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We consider an agent-based model of financial markets with asynchronous order arrival in
continuous time. Buying and selling orders arrive in accordance with a Poisson dynamics
where the order rates depend both on past prices and on the mood of the market. The
agents form their demand for an asset on the basis of their forecasts of future prices and
their forecasting rules may change over time as a result of the influence of other traders.
Among the possible rules are “chartist” or extrapolatory rules. We prove that when
chartists are in the market, and with choice of scaling, the dynamics of asset prices can be
approximated by an ordinary delay differential equation. The fluctuations around the
first-order approximation follow an Ornstein–Uhlenbeck dynamics with delay in a
random environment of investor sentiment.
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1. INTRODUCTION

In recent years there has been increasing interest in agent-based models of financial
markets where the demand for a risky asset comes from many agents with inter-
acting preferences and expectations. These models are capable of reproducing,
often through simulations, many “stylized facts” such as the emergence of herding
behavior [Lux (1995)], volatility clustering [Lux and Marchesi (2000)], or fat-
tailed distributions of stock returns [Cont and Bouchaud (2000)] that are observed
in financial data. In contrast to the traditional framework of an economy with
a utility-maximizing representative agent, behavioral finance models comprise
many heterogeneous traders who are boundedly rational. The market participants
do not necessarily share identical expectations about the future evolution of asset
prices or assessments of a stock’s fundamental value. Instead, agents are allowed
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to use rule-of-thumb strategies when making their investment decisions and to
switch randomly between them as time passes. Following up on the seminal
work of Frankel and Froot (1986), one typically distinguishes fundamentalists,
noise traders, and chartists. Different types of traders often coexist,1 with their
proportions varying over time as agents are allowed to change their strategies in
reaction to the strategies’ performance or the choices of other market participants.
This may lead to temporary deviations of prices from their benchmark rational
expectations value generating bubbles or crashes in periods when technical trading
predominates.

An array of agent-based models have been suggested over the past two decades.
The underlying mathematical methods and techniques range from central limit
theorems for stochastic processes in random media to deterministic dynamical
systems. Föllmer and Schweizer (1993) and Horst (2005), for instance, model asset
prices as a sequence of temporary equilibrium prices in a random environment of
investor sentiment. They show that in a noise trader framework, and after suitable
scaling, the asset price process can be approximated by an Ornstein–Uhlenbeck
process with random coefficients. Their approach captures some interaction and
imitation effects such as word-of-mouth advertising, but the dynamics of the
environment lacks a dependence on asset prices. This gap is filled by Föllmer
et al. (2005), where the agents are allowed to use technical trading rules. This
generates a feedback from past prices into the environment. It turns out that
asset prices converge to a unique limiting distribution if the impact of chartists is
not too strong. Similar results were obtained in a different setting by Böhm and
Wenzelburger (2005); we refer to Bayraktar et al. (in press b) for a more detailed
discussion of probabilistic agent-based models.

The approach pioneered by Day and Huang (1990) and Brock and Hommes
(1997) analyzes financial markets using deterministic dynamical systems. The
idea is to view agent-based models as highly nonlinear deterministic dynamical
systems and markets as complex adaptive systems, with the evolution of expec-
tations and trading strategies coupled to market dynamics. Their models display
a quite complex dynamics, so only a few analytical characterizations of asset
price processes are available. However, when simulated, these models generate
realistic time paths of prices explaining many of the stylized facts observed in
real financial markets. For further details we refer to recent surveys by Hommes
(2006) and LeBaron (2006).

These models differ considerably in their degree of complexity and analytical
tractability, but they are all based on the idea that asset prices can be described
by a sequence of equilibrium prices. All agents submit their demand schedules
to a market maker who matches individual demands in such a way that markets
clear in every period. Although such an approach is consistent with dynamic
microeconomic theory, a closer examination of the microstructure of securities
markets raises the question of whether the standard economic paradigm of a
Walrasian auctioneer can actually be applied. In real markets buyers and sellers
arrive at different points in time. Moreover, almost all electronic trading systems
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are based on order books in which all unexecuted limit orders are stored and
displayed while awaiting execution.

Analytically tractable models of order book dynamics were of considerable
value, but their development has been hindered by the inherent complexity of limit
order markets. Rigorous mathematical results have so far only been established
under rather restrictive assumptions by, e.g., Mendelson (1982), Luckock (2003),
and Kruk (2003). At the same time, there is a considerable (econophysics) literature
[Chiarella and Iori (2002), Potters and Bouchaud (2003), Smith et al. (2003),
and Farmer et al. (2005), among others] on continuous double auctions with
“minimal intelligence agents.” Here, interest is not so much in probabilistic models
for the resulting price dynamics, but in statistical properties of sample paths.
Underlying this approach is the idea that the dynamics of order arrivals follows
a Poisson process and that nonexecuted orders are canceled at random points in
time. Incoming orders typically follow an i.i.d. dynamics with no dependence on
past prices. “Minimal” or “zero intelligence agent” models make many testable
predictions for basic properties of markets such as price volatility, and despite their
many simplifying assumptions on trader behavior these models have successfully
reproduced some of the stylized facts of financial time series.

