density gradient centrifugation (2500 rpm, 25min,
20–22°C) (Ficoll-Paque; GE Healthcare, Munich, Germany).
Then, monoculear cells (MNCs) obtained from the samples
were quantified, and their in vitro function and senescence were
evaluated.34

EPC immunophenotyping and quantification by flow
cytometry

The MNCs derived from the PB and BM were considered as
EPCs (CD34+/VEGFR2+ cells). Briefly, 1× 106 MNCs were
individually incubated at room temperature in the dark
for 30min with the antibodies anti-CD34-PE-Cy7 (Bioss,
Woburn, MA, USA) and VEGFR2-FITC (Bioss) or the
isotype controls anti-IgG-PE-Cy7 (BioLegend, San Diego, CA,
USA) and IgG-FITC (BioLegend). The negative control was
also incubated at room temperature in the dark for 30min.

After incubation, the cells were washed with PBS and fixed in
1% paraformaldehyde solution. Fixed cells were stored at 4°C
in the dark for 15–20 h and evaluated using a flow cytometer
(FACSCanto; BD Biosciences, USA) by collecting 1,000,000
events. The data were analysed using BD FACSDiva software
(BD Biosciences). Gates were established on the forward-
scatter and side-scatter (FSC/SSC) plots corresponding to
selected MNCs, followed by CD34-PE-Cy7 and VEGFR2-
FITC (Supplementary material Figure). The number of EPCs
(CD34+/VEGFR2+) was calculated as the percentage of MNC
events.34

Assay of EPC functional capacity in vitro

The CFUs ofMNCs from the PB and BMwere evaluated in vitro.
Briefly, 5×106 MNCs were cultured (37°C, 5% CO2, 95%
humidity) on six-well plates pre-coated with fibronectin (BioCoat;
BD Biosciences), seeded with EndoCult medium (STEMCELL
Technologies, Vancouver, Canada). After 48h, 1×106 non-
adherent cells were transferred in triplicate to 24-well plates pre-
coated with fibronectin and cultured for 72–96h (37°C, 5%CO2,
95% humidity) in EndoCult medium. Subsequently, the CFUs
were manually counted by two blinded observers using an inverted
microscope (Nikon Instruments Inc., USA).34

Assay of EPC senescence in vitro

Initially, 5× 106 MNCs from the BM were cultured (37°C,
5% CO2, 95% humidity) on six-well plates pre-coated with
fibronectin (BioCoat), seeded with EndoCult medium
(STEMCELL Technologies). After 48 h, 1× 106 non-adherent
cells were washed twice with PBS and fixed in 2% para-
formaldehyde at room temperature for 3min. Then, the cells
were washed with PBS and incubated in duplicate (37°C, 5%
CO2, 95% humidity) for 24 h in β-galactosidase solution with
EGM-2 medium (Lonza Group Ltd., Basel, Switzerland). Cells
positive for SA-β-Gal exhibited a blue phenotype and were
considered as senescent cells, and they were manually counted
by two-blinded observers using an inverted microscope (Nikon
Instruments Inc., USA).34

Statistical analysis

Statistical analysis was performed using GraphPad Prism 5.0
(GraphPad Software Inc., USA). Results are expressed
as mean ± S.E.M. The data were analysed by an independent
Student’s t‐test, and the significance level was set at P< 0.05.

Results

At birth, the body weight of pups in the RT group was significantly
reduced compared with that of pups in the CT group (CT:
6.6±0.11 g v. RT: 4.5±0.14 g; n = 16; P = 0.001). However,
between 19 and 20 weeks of age, both groups exhibited similar
body weights (CT: 398.40±11.24 g v. RT: 396.1 g±18.82 g;
n = 16; P = 0.787). Blood pressure levels were significantly
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higher in RT offspring than in CT offspring (CT: 110±3mmHg
v. RT: 123±2mmHg; n = 7; P = 0.004).

IUGR-induced reduction in endothelium-dependent
relaxation in thoracic aorta rings

The endothelium-dependent vasodilator ACh induced
a concentration-dependent relaxation in noradrenaline-pre-
contracted thoracic aorta rings from RT and CT offspring. On
the other hand, we found that the maximal vasodilation
response to ACh was significantly reduced in the RT group
when compared with that in the CT group (CT: 90.2 ± 1.7% v.
RT: 65.0 ± 4.4%; n = 8; P = 0.001) (Fig. 2a). The NO donor
SNP also promoted a concentration-dependent vasodilation in
noradrenaline-pre-contracted thoracic aorta rings from RT and
CT offspring; however, there were no significant differences in

the maximal vasodilation response (CT: 99.6 ± 0.5% v. RT:
99.0 ± 0.7%; n = 8; P = 0.238) or sensitivity (EC50) [CT: 8.1
(9.6–6.5) v. RT: 8.9 (9.9–7.9); n = 8; P = 0.819] to SNP
between the groups (Fig. 1).

Effects of IUGR on NO content and eNOS expression in the
thoracic aorta

The NO content found in the thoracic aorta homogenates from
RT offspring was lower than that in those fromCT offspring (CT:
426±63µM/mg of protein v. RT: 202±21µM/mg of protein,
n = 8; P<0.05). IUGR did not affect the protein expression of
total eNOS (Fig. 2) or eNOSSer1177 (Fig. 3a); however, there was a
significant increase in eNOSThr495 phosphorylation (Fig. 3b) in
the thoracic aorta from RT offspring.
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Effects of IUGR on EPC number, functional capacity and
senescence in vitro

The percentage of EPCs in the PB and BMwas similar between
both groups (Fig. 4a and 4b). However, in comparison with the
CT group, the RT group demonstrated a reduced number of
CFU-EPCs in the PB and BM in vitro (Fig. 5a and 5b). The
number of senescent cells from the BM was significantly higher
in the RT group than in the CT group (Fig. 6a).

