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Direct numerical simulations are used to investigate potential enstrophy in stratified
turbulence with small Froude numbers, large Reynolds numbers, and buoyancy
Reynolds numbers (Reb) both smaller and larger than unity. We investigate the
conditions under which the potential enstrophy, which is a quartic quantity in the
flow variables, can be approximated by its quadratic terms, as is often done in
geophysical fluid dynamics. We show that at large scales, the quadratic fraction of
the potential enstrophy is determined by Reb. The quadratic part dominates for small
Reb, i.e. in the viscously coupled regime of stratified turbulence, but not when Reb & 1.
The breakdown of the quadratic approximation is consistent with the development of
Kelvin–Helmholtz instabilities, which are frequently observed to grow on the layerwise
structure of stratified turbulence when Reb is not too small.

Key words: geophysical and geological flows, stratified turbulence, turbulence
simulation

1. Introduction

The Ertel potential vorticity (PV) is an important quantity in geophysical fluid
dynamics. PV is conserved following the flow in adiabatic rotating stratified fluids, and
PV conservation is fundamental to the theory of large-scale quasi-geostrophic (QG)
motion in the atmosphere and ocean (e.g. Pedlosky 1987). In this paper, we consider
the integrated squared PV, or potential enstrophy, in strongly stratified turbulence
without rotation. This parameter regime is relevant at intermediate geophysical scales
where QG breaks down. These scales are small enough for Coriolis effects to be weak,
but large enough for stratification to be important (i.e. the atmospheric mesoscale
and oceanic sub-mesoscale; for a review of stratified turbulence, see Riley & Lelong
2000). PV and potential enstrophy in stratified turbulence are analogous to vorticity
and enstrophy in two-dimensional flows, the conservation of which has a profound
influence on energy transfers between scales (Fjørtoft 1953). Nevertheless, despite
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significant advances in stratified turbulence, the dynamics of potential enstrophy in this
regime are not well understood.

Despite the analogy between stratified flows and two-dimensional turbulence, the
stratified case is complicated by the fact that PV has linear and quadratic terms
in the flow variables. Consequently, potential enstrophy is a quartic, not quadratic,
invariant. This structure has curious implications for the evolution of potential
enstrophy. For example, viscous effects are not generally restricted to small scales,
nor are they purely dissipative; indeed, Herring, Kerr & Rotunno (1994) found viscous
generation of potential enstrophy at large scales. However, the quadratic part of the
potential enstrophy may dominate under certain conditions, in which case this peculiar
behaviour is ruled out. An important example is QG turbulence, which has quadratic
potential enstrophy (Charney 1971).

For the case of stratified turbulence, Waite & Bartello (2004) analysed potential
enstrophy in the inviscid, truncated equations of motion with strong stratification. By
contrast with two-dimensional turbulence, potential enstrophy conservation does not
imply an inverse energy cascade. Rather, energy leaks into gravity waves, which
are uninhibited by PV conservation and thus can cascade to small scales. Recent
simulations by Aluie & Kurien (2011) of strongly stratified, weakly rotating turbulence
exhibited a downscale flux of both energy and potential enstrophy. Interestingly, they
found the potential enstrophy to be predominantly quadratic in their simulations, and
concluded that higher-order terms are relatively small in stratified turbulence. These
results are in line with theoretical work by Kurien, Smith & Wingate (2006), who
showed that the potential enstrophy is quadratic in the limit of strong stratification and
finite viscosity. This finding appears to have important implications for the theory of
stratified turbulence, since it implies the existence of an inertial subrange for potential
enstrophy, in which the effects of viscosity are restricted to small-scale dissipation.