Microstructure models with asynchronous order arrivals, where incoming or-
ders are executed immediately rather than awaiting the arrival of a matching order,
were studied in a series of papers by, e.g., Lux (1995, 1997) and more recently by
Bayraktar et al. (in press a, b). These models may be viewed as a first step toward
bridging the gap between the econophysics literature, with its many models that
generate a rich dynamics and realistic time series, but are not amenable to analytic
solutions (beyond statistical properties), and the more traditional temporary equi-
librium models, which allow for analytic solutions but do not accurately capture
the microstructure of automated trading systems. The idea is that an incoming
order changes the stock price by a fixed amount and that agents may switch their
investment behavior as a result of the behavior of others and/or the performance
of different trading strategies. A convenient mathematical framework is based on
the theory of state-dependent queuing networks [Mandelbaum and Pats (1998);
Mandelbaum et al. (1998)].

This paper proposes a mathematical framework for analyzing financial market
models with asynchronous order arrivals. Our model is flexible enough to capture
chartist behavior. As such, it extends earlier work of Lux (1995). He studied
a noise trader framework where the joint dynamics of asset prices and opinion
indices can be approximated by a system of ordinary differential equations. The
ODE approach provides a first approximation to stock prices in a noise trader
model, but it does not capture situations where agents base their demands rather
than their opinions on price patterns. To capture trend-chasing strategies, we
consider a model in which the order rates depend on historic asset prices and
opinion indices. We show that when the number of speculators tends to infinity,
the joint dynamics of asset prices and trader type distributions can be approxi-
mated by a delay differential equation. The delay effect reflects the presence of
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chartists. Our numerical simulations suggest that it has a major effect on stock
prices.

More important than the first-order approximation are the random fluctuations
around the deterministic trajectory of the delay equation. In our model they can
be described by a coupled system of Ornstein–Uhlenbeck processes with delay.
Stochastic delay differential equations are a continuous-time analogue of higher-
order discrete-time difference equations. Although random difference equations
have been widely used as a mathematical basis for modeling stock price dynamics,
stochastic delay differential equations have attracted less attention in the finance
literature. They have primarily been used in stochastic volatility models [Hobson
and Rogers (1998); Kazmerchuk and Wu (2004)] and more recently in the context
of insider models by Stoica (2005). In this paper we show that delay equations
arise naturally in behavioral finance models when the agents base their investment
decisions on the performances of trading strategies and identify the delay effect
as a major determinant of financial price fluctuations. For a noise trader model
the second-order approximation is given by an Ornstein–Uhlenbeck process, as in
Föllmer and Schweizer (1993) and Horst (2005).

The remainder of this paper is organized as follows. In Section 2 we introduce
our model and state the main results. Section 3 illustrates the impact of chartists
by means of numerical simulation. All proofs appear in Section 4.

2. THE MICROECONOMIC MODEL AND THE MAIN RESULTS

It was first argued by Garman (1976) that an exchange market can be characterized
by a flow of orders to buy and sell. He also argued that although the orders would
arise as the solutions to individual traders’ underlying optimization problems,
the explicit characterization of such problems is not necessarily important. What
matters more is that orders are submitted at different points in time and that imbal-
ances between supply and demand can arise. We shall therefore take a pragmatic
approach to modeling financial markets and start right away with the dynamics
of order flows. This approach is common in much of the econophysics literature,
where interest is not so much in causes of trading, but in phenomenological
models and their overall implications. This literature has demonstrated that “zero
intelligence” models that drop agent rationality altogether and focus instead on the
dynamics of order arrivals are capable of reproducing many statistical properties
of financial time series.

2.1. Order Rates and Market Dynamics

We consider a financial market with a large set A = {1, 2, . . . , N} of eco-
nomic agents trading a single risky asset. With each agent a ∈ A we associate
a continuous-time stochastic process xa = (xa

t ) taking values in some finite set
C = {c1, c2, . . . , cm} of investor characteristics. We think of xa as describing
the evolution of the agent’s trader type or state. The agents submit buy and sell
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orders according to independent Poisson dynamics with the type-dependent rate
functions

λ̃+
(
xa

t , ·) and λ̃−
(
xa

t , ·).
Incoming orders are instantaneously matched by a market maker who sets the
price to reflect the degree of market imbalance.

We refer to the empirical distribution �N
t of trader types at time t as the mood

of the market,

�N
t := {

�N
t (c)

}
c ∈ C

with �N
t (c) := 1

N

N∑
i=1

1{c}
(
xa

t

)
, (1)

and allow for a dependence of the order rates on past prices and market moods.
To this end, we denote by SN

t the logarithmic asset price at time t , fix constants
0 < δ1 < δ2 < . . . < δl along with an (m + 1)-dimensional continuous function q̃

on [−δl, 0], and put

SN
(t) := (

SN
t , SN

t−δ1
, . . . , SN

t−δl

)
and �N

(t) := (
�N

t , �N
t−δ1

, . . . , �N
t−δl

)
,

where (SN
t , �N

t )= q̃t on [−δl, 0]. In the time interval [t, t + h], an agent a ∈ A
submits buy and sell orders with probabilities

λ̃+
(
xa

t , �N
(t), S

N
(t)

) ∗ h + o(h) and λ̃−
(
xa

t , �N
(t), S

N
(t)

) ∗ h + o(h) as h → ∞,

(2)

respectively. Here o(h) denotes a function that converges faster than linearly to
zero when h → 0. In terms of �N

t the per capita order rates take the form

λ̃±
(
�N

(t), S
N
(t)

)
:=

∫
λ̃±

(
x, �N

(t), S
N
(t)

)
�N

t (dx).

Because the agents act conditionally independent of each other given the histo-
ries of past prices and market moods, the probability of some agent submitting a
buy/sell order between t and t + h equals

N ∗ λ̃±
(
�N

(t), S
N
(t),

) ∗ h + o(h) as h → 0.

