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Many moving boundary problems that are driven in some way by the curvature of the

free boundary are gradient flows for the area of the moving interface. Examples are the

Mullins–Sekerka flow, the Hele-Shaw flow, flow by mean curvature, and flow by averaged

mean curvature. The gradient flow structure suggests an implicit finite differences approach

to compute numerical solutions. The proposed numerical scheme will allow us to treat such

free boundary problems in both IR2 and IR3. The advantage of such an approach is the re-

usability of much of the setup for all of the different problems. As an example of the method,

we compute solutions to the averaged mean curvature flow that exhibit the formation of a

singularity.

1 Introduction

In this paper we study geometric evolution problems for surfaces driven by curvature.

These moving boundary problems arise from models in physics and the material sciences,

and they describe phase changes, or more generally, phenomena in fluid flow.

The Hele-Shaw model (named after H. S. Hele-Shaw [1]) describes the pressure of two

immiscible viscous fluids trapped between two parallel glass plates, and it has attracted

considerable attention in the literature, both on the analytical side [2–10] and on the

numerical side [11–20]. This list of references also encompasses work related to the one-

sided Hele-Shaw model, which arises as a limit when the viscosity of one of the fluids

approaches zero. Furthermore, the Hele-Shaw model has classically been considered on

a bounded domain, but many of the references above also address the problem on an

unbounded domain. We shall only consider the problem on all of IRn; for the precise

formulation see (4.4).

The Mullins–Sekerka model was first proposed by (and much later named after) Mullins

and Sekerka to study solidification of materials of negligible specific heat [21]. For a while

this model was also called the Hele-Shaw model, leading to a somewhat confused literature.

Pego [22] and then Alikakos et al. [23], and also Stoth [24], established this model as

a singular limit of the Cahn–Hilliard equation [25], a fourth-order partial differential

equation modelling nucleation and coarsening phenomena in a melted binary alloy. The

Mullins–Sekerka model is considered to be a good model to describe the stage of Ostwald

ripening in phase transitions, which is the stage after the initial nucleation has essentially
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been completed and where some particles grow at the cost of others in an effort to

decrease interfacial energy (surface area). The literature focuses mainly on the modelling

and analytical aspects of the problem [26–37], though there are numerical simulations for

the two-dimensional case [38, 39]. We shall consider the two-phase problem on all of IRn,

see (4.3).

The mean curvature flow is probably the most studied geometric moving boundary

problem, it is in some way also the simplest: the normal velocity is equal to the mean

curvature of the interface. This sharp interface model arises, for example, as a singular

limit of the Allen–Cahn equation [40], see the paper by Evans et al. [41]. Physically, the

Allen–Cahn equation describes the motion of phase-antiphase boundaries between two

grains in a solid material. There is also a volume preserving version of the mean curvature

flow, for which one subtracts the average of the mean curvature from the normal velocity.

A plethora of analytical results and theories of weak solutions exists [41–51], and for

numerical solutions [52–58], to name but a few.

The algorithm proposed below is a front-tracking boundary-integral method. It has the

advantage that one does not have to differentiate across the front, as compared to a level-

set approach. Also, at least if the inner product (see below) is of local character, it makes

no difference whether the moving interface is immersed or embedded. Both front-tracking

methods and the level-set methods have been used intensively in the literature – see, for

example, the recent review article by Hou [59].

Now let us describe what we mean under a gradient flow for the area of the free

boundary. First, area means surface area if the problem setting is IR3, or length if the

setting is IR2. The notion of gradient depends on a function space defined on the free

boundary. This function space is assumed to be a (pre-)Hilbert space H contained in L2

of the free boundary Γ (t). Each (sufficiently small) element of H gives rise to a graph

in the normal direction over Γ (t), and one can compute the area of that graph. Under

suitable assumptions this functional, which maps functions on the interface to the area of

the resulting graph, is differentiable, and its derivative, being linear, can be represented

by a vector in the space H. This gradient vector clearly depends on the metric of H

and is of course an element of H, that is a function on Γ (t). If now for all times t

the normal velocity of the moving boundary coincides with the negative gradient of the

area functional with respect to H(Γ (t)), then this free boundary problem is considered a

gradient flow for the area. This notion is due to Fife [60, 61]. The free boundary problems

mentioned above fall within the characterization as gradient flows.