However, it is not clear whether quadratic potential enstrophy is a generic feature
of stratified turbulence. Scale analysis suggests that higher-order terms in the PV
are O(Fr2

v), where Frv ≡ U/(NLv) is the vertical Froude number, U is the horizontal
velocity scale, Lv is the vertical length scale, and N is the Brunt–Väisälä frequency
(Waite & Bartello 2006). This analysis implies that the potential enstrophy will be
quadratic if Frv � 1. But due to the strong anisotropy of stratified turbulence, there
is no guarantee of small Frv, even if the horizontal Froude number Frh ≡ U/(NLh)

is small (Lh is the horizontal length scale). Indeed, scale analysis (Billant & Chomaz
2001) and numerical simulations (Waite & Bartello 2004) indicate that Frv ∼ 1 as
Frh → 0, provided that viscous effects are sufficiently weak. The tendency for Frv
to adjust to O(1) has a profound influence on stratified turbulence, which is seen in
simulations to have a layerwise ‘pancake’ structure with layer thickness Lv ∼ U/N,
an energy cascade from large to small horizontal scales, and Kelvin–Helmholtz (KH)
instabilities and more isotropic turbulence at smaller scales (e.g. Laval, McWilliams &
Dubrulle 2003; Riley & deBruynKops 2003; Lindborg 2006; Waite 2011).

If viscous effects are strong enough, a very different type of stratified turbulence
emerges: the layerwise flow becomes viscously coupled and small-scale turbulence is
damped (Waite & Bartello 2004). Brethouwer et al. (2007) showed that the transition
between these regimes depends on the buoyancy Reynolds number Reb ≡ Fr2

hRe,
where Re ≡ ULh/ν is the Reynolds number based on the horizontal scale and ν is
the kinematic viscosity. If the kinetic energy (KE) dissipation rate ε ∼ U3/Lh, then
Reb ∼ ε/(N2ν) (e.g. Riley & deBruynKops 2003). If Frh � 1 and Reb � 1, stratified
turbulence is weakly viscous and Frv ∼ 1; but if Reb � 1, stratified turbulence is
strongly damped by vertical viscosity. Geophysical stratified turbulence can have
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very large Reb. For example, free-tropospheric mesoscale values of Lh ∼ 100 km,
U ∼ 1 m s−1, N ∼ 10−2 s−1, and ν ∼ 10−5 m2 s−1 give Frh ∼ 10−3, Re ∼ 1010, and
Reb ∼ 104. In the stratosphere, typical values of dissipation are ε ∼ 10−5 m2 s−3

(e.g. Dewan 1997), which gives Reb ∼ 104. Observations in the ocean thermocline
yield Reb ∼ 102–103 (e.g. Moum 1996). By contrast, Reb can be O(1) or less
for laboratory-scale turbulence, due to the smaller Reynolds numbers. For example,
Frh ∼ 10−2 and Re∼ 104 (e.g. Praud, Fincham & Sommeria 2005) give Reb ∼ 1.

Given the importance of the buoyancy Reynolds number in stratified turbulence, it
is reasonable to suspect that the potential enstrophy dynamics, and in particular the
dominance of the quadratic contribution, will depend on Reb. In this paper, numerical
simulations are used to explore the hypothesis that the potential enstrophy will be
approximately quadratic only for Reb � 1. Equations and parameter regimes are
reviewed in § 2, and the computational methodology is described in § 3. Results are
presented in § 4, in which the quadratic and higher-order contributions to the potential
enstrophy are examined at different Frh and Reb. Discussion and conclusions are given
in § 5.

2. Governing equations and parameter regimes

We consider stratified turbulence governed by the Boussinesq equations

Dtu+ f ẑ× u=−∇p+ bẑ+ ν ∇2u+ F, ∇ ·u= 0, (2.1)
Dtb+ N2 w= κ ∇2b, (2.2)

where Dt ≡ ∂t + u · ∇ is the material derivative, u is the velocity, w is the vertical
velocity component, ẑ is the vertical unit vector, b is the buoyancy, p is the pressure
scaled by a reference density, f is the Coriolis parameter, κ is the mass diffusivity, and
F is forcing. In what follows, we will assume κ = ν and constant N.