Discussion

IUGR causes deleterious changes in vascular function, con-
tributing to increased cardiovascular risk.1–4 The mechanisms
involved have been investigated; however, little is known about
the effect of IUGR on EPC properties. The present study
revealed novel IUGR-induced deleterious adaptations in EPCs
derived from the PB and BM. In particular, we demonstrated
in vitro that EPC function was reduced, and the number of
senescent cells from the BM was increased. In addition, IUGR
did not affect the EPC number of adult male offspring.

In the present study, we observed that IUGR reduced
ACh-induced vasodilation in thoracic aorta rings; however,
there were no changes in SNP-induced relaxation, which was
consistent with the findings of previous studies.7,8,14 The reduced
endothelium-dependent vasodilation via ACh in IUGR rats
could be partly caused by lower bioavailability and/or NO pro-
duction; thus, the concentration of NO was assessed. The results
revealed that RT rats had lower NO levels in the thoracic aorta,
which may be attributed to changes in the vascular bed, specifi-
cally increased ROS levels and reduced eNOS activity.13,14

eNOS activity can be modulated by post-translational mechan-
isms including protein phosphorylation.35 It is known that
Ser1177 phosphorylation activates eNOS, whereas Thr495
phosphorylation inhibits its activity.36–39 Therefore, these
phosphorylation sites were evaluated in the aorta. Our data
showed that IUGR did not affect the phosphorylation of eNOS
at Ser1177; however, the phosphorylation at Thr495 was
increased, suggesting that this phosphorylation site can play a role
in reducing NO levels in the RT group. Although the possible
mechanisms by which IUGR induces an increase in
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phosphorylation at Thr495 have not been elucidated, previous
data suggest that Rho-kinase and protein kinase Cα (PCKα)
could be involved. Indeed, Rho inhibition has been found
to result in decrease in eNOSThr495 expression, while nitrite
concentration was increased.40 In addition, IUGR seems
to decrease PCKα expression.41 For this reason, it is plausible
suggest that IUGR-induced NO levels could in part resulting
from changes in PCKα-induced eNOSThr495phosphorylation.42

EPCs are essential for maintaining vascular healthy and
endothelium repair, whereas the capacity of mature endothelial

cell is limited.15,43 Furthermore, clinical findings have
emphasized the association between abnormal flow-mediated
vasodilatation and impairment in EPCs number, bioavailability
and/or function under pathological disorders.28–30 Therefore,
circulating EPCs has emerged as a robust marker predictor of
cardiovascular diseases.43,44 Extending these observations,
experimental data have demonstrated that reduction in
ACh-induced vasodilatation is followed by lower circulating
EPCs amount in conditions as ageing, and hyperhomocystei-
nemia.45,46 In addition, a significantly improvement in endo-
thelial function was observed in hypertensive rats after EPCs
transplantation from normotensive rats.47 Our data evidenced
that IUGR did not change the percentage of EPCs derived
from PB and BM. Similar observations was reported by Ligi
et al. They observed that IUGR has no effect on number of
EPCs extracted from human umbilical cord.27

On the other hand, IUGR seems to play a role in functional
activity of EPCs. Indeed, we showed that RT offspring had a lower
CFUs-EPCs number in PB and BM, reflecting a deteriorated
function in vitro. These results agreed with previous findings
demonstrating that umbilical cord EPCs of babies, restricted
in utero, had a significant reduction in CFUs number.27 Data
about the effects of IUGR on EPCs proprieties are scarce.
However, animal models which showed endothelial dysfunction
also had reduced CFU–EPCs number, or the EPCs capacity
to forming colonies was completely abolished.24,34,47,48 These
previous findings support the hypothesis that EPCs dysfunction
could be at least in part involved in vascular dysfunction. The
mechanisms underlying negative effects in EPCs function induced
by IUGR, remains to be elucidated. Nevertheless, it is known that
several aspects may affect the functional capacity of EPCs.49

Among them, accelerated senescence process of these cells seems
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to be involved.50,51 It is important to note the EPCs viability,
and hence its function is partially controlled by an adequate
senescence process which, under physiological limits, play a
key role as a factor for the cells survival.52 In the present study
we demonstrated that RT group showed increased number of
senescent EPCs derived from BM, as evidenced by the positive
staining by SA-β-Gal. It should be considered that senescent cells
remain viable, but considerable changes on its morphology and
function are observed.53–55 The high senescent cells number
found in RT rats may have contributed partially to reduce EPCs
function in vitro. Cells can become senescent promptly, inde-
pendently of rate of cells division.56 Factors as high ROS levels and
lack of nutrients can induce senescence, which is designated as
stress-induced premature senescence.57,58 Accelerated senescence
in EPCs has been attributed in part to increased oxidative stress,
due to NADPH activation, that induces upregulation in p38
mitogen activated protein kinase phosphorylation.59,60 In sum-
mary, our data provides evidence that IUGR rats show deleterious
changes in EPCs, as reduction in EPCs function and accelerated
senescence in vitro. These findings may collaborate in part
to clarify the possible mechanisms involved in endothelial
dysfunction induced by fetal programming.
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