We propose to replace the normal velocity by a finite difference, and the scheme should

be chosen to be implicit. That means that the computation of the velocity will depend on

the interface at the next time step. This is essential for the stability of the computations.

This dependence will then be replaced by an approximate linearized dependence, which

makes the system semi-implicit. Finally, discretization of the surface in the spatial variables

and then averaging over (small) patches of the surface will lead to a linear system for

the velocities of the surface patches. This is where the nature of the operator S giving

the scalar product of H plays an essential role. We will assume that either S is of local

character, or that one of S or S−1 has an integral representation on the interface. For

the mean curvature flow S is local; for the Mullins–Sekerka flow S has an integral

representation with a kernel that happens to be independent of the free boundary, while
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for the Hele-Shaw problem there is an integral representation for S−1 with a kernel

depending only in a local manner on the unknown interface. The special form of the

kernels is of practical importance for the spatial discretization.

Some of these ideas have been implicitly used by Bates et al. [38] for the two-sided

Mullins–Sekerka problem in two space dimensions (the interface is a curve in the plane

and spatial discretization amounts to approximating a curve by a polygon). However,

their approach is ad hoc, and does not address the gradient flow nature of the problem.

Also for the Mullins–Sekerka in two space dimensions, there is the refined method by

Zhu et al. [39] which avoids the numerically laborious step of inversion of a matrix to

compute the next time step. The idea of a semi-implicit scheme appears also elsewhere

in the literature [14, 12, 19]. Of particular interest is a paper by Petersson [62], in which

he computes numerical solutions to a free boundary problem in the plane. There he uses

the idea of adding a perturbation of order ε to a solution and expanding the perturbed

solution in ε. Collecting first order terms in ε leads then to a semi-implicit scheme for

the perturbation. This is clearly similar in spirit to what we do below. We consider the

interface at the next time step as a normal variation of the current interface, and then

compute a linear approximation of the curvature of the interface at the next time step.

However, we have more structure in our equations, and it turns out we need to linearize

only the curvature, and no other state variable. This then leads to a simple and elegant

iterative scheme because we have a linear relationship between curvature and normal

velocity. This is, in fact, the main advantage of the gradient flow structure, because all

nonlocal and nonlinear dependencies can be hidden away in the inner product.

Of related interest is the paper by Almgren et al. [63], in which another variational

approach to curvature driven flows is given. Finally, for an overview of other methods

used to treat geometric moving interface problems the reader is referred to the paper by

Taylor et al. [64].

2 Analytical background material

The author owes much of the material in this section to Fife [60, 61].

2.1 Definition of gradient flows

Gradient flows are a natural model for the dynamics of a system that is known to cause

some quantity A to decrease as time evolves, i.e. one seeks to solve

d u(t)

dt
= −∇A(u(t))

where u(t) describes the state of the system. In this paper the system will be characterized

by a compact (n − 1)-dimensional surface Γ (t) embedded or immersed in IRn, which

need not necessarily be connected, and A will be the (n − 1)-dimensional surface area

functional. We are interested in the physically relevant cases n = 2 or n = 3. We assume

the evolution is sufficiently smooth, that is, for small enough times τ we have

Γ (t+ τ) = {x ∈ IRn : x = y + ρ(τ, y)N(t, y), y ∈ Γ (t)},
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for some smooth function ρ and unit outer normal N of Γ (t). Let

V (t, y) =
∂ρ

∂τ
(τ, y)

∣∣∣
τ=0

denote the normal velocity of Γ (t). The following two basic formulae from differential

geometry are the starting point:

d

dt
A(Γ (t)) =

∫
Γ (t)

V (x)κ(x) dσx , (2.1)

d

dt
Vol(Γ (t)) =

∫
Γ (t)

V (x) dσx . (2.2)

Here κ denotes the curvature of Γ (t) if n = 2, and the mean curvature of Γ if n = 3.

Throughout this paper the mean curvature is defined as the sum of the principal cur-

vatures; this avoids having a factor of (n − 1) in formula (2.1). The sign is chosen so

that a sphere has positive curvature with respect to the outer normal; by the definition

of V a family of expanding spheres has positive normal velocity. Vol(Γ (t)) denotes the

n-dimensional volume enclosed by Γ (t).

For any fixed Γ consider a (pre-)Hilbert space H(Γ ) ⊂ L2(Γ ). The right-hand side of

equation (2.1) can be interpreted as a linear functional for the function V ,

dA/dt : H(Γ )→ IR , V 7→
∫
Γ

Vκ dσ .