Stratified turbulence requires Frh� 1 and Re� 1. However, due to the anisotropic
pancake structures that emerges at strong stratification, the threshold for ‘large’ Re
depends on Frh. Brethouwer et al. (2007) framed this condition in terms of the
buoyancy Reynolds number: weakly viscous stratified turbulence requires Frh � 1
and Reb � 1, i.e. Re must be large compared to Fr−2

h as Frh→ 0. Lindborg (2006)
proposed a direct energy cascade theory for this regime, with horizontal and vertical
wavenumber KE spectra of k−5/3

h and k−3
v , respectively. Numerical simulations have

been broadly consistent with this picture, though a range of spectral slopes have
been observed (e.g. Riley & deBruynKops 2003; Waite & Bartello 2004; Brethouwer
et al. 2007; Almalkie & deBruynKops 2012; Kimura & Herring 2012). In addition,
the emergence of KH instabilities at small scales yields bumps in the kh spectra
and a transition to small-scale three-dimensional turbulence (Laval et al. 2003; Waite
2011). By contrast, for Reb� 1, the Lindborg (2006) cascade and KH instabilities are
suppressed, the horizontal energy spectrum steepens to k−5

h , and the vertical spectrum
is flat out to the dissipation range, which is consistent with layerwise flow coupled
only by viscosity (Waite & Bartello 2004; Brethouwer et al. 2007).

The vertical Froude number in stratified turbulence depends on the value of Reb.
For large Reb, Lv scales like the buoyancy scale Lb ≡ U/N and Frv ∼ 1 (as predicted
by Billant & Chomaz 2001 and demonstrated numerically by Waite & Bartello 2004).
However, for small Reb, Lv scales like the viscous scale Lvisc ≡√νLh/U (e.g. Riley &
deBruynKops 2003; Godoy-Diana, Chomaz & Billant 2004; Brethouwer et al. 2007),
and thus Frv ∼√Reb. As a result, small Frv values are only expected in the viscously
coupled regime of Reb � 1, where the vertical scale is limited by viscosity. Even at
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apparently large Reynolds numbers, this regime can always be obtained by increasing
the stratification at fixed Re. Analogously, in simulations with numerical or ad hoc
viscosity (e.g. hyperviscosity, eddy viscosity), the viscously coupled regime will
ultimately be reached by increasing the stratification at fixed numerical resolution
(as in e.g. Waite & Bartello 2004).

The Ertel PV for (2.1)–(2.2) is

Π ≡ (ω + f ẑ) · (N2ẑ+∇b)= fN2 + (N2ωz + f ∂zb)+ ω ·∇b, (2.3)

where ω ≡ ∇ × u. The terms on the right-hand side of (2.3) are denoted Π0, Π1, and
Π2, respectively, where the subscript gives the order in the variables ω and b. The
constant term Π0 is trivially conserved and can be neglected. The evolution equation
for Π is

DtΠ = (N2ẑ+∇b) · (ν∇2ω +∇ × F)+ κ(f ẑ+ ω) ·∇(∇2b), (2.4)

which makes it clear that Π is conserved following the flow in the absence of
viscosity, diffusion, and forcing. The potential enstrophy is given by

V ≡ 1
2 〈Π 2〉 ≡ 1

2 〈Π 2
1 〉 + 〈Π1Π2〉 + 1

2 〈Π 2
2 〉, (2.5)

where 〈·〉 means spatial average. We denote the terms on the right-hand side of (2.5)
by V2, V3, and V4, respectively, which correspond to the quadratic, cubic, and quartic
contributions to the potential enstrophy.

Following Waite & Bartello (2006), we can use scale analysis to estimate the
relative size of Π1 and Π2. Making the standard assumptions of Lv/Lh . 1 and
b∼ U2/Lv (e.g. Riley & Lelong 2000), we obtain

Π1 ∼ N2U/Lh max(1,Fr2
v/Ro), Π2 ∼ U3/(LhL2

v), (2.6)

where Ro ≡ U/(f Lh) is the Rossby number. These estimates are of the dominant
scale; some terms in Π2 may be smaller (Billant & Chomaz 2001). For flows
strongly affected by rotation, Π2/Π1 . Ro� 1, and the PV is approximately quadratic.
However, a different balance emerges when Ro & Fr2

v , which is the case in stratified
turbulence with weak or no rotation, as in the atmospheric mesoscale and oceanic
sub-mesoscale. In this regime, the ratio of the quadratic and linear parts of the PV
is Π2/Π1 ∼ Fr2

v . As a result, Π1 will dominate over Π2 – and, consequently, the
quadratic potential enstrophy will dominate over the cubic and quartic contributions
– when Frv � 1. But small vertical Froude numbers are only expected for small Reb.
For larger Reb, which is the more geophysically relevant parameter regime, this scale
analysis suggests that V2 ∼ V3 ∼ V4.