The probabilistic structure of the order arrivals is thus equivalent to assuming that
orders arrive according to independent Poisson processes

{�̃+(t)}t≥0 and {�̃−(t)}t≥0

with respective rate functions N ∗ λ̃+ and N ∗ λ̃−. The accumulated marketwide
net order flow by time t is therefore equal to

�̃+

( ∫ t

0
N ∗ λ̃+

(
�N

(u), S
N
(u)

)
du

)
− �̃−

( ∫ t

0
N ∗ λ̃−

(
�N

(u), S
N
(u)

)
du

)
.
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Assuming that a buy order increases the logarithmic price by 1/N decreases the
price by the same amount, we arrive at the following stochastic integral equation
for the logarithmic asset prices:

SN
t = SN

0 + 1

N
�̃+

(
N

∫ t

0
λ̃+

(
�N

(u), S
N
(u)

)
du

)
− 1

N
�̃−

(
N

∫ t

0
λ̃−

(
�N

(u), S
N
(u)

)
du

)
.

(3)

Remark 2.1. Note that the stock price process is given as a pure jump process
in a random environment {�N

t } of investor sentiment. The dynamics of the en-
vironment will be endogenous. We allow the agents to switch from one type or
forecasting rule to another at random points in time in reaction to historic price
patterns, trends, or the performance of competing trading strategies. This generates
feedback effects from the price process into the environment. We postpone specific
examples to Section 3.

The agents are allowed to switch between different types or trading strategies at
random points in time in reaction to a strategy’s past performance or the behavior
of others. Specifically, we assume that independent of other traders an agent of
type i ∈C switches to a different state j ∈ C within the time interval [t, t + h]
with probability

λ
i,j (

�N
(t), S

N
(t)

) ∗ h + o(h) as h → 0;
the probability that an agent changes her type twice in [t, t + h] is of the order
o(h) and hence negligible for small h.

Remark 2.2. Notice that all the other individuals influence one particular trader
in the same way. This excludes the existence of a designated “leader” or financial
“guru” whose behavior attracts the attention of the majority of market participants.

The average probability that some trader of type i switches to a different state
between time t and time t + h equals

λ̂i
−
(
�N

(t), S
N
(t)

)
:=

∑
j ∈C

�N
t (i) ∗ λ

i,j (
�N

(t), S
N
(t)

) + o(h), (4)

whereas the average probability that an agent switches to state i from a different
state j �= i is given by

λ̂i
+
(
�N

(t), S
N
(t)

)
:=

∑
j ∈C

�N
t (j) ∗ λ

j,i(
�N

(t), S
N
(t)

) + o(h). (5)

The structure of the agents’ migration probabilities allows us to describe the
dynamics of the mood of the market in terms of a queuing network with routing,
as in Mandelbaum and Pats (1998). There exists a family of Poisson processes
(�̂i

±)i ∈C such that the empirical distribution of trader types satisfies the system
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of stochastic integral equations

�N
t (i)= �N

0 (i) + 1

N
�̂i

+

(
N

∫ t

0
λ̂i

+
(
�N

(u), S
N
(u)

)
du

)
− 1

N
�̂i

−

(
N

∫ t

0
λ̂i

−
(
�N

(u), S
N
(u)

)
du

)
.

(6)

The Poisson process �̂i
+ specifies the times at which some agent switches

to state i, whereas �̂i
− specifies the times when some agent leaves state i. As

a result, the processes (�̂i
±)i ∈C are dependent. The next section shows how a

strong approximation result for Poisson processes can be applied to represent the
joint dynamics of asset prices and empirical distributions in terms of interacting
diffusion processes.

2.2. Approximation of Poisson Processes and Financial Market Dynamics

The joint dynamics of asset prices and empirical distributions can be described in
terms of a higher-dimensional non-Markovian queuing network. To this end, we
introduce the vector

λ̂ = λ̂+ − λ̂−, where λ̂± = (̂λ1
±, . . . , λ̂m

±)t ,

which specifies the agents’ instantaneous propensities to adopt new trading strate-
gies and put

QN
t = (

�N
t , SN

t

)
, QN

(t) = (
�N

(t), S
N
(t)

)
, and λ±

(
QN

(t)

)=
(

λ̂±
(
�N

(t), S
N
(t)

)
λ̃±

(
�N

(t), S
N
(t)

)
)

.

With suitably defined (m + 1)-dimensional Poisson processes �± = {�i
±}m+1

i=1 ,
it follows from equations (3) and (6) that the ith component QN,i of the vector
QN = {QN,i}m+1

i=1 satisfies

QN,i
t = Q

N,i
0 + 1

N
�i

+

(
N

∫ t

0
λi

+
(
QN

(u)

)
du

)
− 1

N
�i

−

(
N

∫ t

0
λi

−
(
QN

(u)

)
du

)
; (7)

here we use the convention that QN
t ≡ q̃t on [−δl, 0]. The first m components of the

vector process QN describe the dynamics of the distribution of states, whereas the
last component describes the evolution of the logarithmic asset price: �m+1

± = �̃±.
Our goal is then to prove a limit theorem for the processes QN as the number of
market participants tends to infinity. To obtain a well-defined price dynamics in
the limit of an infinite number of investors, we impose the following conditions
on the agents’ order rates.

Assumption 2.3.

1. The rate functions λ̃± and λ̂± are uniformly bounded.
2. For each x ∈ C, the rate functions λ̃±(x, ·) and λ̂±(x, ·) are continuously differentiable

with bounded first derivative.
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The convergence results will be based on a strong approximation result that
allows pathwise approximation of a Poisson process by a standard Brownian
motion living in the same probability space.