In some cases this will be a bounded linear functional on H(Γ ). We assume that this is

the case, and that we can represent the functional as the scalar product with some unique

element ∇H(Γ )A. By the Riesz representation theorem this is certainly possible if H(Γ ) is

complete. Hence for any v ∈ H(Γ )∫
Γ

vκdσ = <v,∇H(Γ )A>H(Γ ) , (2.3)

and in particular the following equation holds:

dA
dt

= <V,∇H(Γ )A>H(Γ ) . (2.4)

Γ (t) is said to be a gradient flow for A if for all times t

V (t) = −∇H(Γ (t))(A) .

Notice that the space with respect to which the gradient is computed is constantly

changing.

As the easiest example set H(Γ (t)) = L2(Γ (t)). From equation (2.3) we have <v, κ> =

<v,∇H(Γ (t))A> with both inner products in L2(Γ (t)), therefore ∇H(Γ (t))A = κ holds, and

the L2-gradient flow is given by V = −κ. This is the usual flow by mean curvature.

2.2 Volume preserving flows

We write a superscript zero when we talk about a function space containing only functions

with average zero. Zero-average subspaces are particularly important because gradient

flows in these spaces preserve the enclosed volume by (2.2).
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Let S be a positive definite symmetric operator whose domain and range are (dense)

linear subspaces in L0
2(Γ ). Define H(Γ ) to be the (pre-)Hilbert space consisting of the func-

tions in the domain of S endowed with the scalar product <u, w>H(Γ ) = <u, Sw>L0
2(Γ ).

Denote the average of κ on Γ by κ. Then for v ∈ H(Γ ), using (2.3) for the first equality,

<v,∇H(Γ )A>H(Γ ) = <v, κ>L2
= <v, κ− κ>L0

2
= <v, S−1(κ− κ)>H(Γ ) ,

and the gradient flow with respect to the space H is given by

V = −S−1(κ− κ) . (2.5)

3 Discretization

The proposed scheme for the gradient flows involves essentially two steps. First, discretize

in time, and then triangulate the surface (if n = 3, for n = 2 approximate the curve by a

polygon). In this outline we will only treat volume preserving flows that can be set up as

outlined in § 2.2. The notation of § 2 will be used below.

3.1 Finite differences

The main idea for discretization in time is as follows. For some abstract gradient flow

du(t)

dt
= −∇A(u(t))

one replaces the time derivative by a finite difference

u(t+ h)− u(t)
h

= −∇A(u(t+ h)) .

Hence one has formally

u(t+ h) = (id + h∇A)−1u(t) ;

here id stands for the identity map. Now set h = t/k, then it can be expected that

u(t)
def
=

(
I +

t

k
∇A

)−k
u(0)

is a good approximation for the exact solution uexact(t) at time t. One can show that under

suitable assumptions the exact solution is given by the exponential formula

uexact(t) = lim
k→∞

(
I +

t

k
∇A

)−k
u(0)

(see, for example, Crandall & Liggett [65] and Mayer [66]). This motivates our numerical

approach here, even as the setting in those two references is essentially different.

First, we introduce a bit of notation. Let Σ be a fixed manifold immersed or embedded

in IRn and assume Γ (t) is a parameterized as a graph in the normal direction over Σ, that

is Γ (t) = im(φ(., t)) with φ : Σ × (t− ε, t+ ε)→ IRn. In fact, for the computations we will

simply use Σ = Γ (t), but for the derivation is is better to keep the roles separate. For free

boundary problems the time derivative of an abstract evolution problem corresponds to

the normal velocity, hence equation (2.5) yields the following finite difference equation

N(φ(x, t), t) · φ(x, t+ h)− φ(x, t)

h
= −S−1(κ(., t+ h)− κ(t+ h))(φ(x, t+ h)) .
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One should actually write φ̃ and so on because the above equation describes approximate

solutions; by a similar abuse of notation we will call the left-hand side of the above

equation V (φ(x, t), t) again, and hence

φ(x, t+ h) = φ(x, t) + hV (φ(x, t), t)N(φ(x, t), t) ,

V (φ(x, t), t) = −S−1(κ(., t+ h)− κ(t+ h))(φ(x, t+ h)) .