3. Numerical approach

To explore how the different terms in the potential enstrophy vary with Reb, we
have performed direct numerical simulations (DNS) of forced stratified turbulence
with small Froude number (Frh . 0.02) and large Reynolds number (Re & 4000).
Simulations are configured to have similar values of U and Lh, so the Froude and
Reynolds numbers are varied by changing N and ν. Four stratifications and two
viscosities are considered to yield a range of buoyancy Reynolds numbers on both
sides of unity (0.002 . Reb . 4; simulation parameters are given in table 1). The
Coriolis parameter f is set to zero.

The governing equations are solved numerically in a triply periodic domain of
size L3 = (2π)3. The numerical model employs a Fourier-based spectral method,
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Run n N ν Frh Re Reb

A1 512 0.283 0.125× 10−4 0.022 3800 1.8
A2 512 0.566 0.125× 10−4 0.010 4800 0.48
A3 512 1.13 0.125× 10−4 0.0043 7200 0.13
A4 512 10 0.125× 10−4 0.00046 9700 0.0020

B1 960 0.283 0.0625×10−4 0.021 8300 3.6
B2 960 0.566 0.0625×10−4 0.010 9000 0.94
B3 960 1.13 0.0625×10−4 0.0045 13000 0.26
B4 960 10 0.0625×10−4 0.00044 22000 0.0041

A1r 960 0.283 0.125× 10−4 0.021 4000 1.8

TABLE 1. Summary of simulations. In the labels, letter (A, B) denotes viscosity and
number (1–4) denotes stratification. Run A1r is a high-resolution version of A1.

with third-order Adams–Bashforth time stepping for the advection, buoyancy, and
forcing terms. Viscous terms are treated implicitly using a trapezoidal approach. The
spatial resolution is uniform in the horizontal and vertical, with n wavenumbers and
grid points in each direction. Aliasing errors are removed by truncating the Fourier
coefficients with the 2/3 rule after computing convolutions in physical space, i.e. by
keeping only wavevectors k with k ≡ |k| 6 kT ≡ n/3. As a result, the effective grid
spacing is 1x≡ 1.5L/n. Two resolutions are employed: n= 512 and 960 for the larger
and smaller ν, respectively. These are chosen to resolve the Kolmogorov wavenumber
with kT/kd ≈ 1, where kd ≡ (ε/ν3)

1/4. One additional high-resolution simulation with
kT/kd ≈ 2 was also performed (run A1r in table 1).

Statistically stationary turbulence is maintained with a random velocity forcing F
(e.g. Kimura & Herring 2012). Following Aluie & Kurien (2011), forcing is restricted
to wave vectors in a spherical shell centred on kf = 4. The forcing is horizontally
non-divergent in order to excite only vortical modes, which account for the linear
part of the PV (Bartello 1995). Such vortical forcing is commonly used in numerical
studies of stratified turbulence to avoid complications from large-amplitude, large-scale
internal waves (e.g. Waite & Bartello 2004; Lindborg 2006; Kimura & Herring 2012).
Note, however, that Aluie & Kurien (2011) forced vortical modes and internal waves.
The amplitude of the forcing is set to give ε ≈ 2 × 10−6, which yields a forcing time
scale of around τf ≡ ε−1/3k−2/3

f ≈ 30. Vertically sheared uniform flow with kh = 0 is
damped with a weak linear drag (time scale of 1000) to avoid the slow growth of these
modes (Smith & Waleffe 2002).