LEMMA 2.4 (Kurtz 1978). A standard Poisson process {�(t)}t≥0 can be real-
ized in the same probability space as a standard Brownian motion {B(t)}t≥0 in
such a way that the random variable

Y := sup
t≥0

|�(t) − t − B(t)|
log(max{2, t})

has a finite moment-generating function in the neighborhood of the origin and
hence a finite mean. In particular, Y is almost surely finite.

By Assumption 2.3 (i), the strong approximation result allows us to realize all
the Poisson processes in the same probability space as the (m + 1)-dimensional
Wiener processes

{B+(t)}t≥0 and {B−(t)}t≥0

in such as way that we have the alternative representation of the logarithmic asset
price process and sequence of empirical distributions of trader types

QN,i
t = Q

N,i
0 + 1

N

{
N

∫ t

0
λi

(
QN

(u)

)
du + Bi

+

(
N

∫ t

0
λi

+
(
QN

(u)

)
du

)
−Bi

−

(
N

∫ t

0
λi

−
(
QN

(u)

)
du

)}
(8)

up to a correction term that is of the order log N/N uniformly on compact time
intervals. Here we define

λi
(
QN

(t)

)
:= λi

+
(
QN

(t)

) − λi
−
(
QN

(t)

)
.

Notice that the correction term vanishes almost surely uniformly on compact
time intervals when the number of market participants tends to infinity. We shall
therefore drop it to simplify our notation. The aim is thus to prove approximation
results for the sequence of (m + 1)-dimensional stochastic processes {QN }N∈N

defined by (8). The convergence concept we use for the first-order approximation
is almost sure convergence on compact time intervals. The convergence concept
for the second-order approximation is weak convergence of probability measures
on the set DT of all real-valued right continuous functions with left limits on [0, T ].
We write L- limn→∞ Xn = X if the DT -valued random variables Xn converge in
distribution to X as n tends to infinity.

2.3. Approximation Results

We are now going to state a first-approximation result for the market dynamics;
the proof requires some preparation and will be carried out in Section 4. It turns
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out that the joint dynamics of logarithmic asset prices and distributions of trader
types can almost surely be approximated by the trajectory of an ordinary delay
differential equation. The delay effect reflects the presence of chartists.

THEOREM 2.5 (First-Order Approximation). Under Assumption 2.3 the fol-
lowing hold:

(i) For a given continuous initial function q̃ : [−δl, 0] → Rm+1 and any terminal time
T > 0 there exists a unique process q = {qt }−δl≤t≤T that satisfies the delay differential
equation

dqt = λ(q(t))dt with initial condition q ≡ q̃ on [−δl, 0]. (9)

(ii) The sequence of stochastic processes {QN }N ∈ N converges almost surely to q where
the convergence is uniform on compact time intervals:

lim
N→∞

sup
0≤t≤T

∣∣qt − QN
t

∣∣ = 0 P-a.s.

In a second step, we study the joint distribution of asset prices and trader
types around their first-order approximation. For this we use the self-similarity
property of a Wiener process W . It assents that {W(t)} and { 1√

c
W(ct)} have

the same distribution for any positive constant c. In studying the second-order
approximation, we may hence assume that the process QN is defined by

QN,i
t =

∫ t

0
λi

(
QN

(u)

)
du + 1√

N
Bi

+

(∫ t

0
λi

+
(
QN

(u)

)
du

)
− 1√

N
Bi

−

(∫ t

0
λi

−
(
QN

(u)

)
du

)
. (10)

It turns out that the fluctuations of QN around the first-order approximation can
be described by a coupled system of interacting Ornstein–Uhlenbeck processes
with delay driven by the Gauss processes

Xi
t := Bi

+

(∫ t

0
λi

+
(
q(u)

)
du

)
− Bi

−

(∫ t

0
λi

−
(
q(u)

)
du

)
. (11)

We are now ready to state the main result of this paper. Its proof will be carried
out in Section 4.

THEOREM 2.6 (Second-Order Approximation). Under Assumption 2.3 the
following hold:

(i) There exists a unique pathwise solution Z = (Z1, . . . , Zm+1) to the stochastic delay
integral equation

Zi
t =

∫ t

0

〈
∇λi

(
q(u)

)
, Z(u)

〉
du + Xi

t for i ∈ {1, . . . , m + 1} (12)

with initial function Zi
t = 0 on [−δl, 0]. Here ∇λi and 〈·, ·〉 denote the gradient vector

of the function λi and the standard inner product, respectively.
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(ii) The fluctuation of the process QN around its first-order approximation converges in
distribution to Z = (Zi)m+1

i=1 :

L- lim
N→∞

{√
N

(
QN

t − qt

)}
0≤t≤T

= {Zt }0≤t≤T .

We notice that although the logarithmic asset price process takes values in
R, the empirical distributions of trader types takes only non-negative values. It
would be hence more appropriate to approximate the fluctuations of the process
�N by a reflected diffusion. As this would render our analysis considerably more
involved and because our focus is on the impact of trend chasers on the diffusion
approximation, we chose a second-order approximation in terms of a “regular”
diffusion process.