Finally, approximate the dependency of the curvature of the next time step by

κ(φ(x, t+ h), t+ h) ≈ κ(φ(x, t), t) + hLV (φ(x, t))

where L is a linear operator which is formally defined via

L(V (φ(x, t), t)) =
d

dh
κ(φ(x, t) + hV (φ(x, t), t)N(φ(x, t), t))

∣∣∣∣
h=0

. (3.1)

As V (., t) is in the range of S−1 it has average zero, and hence by linearity of L so does

L(V (., t)), thus

V (., t) = −S−1(κ(., t) + hL(V (., t))− κ(t)) .

This finally leads to the (semi-)implicit scheme given by (here id stands for the identity

map)

(id + hS−1L)(V (., t)) = −S−1(κ(., t) + κ(t)) , (3.2)

or equivalently

(S + hL)(V (., t)) = −κ(., t) + κ(t) . (3.3)

It should be mentioned here that it is now clear that this setup not only works for gradient

flows, but also for others, that are given by a not necessarily invertible linear operator A

defined on L2 or L0
2, such that

V = −A(κ) or V = −A(κ− κ) . (3.4)

The scheme is then the one given by (3.2) with S−1 replaced by A,

(I + hAL)(V (., t)) = −A(κ(., t) + κ(t)) .

However, if A is not linear, then this elegant setup no longer works. The point of

this paper is that gradient flows provide an interesting class of free boundary problems

satisfying (3.4).

3.2 Spatial discretization

As mentioned above, let Σ = Γ (t), so that in particular φ(x, t) = x. Subdivide the interface

Γ into a finite collection of disjoint surface patches (line segments) Γi and choose points

zi ∈ Γi. Let |Γi| denote the surface area (length) of Γi. Use the approximations

κ(zi, t) ≈ 1

|Γi|
∫
Γi

κ(x, t) dσx

κ(t) ≈∑
i

|Γi|
|Γ | κ(zi, t) (3.5)
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and average equation (3.3). This leads to

1

|Γi|
∫
Γi

(S + hL)(V (x, t)) dσx = −κ(zi, t) + κ(t) .

Assume S to be an integral operator, that is, there is a function k(x, y) associated with S

so that for any suitable function w(x) one has

(Sw)(x) =

∫
Γ

k(x, y)w(y) dσy .

Approximate further by using V (y, t) ≈ V (zj , t) for y ∈ Γj . This leads to

1

|Γi|
∫
Γi

SV (x, t) dσx ≈ 1

|Γi|
∑
j

V (zj , t)

∫
Γi

∫
Γj

k(x, y) dσydσx.

Finally, as L is a linear mapping on V we seek an approximation of the form∑
j

lijV (zj , t) ≈ 1

|Γi|
∫
Γi

LV (x, t) dσx (3.6)

for some coefficients lij depending on Γ (t) but independent of V (x, t). If we also define

sij =
1

|Γi|
∫
Γi

∫
Γj

k(x, y) dσydσx, (3.7)

then we obtain a linear system for the unknown velocity at the points zi

∀i :
∑
j

(sij + hlij)V (zj , t) = −κ(zi, t) + κ(t) . (3.8)

In case it is not S but S−1 which is an integral operator, it will be preferable to start

from (3.2) and to proceed as above. If we use k(x, y) to denote the kernel corresponding

to S−1 and use equation (3.7) again to define the matrix now belonging to S−1, then the

numerical scheme is given by

∀i :
∑
j

(
δij +

∑
k

hsiklkj

)
V (zj , t) = −∑

j

sij(κ(zj , t)− κ(t)) . (3.9)

3.3 Approximation of the curvature

The surface will be represented as a list of vertices {z1, . . . , zm}, edges, and if n = 3,

oriented triangular facets. Furthermore, if n = 3, then every edge is assumed to belong to

exactly two facets; a vertex, however, can belong to arbitrarily many facets.