For the larger-ν simulations, the velocity and buoyancy fields are initialized with
low-level noise and run for 2000 time units, with various quantities (ε, V , etc.)
averaged over 1000 6 t 6 2000. The length of the averaging interval corresponds to
≈ 30τf . Simulations with smaller ν are initialized with the larger-ν fields at t = 1000
and averaged over 1200 6 t 6 2000. To compute the Froude and Reynolds numbers,
U is defined as the root-mean-square velocity and Lh is obtained from the average
dissipation rate using Lh ≡ U3/ε. As a result, the velocity and length scales are flow-
dependent and vary slightly from simulation to simulation; however, they are around
U ≈ 0.02 and Lh ≈ 4 in all cases. It is also possible to define a forcing-based Froude
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FIGURE 1. Time series of V (solid) and V2 (dashed) for Frh = 0.01 with Reb = 0.48 (black) and
Reb = 0.94 (grey) (runs A2 and B2, respectively).

number Frf ≡ 1/(Nτf ) (as in Aluie & Kurien 2011). Our strongest stratification N = 10
was chosen to yield Frf = 0.003, which is close to (in fact, slightly larger than) the
stratified turbulence simulation in Aluie & Kurien (2011), which has Frf = 0.002.

4. Results

Time series of the total and quadratic potential enstrophy are shown in figure 1
for the two simulations with Frh = 0.01 (Reb = 0.48 and 0.94). The lower-Reb case
starts at t = 0 and takes several hundred time units to adjust to the forcing; the time
series appear to be statistically stationary by around t ≈ 500. The potential enstrophy
is nearly quadratic in this simulation, with V2 only slightly different (in fact, larger)
than V . Since V4 is positive definite, the implication is that the cubic term V3 < 0.
At t = 1000, the higher-resolution simulation with Reb = 0.94 is started. Both V
and V2 increase rapidly in response to the change in Reb, after which V2 remains
significantly larger, by around 70 %, than V . Figure 1 makes it clear that the relative
importance of the quadratic potential enstrophy is not simply a function of Frh, since
both experiments have Frh = 0.01. Increasing Reb at fixed stratification appears to
make the higher-order contributions to V more significant.

This dependence on Reb holds at other stratifications as well. The quadratic and
quartic fractions of the potential enstrophy V2/V and V4/V are shown in figure 2
for all simulations. For sufficiently small Frh (figure 2a), the potential enstrophy
is predominantly quadratic. As the Froude number is increased to Frh ≈ 0.01–0.02,
which is still small enough for stratified turbulence, higher-order contributions become
important. At these stratifications the quadratic potential enstrophy is larger than V
by around a factor of two, and the quartic term V4 has the same order of magnitude
as V2 (as does the cubic term V3, which is negative). However, as suggested by the
time series in figure 1, these ratios are not simply functions of Frh. Decreasing Re at
fixed Frh, i.e. going from the grey to black curves in figure 2(a), leads to a significant
decrease in the quartic contribution V4/V at all Frh.

Some of the joint dependence of these ratios on Frh and Re can be accounted
for by a dependence on Reb (figure 2b). For relatively small Reb < 0.4, i.e. in the
viscously coupled layerwise regime of stratified turbulence, the potential enstrophy
is essentially quadratic, with the small quartic contribution collapsing onto a single
function of Reb. The ratio V4/V appears to go to zero as Reb→ 0. However, for larger
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FIGURE 2. Fraction of time-averaged quadratic (solid) and quartic (dashed) contributions to
the potential enstrophy (V2/V and V4/V , respectively), plotted against (a) Frh and (b) Reb.
Simulations with ν = 0.125× 10−4 are black, and with ν = 0.0625× 10−4 are grey. The quartic
contributions at small Frh and Reb are shown with log–log axes in the insets.

Reb ∼ 1, the collapse with respect to Reb fails, and the contribution from the quartic
term is significant; indeed, it has the same order of magnitude as V2 and V itself. The
quadratic contribution is therefore a poor approximation to the full potential enstrophy
in this regime, which corresponds to the transition from viscous layering to weakly
viscous stratified turbulence.