Remark 2.7. When only fundamentalists and noise traders are active on the
market, the first-order approximation reduces to an ordinary differential equation
as in Lux (1995) and the second-order approximation is given by an Ornstein–
Uhlenbeck process as in Föllmer and Schweizer (1993). Under standard assump-
tions the first-order approximation converges to some steady state q∗ = (s∗, �∗)
as time tends to infinity. In this case limt→∞ {λ+(qt ) − λ−(qt )} = 0. In the long
run markets clear on average and asset prices fluctuate around the equilibrium
level in accordance with a standard Wiener process with volatility

σ ∗ = lim
t→∞

√
λ+(qt ) + λ−(qt ).

3. EXAMPLES AND NUMERICAL SIMULATIONS

In this section we obtain Lux’s noise trader model as a limiting case of our frame-
work. Numerical simulations suggest that although his model displays unstable
behavior for very small time lags if the impact of noise traders is too strong,
stability may be gained when the time lags exceed some critical level. Our second
example can be viewed as a continuous-time version of the model of Föllmer et al.
(2005). In this case delay equations arise rather naturally as the agents switch their
states in reaction to the past performances of trading strategies. Throughout, we
put xa

t = 0 if the agent a ∈ A is a fundamentalist at time t while xa
t = + 1 and

xa
t = − 1 indicate (optimistic/pessimistic) noise traders or chartists.

Example 3.1. In our setting the demand function of a fundamentalist in Lux (1995)
corresponds to linear order rates of the form

λ̃+
(
0, �N

(t), S
N
(t)

) =
{

γ
(
F − SN

t

)
if F − SN

t > 0

0 else

and

λ̃−
(
0, �N

(t), S
N
(t)

) =
{

γ
(
SN

t − F
)

if F − SN
t < 0

0 else.
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The demand depends on the difference between some fundamental value (F) and
the current price; the constant γ measures the trading volume. A noise trader’s
order rates are price independent. An optimistic noise trader buys the asset whereas
a pessimist sells it:

λ̃±
( ± 1, �N

(t), S
N
(t)

) ≡ 1 and λ̃±
( ∓ 1, �N

(t), S
N
(t)

) ≡ 0.

Let us assume that the proportion of fundamentalists is fixed and that chartists
switch between optimism and pessimism according to prevailing price trends and
denote by xN

t the average opinion of noise traders. In Lux’s model the price
dynamics follows the trajectory of an ordinary differential equation ṡ = f (x, s)

because the agents base their opinion on ṡ, a purely fictitious benchmark for the
current trend. Our market participants, in contrast, react to observed market data.
With the performance index

Ut,t−δ := a1

δ

(
SN

t − SN
t−δ

) + a2x
N
t .

Lux’s transition rates (9) are, in our framework, to be replaced by λ̂0,±1 = 0 and

λ̂−1,1
(
�N

(t), S
N
(t)

)= eUt,t−δ and λ̂1,−1
(
�N

(t), S
N
(t)

)= e−Ut,t−δ .

For large N the joint evolution of logarithmic asset prices and opinion indices can
then be approximated by the delay differential equation

ẋt = 2{tanh(Ut,t−δ) − xt } cosh(Ut,t−δ) dt and ṡt = (xt + γ (F − st )) dt.

(13)

The equation for the change of stock prices depends only on st because the agents’
order rates do not depend on past prices.

It turns out that the quantitative behavior of the system (13) depends on δ.
When a1 = 1, a2 = 0.75, and γ = 3

2 , Lux’s stability condition is violated, so the
fundamental equilibrium xt ≡ 0 and st ≡ F is unstable for small δ. This is shown
in Figure 1a, which displays the first-order approximation for δ = 0.01. When δ

is increased to 0.5, asset prices initially display large fluctuations but eventually
settle down to the equilibrium level, as displayed in Figure 1b.

The previous example suggests that the time lag δ is a major determinant of
stock price fluctuations in a noise trader framework. It also suggests that it is
appropriate to reduce the first-order approximation to an ordinary differential
equation by replacing the performance index Ut,t+δ with a1ṡt + a2xt when δ is
sufficiently small. Although such reduction is possible in a noise trader framework,
it does not always carry over to models of trend chasing, where the agents base their
demand rather than their opinions on price patterns. As an illustration, consider a
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FIGURE 1. Dependence of asset prices and opinion indices of the time lag: (a) δ = 0.01:
convergence to a stable limit cycle; (b) δ = 0.05: convergence to equilibrium.
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situation where chartists submit orders in reaction to the actual price trend,

λ̃±
( ± 1, �N

(t), S
N
(t)

) = f

(
SN

t − SN
t−δ

δ

)
and λ̃±

( ∓ 1, �N
(t), S

N
(t)

) ≡ 0,

for some transformation f . For large N and small δ one is tempted to replace
SN

t −SN
t−δ

δ
by ṡt and hence the delay equation (13) by

ẋt = 2 {tanh(a1ṡt + a2xt ) − xt } cosh(a1ṡt + a2xt ) and

ṡt = (xtf (ṡt ) + γ (F − st )).

However, when f is nonlinear, there is no reason to expect this implicit dynamics
to be well defined. Beyond the simple benchmark of a noise trader framework,
continuous-time agent-based models thus call for an extension of Lux’s approach
beyond an ODE approximation. The following example further illustrates this
effect.