The (mean) curvature is considered to be located at the vertices. The motivation of the

formula used is as follows. Let η be a piecewise linear function of one real variable with

η(0) = 1 and η(t) = 0 for |t| > ε. Pick a point z on a smooth surface Γ embedded in IRn

and consider the variation of Γ with variation field V (x) = η(|x− z|)N(x). Then by (2.1)

dA
dt

=

∫
Bε(z)

(
1− 1

ε
|x− z|

)
κ(x) dσx ≈ ωn−1κ(z)

∫ ε

0

(
1− ρ

ε

)
ρn−2 dρ

=
ωn−1

n2 − nπε
n−1κ(z) .
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Here ωn−1 stands for the surface area of the unit sphere in IRn. For the following assume

n = 3. On the triangulated surface the same effect of this variation can be achieved by

the (normal) movement of one vertex. The star of a vertex z is the union of all facets

containing z, and we choose ε from above in such a way that the area of star(z) equals

the area of the ε-ball about z. Consider the area of the triangulated surface as a function

of the position of z, all other vertices are fixed. It is clear that the biggest rate of change

occurs under normal variations for a given magnitude of variation, hence∣∣∣∣dAdt
∣∣∣∣ ≈ |∇zA| .

The reasoning for n = 2 proceeds analogously, and the final formula for the mean

curvature at the vertex zi then is (where Ni denotes the outer normal at zi)

κi =
∇ziAi ·Ni

(|zi − zi−1|+ |zi − zi+1|)/2 for n = 2 , (3.10)

κi =
∇ziAi ·Ni

(area of star(zi))/3
for n = 3 . (3.11)

For the case n = 3 this formula for the mean curvature can also be derived using

the soap film model for the triangulated surface. There ∇ziA is the force due to surface

tension at the vertex zi, and to get the mean curvature one divides by one-third of the area

of the star as each facet belongs to three stars. This interpretation appears in Brakke [56].

Now for n = 3 let Ai =area of star(zi), then

Ai = 1
2

∑ |(zj − zi) ∧ (zk − zi)|
where the sum ranges over those indices so that zi, zj , and zk span a positively oriented

facet of star(zi). The outward normals on the facets are given by

Nijk =
(zj − zi) ∧ (zk − zi)
|(zj − zi) ∧ (zk − zi)| .

A standard computation leads to

∇ziA = ∇ziAi = 1
2

∑(
Nijk ∧ (zk − zj)

)
.

The outward pointing vector of ±∇ziAi/|∇ziAi| can then be defined to be the unit outer

normal Ni. For n = 2 the computations are similar in spirit, but easier.

3.3.1 Linearization of the mean curvature

In this section we want to compute the discretized version of (3.1), that is the linear

approximation of the curvature of a normal perturbation of a surface. For a general

perturbation of a smooth curve such a formula can be found in Petersson [62].

Fix a time t and use Vi to denote the velocities of the vertices zi. We seek coefficients

lij such that for the operator L as defined in (3.1) we have

LV (zi, t) ≈
∑
j

lijVj .

Let tildes denote quantities referring to the configuration at the next time step. In
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particular, the vertices are given by z̃i = zi + hViNi. Denote the mean curvature by

κi = κ(zi) and by κ̃i = κ(z̃i). The coefficients are then given by

d κ̃i

dh

∣∣∣∣
h=0

=
∑
j

lijVj ,

and the coefficients lij depend only upon the vertices zk .

Now assume n = 3, for n = 2 the following is much easier. Let tildes denote quantities

referring to the configuration at the next time step. In particular, the vertices are given

by z̃i = zi + hViNi and the mean curvature is given by κ̃i = (∇z̃i Ãi · Ñi)/(Ãi/3). Also,

∇z̃i Ãi · ddh Ñi = 0 because Ñi is a unit vector and ∇z̃i Ãi is parallel to Ñi. Hence we define

the lij via

∑
j

lijVj =
d

dh
κ̃i

∣∣∣∣
h=0

=
d
dh

(∇z̃i Ãi)
∣∣
h=0
·Ni

Ai/3
− ∇ziAi ·Ni

A2
i /3

· d
dh
Ãi

∣∣∣∣
h=0

. (3.12)

Standard computations lead to

d

dh
(∇z̃i Ãi)

∣∣∣∣
h=0

=

1

2

∑
star(zi)

{
− Nk ∧ (zj − zi)−Nijk(Nijk · (Nk ∧ (zj − zi)))

|(zj − zi) ∧ (zk − zi)| ∧ (zk − zj)Vk

−Nj ∧ (zi − zk)−Nijk(Nijk · (Nj ∧ (zi − zk)))
|(zj − zi) ∧ (zk − zi)| ∧ (zk − zj)Vj

−Ni ∧ (zk − zj)−Nijk(Nijk · (Ni ∧ (zk − zj)))
|(zj − zi) ∧ (zk − zi)| ∧ (zk − zj)Vi

+Nijk ∧NkVk −Nijk ∧NjVj

}
and to

d

dh
Ãi

∣∣∣∣
h=0

= −1

2

∑
star(zi)

{
Nijk · (Nk ∧ (zj − zi))Vj +Nijk · (Nj ∧ (zi − zk))Vk

+Nijk · (Ni ∧ (zk − zj))Vi
}
.