Horizontal wavenumber spectra can provide insight into the dependence of the
terms in the potential enstrophy on Reb. Spectra of V , V2 and V4 are plotted in
figure 3 for simulations with Frh = 0.02, 0.01 and 0.004, for which the higher-order
terms in V make the largest contributions. These spectra are computed from Π1

and Π2 by integrating the modal PV variances over cylindrical wavenumber shells
in the usual way (e.g. Waite & Bartello 2004; Kimura & Herring 2012); they give
the contribution to the potential enstrophy from different horizontal length scales.
Note that the V spectra exhibit a bulge at the very largest wavenumbers (kh ≈ 100
and 200 in figures 3a,c and 3b,d,f, respectively). This bulge is an artifact of the
wavenumber truncation in these simulations, and is more pronounced in the higher-
order contributions to the potential enstrophy. We have verified that this bulge moves
downscale when higher resolution is employed (see grey curves in figure 3a, which
were computed with n = 960). Apart from this feature at very small scales, the V
spectra are well-resolved and robust to increased resolution.

The potential enstrophy spectra are peaked at large horizontal scales (2 6 kh 6 4),
consistent with the vortical mode forcing around k = 4. V is mostly quadratic at
these scales, and increasingly so as Frh is reduced. In contrast to the totals plotted
in figure 2, the large-scale V2 is smaller than V . The combined contribution from
V3 and V4 at large scales is therefore small and positive. However, the situation
changes dramatically as one moves to smaller horizontal scales. The V2 spectra have
a pronounced bump at intermediate kh (e.g. around kh ≈ 20 in figure 3a), which is
not present in the V spectra. Unlike the bulge at the largest kh described above, this
intermediate-kh bump is robust and well-resolved (figure 3a). It is because of this
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FIGURE 3. Time-averaged horizontal wavenumber spectra of V (solid), V2 (long dashed), and
V4 (short dashed). Top plots have Frh = 0.02 and Reb = (a) 1.8 and (b) 3.6; middle plots have
Frh = 0.01 and Reb = (c) 0.48 and (d) 0.94; and bottom plots have Frh = 0.004 and Reb = (e)
0.13 and (f ) 0.26 (runs A1, B1, A2, B2, A3 and B3, respectively). In (a), a high-resolution test
(run A1r) is shown in grey. The reference line has slope −2.

bump that the total domain-averaged V2 over-estimates V in figure 2. The bump is
diminished when Reb decreases, either by decreasing Frh (compare upper and lower
plots in figure 3 or by decreasing Re (compare right and left plots in figure 3. In fact,
the bump disappears completely for Reb = 0.13 (figure 3e) as well as smaller Reb (runs
A4 and B4, not shown).The V4 spectra are similarly peaked at intermediate scales, as
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FIGURE 4. (a) Time-averaged horizontal wavenumber spectra of KE for Frh = 0.02 (solid) and
0.01 (dashed), for lower (black) and higher (grey) Reb (runs A1, A2, B1 and B2, respectively),
along with a reference slope of −5/3. (b) Fraction of time-averaged large-scale quadratic (solid)
and quartic (dashed) contributions to V (as in figure 2b, but enstrophy is restricted to kh 6 10).
Simulations with ν = 0.125× 10−4 are black, and with ν = 0.0625× 10−4 are grey.

is V3, which has a negative bump (implied by figure 3, since V3 = V − V2 − V4). When
summed together, these bumps cancel out, yielding V spectra that are much steeper
than those of V2, V3 and V4.

The V2 spectrum is proportional to the vortical KE spectrum multiplied by k2
h

(Bartello 1995). As a result, shallowing of the KE spectra to a −5/3 power law,
which is expected for large Reb, should yield V2 spectra with positive slopes out to
the dissipation range, as in figure 3. However, the bumps in the V2 spectra are also
reminiscent of bumps in the energy spectra (figure 4a), which have been attributed
in previous studies to KH instabilities of the layerwise flow (Laval et al. 2003;
Brethouwer et al. 2007; Waite 2011). As these instabilities evolve at finite amplitude
and roll up into KH billows, they inject energy into horizontal scales on the order of
the billow size, which is expected to be similar to the layer thickness. Waite (2011)
showed that these bumps appear at horizontal scales around Lb in simulations with
hyperviscosity (i.e. effectively large Reb). More recently, Waite (2013) showed that
they can also appear at the viscous scale in DNS with Reb ∼ 1. The bumps in the V2