Example 3.2. Consider a model with a fundamentalist and chartists. A fundamen-
talist’s order rates are as in the previous example and the chartists’ rates are given
by

λ̃+
(
1, �N

(t), S
N
(t)

) =
{

γC

(
SN

t − SN
t−δ

)
if SN

t − SN
t−δ > 0

0 else

and

λ̃−
(
1, �N

(t), S
N
(t)

) =
{

−γC

(
SN

t − SN
t−δ

)
if SN

t − SN
t−δ < 0

0 else,

respectively. Let us assume that the agents choose their trading strategies in reac-
tion to a utility index that reflects the strategies’ past performances. More precisely,
let P 0

t−δi
and P +1

t−δi
be the profits over the time periods (t − δi, t − δi+1) associated

with the fundamentalists’ and chartists’ trading strategy, respectively. The profits
are obtained by multiplying the price increment between t − δi+1 and t − δi with
the average demand. For a fundamentalist this quantity is given by

P 0
t−δi

= γ (eSt−δi − eSt−δi+1 )
(
F − St−δi+1

)
,

whereas a chartist’s profit function takes the form

P 1
t−δi

= γC(eSt−δi − eSt−δi+1 )
(
St−δi+1 − St−δi+2

)
.

Following Föllmer et al. (2005), we define the performance index associated with a
trading strategy as a weighted average of the profits a trader would have generated
in the past if she had implemented this strategy,

U 0
t =

l∑
i=1

αi−1P 0
t−δi

and U 1
t =

l∑
i=1

αi−1P +1
t−δi

, (14)
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for some discount factor α < 1. Let us now put Ut = U 0
t − U 1

t and denote by xt

the proportion of fundamentalists minus the proportion of chartists at time t . A
blend of the models of Föllmer et al. (2005) and Lux (1995) is captured by the flip
rates:

λ̂0,1
(
�N

(t), S
N
(t)

) = e−β1Ut−β2xt

eβ1Ut+β2xt + e−β1Ut−β2xt

and

λ̂1,0
(
�N

(t), S
N
(t)

)= eβ1Ut+β2xt

eβ1Ut+β2xt + e−β1Ut−β2xt
.

The first-order approximation is then given by the system of delay differential
equations

ẋt = {tanh(β1ut + β2xt ) − xt } dt

(15)

ṡt =
{
γC

1 − xt

2
(st − st−δ1) + γ

1 + xt

2
(F − st )

}
dt,

where ut is the fundamentalist’s excess performance as defined by (14) with the
observed prices SN

t , SN
t−δ1

, . . . , SN
t−δl

replaced by their respective approximations
st , st−δ1 , . . . , st−δl

.

Our simulation suggest that past asset prices may have a significant impact
on stock market dynamics. Figure 2 displays the first-order approximation of the
model of Example 3.2 for γ = 1, γC = 3, α = 0.9, F = 0, β1 = 2, β2 = 0.5, and
l = 3 if xt ≡ st ≡ 0.4 for t < 0. For these parameter values the delay equation (15)
has a steady state at s = 0 and x = 0. For the small time lags δ1 = 3/10, δ2 = 5/10,
and δ3 = 7/10, the first-order approximation converges rapidly to an equilibrium,
as shown in Figure 2a. For larger lags δ1 = 1, δ2 = 2, and δ3 = 3 the system displays
erratic though regular and persistent fluctuations; see Figure 2b. Such a history
dependence of asset prices and market moods is not and cannot be captured if
the dynamics is reduced to a simple ODE. It turns out that the strength of social
interactions as measured by β2 also has an important impact on the magnitude of
the fluctuations. A stronger social interaction decreases the relative importance of
the past performances of trading strategies and seems to dampen price fluctuations.
This effect is illustrated by Figure 3, which shows the first-order approximation
for δ1 = 1, δ2 = 2, and δ3 = 3 and for β2 = 0.5 and β2 = 1.14, respectively.

4. PROOF OF THE MAIN THEOREMS

In this section we prove our main results: the pathwise approximation of the
processes QN by the trajectory of a delay differential equation and the approxi-
mation in distribution of the fluctuations around the first-order approximation by
a stochastic delay equation.
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FIGURE 2. Dependence of the market dynamics on time lags: (a) Small lags: rapid conver-
gence to equilibrium; (b) large lags: erratic fluctuations.
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FIGURE 3. Dependence of the market dynamics on the strength of social interactions:
(a) Large lags; weak social interaction; (b) large lags: stronger social intraction.
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4.1. Proof of the First-Order Approximation

To establish the strong approximation, we first state a result on the existence and
uniqueness of solutions of delay differential equations. Its proof follows from
standard arguments given in, e.g., Driver (1977).

LEMMA 4.1. Under the assumptions of Theorem 2.5, for any continuous initial
function (qs)−δl≤s≤0, there exists a unique global solution to the delay equation (9).

We are now ready to establish the approximation of the processes QN by the
solution to the delay differential equation (9).

Proof of the first-order approximation. Because the rate functions are uni-
formly bounded, the law of iterated logarithms for Brownian motion yields

lim
N→∞

sup
u≤t

1

N
Bi

±

(
N

∫ u

0
λi

±
(
QN

(v)

)
dv

)
= 0 P-a.s.

Thus for every ε > 0 there exists N∗ ∈ N such that

∣∣QN
t − qt

∣∣ ≤
∫ t

0

∣∣λ(
QN

(u)

) − λ
(
q(u)

)∣∣du + ε P-a.s.

for all N ≥N∗. Because the rate functions are differentiable with uniformly
bounded first derivatives, there exists a constant L < ∞ that satisfies∣∣QN

t − qt

∣∣ ≤ L

∫ t

0
sup

−δl≤v≤u

∣∣QN
v − qv

∣∣du + ε P-a.s.

By convention, QN
v = qv for v < 0, so sup−δl≤v≤u |QN

v −qv| = sup0≤v≤u |QN
v −qv|

and

sup
0≤v≤t

∣∣QN
v − qv

∣∣ ≤ L

∫ t

0
sup

0≤v≤u

∣∣QN
v − qv

∣∣du + ε P-a.s.