The sums above are over all positively oriented facets {zi, zj , zk} of the surface contained

in the star of zi. A little more notation makes it easier to write down specific formulae for

the lij . We define

fijk = Nijk · (Ni ∧ (zk − zj)) ,
Fijk = Ni ∧ (zk − zj)− fijkNijk ,

Aijk = |(zj − zi) ∧ (zk − zi)| ,
mijk = Nijk · (Nj ∧Nk) .

Then

lii =
1

2Ai

∑
star(zi)

( 3

Aijk
|Fijk|2 + κifijk

)
,
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and if {zi, zl , zj} and {zi, zj , zk} determine two adjacent positively oriented facets of star(zi),

lij =
1

2Ai

( 3

Aijk
Fijk · Fjki +

3

Ailj
Filj · Fjil

+3(mjki + mjil) + κi(fjki + fjil)
)
.

All other lij are zero.

3.4 Tangent disks

Now that the manifold has been spatially discretized, we indicate how to compute the sij
as defined in (3.7). For n = 3 the surface patches Γi will be approximated by planar disks

Di perpendicular to Ni, having zi as their centre, and having area equal to a third of the

area of star(zi), that is the radii satisfy πR2
i = Ai/3. For n = 2 one can use straight line

segments with length equal to one-half of the sum of the distance to the two neighbouring

vertices. Therefore, we use

sij =
1

|Di|
∫
Di

∫
Dj

k(x, y) dσydσx . (3.13)

4 Applicable models

In this section we will describe three free boundary problems that fall within the charac-

terization as gradient flows. The notation is the same as in § 2.2.

4.1 Averaged mean curvature flow

This is the obvious example which arises by choosing S to be the identity map.

V = −(κ− κ) . (4.1)

4.2 Two-phase Mullins–Sekerka flow in IRn

This model arises when one chooses S to be the single layer potential on the interface Γ .

More precisely, let

r(x) =


1

2π
ln |x| for n = 2 ,

− 1
4π
|x|−1 for n = 3 ,

(4.2)

and set

SV (x) =

∫
Γ

r(x− y)V (y) dσy .

Potential theory allows one to infer many properties of this operator S , and of its inverse

(see for example [72]). In particular SV is a harmonic function off Γ , which is continuous

across the interface and which has a jump in the normal derivative across Γ equal to

V . Using properties of SV at infinity one can show that S is invertible, and hence one
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determines that the gradient flow V = −S−1(κ− κ) will satisfy the following problem:
∆xu(x, t) = 0 in IRn \ Γ (t) ,

u(x, t)− κ(t) = O(1/|x|2) as |x| → ∞ ,
u(x, t) = κ(x, t) on Γ (t) ,

[∂Nu(x, t)] = V (x, t) on Γ (t) .

(4.3)

Here u is an auxiliary function, and [∂Nu] denotes the jump of the outer normal derivative

of u across Γ . The second line in the system assumes n = 3, for n = 2 it should be replaced

by |∇u(x, t)| = O(1/|x|2) as |x| → ∞. If IRn is replaced by a bounded region, then the

second line in the system needs to be replaced by a zero-Neumann boundary condition.

Existence and regularity of smooth solutions on a bounded domain have recently been

established by Escher & Simonett [31], and independently and at the same time by Chen

et al. [30].

A physical interpretation of this model arises from spinodal decomposition where a

chemical mixture is cooled into an unstable state. Separation into (two) different but

miscible phases occurs by diffusion against the concentration gradients. The nonlinear

Cahn–Hilliard equation models this process. It contains an interaction parameter, which

one may think of as describing the width of the layer between the two regions containing

mostly one phase or the other. It has been shown that the two-sided Mullins–Sekerka

model arises as a singular limit when the interaction parameter approaches zero [23, 22].