spectra in figure 3 are consistent with this interpretation.
The bumps in figure 3 are responsible for the behaviour observed in figure 2(b),

in which the ratios V2/V and V4/V were found to not collapse when plotted against
Reb for Reb ∼ 1. Depending on the value of Reb, the layer thickness in stratified
turbulence, and hence the scale of the KH instabilities, is either Lb or Lvisc (e.g. Hebert
& deBruynKops 2006; Brethouwer et al. 2007; Waite 2011, 2013). But neither of these
scales is determined by Reb alone, since Lb/Lh ∼√Reb/Re and Lvisc/Lh ∼ 1/

√
Re. As

a result, there is no reason to expect the higher-order contributions to the potential
enstrophy from these scales to depend solely on Reb. We can remove the contribution
from the bumps by computing V , V2, and V4 from large horizontal scales only
(kh 6 10). These ratios are plotted in figure 4(b), and the collapse with respect to
Reb is excellent.
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5. Conclusions

We have shown that the quadratic part of the potential enstrophy is not a good
approximation to the total when Reb & 1, even in strongly stratified turbulence with
Frh � 1. The parameter regime of Reb & 1 corresponds to marginally or weakly
viscous stratified turbulence, which is characterized by layerwise flow with associated
KH instabilities and (for Reb � 1) more isotropic three-dimensional turbulence at
small scales. The breakdown of the quadratic approximation appears to occur at
intermediate horizontal scales, where bumps in the KE spectra suggest the growth
of KH billows (as in Laval et al. 2003 and Waite 2011; the same process has been
reported in the breakdown of a vortex dipole by Augier, Chomaz & Billant 2012).
Similar bumps in the quadratic, cubic, and quartic parts of the potential enstrophy
spectra are observed here. KH instabilities on sheared layers in stratified turbulence
often appear locally two-dimensional, at least early on in their evolution (Laval et al.
2003; Brethouwer et al. 2007; Waite 2011). Such flow structures would not have PV
(neglecting possible viscous generation), and hence would not contribute to the total
potential enstrophy. However, the horizontal vorticity of such instabilities could readily
tilt into the vertical, resulting in bumps in the V2 spectra but not V , as is observed.
It would be interesting to investigate whether the bumps in the V2 spectra change for
large Reb; the results shown here suggest that they may become more pronounced for
Reb � 1. However, this parameter regime requires very large Re� 1/Fr2

h, and will
present a serious computational challenge for some time.

On the other hand, the potential enstrophy is predominantly quadratic when
Reb < 0.4, i.e. when Frh is small but Re is not too large. This parameter regime
corresponds to viscously coupled stratified turbulence, which is characterized by thin
layers of horizontal flow, glued together by the vertical part of the viscosity. There is
no small-scale turbulence in such flows; instead, the nonlinear transfer is dominated by
the vertical layering, which sends energy from large to small vertical scales (e.g. Waite
& Bartello 2004; Brethouwer et al. 2007). It is likely that the simulations of Aluie
& Kurien (2011) are in this viscously coupled regime, as they have comparable
numerical resolution but even stronger stratification than we do. Although their use of
hyperviscosity makes it difficult to estimate Reb, their finding that V ≈ V2 is consistent
with our results at small Reb. The analysis of Kurien et al. (2006) also applies to
the small-Reb regime, since it assumes Frh → 0 at fixed Re. While this regime is
interesting theoretically and relevant to some laboratory-scale flows (e.g. Praud et al.
2005), it may not apply to stratified turbulence at scales of the atmospheric mesoscale
and oceanic sub-mesoscale, where Reb is expected to be large. Thus, it is doubtful
whether the assumption of quadratic potential enstrophy, and any associated cascade
theory, would be applicable to stratified turbulence at such scales.
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