As a result, an application of Gronwall’s lemma yields

sup
0≤v≤t

∣∣QN
v − qv

∣∣ ≤ εeLt P-a.s.

This proves the assertion, as ε is arbitrary. �

4.2. Proof of the Second-Order Approximation

To keep the paper self-contained we first prove pathwise uniqueness of the solution
to the stochastic integral equation (12).

PROPOSITION 4.2. Under the assumptions of Theorem 2.6 there exists an
almost surely unique pathwise solution to (12).

https://doi.org/10.1017/S1365100507070010 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507070010


228 ULRICH HORST AND CHRISTIAN ROTHE

Proof. To prove the existence of a global solution we first establish the existence
and uniqueness of a local solution, that is, of a solution on a time interval [0, δ]
for a sufficiently small δ > 0. In a second step we apply a standard argument to
show how the local solution can be extended to a solution on [0, T ].

Let CT , equipped with the standard sup-norm ‖ · ‖∞, be the Banach space of
all continuous (m + 1)-dimensional functions on [−δl, T ]. For the continuous
initial function q : [−δl, 0] → Rm+1 and a given trajectory (Xt (ω))t≥0 we define
mappings ϕ ∈ CT and F : [−δl, T ] × CT → Rm+1 by

ϕ(t)=
{

q(t) for t ∈ [−δl, 0]
q(0) + Xt(ω) for t ∈ [0, T ]

and F i(t, x)= 〈∇λi
(
q(t)

)
, x(t)

〉
,

respectively. By Assumption 2.3, the map t → F(·, ϕ) is almost surely continuous
and hence it is almost surely bounded,

‖F(·, ϕ)‖∞ ≤ B,

where the random bound B depends on the trajectory of the process X. Let us now
fix a positive constant b. For a given δ > 0 we introduce a closed subset of CT by

Eδ = {ψ ∈ Cδ : ‖ψ − ϕ‖∞ ≤ b and ψ ≡ q on [−δl, 0]} .

Because the rate functions have a uniformly bounded first derivative, we have for
all x ∈ Eδ that

|F(t, x)| ≤ |F(t, x) − F(t, ϕ)| + |F(t, ϕ)| ≤ L‖x − ϕ‖∞ + B ≤ Lb + B

for some L < ∞. Because the constants B and b do not depend on δ, the operator
defined by

H(x)(t)=
{

q(t) for t ∈ [−δl, 0]
q(0) + ∫ t

0 F(u, x)du + Xt(ω) for t ∈ [0, δ]

maps the closed set Eδ into itself when δ is sufficiently small. Observe now that

|H(x)(t) − H(y)(t)| ≤
∫ t

0
|F(u, x) − F(u, y)| du ≤ Lδ max

−l≤s≤δ
|x(s) − y(s)|.

Hence

max
−l≤s≤δ

|H(x)(t) − H(y)(t)| ≤ Lδ max
−l≤s≤δ

|x(s) − y(s)|.

This shows that for almost every trajectory of the process X there exists a suffi-
ciently small δ > 0 such that the operator H : Eδ → Eδ is a contraction. By Banach’s
theorem it has a unique fixed point. As a result, the stochastic integral equation (12)
has a unique solution on sufficiently small time intervals. By a standard argument,
the solution can be extended to a solution on the whole interval [0, T ].
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As a second step toward the proof of the second-order approximation, we
introduce the processes

UN
t =

√
N

(
QN

t − qt

)
and

XN
t = B+

(∫ t

0
λ+

(
QN

(u)

)
du

)
− B−

(∫ t

0
λ−

(
QN

(u)

)
du

)
.

The following lemma shows that the sequence {UN } is bounded in probability.

LEMMA 4.3. For any ε > 0, there exist N∗ ∈ N and K < ∞ such that

P∗
[

sup
0≤t≤T

∣∣UN
t

∣∣ > K

]
< ε for all N ≥ N∗. (16)

Proof. The strong approximation for Brownian motion yields the representa-
tion

UN
t =

√
N

∫ t

0

{
λ
(
QN

(u)

) − λ
(
q(u)

)}
du + XN

t . (17)

Because the rate functions are bounded, the sequence {XN }N∈N is tight, and hence
it is bounded in probability. As a result, Lipschitz continuity of the rate functions
yields

sup
0≤t≤T

∣∣UN
t

∣∣ ≤ L

∫ T

0
sup

0≤t≤u

∣∣UN
u

∣∣du + sup
0≤t≤T

∣∣XN
t

∣∣
for some L > 0. Hence, by Gronwall’s inequality, we have almost surely that

sup
0≤t≤T

∣∣UN
t

∣∣ ≤ e3LT sup
0≤t≤T

∣∣XN
t

∣∣. �

The second-order approximation uses the following continuity property of a
standard Wiener process W : for any α ∈ (0, 1

2 ) and T > 0, there exists an integrable
and hence almost surely finite random variable M such that

|W(t1) − W(t2)| ≤ M|t1 − t2|α

almost surely for all t1, t2 ≤ T ; see, for instance, Remark 2.12 in Karatzas and
Shreve (1991). Thus, the first-order approximation shows that the sequence of
stochastic processes {XN }N∈N converges almost surely to X uniformly on com-
pact time intervals. With this we are now ready to establish the second-order
approximation. The proof uses a perturbation of an argument given in Bayraktar
et al. (in press a).