4.3 Two-phase Hele-Shaw flow in IRn

Take the operator S−1 to be the double layer potential on Γ , that is for the function r(x)

from (4.2) define

S−1V (x) =

∫
Γ

<∇yr(x− y), N(y)>V (y) dσy ,

where N denotes the outer unit normal. Using well-known properties of the double layer

potential, S−1V is an harmonic function off Γ , which has a discontinuity across Γ but also

has a well-defined normal derivative on Γ , and that latter is equal to −V . In particular

S−1 is invertible, so that its notation as an inverse is justified. These facts leads to the

following description of the arising gradient flow (as in the previous section u is an

auxiliary function): 
∆xu(x, t) = 0 on IRn \ Γ (t) ,

u(x, t) = O(1/|x|2) as |x| → ∞ ,
[u(x, t)] = −κ(x, t) on Γ (t) ,

[∂Nu(x, t)] = 0 on Γ (t) ,

∂Nu(x, t) = V (x, t) on Γ (t) .

(4.4)

Physically this model describes the movement of the interface Γ of two viscous incom-

pressible immiscible fluids with all parameters set to unity; in particular, the viscosities

of the two fluids are assumed to be equal. Balancing forces at a point of the interface

between the two fluids leads to [u] = −κ where −u represents the pressure of the liquids

and [u] stands for the jump of u from the inside to the outside of Γ . The incompressibility

of the fluids implies ∆u = 0. Continuity implies [∂Nu] = 0 at the interface. The fluids flow
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Figure 1. At time t = 0.156 the singularity has formed.

against the pressure gradient. Again, the second line of the system assumes n = 3 and

can be adjusted for the case n = 2, or for a bounded domain, as described in the section

above for the Mullins–Sekerka flow. The incompressibility and immiscibility of the fluids

also implies that the volume enclosed by each component Γi(t) of Γ (t) is preserved, that

is
∫
Γi
V (x, t) dσx = 0 for all i. For this model it is therefore natural to work on a (dense)

subspace of L ≡ L0
2(Γ1)× L0

2(Γ2)× · · · × L0
2(Γm) ⊂ L0

2(Γ ) for a given surface Γ .

5 Implementation: the averaged mean curvature flow

This is the easiest example of volume preserving flows and is just meant as an illustration

that the proposed numerical scheme is at all sensible. The two examples below have

been chosen from the literature as they illustrate the formation of a singularity. Other

applications of the scheme will appear elsewhere.

5.1 The example of Gage in two dimensions

It is known that the (non-averaged) mean curvature flow preserves convexity [46, 48], and

that plane curves will become convex [47] before they shrink to a point. However, for the

averaged mean curvature flow the behaviour is different. The following example was first
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Figure 2. Allowing the curve to become immersed.

mentioned in the paper of Gage [67] for the problem

V = −
(
κ− 2π

L

)
.

Here, of course, L is the length of the curve, and it is used that∫
Γ

κ(s) ds = 2π

for any simple closed positively oriented curve in the plane. Hence in our notation

κ = 2L/π, so that this is exactly the flow from § 4.1. The idea of the example is that
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Figure 3. Allowing the curve to become disconnected.

on straight parts of a curve the curvature is zero, and hence because of the subtracted

average one obtains an outward tendency. Choosing a figure with a narrow slit one should

obtain a curve evolving to a self-intersection (see Figure 1).

The evolution of the curve can be continued as an immersion due to the local character

of the equation. As the evolution has the tendency to generate convex shapes (for which

κ is positive) the curves are expected to separate again, and to finally approach a circular

limit shape (see Figure 2).

Another way of dealing with the singularity is to let the curve pop into two components,
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Figure 4. The initial surface with a thin neck. A cross section consists of a circular arc, one period

of a cosine wave, and another circular arc. The length of the figure is about 10.68 units, the diameter

of the neck is 2.2 units.

which leads to a configuration that is topologically an annulus, which will finally evolve

back into a simply connected region, and then into a circle (see Figure 3).

5.2 The example of Grayson in three dimensions

In three space dimensions one may consider a dumbbell with a sufficiently thin neck.

The mean curvature at the neck will be rather large, forcing a movement inwards, which

should in due course create a singularity. This was analytically proved by Grayson [68]

for the non-averaged mean curvature flow. Here is a numerical illustration of this example

for the averaged mean curvature flow. Short term existence of classical solutions for the

averaged mean curvature flow was established recently in Escher & Simonett [45], but

there is no analytic result so far rigorously proving the development of the singularity.