Proof of the second-order approximation. For a function f ∈ CT and the con-
tinuous initial function q̃ : [−δl, 0] → R, let H(f )= (H 1(f ), . . . , Hm+1(f )) be
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the unique function that satisfies the integral equation

Hi
t (f )=

{
qi(t) for t ∈ [−l, 0]∫ t

0 〈∇λi
(
q̃(u)

)
,H(u)(f )〉du + f i

t for t ∈ [0, T ].

Hence H(X)= Z, where Z is defined in (12). Because the rate functions have a
uniformly bounded derivative, an application of Gronwall’s lemma shows that H

is a continuous operator. As a result,

lim
N→∞

‖H(XN) − Z‖∞ = 0,

because the sequence {XN }N ∈ N converges almost surely and hence in probability
to X. With EN

t := UN
t − Ht(X

N)= (E
N,1
t , . . . , E

N,m+1
t )t , it is then enough to

prove that

lim
N→∞

sup
0≤t≤1

∣∣EN
t

∣∣= 0 (18)

in probability, because the limit in probability of the sum of two random variables
is equal to the sum of the limits in probability. The representation (17) of UN

t

yields

EN,i
t =

√
N

∫ t

0

{
λi

(
QN

(u)

) − λi
(
q(u)

)}
du −

∫ t

0

〈∇λi
(
q(u)

)
,H(u)(X

N)
〉
du

=
√

N

∫ t

0

{
λi

(
QN

(u)

) − λi
(
q(u)

)}
du −

∫ t

0

〈∇λi
(
q(u)

)
, UN

(u)

〉
du

+
∫ t

0

〈∇λi
(
q(u)

)
, EN

(u)

〉
du.

By the mean value theorem for vector-valued functions, there exists a vector ξN
u

that lies between QN
(u) and q(u), such that

λi
(
QN

(u)

) − λi
(
q(u)

) = 1√
N

〈∇λi
(
ξN
u

)
, UN

(u)

〉
.

Hence

EN,i
t =

∫ t

0

〈∇λi
(
ξN
u

) − ∇λi(q(u)), U
N
(u)

〉
du −

∫ t

0

〈∇λi
(
q(u)

)
, EN

(u)

〉
du.

In view of the first-order approximation,

lim
N→∞

sup
0≤u≤T

∣∣∇λi
(
ξN
u

) − ∇λi
(
q(u)

)∣∣ = 0
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almost surely. Because the processes UN are bounded in probability, it now follows
from Lemma 3.15 (ii) in Bayraktar et al. (in press a) that the processes{∫ t

0

〈∇λi
(
ξN
u

) − ∇λi
(
q(u)

)
, UN

(u)

〉
du

}
0≤t≤T

converge to 0 in probability when N → ∞. Now, an application of Gronwall’s
lemma shows that the processes EN converge to 0 in probability uniformly on
compact time intervals. �

5. CONCLUSION

This paper has introduced a mathematical framework for analyzing financial price
fluctuations in continuous-time behavioral finance models. When buy and sell
orders arrive at random points in time in accordance with a Poisson dynamics and
some agents employ technical trading rules, we showed that the joint dynamics
of asset prices and trader opinions can be approximated by the trajectory of a
delay differential equation. The fluctuations around this first-order approximation
follow an Ornstein–Uhlenbeck process with delay. In a benchmark model of noise
trading, our first- and second-order approximations resemble the dynamics of Lux
(1995) and Föllmer and Schweizer (1993), respectively. Mathematically, our limit
results were based on methods and techniques from the theory of state-dependent
queuing networks.

The driving feature of the price process is the switching of agents from one
forecasting rule to the other. This switching can be attributed to the relative success
of the rules. The switching process has the characteristic that agents can, at any
point in time, herd on one rule. When this happens, agents’ forecasts are self-
reinforcing. There is freedom in specifying the order rates, which eventually map
past profits from the different forecasting rules into the probability of choosing
those rules. This makes our specification rather general and extends previous
results on noise trader models.

Several avenues are open for future research. For instance, as pointed out in the
Introduction, stochastic delay equations have been used as a mathematical basis
for studying complete market models with stochastic volatility. With our choice
of scaling, the volatility is deterministic. Under a different limit-taking scheme, it
seems possible to obtain a continuous-time version of the popular GARCH models
of stochastic volatility. It would also be useful to study the stability properties of
the first-order approximation in a more rigorous manner and to identify the key
parameters affecting the dynamics of asset prices and market moods.

NOTE

1. The question of when boundedly rational agents will survive in the long run has been studied
by, e.g., Blume and Easley (in press) and Horst and Wenzelburger (in press). The closely related issue
of evolutionary stability of portfolio rules has been addressed by, e.g., Evstigneev et al. (2006).
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Böhm, V. and J. Wenzelburger (2005) On the performance of efficient portfolios. Journal of Economic
Dynamics and Control 29, 721–740.

Brock, W. and C. Hommes (1997) A rational route to randomness. Econometrica 65(5), 1059–
1096.

Chiarella, C. and G. Iori (2003) A simulation of the microstructure of double auctions. Quantitative
Finance 2, 346–353.

Cont, R. and J.P. Bouchaud (2000) Herd behavior and aggregate fluctuations in financial markets.
Macroeconomic Dynamics 4, 170–196.

Day, R. and W. Huang (1990) Bulls, bears and the market sheep. Journal of Economic Behavior and
Organization 14, 299–329.

Driver, R.D. (1977) Ordinary and Delay Differential Equations. Berlin: Springer-Verlag.
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