This example has also been numerically investigated by Blowey & Elliott [54], who

use a phase-field approach. Their computations use the axial symmetry to reduce the

computational complexity, while the numerical method described herein does not use any

symmetry. Of course, Blowey and Elliott come to the same numerical conclusion, namely

pinch-off at the neck. The graphics were generated using geomview, a graphics package

produced at the Geometry Center at the University of Minnesota [69].

At this point the numerical simulation was stopped and restarted with two coinciding

points located at the singularity, one connected to the left half and one connected to the

right half of the figure, respectively. Then the simulation was allowed to continue.

Given any collection of spheres which evolve under the averaged mean curvature

flow, one finds – provided the spheres are far enough from each other so that they do

not coalesce – that the smaller spheres shrink, and the larger ones grow [70]. This has

been termed – somewhat humorously – the survival of the fattest. In particular, the two

approximate spheres above cannot be expected to be stable, if only because of numerical

perturbation, see also similar remarks in Blowey & Elliott [54]. For the case of two exact

spheres, it is straightforward to write down a system of ordinary differential equations for

the two radii; the difference of the two differential equations can be used to obtain an

upper bound for the time the smaller sphere will survive. For the experiment above, by

chance, it is the left sphere that ultimately shrinks to a point.
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Figure 5. The thin neck has contracted to a point at about t = 0.65 .

Figure 6. The thin neck has popped apart at about t = 0.67 .

Figure 7. Evolving towards two spheres at t = 1.15 .

6 Final remarks

As the theory stands at this point, each step involves computing the inverse of a matrix.

The number of floating point operations necessary to invert the (full) matrix is of cubic

order in the number of vertices. However, for the example of the (averaged or not) mean

curvature flow in two space dimensions one will get banded matrices due to the local

structure of the problem (this assumes one numbers the vertices consecutively on the

curve). Inversion of the resulting matrices is then only of linear order in the number of

vertices. A similar result can be expected for axially symmetric configurations in three
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Figure 8. The configuration at t = 3.65 .

space dimensions. However, such a result cannot be easily achieved for arbitrary surfaces

in three space dimensions, as there is no natural order of the vertices.

Also in two space dimensions, for the Mullins–Sekerka flow the matrix inversion

problem can be avoided due to the special form of the kernel of the corresponding

integral operator. The singular part of the kernel can be isolated and the inverse of it

can be handled well using the Hilbert transform in combination with the fast Fourier

transform [39]. Further research should show if something similar is also possible in

higher space dimensions, or for the other problems. It is clear that inversion of a dense

matrix at each step is unrealistic for large scale simulation. Of course, as the matrix, the

right-hand side, and the solution of the linear system do not differ much from step to

step, an iterative scheme should alleviate the computational cost somewhat. Better still

would be an incorporation of a small scale decomposition technique, as developed by

Hou et al. [19], or as used by Petersson [62]. Also, our numerical experiments have shown

that the simulations are essentially not changing much with the time-step size, provided

the time step is small enough to keep the experiment stable. Furthermore, this critical

time-step size of course depends on the mesh size of the triangulation, the inner product,

and on the size of the curvature and of its derivative. This is clearly an area for future

research.

The proposed algorithm should allow to numerically determine geometric properties

of the various flows, such as preservation of convexity, location of the centre of mass,

pinch-off, or coalescence of separate components of the interface. It has been conjectured

that the Mullins–Sekerka flow has similar behaviour as the mean curvature flow. However,

contrary to this conjecture it has been shown in two dimensions that the Mullins–Sekerka

flow does not preserve convexity [9, 34]. We believe the same result is true in higher

dimensions, but there is no proof. Also for the Mullins–Sekerka flow, there is the result

that (not necessarily convex) initial configurations close to spheres (circles) converge

exponentially fast to spheres (circles) [32, 28]). In two dimensions there is numerical

evidence that several particles could coalesce, and that a single particle could pinch off

into two [38], but there are no results in three dimensions. Numerically it has been

shown that the one-sided interior Hele-Shaw flow in two dimensions can drive a dumbbell

shaped initial curve to self-intersection [12], and the characteristic fingering of the two-

sided Hele-Shaw flow in the plane is a well-studied phenomenon, see the references in the

introduction. However, there are no results for the behaviour of the two-sided Hele-Shaw
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flow in three dimensions that the author is aware of, and it is hoped that the proposed

algorithm will alleviate this situation.
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